Anc80 encoding sphingolipid-metabolizing proteins for mitigating disease-induced tissue damage

Information

  • Patent Grant
  • 11618893
  • Patent Number
    11,618,893
  • Date Filed
    Wednesday, September 11, 2019
    5 years ago
  • Date Issued
    Tuesday, April 4, 2023
    a year ago
Abstract
The present disclosure relates generally to the use of sphingolipid-metabolizing proteins to mitigate or minimize tissue damage resulting from injury or from disease, for example, pulmonary arterial hypertension (PAH) when the sphingolipid-metabolizing protein is delivered via expression from an Anc80 vector.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing, created on Dec. 18, 2018; the file, in ASCII format, is designated 3710047A_SequenceListing_ST25.txt and is 39.9 kilobytes in size. The file is hereby incorporated by reference in its entirety into the instant application.


TECHNICAL FIELD

The present disclosure relates generally to the use of sphingolipid-metabolizing proteins to mitigate tissue damage resulting from disease. In pulmonary arterial hypertension, for example, exposure to sphingolipid metabolizing proteins such as acid ceramidase protein expressed from an Anc80 vector inhibits increases in pulmonary vascular resistance and elevation of mean pulmonary artery pressure that lead to pulmonary and cardiac damage and in some cases, cardiac failure.


BACKGROUND OF THE DISCLOSURE

Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disease of the pre-capillary arterial system in the lungs. PAH is a specific type of pulmonary hypertension that is caused by the development of scar tissue in the tiny blood vessels of the lung. This scar tissue blocks the blood flow through the lungs and causes the pressure in those blood vessels to increase. Progressive remodeling of the pulmonary circulation leads to dramatic increases in pulmonary vascular resistance (PVR) and elevated mean pulmonary artery pressure. Normally, the right ventricle outputs blood with ease into low resistance lung anatomy. However, in PAH, this sustained increase in PVR working against normal outflow affects the right ventricle, which must contract with more force to overcome this level of resistance and eventually fails. In the extreme cases, PAH becomes deadly very quickly as right ventricular volume loading can increase greater than 5 times normal, distorting the function of the left ventricle. In this scenario, biventricular dysfunction is noted with rapid decline in cardiac output with death due to pump failure. There is also a high incidence of sudden death due to arrhythmias since stretching of the right ventricle/atria structures triggers deadly conditions.


In PAH, the pulmonary tissue is under a constant cycle of proliferation, clotting, fibrosis, and arterial remodeling. This cycle allows plexiform lesions to develop gradually in the pre-capillary arterial system. These lesions are areas of multiple closed vessel networks that become pathological and invade, destroy neighboring networks. The net effect is a progressive destruction of the majority of pulmonary microcirculation that increases PVR and leads to heart failure.


PAH is typically diagnosed in patients via catheterization and considered positive if mean pulmonary artery pressure (m PAP) is greater than 25 mmHg. Numerous drugs to lower pressure specific to the lung arterioles are given to address the symptom, however does not treat the vascular problem. The disease has 5 distinct groups by etiology, all causing elevation in mPAP: Group 1: Pediatric and or genetic form caused by BMPR2 mutations and others that cause smooth muscle proliferation. Group 2: Secondary to severe left heart failure; post capillary. Largest market since patients with ischemic heart disease often suffer from PAH. Group 3: Due to COPD and other lung disorders which lead to inflammation/debris triggers affecting circulation. Group 4: Thromboembolic: Acute cases from large clots in the pulmonary vasculature. Group 5: Idiopathic.


The standard of care for PAH is a well-developed array of drugs that reduce PVR in the pulmonary arterioles, by acting on 1 of 3 defined pathways: 1) nitric oxide (NO), 2) prostacyclin, and 3) endothelin I/II. The pathways reduce PVR by increasing nitric oxide to relax smooth muscle and dilate vessels, or by interfering with smooth muscle proliferation to prevent closure, directly help blood flow, and maintain patency. These pathways do not ameliorate or interrupt the formation of plexiform lesions. Plexiform lesions are prevalent in >80% of patients post mortem, whereby any drug therapy that was successful in lowering mean PAP for any period of time did not prevent right heart failure and subsequent death. In fact, all drugs are limited in PAH and just focus on pressure reduction, which is controversial. Thus, the use of drugs that alleviate mPAP and treat the cellular mechanisms is a challenge.


What is needed is a therapeutic method that provides long-term expression of a sphingolipid-metabolizing enzyme to inhibit cell death and senescence and initiate survival in cells and tissues damaged by disease such as PAH.


SUMMARY OF THE DISCLOSURE

A treatment for minimizing cellular/tissue damage resulting from disease, for example PAH, or injury (endothelial, vascular smooth muscle, and pneumocytes), which prevents further deterioration of the tissue, is currently unavailable. Gene therapy works by safely transferring an episomal (i.e. not integrated) DNA instruction for prolonged expression. This therapy, while it may not address the underlying cause of the disease itself, can help minimize the damage to tissues affected by the disease, for example, the poor pulmonary circulation resulting from PAH. Therefore, the present disclosure contemplates administration to the lungs via aerosol or nebulization of a synthetic, ancestral adenovirus, Anc80 that encodes a sphingolipid-metabolizing protein as a novel, robust treatment option for PAH.


The present disclosure therefore, provides a method for minimizing tissue damage resulting from PAH by administration of a sphingolipid metabolizing protein for promoting survival and restoring function of cells or tissue in vitro or in vivo. Administration is by means of a viral vector that encodes the sphingolipid-metabolizing protein; in one embodiment Anc80 that encodes expression of acid ceramidase is administered to a subject in need thereof for the treatment of PAH.


A sphingolipid-metabolizing protein is selected from the group consisting of (1) ceramidase; (2) sphingosine kinase (SPHK); (3) sphingosine-1-phosphate receptor (SIPR); (4) ceramidase kinase (CERK) or a combination of (1), (2), (3), and (4).


In one embodiment, the sphingolipid-metabolizing protein is a ceramidase. In one embodiment the sphingolipid-metabolizing protein is an acid ceramidase. In one embodiment, the sphingolipid-metabolizing protein is a neutral ceramidase. In yet another embodiment, the sphingolipid-metabolizing protein is an alkaline ceramidase. In one embodiment, ceramidase is encoded by a nucleic acid selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12.


In yet another aspect, the disclosure relates to a method in which the vector encoding the expression of sphingolipid-metabolizing protein is Anc80. In one embodiment, the nucleotide sequence of Anc80 that encodes the sphingolipid-metabolizing protein comprises the nucleotide sequence of SEQ ID NO: 20.


In another related aspect, the disclosure relates to a pharmaceutical composition comprising an Anc80 viral vector encoding a sphingolipid-metabolizing protein and a pharmaceutically acceptable carrier.


In yet another related aspect, the disclosure relates to an Anc80 viral vector encoding a sphingolipid-metabolizing protein for use in the treatment of PAH.


In one aspect, the disclosure relates to a method to improve patient outcome in patients with PAH comprising contacting lung cells or tissue with (1) an Anc80 that encodes ceramidase, (2) an ANC80 that encodes sphingosine kinase (SPHK), (3) an ANC80 that encodes sphingosine-1-phosphate receptor (S1PR) (4) an ANC80 that encodes a ceramide kinase (CERK), or any combination of (1), (2), (3) and (4).


Anc80 is a synthetic vector (see Zinn et al. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector, Cell Reports 12. 1056-1068 (2015), and U.S. Pat. No. 9,695,220; both references are hereby incorporated by reference), contains a nucleotide sequence that encodes acid ceramidase having the oligonucleotide sequence of SEQ ID NO: 1. In one embodiment, the Anc80 encoding AC has the oligonucleotide sequence of SEQ ID NO: 6. In another embodiment, the cells are contacted with Anc80 that encodes sphingosine kinase (SPHK) having the oligonucleotide sequence of SEQ ID NO: 2. In another embodiment, the sphingolipid metabolizing molecule is S1PR and the oligonucleotide encoding it has the sequence SEQ ID NO: 3. In another embodiment, the sphingolipid metabolizing molecule is CERK and the oligonucleotide encoding it has the sequence SEQ ID NO: 19)


In one aspect, the present disclosure relates to a method for treating a subject to mitigate or minimize the tissue damage that results from PAH or other disease or disorder, the method comprising administering to the subject a therapeutically effective dose of an Anc80 viral vector that codes for the expression of a sphingolipid-metabolizing protein. In one embodiment, the sphingolipid-metabolizing protein is selected from the group consisting of (1) a ceramidase; (2) sphingosine kinase (SPHK); (3) sphingosine-1-phosphate receptor (SIPR); (4) ceramidase kinase (CERK) or a combination of (1), (2), (3), and (4). Administration of the sphingolipid-metabolizing protein is via means know to those of skill in the art, for example atomizer or nebulizer.


Compositions comprising any combination of Anc80s that code for the expression of (1) a ceramidase, (2) sphingosine kinase (SPHK), (3) sphingosine-1-phosphate receptor (51PR) and a (4) CERK are encompassed by the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing percent survival for individuals with pulmonary arterial hypertension (PAH)



FIG. 2 is a graph showing that right ventricle (RV) function predicts mortality in PAH.



FIG. 3 shows seven year survival estimates of patients in the REVEAL registry. The REVEAL Registry is a multicenter, observational, U.S.-based study of the clinical course and disease management of PAH.



FIG. 4 shows biodistribution of Anc80 in a rat model. Rats were injected with Anc80 encoding luciferase. 72 hours post injection luciferase activity was assessed using IVIS machine.



FIG. 5 shows severe pulmonary artery hypertension (PAH) in the left pneumonectomy combined with Sugen rat model. In this model right ventricular systolic pressure and mean pulmonary artery pressure significantly increased after 6 weeks.



FIG. 6A-6C shows photomicrographs of hematoxylin and eosin (H&E) staining of lung tissue in PAH. Representative photomicrographs of H&E staining of lung tissue. A Normal lung. B-C Pathological vascular remodeling in PAH rats (pneumonectomy and Sugen). The lung shows concentric medial and intimal thickening (white and black arrows) and severe constricted pulmonary vessels.



FIG. 7 shows hemodynamic data after Anc80 AC intra-tracheal injection. Rats were subjected to PAH induction protocol. On day 0, rats were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and left lung removal. On day 7, pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and developed neointima and smooth muscle hypertrophy. At week 4, PAH induced rats were treated with Anc80 AC (1×1011 genome copies). At week 6 and 8, animals were validated by MRI for heart function and RV and PA catheterization for pressure measurement. Treated animals with AC Anc80 at 8 weeks showed excellent cardiac function (validated by MRI) and normal PA pressures despite PAH disease present. After AC administration cardiac output increased 32%.



FIG. 8 shows hemodynamic data after Anc80 AC intra-tracheal injection. Rats were subjected to PAH induction protocol. On day 0 rats were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and Left lung removal. On day 7, pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and developed neointima and smooth muscle hypertrophy. At week 4, PAH induced rats were treated with Anc80 AC (1×1011 genome copies). At week 6 and 8, animals were validated by MRI for heart function and RV and PA catheterization for pressure measurement. After AC administration right ventricular systolic volume decreased 39%.



FIG. 9 shows hemodynamic data after Acn80 AC intra-tracheal injection. Rats were subjected to PAH induction protocol. On week 0 Rat were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and Left lung removal. On day 7 pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and develop neointima and smooth muscle hypertrophy. On week 4 PAH induced rats were treated with Anc80 AC (1×1011 genome copies). On week 6 and 8 animal were validated by MRI for heart function and RV and PA catheterization for pressure measurement. After AC administration right ventricular ejection fraction increased in 65%.



FIG. 10 shows hemodynamic data after Anc80 AC intra-tracheal injection. Rat were subjected to PAH induced protocol. On week 0 Rat were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and Left lung removal. On day 7 pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and develop neointima and smooth muscle hypertrophy. On week 4 PAH induced rats were treated with Anc80 AC (1×1011 genome copies). On week 6 and 8 animal were validated by MRI for heart function and RV and PA catheterization for pressure measurement. After AC administration mean pulmonary artery pressure decreased 94%.



FIG. 11 shows hemodynamic data after Anc80 AC intra-tracheal injection. Rat were subjected to PAH induce protocol. On week 0 Rat were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and Left lung removal. On day 7 pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and develop neointima and smooth muscle hypertrophy. On week 4 PAH induced rats were treated with Anc80 AC (1×1011 genome copies). On week 6 and 8 animal were validated by MRI for heart function and RV and PA catheterization for pressure measurement. After AC administration mean pulmonary vascular resistance decreased 4.8 times.



FIG. 12 shows MRI images showing heart function after Anc80 AC intra-tracheal injection. Rats were subjected to PAH induction protocol. On week 0, rats were subjected to baseline MRI, RV and PA catheterization to measure the pressure, and left lung removal. On day 7, pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and developed neointima and smooth muscle hypertrophy. On week 4, PAH-induced rats were treated with Anc80 AC (1×1011 genome copies). On week 6 and 8, animals were evaluated by MRI for heart function and RV and PA catheterization for pressure measurement. Animals treated with Anc80 AC at 8 weeks showed excellent cardiac function.





DETAILED DESCRIPTION OF THE DISCLOSURE

All patents, published applications and other references cited herein are hereby incorporated by reference into the present application.


In the description that follows, certain conventions will be followed as regards the usage of terminology. In general, terms used herein are intended to be interpreted consistently with the meaning of those terms, as they are known to those of skill in the art. Some definitions are provided purely for the convenience of the reader.


The term “cell or group of cells” is intended to encompass single cells as well as multiple cells either in suspension or in monolayers. Whole tissues also constitute a group of cells.


The term “ischemic” as it is known in the art refers to a deficiency in the supply of blood to a part of the body (such as the heart, brain or other organ/tissue) that is due to obstruction of the inflow of arterial blood as by the narrowing of arteries by spasm or disease.


The term “inhibit” or “inhibition” when used in conjunction with a discussion of senescence includes the ability of the sphingolipid-metabolizing proteins of the disclosure to reverse senescence, thereby returning to normal or near normal function.


The terms “stress”, “stress-related events” or “cellular-stress” refers to a wide range of molecular changes that cells undergo in response to environmental stressors, such as extreme temperatures, exposure to toxins, mechanical damage, anoxia, and noise.


Pulmonary Arterial Hypertension


Pulmonary arterial hypertension (PAH) is one form of a broader condition known as pulmonary hypertension, which means high blood pressure in the lungs. In PAH, the rise in blood pressure is caused by changes in the cells that line the pulmonary arteries. These changes can cause the walls of the arteries to become stiff and thick, and extra tissue may form. The blood vessels may also become inflamed and tight. In many cases of pulmonary arterial hypertension, the cause is idiopathic (i.e., unknown). Other causes include heart abnormalities present at birth, HIV infection (Group I PAH); left-sided valvular heart disease such as mitral valve or aortic valve disease (Group 2 PAH); chronic obstructive pulmonary disease and other lung disease (Group 3 PAH); connective tissue/autoimmune disorders (such as scleroderma) and others.


PAH occurs when the very small arteries throughout the lungs narrow in diameter, which increases the resistance to blood flow through the lungs. Over time, the increased blood pressure can damage the heart. A number of diseases and conditions can cause PAH, and symptoms are similar to the symptoms often seen in more common diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and heart failure.


Mitral Valve Prolapse


Mitral Valve Prolapse (MVP) is a common disorder afflicting at least 2% to 3% of the general population that affects ≈7.8 million individuals in the United States and >176 million people worldwide [Freed L A 1999, Devereux RB, 2001].


A canine model of a related disease, Myxomatous Mitral Valve Degeneration, MMVD, is used to further understanding of the role of Anc80 delivery of sphingolipid-metabolizing proteins in MVP.


The present technology is based on the use of sphingolipid metabolizing proteins in order to manipulate the fate of cells post stress-related events and during disease and aging. Different types of stress can initiate the signal transduction that leads to two major pathways: one can lead to cell death and the other leads to senescence, which is characterized by low cell function and arrested regeneration and amplification. In addition, senescent cells secrete different factors that can trigger an immune response and lead to inflammation and additional cell death. Cell senescence can be initiated not only by stress but also during aging. Both the cell death and cell senescence pathways involve sphingolipid metabolism mainly an increase in ceramide that can lead to both.


Ceramide has been shown to induce apoptotic cell death in different cells type including murine and human cardiomyocytes. On the other hand, sphingosine, one of the products of ceramide degradation can be phosphorylated to give rise to a major agent of cell survival and cardioprotection, sphingosine 1 phosphate.


There are also several studies that support association of the signaling lipid, ceramide, and its metabolizing enzymes with cellular and organismal aging and senescence. It has been reported that the intracellular level of ceramide increased during stress related signaling such as cell culture and aging.


Ceramidase, for example, acid ceramidase (AC) is required to hydrolyze ceramide into sphingosine and free fatty acids. Sphingosine is rapidly converted to sphingosine-1-phosphate (S1P), another important signaling lipid that counteracts the effects of ceramide and promotes cell survival. Thus, AC acts as a “rheostat” that regulates the levels of ceramide and S1P in cells, and as such participates in the complex and delicate balance between death and survival.


We have previously shown that AC expression is carefully regulated during oocyte maturation and early embryo development (Eliyahu, et al, 2010). We have also found that the complete “knock-out” of AC function in mice leads to embryo death between the 2 and 8-cell stage (Eliyahu, FASEB J, 2007). In addition, our previous publication (Eliyahu, FASEB J, 2010) showed that the ceramide-metabolizing enzyme, AC is expressed and active in human cumulus cells and follicular fluid, essential components of this environment, and that the levels of this enzyme are positively correlated with the quality of human embryos formed in vitro. These observations led to a new approach for oocyte and embryo culture that markedly improves the outcome of in vitro fertilization (IVF).


In this disclosure, we describe a strategy to reduce pulmonary arterial hypertension by increasing ceramide hydrolysis by overexpression of acid ceramidase. With this strategy, not only can we reduce ceramide levels but we also increase the reservoir of sphingosine which is the main building block for the pro-survival molecule sphingosine-1-phosphate (S1P).


Choice of Vehicle and Duration of Expression Needed


Methods and compositions for in vivo delivery of a construct that expresses a sphingolipid-metabolizing protein such as ceramidase were explored. For applications where more sustained expression of a sphingolipid metabolizing enzyme is required, expression from an Anc80 vector may be desirable.


Adeno-associated viruses have emerged as one of the most promising vectors in the field of gene therapy. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAVs) as a safe and efficient delivery vehicle for gene transfer. AAV vectors are known to be expressed for several months or longer post administration; thus, they provide a more extensive time frame than modRNA.


More recently, Zinn et al. identified Anc80 as a highly potent in vivo gene therapy vector for targeting liver, muscle and retina. Anc80 virus, an in silico designed gene therapy vector, has demonstrated high gene expression levels in the liver, eye and ear compared to naturally occurring adeno-associated viral vectors (AAVs) that are currently in clinical development. Due to its synthetic nature, Anc80 does not circulate in humans, making it less likely to be recognized immunologically by antibodies against naturally-occurring AAVs. Anc80 also provides longer lasting expression. In addition, Anc80 expresses protein in much higher amounts than AAVs, so the amount of necessary virus is much less that leads to lower immune response.


The present disclosure, therefore, also provides a method for inhibiting or reducing pulmonary arterial hypertension by administration of a cocktail of Anc80 virus encoding sphingolipid metabolizing proteins. The treatment includes different combinations of Acid Ceramidase (AC) and/or Sphingosine Kinase (SPHK) and/or Sphingosine-1-phosphate receptor (S1PR) gene (cDNA). Anc80 virus, an in silico designed gene therapy vector, Anc80 has demonstrated high gene expression levels in the liver, eye and ear compared to naturally-occurring adeno-associated viral vectors (AAVs) that are currently in clinical development. Anc80, an engineered gene therapy vector, is synthetic in nature and has been shown to reduce cross-reactivity with commonly used AAV vectors. Anc80 is a potent gene therapy vector that is not known to circulate in humans, making it less likely to cross-react immunologically with naturally occurring AAVs.


Sphinqolipid-Metabolizing Proteins


In one embodiment, a composition useful for practicing the method of the present disclosure may include either individually or in different combinations Anc80 vectors encoding the following sphingolipid-metabolizing proteins: ceramidase (acid, neutral or alkaline), sphingosine kinase (SPHK), sphingosine-1-phosphate receptor (S1PR), and a ceramide kinase (CERK). In one embodiment, the sphingolipid-metabolizing protein is a ceramidase.


Ceramidase is an enzyme that cleaves fatty acids from ceramide, producing sphingosine (SPH), which in turn is phosphorylated by a sphingosine kinase to form sphingosine-1-phosphate (S1P). Ceramidase is the only enzyme that can regulate ceramide hydrolysis to prevent cell death and SHPK is the only enzyme that can synthesize sphingosine 1 phosphate (S1P) from sphingosine (the ceramide hydrolysis product) to initiate cell survival. S1PR, a G protein-coupled receptor binds the lipid-signaling molecule S1P to induce cell proliferation, survival, and transcriptional activation. CERK is an phosphatase that phosphorylates ceramide into ceramide 1 phosphate to induce cell survival.


Presently, 7 human ceramidases encoded by 7 distinct genes have been cloned:

    • acid ceramidase (ASAH1)—associated with cell survival;
    • neutral ceramidase (ASAH2, ASAH2B, ASAH2C)—protective against inflammatory cytokines;
    • alkaline ceramidase 1 (ACER1)—mediating cell differentiation by controlling the generation of SPH and S1P;
    • alkaline ceramidase 2 (ACER2)—important for cell proliferation and survival; and
    • alkaline ceramidase 3 (ACER3).


The nucleotide sequences for nucleic acids encoding these ceramidases are shown in Table 1.


In one embodiment, Anc80, a relatively nascent technology, has shown considerable potential as a delivery vehicle for gene therapy in disease, for example, cardiac disease, hearing loss, vision loss and neurodegenerative diseases. Anc80 as an engineered gene therapy vector is synthetic in nature and is not known to circulate in humans. It has been shown to have reduced cross-reactivity with commonly used AAV vectors. Anc80 therefore is a potent gene therapy vector, which is less likely to be recognized immunologically by antibodies against naturally occurring AAVs.


Advantages

An Anc80 vector encoding acid ceramidase (Anc80.AC) has multiple advantages over other potential anti-apoptotic factors.


Low Toxicity


Low or no toxicity: The AC protein, by itself, is not toxic. Physiological enzymes are not expected to have toxic effects. The biological function of AC is the control of ceramide metabolism has no direct influence other cellular signaling. Treated cells present only a modest increase in AC generation in cells post gene therapy treatment. The AC protein level expressed after treatment is far below extraordinarily high levels reported in aberrant diseased cells with poorly understood mechanisms. The AC protein exists in two forms, and undergoes a transformation from an inactive to active form in the cell. The inactive AC precursor undergoes an auto-self cleavage to the active enzyme, which is responsible for hydrolyzing ceramide to sphingosine. This exquisitely evolved self-regulating mechanism, call the Sphingolipid Rheostat, regulates, by hydrolysis toxic levels of ceramides in the cell after exposure to stress. The transfection of cells with Anc80.AC can increase the cellular reservoir of inactive precursor, thereby allowing physiological sphingolipid levels to regulate the conversion to the active AC enzyme necessary for cellular robustness and organism survival. In addition, Eliyahu lab created mouse model that is constantly overexpressing the AC enzyme (COEAC) in all tissues. The COEAC mice viability provides evidence that AC is a non-toxic protein.


Ease of Delivery


As mentioned, Anc80, an engineered gene therapy vector, is synthetic in nature and shown to reduce cross-reactivity with commonly used AAV vectors. Anc80 is a potent gene therapy vector that is not known to circulate in humans, making it less likely to be recognized immunologically by antibodies against naturally occurring AAVs. Recently, it has been shown successful, robust, transfection of Anc80 virus into liver, eye and ear tissue in vivo (see Magali Trayssac, Yusuf A. Hannun, and Lina M. Obeid. Role of sphingolipids in senescence: implication in aging and age-related diseases. J. Clin. Inves. 2018; 128(7):2702-2712, which is hereby incorporated by reference.)


In one embodiment, Anc80.AC is administered to at-risk tissue by aerosolization of a composition comprising an Anc80 viral vector that codes for the expression of acid ceramidase. Methods of administration also include intra-tracheal injection


Unique Physiological Function of Acid Ceramidase


Increase in ceramide level can have different outcomes leading to cell death and/or senescence. Ceramidase is the only enzyme that can hydrolyze ceramide and therefore, the only enzyme that can directly decrease the levels of ceramide in cells.


Table 1 contains the nucleotide sequences to be encoded by the vectors disclosed for use in practicing the method.










TABLE 1





Gene
Open Reading Frame







ASAH1
ATGCCGGGCCGGAGTTGCGTCGCCTTAGTCCTCCTGGCTGCCGCCGTCAGCTGTGCCGTCGCGCA


transcript
GCACGCGCCGCCGTGGACAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTAC


variant 1
AGAGGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATT


(ACv1)
GATGCTTGACAAGGCACCAGTGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACAT



TCGTGCCAAGTGGAAAAATTATGCAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTT



CCTGGCCCTTTTGAAGAGGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGAT



TATTTCATTCAATATTTTTTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAAGACAAAAAA



GGTCATCTAATACATGGGAGAAACATGGATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGA



TACCTGGGTCATAACTGAGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACA



AAACTGTCTTCAAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACCAGGA



CTGTTCAGTCTTACACTGAATGAACGTTTCAGTATAAATGGTGGTTATCTGGGTATTCTAGAATGG



ATTCTGGGAAAGAAAGATGTCATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCA



CAAGTTATGAAGAAGCCAAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATC



CTGGGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACGAGACAGAAAGGAATCATTGGAT



GTATATGAACTCGATGCTAAGCAGGGTAGATGGTATGTGGTACAAACAAATTATGACCGTTGGA



AACATCCCTTCTTCCTTGATGATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAA



GAGAATATCTCATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCTGACC



GTATACACAACCTTGATAGATGTTACCAAAGGTCAATTCGAAACTTACCTGCGGGACTGCCCTGA



CCCTTGTATAGGTTGGTGA (SEQ ID NO: 1)





Sphk1
ATGGATCCAGTGGTCGGTTGCGGACGTGGCCTCTTTGGTTTTGTTTTCTCAGCGGGCGGCCCCCG



GGGCGTGCTCCCGCGGCCCTGCCGCGTGCTGGTGCTGCTGAACCCGCGCGGCGGCAAGGGCAA



GGCCTTGCAGCTCTTCCGGAGTCACGTGCAGCCCCTTTTGGCTGAGGCTGAAATCTCCTTCACGCT



GATGCTCACTGAGCGGCGGAACCACGCGCGGGAGCTGGTGCGGTCGGAGGAGCTGGGCCGCTG



GGACGCTCTGGTGGTCATGTCTGGAGACGGGCTGATGCACGAGGTGGTGAACGGGCTCATGGA



GCGGCCTGACTGGGAGACCGCCATCCAGAAGCCCCTGTGTAGCCTCCCAGCAGGCTCTGGCAAC



GCGCTGGCAGCTTCCTTGAACCATTATGCTGGCTATGAGCAGGTCACCAATGAAGACCTCCTGAC



CAACTGCACGCTATTGCTGTGCCGCCGGCTGCTGTCACCCATGAACCTGCTGTCTCTGCACACGGC



TTCGGGGCTGCGCCTCTTCTCTGTGCTCAGCCTGGCCTGGGGCTTCATTGCTGATGTGGACCTAG



AGAGTGAGAAGTATCGGCGTCTGGGGGAGATGCGCTTCACTCTGGGCACCTTCCTGCGTCTGGC



AGCCCTGCGCACCTACCGCGGCCGACTGGCCTACCTCCCTGTAGGAAGAGTGGGTTCCAAGACAC



CTGCCTCCCCCGTTGTGGTCCAGCAGGGCCCGGTAGATGCACACCTTGTGCCACTGGAGGAGCCA



GTGCCCTCTCACTGGACAGTGGTGCCCGACGAGGACTTTGTGCTAGTCCTGGCACTGCTGCACTC



GCACCTGGGCAGTGAGATGTTTGCTGCACCCATGGGCCGCTGTGCAGCTGGCGTCATGCATCTGT



TCTACGTGCGGGCGGGAGTGTCTCGTGCCATGCTGCTGCGCCTCTTCCTGGCCATGGAGAAGGG



CAGGCATATGGAGTATGAATGCCCCTACTTGGTATATGTGCCCGTGGTCGCCTTCCGCTTGGAGC



CCAAGGATGGGAAAGGTGTGTTTGCAGTGGATGGGGAATTGATGGTTAGCGAGGCCGTGCAGG



GCCAGGTGCACCCAAACTACTTCTGGATGGTCAGCGGTTGCGTGGAGCCCCCGCCCAGCTGGAA



GCCCCAGCAGATGCCACCGCCAGAAGAGCCCTTATGA (SEQ ID NO: 2)





S1PR2
ATGGGCAGCTTGTACTCGGAGTACCTGAACCCCAACAAGGTCCAGGAACACTATAATTATACCAA



GGAGACGCTGGAAACGCAGGAGACGACCTCCCGCCAGGTGGCCTCGGCCTTCATCGTCATCCTCT



GTTGCGCCATTGTGGTGGAAAACCTTCTGGTGCTCATTGCGGTGGCCCGAAACAGCAAGTTCCAC



TCGGCAATGTACCTGTTTCTGGGCAACCTGGCCGCCTCCGATCTACTGGCAGGCGTGGCCTTCGT



AGCCAATACCTTGCTCTCTGGCTCTGTCACGCTGAGGCTGACGCCTGTGCAGTGGTTTGCCCGGG



AGGGCTCTGCCTTCATCACGCTCTCGGCCTCTGTCTTCAGCCTCCTGGCCATCGCCATTGAGCGCC



ACGTGGCCATTGCCAAGGTCAAGCTGTATGGCAGCGACAAGAGCTGCCGCATGCTTCTGCTCATC



GGGGCCTCGTGGCTCATCTCGCTGGTCCTCGGTGGCCTGCCCATCCTTGGCTGGAACTGCCTGGG



CCACCTCGAGGCCTGCTCCACTGTCCTGCCTCTCTACGCCAAGCATTATGTGCTGTGCGTGGTGAC



CATCTTCTCCATCATCCTGTTGGCCATCGTGGCCCTGTACGTGCGCATCTACTGCGTGGTCCGCTC



AAGCCACGCTGACATGGCCGCCCCGCAGACGCTAGCCCTGCTCAAGACGGTCACCATCGTGCTAG



GCGTCTTTATCGTCTGCTGGCTGCCCGCCTTCAGCATCCTCCTTCTGGACTATGCCTGTCCCGTCCA



CTCCTGCCCGATCCTCTACAAAGCCCACTACTTTTTCGCCGTCTCCACCCTGAATTCCCTGCTCAAC



CCCGTCATCTACACGTGGCGCAGCCGGGACCTGCGGCGGGAGGTGCTTCGGCCGCTGCAGTGCT



GGAGGCCGGGGGTGGGGGTGCAAGGACGGAGGCGGGGCGGGACCCCGGGCCACCACCTCCTG



CCACTCCGCAGCTCCAGCTCCCTGGAGAGGGGCATGCACATGCCCACGTCACCCACGTTTCTGGA



GGGCAACACGGTGGTCATG (SEQ ID NO: 3)





Firefly
ATGGCCGATGCTAAGAACATTAAGAAGGGCCCTGCTCCCTTCTACCCTCTGGAGGATGGCACCGC


luciferase
TGGCGAGCAGCTGCACAAGGCCATGAAGAGGTATGCCCTGGTGCCTGGCACCATTGCCTTCACC



GATGCCCACATTGAGGTGGACATCACCTATGCCGAGTACTTCGAGATGTCTGTGCGCCTGGCCGA



GGCCATGAAGAGGTACGGCCTGAACACCAACCACCGCATCGTGGTGTGCTCTGAGAACTCTCTGC



AGTTCTTCATGCCAGTGCTGGGCGCCCTGTTCATCGGAGTGGCCGTGGCCCCTGCTAACGACATT



TACAACGAGCGCGAGCTGCTGAACAGCATGGGCATTTCTCAGCCTACCGTGGTGTTCGTGTCTAA



GAAGGGCCTGCAGAAGATCCTGAACGTGCAGAAGAAGCTGCCTATCATCCAGAAGATCATCATC



ATGGACTCTAAGACCGACTACCAGGGCTTCCAGAGCATGTACACATTCGTGACATCTCATCTGCCT



CCTGGCTTCAACGAGTACGACTTCGTGCCAGAGTCTTTCGACAGGGACAAAACCATTGCCCTGAT



CATGAACAGCTCTGGGTCTACCGGCCTGCCTAAGGGCGTGGCCCTGCCTCATCGCACCGCCTGTG



TGCGCTTCTCTCACGCCCGCGACCCTATTTTCGGCAACCAGATCATCCCCGACACCGCTATTCTGA



GCGTGGTGCCATTCCACCACGGCTTCGGCATGTTCACCACCCTGGGCTACCTGATTTGCGGCTTTC



GGGTGGTGCTGATGTACCGCTTCGAGGAGGAGCTGTTCCTGCGCAGCCTGCAAGACTACAAAAT



TCAGTCTGCCCTGCTGGTGCCAACCCTGTTCAGCTTCTTCGCTAAGAGCACCCTGATCGACAAGTA



CGACCTGTCTAACCTGCACGAGATTGCCTCTGGCGGCGCCCCACTGTCTAAGGAGGTGGGCGAA



GCCGTGGCCAAGCGCTTTCATCTGCCAGGCATCCGCCAGGGCTACGGCCTGACCGAGACAACCA



GCGCCATTCTGATTACCCCAGAGGGCGACGACAAGCCTGGCGCCGTGGGCAAGGTGGTGCCATT



CTTCGAGGCCAAGGTGGTGGACCTGGACACCGGCAAGACCCTGGGAGTGAACCAGCGCGGCGA



GCTGTGTGTGCGCGGCCCTATGATTATGTCCGGCTACGTGAATAACCCTGAGGCCACAAACGCCC



TGATCGACAAGGACGGCTGGCTGCACTCTGGCGACATTGCCTACTGGGACGAGGACGAGCACTT



CTTCATCGTGGACCGCCTGAAGTCTCTGATCAAGTACAAGGGCTACCAGGTGGCCCCAGCCGAGC



TGGAGTCTATCCTGCTGCAGCACCCTAACATTTTCGACGCCGGAGTGGCCGGCCTGCCCGACGAC



GATGCCGGCGAGCTGCCTGCCGCCGTCGTCGTGCTGGAACACGGCAAGACCATGACCGAGAAG



GAGATCGTGGACTATGTGGCCAGCCAGGTGACAACCGCCAAGAAGCTGCGCGGCGGAGTGGTG



TTCGTGGACGAGGTGCCCAAGGGCCTGACCGGCAAGCTGGACGCCCGCAAGATCCGCGAGATCC



TGATCAAGGCTAAGAAAGGCGGCAAGATCGCCGTGTAA (SEQ ID NO: 4)





nGFP
ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGC



GACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAG



CTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACC



CTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAA



GTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACA



AGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCA



TCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAA



CGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAAC



ATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCC



CCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAG



AAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACG



AGCTGTACAAGGGAGATCCAAAAAAGAAGAGAAAGGTAGGCGATCCAAAAAAGAAGAGAAAG



GTAGGTGATCCAAAAAAGAAGAGAAAGGTATAA (SEQ ID NO: 5)





ASAH1
ATGAACTGCTGCATCGGGCTGGGAGAGAAAGCTCGCGGGTCCCACCGGGCCTCCTACCCAAGTC


transcript
TCAGCGCGCTTTTCACCGAGGCCTCAATTCTGGGATTTGGCAGCTTTGCTGTGAAAGCCCAATGG


variant 2
ACAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAGGTGCAGTTCCATG


(ACv2)
GTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATTGATGCTTGACAAGGCAC



CAGTGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACATTCGTGCCAAGTGGAAAA



ATTATGCAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGA



GGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCATTCAATATTTT



TTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGG



GAGAAACATGGATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTG



AGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTCAAGGCTT



CAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACCAGGACTGTTCAGTCTTACACTG



AATGAACGTTTCAGTATAAATGGTGGTTATCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGA



TGTCATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCCA



AGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCT



GGGGAAGGTTGTGTGATTACACGAGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTA



AGCAGGGTAGATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGAT



GATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTCATTTGAAAC



CATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCTGACCGTATACACAACCTTGATAGA



TGTTACCAAAGGTCAATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGA



(SEQ ID NO: 6)





ASAH1
ATGAACTGCTGCATCGGGCTGGGAGAGAAAGCTCGCGGGTCCCACCGGGCCTCCTACCCAAGTC


transcript
TCAGCGCGCTTTTCACCGAGGCCTCAATTCTGGGATTTGGCAGCTTTGCTGTGAAAGCCCAATGG


variant 3
ACAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACTGTCTTCCCTGCTGTTATAAGG



TACAGAGGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGA



ATTGATGCTTGACAAGGCACCAGTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGAGG



AAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCATTCAATATTTTTT



ATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGGG



AGAAACATGGATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTGA



GCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTCAAGGCTTC



AAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACCAGGACTGTTCAGTCTTACACTGA



ATGAACGTTTCAGTATAAATGGTGGTTATCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGAT



GTCATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCCA



AGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCT



GGGGAAGGTTGTGTGATTACACGAGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTA



AGCAGGGTAGATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGAT



GATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTCATTTGAAAC



CATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCTGACCGTATACACAACCTTGATAGA



TGTTACCAAAGGTCAATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGA



(SEQ ID NO: 7)





ASAH2
ATGGCCAAACGCACCTTCTCTAACTTGGAGACATTCCTGATTTTCCTCCTTGTAATGATGAGTGCC


transcript
ATCACAGTGGCCCTTCTCAGCCTCTTGTTTATCACCAGTGGGACCATTGAAAACCACAAAGATTTA


variant 1
GGAGGCCATTTTTTTTCAACCACCCAAAGCCCTCCAGCCACCCAGGGCTCCACAGCTGCCCAACGC



TCCACAGCCACCCAGCATTCCACAGCCACCCAGAGCTCCACAGCCACTCAAACTTCTCCAGTGCCT



TTAACCCCAGAGTCTCCTCTATTTCAGAACTTCAGTGGCTACCATATTGGTGTTGGACGAGCTGAC



TGCACAGGACAAGTAGCAGATATCAATTTGATGGGCTATGGCAAATCCGGCCAGAATGCACAGG



GCATCCTCACCAGGCTATACAGTCGTGCCTTCATCATGGCAGAACCTGATGGGTCCAATCGAACA



GTGTTTGTCAGCATCGACATAGGCATGGTATCACAAAGGCTCAGGCTGGAGGTCCTGAACAGAC



TGCAGAGTAAATATGGCTCCCTGTACAGAAGAGATAATGTCATCCTGAGTGGCACTCACACTCAT



TCAGGTCCTGCAGGATATTTCCAGTATACCGTGTTTGTAATTGCCAGTGAAGGATTTAGCAATCAA



ACTTTTCAGCACATGGTCACTGGTATCTTGAAGAGCATTGACATAGCACACACAAATATGAAACC



AGGCAAAATCTTCATCAATAAAGGAAATGTGGATGGTGTGCAGATCAACAGAAGTCCGTATTCTT



ACCTTCAAAATCCGCAGTCAGAGAGAGCAAGGTATTCTTCAAATACAGACAAGGAAATGATAGTT



TTGAAAATGGTAGATTTGAATGGAGATGACTTGGGCCTTATCAGCTGGTTTGCCATCCACCCGGT



CAGCATGAACAACAGTAACCATCTTGTAAACAGTGACAATGTGGGCTATGCATCTTACCTGCTTG



AGCAAGAGAAGAACAAAGGATATCTACCTGGACAGGGGCCATTTGTAGCAGCCTTTGCTTCATCA



AACCTAGGAGATGTGTCCCCCAACATTCTTGGACCACGTTGCATCAACACAGGAGAGTCCTGTGA



TAACGCCAATAGCACTTGTCCCATTGGTGGGCCTAGCATGTGCATTGCTAAGGGACCTGGACAGG



ATATGTTTGACAGCACACAAATTATAGGACGGGCCATGTATCAGAGAGCAAAGGAACTCTATGCC



TCTGCCTCCCAGGAGGTAACAGGACCACTGGCTTCAGCACACCAGTGGGTGGATATGACAGATG



TGACTGTCTGGCTCAATTCCACACATGCATCAAAAACATGTAAACCAGCATTGGGCTACAGTTTTG



CAGCTGGCACTATTGATGGAGTTGGAGGCCTCAATTTTACACAGGGGAAAACAGAAGGGGATCC



ATTTTGGGACACCATTCGGGACCAGATCCTGGGAAAGCCATCTGAAGAAATTAAAGAATGTCATA



AACCAAAGCCCATCCTTCTTCACACCGGAGAACTATCAAAACCTCACCCCTGGCATCCAGACATTG



TTGATGTTCAGATTATTACCCTTGGGTCCTTGGCCATAACTGCCATCCCCGGGGAGTTTACGACCA



TGTCTGGACGAAGACTTCGAGAGGCAGTTCAAGCAGAATTTGCATCTCATGGGATGCAGAACAT



GACTGTTGTTATTTCAGGTCTATGCAACGTCTATACACATTACATTACCACTTATGAAGAATACCA



GGCTCAGCGATATGAGGCAGCATCGACAATTTATGGACCGCACACATTATCTGCTTACATTCAGC



TCTTCAGAAACCTTGCTAAGGCTATTGCTACGGACACGGTAGCCAACCTGAGCAGAGGTCCAGAA



CCTCCCTTTTTCAAACAATTAATAGTTCCATTAATTCCTAGTATTGTGGATAGAGCACCAAAAGGC



AGAACTTTCGGGGATGTCCTGCAGCCAGCAAAACCTGAATACAGAGTGGGGGAAGTTGCTGAAG



TTATATTTGTAGGTGCTAACCCGAAGAATTCAGTACAAAACCAGACCCATCAGACCTTCCTCACTG



TGGAGAAATATGAGGCTACTTCAACATCGTGGCAGATAGTGTGTAATGATGCCTCCTGGGAGACT



CGTTTTTATTGGCACAAGGGACTCCTGGGTCTGAGTAATGCAACAGTGGAATGGCATATTCCAGA



CACTGCCCAGCCTGGAATCTACAGAATAAGATATTTTGGACACAATCGGAAGCAGGACATTCTGA



AGCCTGCTGTCATACTTTCATTTGAAGGCACTTCCCCGGCTTTTGAAGTTGTAACTATTTAGTGA



(SEQ ID NO: 8)





ASAH2
ATGGCCAAACGCACCTTCTCTAACTTGGAGACATTCCTGATTTTCCTCCTTGTAATGATGAGTGCC


transcript
ATCACAGTGGCCCTTCTCAGCCTCTTGTTTATCACCAGTGGGACCATTGAAAACCACAAAGATTTA


variant 2
GGAGGCCATTTTTTTTCAACCACCCAAAGCCCTCCAGCCACCCAGGGCTCCACAGCTGCCCAACGC



TCCACAGCCACCCAGCATTCCACAGCCACCCAGAGCTCCACAGCCACTCAAACTTCTCCAGTGCCT



TTAACCCCAGAGTCTCCTCTATTTCAGAACTTCAGTGGCTACCATATTGGTGTTGGACGAGCTGAC



TGCACAGGACAAGTAGCAGATATCAATTTGATGGGCTATGGCAAATCCGGCCAGAATGCACAGG



GCATCCTCACCAGGCTATACAGTCGTGCCTTCATCATGGCAGAACCTGATGGGTCCAATCGAACA



GTGTTTGTCAGCATCGACATAGGCATGGTATCACAAAGGCTCAGGCTGGAGGTCCTGAACAGAC



TGCAGAGTAAATATGGCTCCCTGTACAGAAGAGATAATGTCATCCTGAGTGGCACTCACACTCAT



TCAGGTCCTGCAGGATATTTCCAGTATACCGTGTTTGTAATTGCCAGTGAAGGATTTAGCAATCAA



ACTTTTCAGCACATGGTCACTGGTATCTTGAAGAGCATTGACATAGCACACACAAATATGAAACC



AGGCAAAATCTTCATCAATAAAGGAAATGTGGATGGTGTGCAGATCAACAGAAGTCCGTATTCTT



ACCTTCAAAATCCGCAGTCAGAGAGAGCAAGGTATTCTTCAAATACAGACAAGGAAATGATAGTT



TTGAAAATGGTAGATTTGAATGGAGATGACTTGGGCCTTATCAGCTGGTTTGCCATCCACCCGGT



CAGCATGAACAACAGTAACCATCTTGTAAACAGTGACAATGTGGGCTATGCATCTTACCTGCTTG



AGCAAGAGAAGAACAAAGGATATCTACCTGGACAGGGGCCATTTGTAGCAGCCTTTGCTTCATCA



AACCTAGGAGATGTGTCCCCCAACATTCTTGGACCACGTTGCATCAACACAGGAGAGTCCTGTGA



TAACGCCAATAGCACTTGTCCCATTGGTGGGCCTAGCATGTGCATTGCTAAGGGACCTGGACAGG



ATATGTTTGACAGCACACAAATTATAGGACGGGCCATGTATCAGAGAGCAAAGTCAAAAACATGT



AAACCAGCATTGGGCTACAGTTTTGCAGCTGGCACTATTGATGGAGTTGGAGGCCTCAATTTTAC



ACAGGGGAAAACAGAAGGGGATCCATTTTGGGACACCATTCGGGACCAGATCCTGGGAAAGCC



ATCTGAAGAAATTAAAGAATGTCATAAACCAAAGCCCATCCTTCTTCACACCGGAGAACTATCAA



AACCTCACCCCTGGCATCCAGACATTGTTGATGTTCAGATTATTACCCTTGGGTCCTTGGCCATAA



CTGCCATCCCCGGGGAGTTTACGACCATGTCTGGACGAAGACTTCGAGAGGCAGTTCAAGCAGA



ATTTGCATCTCATGGGATGCAGAACATGACTGTTGTTATTTCAGGTCTATGCAACGTCTATACACA



TTACATTACCACTTATGAAGAATACCAGGCTCAGCGATATGAGGCAGCATCGACAATTTATGGAC



CGCACACATTATCTGCTTACATTCAGCTCTTCAGAAACCTTGCTAAGGCTATTGCTACGGACACGG



TAGCCAACCTGAGCAGAGGTCCAGAACCTCCCTTTTTCAAACAATTAATAGTTCCATTAATTCCTA



GTATTGTGGATAGAGCACCAAAAGGCAGAACTTTCGGGGATGTCCTGCAGCCAGCAAAACCTGA



ATACAGAGTGGGGGAAGTTGCTGAAGTTATATTTGTAGGTGCTAACCCGAAGAATTCAGTACAA



AACCAGACCCATCAGACCTTCCTCACTGTGGAGAAATATGAGGCTACTTCAACATCGTGGCAGAT



AGTGTGTAATGATGCCTCCTGGGAGACTCGTTTTTATTGGCACAAGGGACTCCTGGGTCTGAGTA



ATGCAACAGTGGAATGGCATATTCCAGACACTGCCCAGCCTGGAATCTACAGAATAAGATATTTT



GGACACAATCGGAAGCAGGACATTCTGAAGCCTGCTGTCATACTTTCATTTGAAGGCACTTCCCC



GGCTTTTGAAGTTGTAACTATTTAGTGA (SEQ ID NO: 9)





ASAH2B
ATGAGGCAGCATCGACAATTTATGGACCGCACGCATTATCTGCTTACATTCAGCTCTTCAGAAACC


transcript
TTGCTAAGGCTATTGCTACGTATTGTGGATAGAGCACCAAAAGGCAGAACTTTCGGGGATGTCCT


variant 1
GCAGCCAGCAAAACCTGAATACAGAGTGGGGGAAGTTGCTGAAGTTATATTTGTAGGTGCTAAC



CCGAAGAATTCAGTACAAAACCAGACCCATCAGACCTTCCTCACTGTGGAGAAATATGAGGCTAC



TTCAACATCGTGGCAGATAGTGTGTAATGATGCCTCCTGGGAGACTCGTTTTTATTGGCACAAGG



GACTCCTGGGTCTGAGTAATGCAACAGTGGAATGGCATATTCCAGACACTGCCCAGCCTGGAATC



TACAGAATAAGATATTTTGGACACAATCGGAAGCAGGACATTCTGAAGCCTGCTGTCATACTTTC



ATTTGAAGGCACTTCCCCGGCTTTTGAAGTTGTAACTATTTAGTGA (SEQ ID NO: 10)





ASAH 2B
ATGGTAGCCAACCTGAGCAGAGGTCCAGAACCTCCCTTTTTCAAACAATTAATAGTTCCATTAATT


transcript
CCTAGTATTGTGGATAGAGCACCAAAAGGCAGAACTTTCGGGGATGTCCTGCAGCCAGCAAAAC


variant 3
CTGAATACAGAGTGGGGGAAGTTGCTGAAGTTATATTTGTAGGTGCTAACCCGAAGAATTCAGT



ACAAAACCAGACCCATCAGACCTTCCTCACTGTGGAGAAATATGAGGCTACTTCAACATCGTGGC



AGATAGTGTGTAATGATGCCTCCTGGGAGACTCGTTTTTATTGGCACAAGGGACTCCTGGGTCTG



AGTAATGCAACAGTGGAATGGCATATTCCAGACACTGCCCAGCCTGGAATCTACAGAATAAGATA



TTTTGGACACAATCGGAAGCAGGACATTCTGAAGCCTGCTGTCATACTTTCATTTGAAGGCACTTC



CCCGGCTTTTGAAGTTGTAACTATTTAGTGAATGGTAGCCAACCTGAGCAGAGGTCCAGAACCTC



CCTTTTTCAAACAATTAATAGTTCCATTAATTCCTAGTATTGTGGATAGAGCACCAAAAGGCAGAA



CTTTCGGGGATGTCCTGCAGCCAGCAAAACCTGAATACAGAGTGGGGGAAGTTGCTGAAGTTAT



ATTTGTAGGTGCTAACCCGAAGAATTCAGTACAAAACCAGACCCATCAGACCTTCCTCACTGTGG



AGAAATATGAGGCTACTTCAACATCGTGGCAGATAGTGTGTAATGATGCCTCCTGGGAGACTCGT



TTTTATTGGCACAAGGGACTCCTGGGTCTGAGTAATGCAACAGTGGAATGGCATATTCCAGACAC



TGCCCAGCCTGGAATCTACAGAATAAGATATTTTGGACACAATCGGAAGCAGGACATTCTGAAGC



CTGCTGTCATACTTTCATTTGAAGGCACTTCCCCGGCTTTTGAAGTTGTAACTATTTAGTGA



(SEQ ID NO: 11)





ASAH2B
ATGGTAGCCAACCTGAGCAGAGGTCCAGAACCTCCCTTTTTCAAACAATTAATAGTTCCATTAATT


transcript
CCTAGTATTGTGGATAGAGCACCAAAAGGCAGAACTTTCGGGGATGTCCTGCAGCCAGCAAAAC


variant 4
CTGAATACAGAGTGGGGGAAGTTGCTGAAGTTATATTTGTAGGTGCTAACCCGAAGAATTCAGT



ACAAAACCAGACCCATCAGACCTTCCTCACTGTGGAGAAATATGAGGCTACTTCAACATCGTGGC



AGATAGTGTGTAATGATGCCTCCTGGGAGACTCGTTTTTATTGGCACAAGGGACTCCTGGGTCTG



AGTAATGCAACAGTGGAATGGCATATTCCAGACACTGCCCAGCCTGGAATCTACAGAATAAGATA



TTTTGGACACAATCGGAAGCAGGACATTCTGAAGCCTGCTGTCATACTTTCATTTGAAGGCACTTC



CCCGGCTTTTGAAGTTGTAACTATTTAG (SEQ ID NO: 12)





ACER1
ATGCCTAGCATCTTCGCCTATCAGAGCTCCGAGGTGGACTGGTGTGAGAGCAACTTCCAGTACTC



GGAGCTGGTGGCCGAGTTCTACAACACGTTCTCCAATATCCCCTTCTTCATCTTCGGGCCACTGAT



GATGCTCCTGATGCACCCGTATGCCCAGAAGCGCTCCCGCTACATTTACGTTGTCTGGGTCCTCTT



CATGATCATAGGCCTGTTCTCCATGTATTTCCACATGACGCTCAGCTTCCTGGGCCAGCTGCTGGA



CGAGATCGCCATCCTGTGGCTCCTGGGCAGTGGCTATAGCATATGGATGCCCCGCTGCTATTTCC



CCTCCTTCCTTGGGGGGAACAGGTCCCAGTTCATCCGCCTGGTCTTCATCACCACTGTGGTCAGCA



CCCTTCTGTCCTTCCTGCGGCCCACGGTCAACGCCTACGCCCTCAACAGCATTGCCCTGCACATTCT



CTACATCGTGTGCCAGGAGTACAGGAAGACCAGCAATAAGGAGCTTCGGCACCTGATTGAGGTC



TCCGTGGTTTTATGGGCTGTTGCTCTGACCAGCTGGATCAGTGACCGTCTGCTTTGCAGCTTCTGG



CAGAGGATTCATTTCTTCTATCTGCACAGCATCTGGCATGTGCTCATCAGCATCACCTTCCCTTATG



GCATGGTCACCATGGCCTTGGTGGATGCCAACTATGAGATGCCAGGTGAAACCCTCAAAGTCCGC



TACTGGCCTCGGGACAGTTGGCCCGTGGGGCTGCCCTACGTGGAAATCCGGGGTGATGACAAGG



ACTGCTGA (SEQ ID NO: 13)





ACER2
ATGGGCGCCCCGCACTGGTGGGACCAGCTGCAGGCTGGTAGCTCGGAGGTGGACTGGTGCGAG



GACAACTACACCATCGTGCCTGCTATCGCCGAGTTCTACAACACGATCAGCAATGTCTTATTTTTC



ATTTTACCGCCCATCTGCATGTGCTTGTTTCGTCAGTATGCAACATGCTTCAACAGTGGCATCTACT



TAATCTGGACTCTTTTGGTTGTAGTGGGAATTGGATCCGTCTACTTCCATGCAACCCTTAGTTTCTT



GGGTCAGATGCTTGATGAACTTGCAGTCCTTTGGGTTCTGATGTGTGCTTTGGCCATGTGGTTCCC



CAGAAGGTATCTACCAAAGATCTTTCGGAATGACCGGGGTAGGTTCAAGGTGGTGGTCAGTGTC



CTGTCTGCGGTTACGACGTGCCTGGCATTTGTCAAGCCTGCCATCAACAACATCTCTCTGATGACC



CTGGGAGTTCCTTGCACTGCACTGCTCATCGCAGAGCTAAAGAGGTGTGACAACATGCGTGTGTT



TAAGCTGGGCCTCTTCTCGGGCCTCTGGTGGACCCTGGCCCTGTTCTGCTGGATCAGTGACCGAG



CTTTCTGCGAGCTGCTGTCATCCTTCAACTTCCCCTACCTGCACTGCATGTGGCACATCCTCATCTG



CCTTGCTGCCTACCTGGGCTGTGTATGCTTTGCCTACTTTGATGCTGCCTCAGAGATTCCTGAGCA



AGGCCCTGTCATCAAGTTCTGGCCCAATGAGAAATGGGCCTTCATTGGTGTCCCCTATGTGTCCCT



CCTGTGTGCCAACAAGAAATCATCAGTCAAGATCACGTGA (SEQ ID NO: 14)





ACER3
ATGGCTCCGGCCGCGGACCGAGAGGGCTACTGGGGCCCCACGACCTCCACGCTGGACTGGTGCG


transcript
AGGAGAACTACTCCGTGACCTGGTACATCGCCGAGTTCTGGAATACAGTGAGTAACCTGATCATG


variant 1
ATTATACCTCCAATGTTCGGTGCAGTTCAGAGTGTTAGAGACGGTCTGGAAAAGCGGTACATTGC



TTCTTATTTAGCACTCACAGTGGTAGGAATGGGATCCTGGTGCTTCCACATGACTCTGAAATATGA



AATGCAGCTATTGGATGAACTCCCAATGATATACAGCTGTTGCATATTTGTGTACTGCATGTTTGA



ATGTTTCAAGATCAAGAACTCAGTAAACTACCATCTGCTTTTTACCTTAGTTCTATTCAGTTTAATA



GTAACCACAGTTTACCTTAAGGTAAAAGAGCCGATATTCCATCAGGTCATGTATGGAATGTTGGT



CTTTACATTAGTACTTCGATCTATTTATATTGTTACATGGGTTTATCCATGGCTTAGAGGACTGGGT



TATACATCATTGGGTATATTTTTATTGGGATTTTTATTTTGGAATATAGATAACATATTTTGTGAGT



CACTGAGGAACTTTCGAAAGAAGGTACCACCTATCATAGGTATTACCACACAATTTCATGCATGG



TGGCATATTTTAACTGGCCTTGGTTCCTATCTTCACATCCTTTTCAGTTTGTATACAAGAACACTTT



ACCTGAGATATAGGCCAAAAGTGAAGTTTCTCTTTGGAATCTGGCCAGTGATCCTGTTTGAGCCTC



TCAGGAAGCATTGA (SEQ ID NO: 15)





ACER3
ATGGCTCCGGCCGCGGACCGAGAGGGCTACTGGGGCCCCACGACCTCCACGCTGGACTGGTGCG


transcript
AGGAGAACTACTCCGTGACCTGGTACATCGCCGAGTTCTTGGTAGGAATGGGATCCTGGTGCTTC


variant 2
CACATGACTCTGAAATATGAAATGCAGCTATTGGATGAACTCCCAATGATATACAGCTGTTGCAT



ATTTGTGTACTGCATGTTTGAATGTTTCAAGATCAAGAACTCAGTAAACTACCATCTGCTTTTTACC



TTAGTTCTATTCAGTTTAATAGTAACCACAGTTTACCTTAAGGTAAAAGAGCCGATATTCCATCAG



GTCATGTATGGAATGTTGGTCTTTACATTAGTACTTCGATCTATTTATATTGTTACATGGGTTTATC



CATGGCTTAGAGGACTGGGTTATACATCATTGGGTATATTTTTATTGGGATTTTTATTTTGGAATA



TAGATAACATATTTTGTGAGTCACTGAGGAACTTTCGAAAGAAGGTACCACCTATCATAGGTATT



ACCACACAATTTCATGCATGGTGGCATATTTTAACTGGCCTTGGTTCCTATCTTCACATCCTTTTCA



GTTTGTATACAAGAACACTTTACCTGAGATATAGGCCAAAAGTGAAGTTTCTCTTTGGAATCTGGC



CAGTGATCCTGTTTGAGCCTCTCAGGAAGCATTGA (SEQ ID NO: 16)





ACER3
ATGATATACAGCTGTTGCATATTTGTGTACTGCATGTTTGAATGTTTCAAGATCAAGAACTCAGTA


transcript
AACTACCATCTGCTTTTTACCTTAGTTCTATTCAGTTTAATAGTAACCACAGTTTACCTTAAGGTAA


variant 3
AAGAGCCGATATTCCATCAGGTCATGTATGGAATGTTGGTCTTTACATTAGTACTTCGATCTATTT



ATATTGTTACATGGGTTTATCCATGGCTTAGAGGACTGGGTTATACATCATTGGGTATATTTTTAT



TGGGATTTTTATTTTGGAATATAGATAACATATTTTGTGAGTCACTGAGGAACTTTCGAAAGAAG



GTACCACCTATCATAGGTATTACCACACAATTTCATGCATGGTGGCATATTTTAACTGGCCTTGGT



TCCTATCTTCACATCCTTTTCAGTTTGTATACAAGAACACTTTACCTGAGATATAGGCCAAAAGTGA



AGTTTCTCTTTGGAATCTGGCCAGTGATCCTGTTTGAGCCTCTCAGGAAGCATTGA (SEQ ID NO:



17)





Sphk2
ATGAATGGACACCTTGAAGCAGAGGAGCAGCAGGACCAGAGGCCAGACCAGGAGCTGACCGGG



AGCTGGGGCCACGGGCCTAGGAGCACCCTGGTCAGGGCTAAGGCCATGGCCCCGCCCCCACCGC



CACTGGCTGCCAGCACCCCGCTCCTCCATGGCGAGTTTGGCTCCTACCCAGCCCGAGGCCCACGC



TTTGCCCTCACCCTTACATCGCAGGCCCTGCACATACAGCGGCTGCGCCCCAAACCTGAAGCCAG



GCCCCGGGGTGGCCTGGTCCCGTTGGCCGAGGTCTCAGGCTGCTGCACCCTGCGAAGCCGCAGC



CCCTCAGACTCAGCGGCCTACTTCTGCATCTACACCTACCCTCGGGGCCGGCGCGGGGCCCGGCG



CAGAGCCACTCGCACCTTCCGGGCAGATGGGGCCGCCACCTACGAAGAGAACCGTGCCGAGGCC



CAGCGCTGGGCCACTGCCCTCACCTGTCTGCTCCGAGGACTGCCACTGCCCGGGGATGGGGAGA



TCACCCCTGACCTGCTACCTCGGCCGCCCCGGTTGCTTCTATTGGTCAATCCCTTTGGGGGTCGGG



GCCTGGCCTGGCAGTGGTGTAAGAACCACGTGCTTCCCATGATCTCTGAAGCTGGGCTGTCCTTC



AACCTCATCCAGACAGAACGACAGAACCACGCCCGGGAGCTGGTCCAGGGGCTGAGCCTGAGTG



AGTGGGATGGCATCGTCACGGTCTCGGGAGACGGGCTGCTCCATGAGGTGCTGAACGGGCTCCT



AGATCGCCCTGACTGGGAGGAAGCTGTGAAGATGCCTGTGGGCATCCTCCCCTGCGGCTCGGGC



AACGCGCTGGCCGGAGCAGTGAACCAGCACGGGGGATTTGAGCCAGCCCTGGGCCTCGACCTGT



TGCTCAACTGCTCACTGTTGCTGTGCCGGGGTGGTGGCCACCCACTGGACCTGCTCTCCGTGACG



CTGGCCTCGGGCTCCCGCTGTTTCTCCTTCCTGTCTGTGGCCTGGGGCTTCGTGTCAGATGTGGAT



ATCCAGAGCGAGCGCTTCAGGGCCTTGGGCAGTGCCCGCTTCACACTGGGCACGGTGCTGGGCC



TCGCCACACTGCACACCTACCGCGGACGCCTCTCCTACCTCCCCGCCACTGTGGAACCTGCCTCGC



CCACCCCTGCCCATAGCCTGCCTCGTGCCAAGTCGGAGCTGACCCTAACCCCAGACCCAGCCCCG



CCCATGGCCCACTCACCCCTGCATCGTTCTGTGTCTGACCTGCCTCTTCCCCTGCCCCAGCCTGCCC



TGGCCTCTCCTGGCTCGCCAGAACCCCTGCCCATCCTGTCCCTCAACGGTGGGGGCCCAGAGCTG



GCTGGGGACTGGGGTGGGGCTGGGGATGCTCCGCTGTCCCCGGACCCACTGCTGTCTTCACCTC



CTGGCTCTCCCAAGGCAGCTCTACACTCACCCGTCTCCGAAGGGGCCCCCGTAATTCCCCCATCCT



CTGGGCTCCCACTTCCCACCCCTGATGCCCGGGTAGGGGCCTCCACCTGCGGCCCGCCCGACCAC



CTGCTGCCTCCGCTGGGCACCCCGCTGCCCCCAGACTGGGTGACGCTGGAGGGGGACTTTGTGC



TCATGTTGGCCATCTCGCCCAGCCACCTAGGCGCTGACCTGGTGGCAGCTCCGCATGCGCGCTTC



GACGACGGCCTGGTGCACCTGTGCTGGGTGCGTAGCGGCATCTCGCGGGCTGCGCTGCTGCGCC



TTTTCTTGGCCATGGAGCGTGGTAGCCACTTCAGCCTGGGCTGTCCGCAGCTGGGCTACGCCGCG



GCCCGTGCCTTCCGCCTAGAGCCGCTCACACCACGCGGCGTGCTCACAGTGGACGGGGAGCAGG



TGGAGTATGGGCCGCTACAGGCACAGATGCACCCTGGCATCGGTACACTGCTCACTGGGCCTCCT



GGCTGCCCGGGGCGGGAGCCCTGA (SEQ ID NO: 18)





CerK
ATGGGGGCGACGGGGGCGGCGGAGCCGCTGCAATCCGTGCTGTGGGTGAAGCAGCAGCGCTGC



GCCGTGAGCCTGGAGCCCGCGCGGGCTCTGCTGCGCTGGTGGCGGAGCCCGGGGCCCGGAGCC



GGCGCCCCCGGCGCGGATGCCTGCTCTGTGCCTGTATCTGAGATCATCGCCGTTGAGGAAACAG



ACGTTCACGGGAAACATCAAGGCAGTGGAAAATGGCAGAAAATGGAAAAGCCTTACGCTTTTAC



AGTTCACTGTGTAAAGAGAGCACGACGGCACCGCTGGAAGTGGGCGCAGGTGACTTTCTGGTGT



CCAGAGGAGCAGCTGTGTCACTTGTGGCTGCAGACCCTGCGGGAGATGCTGGAGAAGCTGACGT



CCAGACCAAAGCATTTACTGGTATTTATCAACCCGTTTGGAGGAAAAGGACAAGGCAAGCGGAT



ATATGAAAGAAAAGTGGCACCACTGTTCACCTTAGCCTCCATCACCACTGACATCATCGTTACTGA



ACATGCTAATCAGGCCAAGGAGACTCTGTATGAGATTAACATAGACAAATACGACGGCATCGTCT



GTGTCGGCGGAGATGGTATGTTCAGCGAGGTGCTGCACGGTCTGATTGGGAGGACGCAGAGGA



GCGCCGGGGTCGACCAGAACCACCCCCGGGCTGTGCTGGTCCCCAGTAGCCTCCGGATTGGAAT



CATTCCCGCAGGGTCAACGGACTGCGTGTGTTACTCCACCGTGGGCACCAGCGACGCAGAAACCT



CGGCGCTGCATATCGTTGTTGGGGACTCGCTGGCCATGGATGTGTCCTCAGTCCACCACAACAGC



ACACTCCTTCGCTACTCCGTGTCCCTGCTGGGCTACGGCTTCTACGGGGACATCATCAAGGACAG



TGAGAAGAAACGGTGGTTGGGTCTTGCCAGATACGACTTTTCAGGTTTAAAGACCTTCCTCTCCC



ACCACTGCTATGAAGGGACAGTGTCCTTCCTCCCTGCACAACACACGGTGGGATCTCCAAGGGAT



AGGAAGCCCTGCCGGGCAGGATGCTTTGTTTGCAGGCAAAGCAAGCAGCAGCTGGAGGAGGAG



CAGAAGAAAGCACTGTATGGTTTGGAAGCTGCGGAGGACGTGGAGGAGTGGCAAGTCGTCTGT



GGGAAGTTTCTGGCCATCAATGCCACAAACATGTCCTGTGCTTGTCGCCGGAGCCCCAGGGGCCT



CTCCCCGGCTGCCCACTTGGGAGACGGGTCTTCTGACCTCATCCTCATCCGGAAATGCTCCAGGTT



CAATTTTCTGAGATTTCTCATCAGGCACACCAACCAGCAGGACCAGTTTGACTTCACTTTTGTTGA



AGTTTATCGCGTCAAGAAATTCCAGTTTACGTCGAAGCACATGGAGGATGAGGACAGCGACCTC



AAGGAGGGGGGGAAGAAGCGCTTTGGGCACATTTGCAGCAGCCACCCCTCCTGCTGCTGCACCG



TCTCCAACAGCTCCTGGAACTGCGACGGGGAGGTCCTGCACAGCCCTGCCATCGAGGTCAGAGT



CCACTGCCAGCTGGTTCGACTCTTTGCACGAGGAATTGAAGAGAATCCGAAGCCAGACTCACACA



GCTGA



(SEQ ID NO: 19)









EXAMPLES

Mice


All animal procedures were performed under protocols approved by the Icahn School of Medicine at Mount Sinai Institutional Care and Use Committee.


Synthesis of Anc80.AC


The nucleotide sequence for an embodiment of the Anc80 plasmid described herein is shown below. A map of the vector is also shown in FIG. 16.


Anc80 Plasmid Sequence















pAAV.CMV.
CTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCG


WPRE.bGH.dna
GGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGG



GAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAACCCGCC



ATGCTACTTATCTACGTAGCCATGCTCTAGGAAGATCGGAATTCGCCCTTAAG



CTAGCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATAT



ATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGC



CCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAAC



GCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACT



GCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTG



ACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTT



ATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCA



TGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTC



ACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGG



CACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGAC



GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGG



TTTAGTGAACCGTCAGATCCTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGT



AAGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCTTG



TCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGCACCTATTGGTCTTACTGA



CATCCACTTTGCCTTTCTCTCCACAGGTGTCCAGGCGGCCGCNNNGGATCCA



ATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATG



TTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTA



TTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGT



CTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCAC



TGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAG



CTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCA



TCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTG



ACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGC



CTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCG



GCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGG



CCTCTTCCGCGTCTTCGAGATCTGCCTCGACTGTGCCTTCTAGTTGCCAGCC



ATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACT



CCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG



GTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGG



ATTGGGAAGACAATAGCAGGCATGCTGGGGACTCGAGTTAAGGGCGAATTC



CCGATAAGGATCTTCCTAGAGCATGGCTACGTAGATAAGTAGCATGGCGGGT



TAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTG



CGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCC



GGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCCTTAATTA



ACCTAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGC



GTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTA



ATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGA



ATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTG



GTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCT



CCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCA



AGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCAC



CTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGC



CCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGT



GGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTT



TGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGA



TTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTATAATTTCAGG



TGGCATCTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAA



TACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAAT



AATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATT



CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGT



GAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAA



CTGGATCTCAATAGTGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT



TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTA



TTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGA



CTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACA



GTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA



ACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCA



CAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAAT



GAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGTAATGGTAA



CAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAA



CAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCT



CGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGC



GTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCC



GTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAA



TAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCA



GACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTA



AAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAA



CGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGAT



CTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAAC



CACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT



TCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTA



GTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACAT



ACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC



GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG



GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGA



CCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCT



TCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAA



CAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATA



GTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTC



GTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACG



GTTCCTGGCCTTTTGCTGCGGTTTTGCTCACATGTTCTTTCCTGCGTTATCCC



CTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCG



CCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG



AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATG



CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGC



AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGC



TTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGG



AAACAGCTATGACCATGATTACGCCAGATTTAATTAAGG (SEQ ID NO: 20)









Total RNA was isolated using the RNeasy mini kit (QIAGEN) and reverse transcribed using Superscript III reverse transcriptase (Invitrogen), according to the manufacturer's instructions. Real-time qPCR analyses were performed on a Mastercycler realplex 4 Sequence Detector (Eppendoff) using SYBR Green (Quantitect™ SYBR Green PCR Kit, QIAGEN). Data were normalized to 18srRNA expression where appropriate (endogenous controls). Fold changes of gene expression were determined by the ddCT method. PCR primer sequences are summarized in Table 2.













TABLE 2







SEQ

SEQ




ID

ID


Gene
Forward
NO.
Reverse
NO.







AC
ACAGGATTCAAACCAGGACTGT
21
TGGGCATCTTTCCTTCCGAA
22





AC
TGACAGGATTCAAACCAGGACT
23
CTGGGCATCTTTCCTTCCGA
24





Sphk1
ATACTCACCGAACGGAAGAACC
25
CCATTAGCCCATTCACCACCTC
26





Sphk1
ACTGATACTCACCGAACGGAA
27
CATTAGCCCATTCACCACCTC
28





S1PR2
CACAGCCAACAGTCTCCAAA
29
TCTGAGTATAAGCCGCCCA
30





S1PR2
ATAGACCGAGCACAGCCAA
31
GAACCTTCTCAGGATTGAGGT
32





18s rRNA*
TAACGAACGAGACTCTGGCAT
33
CGGACATCTAAGGGCATCACA
34





G





*Genetic Vaccines and Therapy 2004, 2:5







Western Blot


Upon thawing, hearts lysates' were subjected to separation by SDS-PAGE using 12% precast Nupage Bis/Tris gels (Invitrogen, Carlsbad, Calif., USA) under reducing conditions and MES running buffer (Invitrogen), and transferred onto a nitrocellulose membrane (Bio-Rad) using a semidry transfer apparatus and Nupage-MOPS transfer buffer (Invitrogen). The membrane was block with TBS/Tween containing 5% dry milk and incubated with specific primary antibodies over night at 4° C. washed with TBS/Tween and incubated with rabbit or goat antibodies conjugated to horseradish peroxidase for 1 hour at room temperature. Detection was performed by an enhanced chemiluminescence (ECL) detection system (Pierce, Rockford, Ill.). For molecular weight determination prestained protein standards (Amersham, Buckinghamshire, UK) were used.


Immunohistochemistry


The mouse hearts were harvested and perfused using perfusion buffer (2 g/l butanedione, monoxime and 7.4 g/l KCl in PBS×1) and 4% paraformaldehyde (PFA). Hearts were fixed in 4% PFA/PBS overnight on shaker and then washed with PBS for 1 hr and incubated in 30% sucrose/PBS at 40 C overnight. Before freezing, hearts were mounted in OCT for 30 min and frozen at −80° C. Transverse heart sections of 10 μM were made by cryostat. Cryosections were washed in PBST and blocked for 1 h with 5% donkey serum in PBST. Sections were incubated over night at 4° C. using primary antibodies for Troponin I, Sphk1, S1p2. Secondary antibodies were used for fluorescent labeling (Jackson ImmunoResearch Laboratories). TUNEL staining was performed according to manufacturer's recommendations (In-Situ Cell Death Detection Kit, Fluorescein, Cat#11684795910, Roche). Stained sections were imaged using a Zeiss Slide Scanner Axio Scan or Zeiss mic. Quantification of TUNEL in cardiac sections was performed using ImageJ software. For cell immunocytochemistry, Hek293 and isolated CMs were fixed on coverslips with 4% PFA for 10 min at room temperature. Following permeabilization with 0.1% TRITON® X100 in PBS for 10 min at room temperature, cells were blocked with 5% Donkey serum+0.1% TRITON® X100 in PBS for 30 minutes. Coverslips were incubated with primary antibodies in humidity chamber for 1 hour at room temperature followed by incubation with corresponding secondary antibodies conjugated to Alexa Fluor 488, Alexa Fluor 647 and Alexa Fluor 555, and Hoechst 33342 staining for nuclei visualization (all from Invitrogene). The fluorescent images were taken on a Zeiss fluorescent microscope at 20× magnification.


Model of PAH


A rat PAH model was used. Pneumonectomy combined with Sugen rat model results in fast pulmonary vascular remodeling comparable to clinical PAH and development of the plexiform lesions found in human PAH. AC gene was introduced using Anc80 as viral vector to the lung via intratracheal transfer.


Cardiovascular Evaluation


MRI was used to assess the effect of Anc80-AC on heart function and PAH parameters (right ventricular hemodynamics including ejection fraction, hypertrophy, pulmonary artery pressure and vascular resistance).


Tissue Evaluation


Animal tissues from Sprague-Dawley rats will be analyzed for RNA sequencing, proteomics and sphingolipids quantification.


Study groups: 1. No Anc80/AC no PAH; 2. Saline+PAH; 3. Anc80 only+PAH; 4. Anc80/AC, No PAH; 5. Anc80/AC+PAH.


Preliminary Results


Rats were subjected to PAH induction protocol (FIG. 2). At week 0, rats were subjected to baseline MRI, RV and PA catheterization to measure the pressure, followed by left lung removal. On day 7 pneumonectomized rats were subjected to SU5416 (Su/Pn 10 mg/kg) administration (SC injection). Induced animals demonstrated severely elevated mean PA pressures and developed neointima and smooth muscle hypertrophy (FIGS. 3 and 4). On week 4 PAH induced rats were treated with Anc80 AC (1×1011 genome copies). On weeks 6 and 8 animals were validated by MRI for heart function and RV and PA catheterization for pressure measurement.


Preliminary PAH results with AC-Anc80 gene therapy were outstanding (see FIGS. 5-10). In control animals a severe PAH develops after SU5416 (Su/Pn) administration to pneumonectomized rats. Induced animals demonstrated severely elevated mean PA pressures and developed neointima and smooth muscle hypertrophy. After AC administration cardiac output increased in 32% (FIG. 5), right ventricular systolic volume decreased in 39% (FIG. 6), right ventricular ejection fraction increased in 65% (FIG. 7), mean pulmonary artery pressure decreased in 94% (FIG. 8) and mean pulmonary vascular resistance decreased in 4.8 times (FIG. 9). Animals treated with AC Anc80 at 8 weeks showed excellent cardiac function (validated by MRI, FIG. 10) and normal PA pressures despite PAH disease present. In one embodiment, ancestral 80 (Anc80) viral vector was used for gene delivery. Anc80 has been used as a viral vector with low immunogenicity and ancestral strains that are not regularly recognized by human antibodies, unlike common AAVs that are seropositive in >50% of the population. Anc80 delivery has provided rapid onset of expression in less than 48 hours. The Anc80 virus demonstrated the ability to generate very high transduction of lung and other cardiovascular tissues. Overall, the Anc80 viral vector provided an ideal delivery vehicle for the gene.


It is to be understood that, while the methods and compositions of matter have been described herein in conjunction with a number of different aspects, the forgoing description of the various aspects is intended to illustrate and not limit the scope of the methods and compositions of matter. Other aspects, advantages, and modifications are within the scope of the following claims.


REFERENCES



  • Perez G I, Tao X J, Tilly J L. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol Hum Reprod. 1999; 5(5):414-20.

  • Eliyahu E, Park J H, Shtraizent N, He X, Schuchman E H. Acid ceramidase is a novel factor required for early embryo survival. FASEB J. 2007; 21(7):1403-9.

  • Eliyahu E, Shtraizent N, Martinuzzi K, Barritt J, He X, Wei H, Chaubal S, Copperman A B, Schuchman E H. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010, 24(4):1229-38.

  • Katalin Karikó, Hiromi Muramatsu, Frank A Welsh, János Ludwig, Hiroki Kato, Shizuo Akira, Drew Weissman. Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Mol Ther. 2008; 16(11): 1833-1840.

  • Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013; 154(6): 1370-9.

  • Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013; 13(6):659-62.

  • Ruzo A, Brivanlou A H. At Last: Gene Editing in Human Embryos to Understand Human Development. Cell Stem Cell. 2017; 21(5):564-565.

  • Frumkin T, Peleg S, Gold V, Reches A, Asaf S, Azem F, Ben-Yosef D, Malcov M. Complex chromosomal rearrangement—a lesson learned from PGS. J Assist Reprod Genet. 2017; 34(8): 1095-1100.

  • Zinn et al. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector, Cell Reports 12.1056-1068 (2015)


Claims
  • 1. A method of treating damage to pulmonary tissue, said method comprising: selecting a subject having pulmonary tissue damage resulting from pulmonary arterial hypertension andadministering to the subject a therapeutic amount of an Anc80 viral vector comprising a polynucleotide encoding a ceramidase.
  • 2. The method of claim 1, wherein said ceramidase is an acid ceramidase.
  • 3. The method of claim 1, wherein said ceramidase is a neutral ceramidase.
  • 4. The method of claim 1, wherein said ceramidase is an alkaline ceramidase.
  • 5. The method of claim 1, wherein said ceramidase is an ASAH1, an ASAH2, an ASAH2B, an ASAH2C, an ACER1, an ACER2, or an ACER3.
  • 6. The method of claim 1, wherein the polynucleotide encodes an ASAH1 and the ASAH1 comprises an amino acid sequence encoded for by the nucleotide sequence of SEQ ID NO: 1.
  • 7. The method of claim 1, wherein the polynucleotide encodes an ASAH1 and the ASAH1 comprises an amino acid sequence encoded for by the nucleotide sequence of SEQ ID NO: 6.
  • 8. The method of claim 1, wherein the polynucleotide comprises encodes an ASAH1 and the ASAH1 comprises an amino acid sequence encoded for by the nucleotide sequence of SEQ ID NO: 7.
  • 9. The method of claim 1, wherein the Anc80 is aerosolized.
  • 10. The method of claim 1, wherein the administering is intra-tracheal.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. continuation-in-part of PCT/US2019/021201 with an international filing date of Mar. 7, 2019, which claims priority to U.S. provisional application No. 62/692,185 filed Jun. 29, 2018; the contents of each are hereby incorporated by reference in their entirety into the present disclosure.

US Referenced Citations (16)
Number Name Date Kind
8697359 Zhang Apr 2014 B1
8961962 Schuchman et al. Feb 2015 B2
9695220 Vandenberghe et al. Jul 2017 B2
20020099029 Liau et al. Jul 2002 A1
20080199450 Schuchman et al. Aug 2008 A1
20120039812 Holsboer et al. Feb 2012 A1
20130259924 Bancel et al. Oct 2013 A1
20140287015 Schuchman et al. Sep 2014 A1
20160038574 Schuchman Feb 2016 A1
20170044516 Tsai et al. Feb 2017 A1
20170332610 Voronina et al. Nov 2017 A1
20170356060 Murillo Sauca et al. Dec 2017 A1
20180008679 Niklason et al. Jan 2018 A1
20180066252 Patel et al. Mar 2018 A1
20190117733 Chien et al. Apr 2019 A1
20190216730 Heartlein et al. Jul 2019 A1
Foreign Referenced Citations (10)
Number Date Country
2008086296 Jul 2008 WO
2013151663 Oct 2013 WO
2013185069 Dec 2013 WO
2014140051 Sep 2014 WO
2017153936 Sep 2017 WO
2019009979 Jan 2019 WO
2019173615 Sep 2019 WO
2019173632 Sep 2019 WO
2021050064 Mar 2021 WO
2021050877 Mar 2021 WO
Non-Patent Literature Citations (42)
Entry
D'Alto M et al. Pulmonary arterial hypertension associated with congenital heart disease. 2012. European Respiratory Review. vol. 21, No. 26. p. 328-337 (Year: 2012).
Petrache I et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. 2005. Nature Medicine. vol. 11, No. 5. p. 491-498. (Year: 2005).
Talati M et al. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. 2015. Pulmonary Circulation. vol. 5, No. 2. p. 269-278. (Year: 2015).
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2019/021218 dated Jul. 5, 2019.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2019/021189 dated Jun. 14, 2019.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2019/021201 dated Aug. 5, 2019.
Blaho, V.A., et al., “An update on the biology of sphingosine 1-phosphate receptors”, Journal of Lipid Research, vol. 55, pp. 1596-1608 (2014).
Cannavo, A., et al., “Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System”, vol. 8, Article 556, pp. 1-12 (2017).
Eliyahu, E., et al., “Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization”, the FASEB Journal, vol. 24, pp. 1229-1238 (2010).
Ferizi, M., et al., “Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts”, Scientific Reports, 6:39149, pp. 1-13 (2016).
Landegger, L.D., et al., “A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear”, Nat Biotechnol., vol. 35, No. 3, pp. 280-284 (2017).
Maceyka, M., et al., “Sphigosine-1-Phosplate Singaling and Its Role in Disease”, Trends Cell Biol., vol. 22, No. 1, pp. 50-60 (2012).
Pan, B., et al., “Gene Therapy Restores Auditory and Vestibular Function in a Mouse Model of Usher Syndrome Type 1c”, Nat Biotechnol., vol. 35, No. 3, pp. 264-272 (2017).
Ramsubir, S., “Retrovirus-Mediated Gene Therapy for Farber Disease”, URL: https://tspace.library.utoronto.ca/bitstream/1807/11249/1/Ramsubir_Shobha_200806_PhD_thesis, pp. 1-149 (2008).
Sugano, E., et al., “Overexpression of acid ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress”, Journal of Lipid Research, vol. 60, pp. 30-43 (2019).
Suzuki, J., et al., “Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction”, Scientific Reports, 7:45524, pp. 1-11 (2017).
Youn, H., et al., “Modified mRNA as an alternative to plasmid DNA (pDNA) fortranscript replacement and vaccination therapy”, Expert Opin. Biol. Ther., vol. 15, No. 9, pp. 1337-1348 (2015).
Zinn, E., et al., “In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector”, Cell Reports, vol. 12, pp. 1056-1068 (2015).
International Search Report and Written Opinion for International Application No. PCT/US2020/050411 (dated Dec. 17, 2020).
Kaur et al., “Modified mRNA as a Therapeutic Tool for the Heart,” Cardiovascular Drugs and Therapy 34:871-880 (2020).
Magadum et al., “mRNA-Based Protein Replacement Therapy for the Heart,” Molecular Therapy 27(4):785-93 (2019).
International Search Report and Written Opinion for International Application No. PCT/US2019/050634 (dated Dec. 13, 2019).
Chen et al., “The Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in Pulmonary Arterial Hypertension,” American Journal of Respiratory and Critical Care Medicine 190(9):1032-1043 (2014).
Gairhe et al., “Sphingosine-1-Phosphate is Involved in the Occlusive Arteriopathy of Pulmonary Arterial Hypertension,” Pulmonary Circulation 6(3):369-380 (2016).
Pyne et al., “Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension?,” Trends Mol. Med. 23:786-798 (2017).
Glogar et al., “Definition and Significance of the Area at Risk in Myocardial Infarct and the Ischemic Border Zone in Acute Myocardial Infarct,” Acta Med. Austriaca Suppl. 36:1-40 (1986) (abstract only).
Zangi et al., “Modified mRNA Directs the Fate of Heart Progenitor Cells and Induces Vascular Regeneration After Myocardial Infarction,” Nature Biotechnology 31:898 (2013).
Reforgiato et al., “Inhibition of Ceramide de Novo Synthesis as a Postischemic Strategy to Reduce Myocardial Reperfusion Injury,” Basic Res. Cardiol. 111:12 (2016).
Supplementary European Search Report and Written Opinion for Application No. EP 19 76 3856 (dated Nov. 11, 2021).
Cannavo et al., “β1-Adrenergic Receptor and Sphingosine-1-Phosphate Receptor 1 (S1PR1) Reciprocal Downregulation Influences Cardiac Hypertrophic Response and Progression to Heart Failure: Protective Role of S1PR1 Cardiac Gene Therapy” Circulation, 2013, 128(15):1612-1622.
Gardlik et al., “Vectors and delivery systems in gene therapy,” Medical Science Monitor, 2005, 11(4):RA110-121.
Koch et al., “Molecular Cloning and Characterization of a Full-length Complementary DNA Encoding Human Acid Ceramidase,” The Journal of Biological Chemistry, 1996, 27(51):33110-33115.
Song et al., “Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment,” Oncotarget, 2016, 7(49):80803-80810.
Sadowski et al., “The sequence-structure relationship and protein function prediction,” Current Opinion in Structural Biology, 2009, 19:357-362.
Tang et al., “Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform 1,1,1-trichloroethane and 1,1-dichloroethane,” Philosophical Transactions of the Royal Society B, 2013, 368(1616):20120318.
Houdebine, “The methods to generate transgenic animals and to control transgene expression,” Journal of Biotechnology, 2002, 98:145-160.
Witkowski et al., “Conversion of a β-Ketoacyl Synthase to a Malonyl Decarboxylase by Replacement of the Active-Site Cysteine with Glutamine,” Biochemistry, 1999, 38(36):11643-11650.
Seffernick et al., “Melamine Deaminase and Atrazine Chloroydrolase: 98 Percent Identical but Functionally Different,” Journal of Bacteriology, 2001, 183(8):2405-2410.
Mullins et al., “Transgenesis in Nonmurine Species,” Hypertension, 1993, 22(4):630-633.
Wang et al., “Delivery of CRISPR/CAS9 by Novel Strategies for Gene Therapy,” Chembiochem, 2019, 20(5):634-643.
Phillips, “The challenge of gene therapy and DNA delivery,” The Journal of Pharmacy and Pharmacology, 2001, 53(9):1169-1174.
Branden et al., “Prediction, Engineering, and Design of Protein Structures,” Garland Publishing Inc., New York, 1991, 247.
Related Publications (1)
Number Date Country
20200002696 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62692185 Jun 2018 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2019/021201 Mar 2019 US
Child 16567771 US