The present disclosure relates to modified capsid proteins from adeno-associated virus (AAV) and virus capsids and virus vectors comprising the same. In particular, the disclosure relates to modified AAV capsid proteins and capsids comprising the same that can be incorporated into virus vectors to confer a phenotype of evasion of neutralizing antibodies without decreased transduction efficiency.
The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 2, 2020, is named STRD_008_04US_SeqList_ST25.txt and is ˜14.7 Mb in size.
Host-derived pre-existing antibodies generated upon natural encounter of AAV or recombinant AAV vectors prevent first time as well as repeat administration of AAV vectors as vaccines and/or for gene therapy. Serological studies reveal a high prevalence of antibodies in the human population worldwide with about 67% of people having antibodies against AAV1, 72% against AAV2, and about 40% against AAV5 through AAV9.
Furthermore, in gene therapy, certain clinical scenarios involving gene silencing or tissue degeneration may require multiple AAV vector administrations to sustain long term expression of the transgene. To circumvent these issues, recombinant AAV vectors which evade antibody recognition are required. Such vectors will help a) expand the eligible cohort of patients suitable for AAV-based gene therapy and b) allow multiple, repeat administrations of AAV-based gene therapy vectors.
The present disclosure provides methods and compositions comprising an adeno-associated virus (AAV) capsid protein, comprising one or more amino acid substitutions, wherein the substitutions introduce into an AAV vector comprising these modified capsid proteins the ability to evade host antibodies.
The present disclosure provides an adeno-associated virus (AAV) capsid protein, comprising one or more amino acid modifications, wherein the one or more amino acid modifications modify one or more antigenic sites on the AAV capsid protein. In some embodiments wherein the AAV capsid proteins are incorporated into AAV vectors, the modification of the one or more antigenic sites results in evasion of neutralizing antibodies. The modifications may comprise, for example, substitutions and/or deletions.
In some embodiments, the disclosure provides a recombinant adeno-associated virus (AAV) capsid protein, wherein the capsid protein comprises an amino acid substitution in an antigenic site of the AAV capsid protein, wherein the substitution has a sequence of any one of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, or 2761.
In some embodiments, the disclosure provides a recombinant AAV capsid protein, wherein the capsid protein comprises a deletion of one or more amino acids in an antigenic site of the AAV capsid protein. In some embodiments, the recombinant AAV capsid protein is of an AAV serotype selected from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAVrh8, AAVrh10, AAVrh32.33, AAVrh74, Avian AAV or Bovine AAV.
In some embodiments, the disclosure provides an AAV capsid protein, wherein the capsid protein comprises a substitution comprising a sequence of eight amino acids (X1-X2-X3-X4-X5-X6-X7-X8) (SEQ ID NO: 158) that does not occur in the native capsid protein sequence.
In some embodiments, the disclosure provides an AAV capsid protein, wherein the capsid protein comprises a deletion of six to eight consecutive amino acids compared to the native capsid protein sequence.
In some embodiments, the disclosure provides a recombinant AAV capsid protein comprising the amino acid sequence that is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the sequence of any one of SEQ ID NO: 17-21, 165-1373, 1381-2589, 2762, or 2763. In some embodiments, the disclosure provides a recombinant AAV capsid protein comprising the amino acid sequence of any one of SEQ ID NO: 17-21, 165-1373, 1381-2589, 2762, or 2763.
The present disclosure also provides a nucleotide sequence, or an expression vector comprising the same, that encodes one or more of the AAV capsid proteins of the disclosure. The present disclosure also provides a cell that comprises one or more nucleotide sequences or expression vectors of the disclosure.
The present disclosure also provides an AAV capsid comprising the AAV capsid protein of this disclosure. Further provided is a viral vector (e.g., an AAV viral vector) comprising the AAV capsid of this disclosure as well as a composition comprising the AAV capsid protein, AAV capsid and/or viral vector of this disclosure in a pharmaceutically acceptable carrier.
The present disclosure additionally provides a method of introducing a nucleic acid into a cell in the presence of antibodies against the AAV capsid, comprising contacting the cell with the viral vector of this disclosure. The cell can be in a subject and in some embodiments, the subject can be a human subject.
In some embodiments, a method of treating a patient in need thereof is provided, the method comprising administering to the patient a therapeutically effective amount of an AAV viral vector of the disclosure.
These and other aspects are addressed in more detail in the detailed description set forth below.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terminology used in the detailed description herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
All publications, patent applications, patents, GenBank or other accession numbers and other references mentioned herein are incorporated by reference herein in their entirety.
The designation of all amino acid positions in the AAV capsid proteins in the disclosure and the appended claims is with respect to VP1 capsid subunit numbering. It will be understood by those skilled in the art that the modifications described herein if inserted into the AAV cap gene may result in modifications in the VP1, VP2 and/or VP3 capsid subunits. Alternatively, the capsid subunits can be expressed independently to achieve modification in only one or two of the capsid subunits (VP1, VP2, VP3, VP1+VP2, VP1+VP3, or VP2+VP3).
The following terms are used in the description herein and the appended claims:
The singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Furthermore, the term “about” as used herein when referring to a measurable value such as an amount of the length of a polynucleotide or polypeptide sequence, dose, time, temperature, and the like, is meant to encompass variations of ±20%, 10%, 5%, ±1%, 0.5%, or even ±0.1% of the specified amount.
Also as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).
Unless the context indicates otherwise, it is specifically intended that the various features described herein can be used in any combination.
Moreover, the present disclosure also contemplates that in some embodiments, any feature or combination of features set forth herein can be excluded or omitted. To illustrate further, if, for example, the specification indicates that a particular amino acid can be selected from A, G, I, L and/or V, this language also indicates that the amino acid can be selected from any subset of these amino acid(s) for example A, G, I or L; A, G, I or V; A or G; only L; etc., as if each such subcombination is expressly set forth herein. Moreover, such language also indicates that one or more of the specified amino acids can be disclaimed. For example, in particular embodiments the amino acid is not A, G or I; is not A; is not G or V; etc., as if each such possible disclaimer is expressly set forth herein.
As used herein, the terms “reduce,” “reduces,” “reduction” and similar terms mean a decrease of at least about 10%, about 15%, about 20%, about 25%, about 35%, about 50%, about 75%, about 80%, about 85%, about 90%, about 95%, about 97% or more.
As used herein, the terms “increase,” “improve,” “enhance,” “enhances,” “enhancement” and similar terms indicate an increase of at least about 10%, about 15%, about 20%, about 25%, about 50%, about 75%, about 100%, about 150%, about 200%, about 300%, about 400%, about 500% or more.
The term “parvovirus” as used herein encompasses the family Parvoviridae, including autonomously replicating parvoviruses and dependoviruses. The autonomous parvoviruses include members of the genera Protoparvovirus, Erythroparvovirus, Bocaparvovirus, and Densovirus subfamily. Exemplary autonomous parvoviruses include, but are not limited to, minute virus of mouse, bovine parvovirus, canine parvovirus, chicken parvovirus, feline panleukopenia virus, feline parvovirus, goose parvovirus, H1 parvovirus, muscovy duck parvovirus, B19 virus, and any other autonomous parvovirus now known or later discovered. Other autonomous parvoviruses are known to those skilled in the art. See, e.g., BERNARD N. FIELDS et al, VIROLOGY, volume 2, chapter 69 (4th ed., Lippincott-Raven Publishers; Cotmore et al. Archives of Virology DOI 10.1007/s00705-013-1914-I).
As used herein, the term “adeno-associated virus” (AAV), includes but is not limited to, AAV type 1, AAV type 2, AAV type 3 (including types 3A and 3B), AAV type 4, AAV type 5, AAV type 6, AAV type 7, AAV type 8, AAV type 9, AAV type 10, AAV type 11, AAV type 12, AAV type 13, AAV type rh32.33, AAV type rh8, AAV type rh10, AAV type rh74, AAV type hu.68, avian AAV, bovine AAV, canine AAV, equine AAV, ovine AAV, snake AAV, bearded dragon AAV, AAV2i8, AAV2g9, AAV-LK03, AAV7m8, AAV Anc80, AAV PHP.B, and any other AAV now known or later discovered. See, e.g., BERNARD N. FIELDS et al., VIROLOGY, volume 2, chapter 69 (4th ed., Lippincott-Raven Publishers). A number of AAV serotypes and clades have been identified (see, e.g., Gao et al, (2004) J. Virology 78:6381-6388; Moris et al, (2004) Virology 33-:375-383; and Table 2).
As used herein, the term “chimeric AAV” refers to an AAV comprising a capsid protein with regions, domains, individual amino acids that are derived from two or more different serotypes of AAV. In some embodiments, a chimeric AAV comprises a capsid protein comprised of a first region that is derived from a first AAV serotype and a second region that is derived from a second AAV serotype. In some embodiments, a chimeric AAV comprises a capsid protein comprised of a first region that is derived from a first AAV serotype, a second region that is derived from a second AAV serotype, and a third region that is derived from a third AAV serotype. In some embodiments, the chimeric AAV may comprise regions, domains, individual amino acids derived from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, and/or AAV12. For example, the chimeric AAV may include regions, domains, and/or individual amino acids from a first and a second AAV serotype as shown below (Table 1), wherein AAVX+Y indicates a chimeric AAV including sequences derived from AAVX and AAVY:
By including individual amino acids or regions from multiple AAV serotypes in one capsid protein, capsid proteins that have multiple desired properties that are separately derived from the multiple AAV serotypes may be obtained.
The genomic sequences of various serotypes of AAV and the autonomous parvoviruses, as well as the sequences of the native terminal repeats (TRs), Rep proteins, and capsid subunits are known in the art. Such sequences may be found in the literature or in public databases such as GenBank. See, e.g., GenBank Accession Numbers NC_002077, NC_001401, NC_001729, NC_001863, NC_001829, NC_001862, NC_000883, NC_001701, NC_001510, NC_006152, NC_006261, AF063497, U89790, AF043303, AF028705, AF028704, J02275, J01901, J02275, X01457, AF288061, AH009962, AY028226, AY028223, NC_001358, NC_001540, AF513851, AF513852, AY530579; the disclosures of which are incorporated by reference herein for teaching parvovirus and AAV nucleic acid and amino acid sequences. See also, e.g., Srivistava et al., (1983) J. Virology 45:555; Chiorini et al, (1998) J Virology 71:6823; Chiorini et al., (1999) J. Virology 73: 1309; Bantel-Schaal et al., (1999) J Virology 73:939; Xiao et al, (1999) J Virology 73:3994; Muramatsu et al., (1996) Virology 221:208; Shade et al, (1986) J. Virol. 58:921; Gao et al, (2002) Proc. Nat. Acad. Sci. USA 99:11854; Moris et al, (2004) Virology 33:375-383; international patent publications WO 00/28061, WO 99/61601, WO 98/11244; and U.S. Pat. No. 6,156,303; the disclosures of which are incorporated by reference herein for teaching parvovirus and AAV nucleic acid and amino acid sequences. See also Table 2. The capsid structures of autonomous parvoviruses and AAV are described in more detail in BERNARD N. FIELDS et al., VIROLOGY, volume 2, chapters 69 & 70 (4th ed., Lippincott-Raven Publishers). See also, description of the crystal structure of AAV2 (Xie et al., (2002) Proc. Nat. Acad. Sci. 99: 10405-10), AAV9 (DiMattia et al., (2012) J. Virol. 86:6947-6958), AAV8 (Nam et al, (2007) J. Virol. 81: 12260-12271), AAV6 (Ng et al., (2010) J. Virol. 84:12945-12957), AAV5 (Govindasamy et al. (2013) J. Virol. 87, 11187-11199), AAV4 (Govindasamy et al. (2006) J. Virol. 80:11556-11570), AAV3B (Lerch et al., (2010) Virology 403:26-36), BPV (Kailasan et al., (2015) J. Virol. 89:2603-2614) and CPV (Xie et al, (1996) J. Mol. Biol. 6:497-520 and Tsao et al, (1991) Science 251:1456-64).
The term “tropism” as used herein refers to preferential entry of the virus into certain cells or tissues, optionally followed by expression (e.g., transcription and, optionally, translation) of a sequence(s) carried by the viral genome in the cell, e.g., for a recombinant virus, expression of a heterologous nucleic acid(s) of interest.
Those skilled in the art will appreciate that transcription of a heterologous nucleic acid sequence from the viral genome may not be initiated in the absence of trans-acting factors, e.g., for an inducible promoter or otherwise regulated nucleic acid sequence. In the case of a rAAV genome, gene expression from the viral genome may be from a stably integrated provirus, from a non-integrated episome, as well as any other form in which the virus may take within the cell.
As used here, “systemic tropism” and “systemic transduction” (and equivalent terms) indicate that the virus capsid or virus vector of the disclosure exhibits tropism for or transduces, respectively, tissues throughout the body (e.g., brain, lung, skeletal muscle, heart, liver, kidney and/or pancreas). In embodiments, systemic transduction of muscle tissues (e.g., skeletal muscle, diaphragm and cardiac muscle) is observed. In other embodiments, systemic transduction of skeletal muscle tissues achieved. For example, in particular embodiments, essentially all skeletal muscles throughout the body are transduced (although the efficiency of transduction may vary by muscle type). In particular embodiments, systemic transduction of limb muscles, cardiac muscle and diaphragm muscle is achieved. Optionally, the virus capsid or virus vector is administered via a systemic route (e.g., systemic route such as intravenously, intra-articularly or intra-lymphatically).
Alternatively, in other embodiments, the capsid or virus vector is delivered locally (e.g., to the footpad, intramuscularly, intradermally, subcutaneously, topically).
Unless indicated otherwise, “efficient transduction” or “efficient tropism,” or similar terms, can be determined by reference to a suitable control (e.g., at least about 50%, about 60%, about 70%, about 80%, about 85%, about 90%, about 95% or more of the transduction or tropism, respectively, of the control). In particular embodiments, the virus vector efficiently transduces or has efficient tropism for skeletal muscle, cardiac muscle, diaphragm muscle, pancreas (including β-islet cells), spleen, the gastrointestinal tract (e.g., epithelium and/or smooth muscle), cells of the central nervous system, lung, joint cells, and/or kidney. Suitable controls will depend on a variety of factors including the desired tropism profile. For example, AAV8 and AAV9 are highly efficient in transducing skeletal muscle, cardiac muscle and diaphragm muscle, but have the disadvantage of also transducing liver with high efficiency. Thus, viral vectors can be identified that demonstrate the efficient transduction of skeletal, cardiac and/or diaphragm muscle of AAV8 or AAV9, but with a much lower transduction efficiency for liver. Further, because the tropism profile of interest may reflect tropism toward multiple target tissues, it will be appreciated that a suitable vector may represent some tradeoffs. To illustrate, a virus vector of the disclosure may be less efficient than AAV8 or AAV9 in transducing skeletal muscle, cardiac muscle and/or diaphragm muscle, but because of low level transduction of liver, may nonetheless be very desirable.
Similarly, it can be determined if a virus “does not efficiently transduce” or “does not have efficient tropism” for a target tissue, or similar terms, by reference to a suitable control. In particular embodiments, the virus vector does not efficiently transduce (i.e., has does not have efficient tropism) for liver, kidney, gonads and/or germ cells. In particular embodiments, undesirable transduction of tissue(s) (e.g., liver) is about 20% or less, about 10% or less, about 5% or less, about 1% or less, about 0.1% or less of the level of transduction of the desired target tissue(s) (e.g., skeletal muscle, diaphragm muscle, cardiac muscle and/or cells of the central nervous system).
As used herein, the term “polypeptide” encompasses both peptides and proteins, unless indicated otherwise.
A “polynucleotide” is a sequence of nucleotide bases, and may be RNA, DNA or DNA-RNA hybrid sequences (including both naturally occurring and non-naturally occurring nucleotide), but in representative embodiments are either single or double stranded DNA sequences.
As used herein, an “isolated” polynucleotide (e.g., an “isolated DNA” or an “isolated RNA”) means a polynucleotide at least partially separated from at least some of the other components of the naturally occurring organism or virus, for example, the cell or viral structural components or other polypeptides or nucleic acids commonly found associated with the polynucleotide. In representative embodiments an “isolated” nucleotide is enriched by at least about 10-fold, about 100-fold, about 1000-fold, about 10,000-fold or more as compared with the starting material.
Likewise, an “isolated” polypeptide means a polypeptide that is at least partially separated from at least some of the other components of the naturally occurring organism or virus, for example, the cell or viral structural components or other polypeptides or nucleic acids commonly found associated with the polypeptide. In representative embodiments an “isolated” polypeptide is enriched by at least about 10-fold, about 100-fold, about 1000-fold, about 10,000-fold or more as compared with the starting material.
As used herein, by “isolate” or “purify” (or grammatical equivalents) a virus vector, it is meant that the virus vector is at least partially separated from at least some of the other components in the starting material. In representative embodiments an “isolated” or “purified” virus vector is enriched by at least about 10-fold, about 100-fold, about 1000-fold, about 10,000-fold or more as compared with the starting material.
A “therapeutic polypeptide” is a polypeptide that can alleviate, reduce, prevent, delay and/or stabilize symptoms that result from an absence or defect in a protein in a cell or subject and/or is a polypeptide that otherwise confers a benefit to a subject, e.g., anti-cancer effects or improvement in transplant survivability.
By the terms “treat,” “treating” or “treatment of” (and grammatical variations thereof) it is meant that the severity of the subject's condition is reduced, at least partially improved or stabilized and/or that some alleviation, mitigation, decrease or stabilization in at least one clinical symptom is achieved and/or there is a delay in the progression of the disease or disorder.
The terms “prevent,” “preventing” and “prevention” (and grammatical variations thereof) refer to prevention and/or delay of the onset of a disease, disorder and/or a clinical symptom(s) in a subject and/or a reduction in the severity of the onset of the disease, disorder and/or clinical symptom(s) relative to what would occur in the absence of the methods of the disclosure. The prevention can be complete, e.g., the total absence of the disease, disorder and/or clinical symptom(s). The prevention can also be partial, such that the occurrence of the disease, disorder and/or clinical symptom(s) in the subject and/or the severity of onset is less than what would occur in the absence of the present disclosure.
“Therapeutically effective amount” as used herein refers to an amount that, when administered to a subject for treating a disease, or at least one of the clinical symptoms of a disease, is sufficient to affect such treatment of the disease or symptom thereof. The “therapeutically effective amount” may vary depending, for example, on the disease and/or symptoms of the disease, severity of the disease and/or symptoms of the disease or disorder, the age, weight, and/or health of the patient to be treated, and the judgment of the prescribing physician. An appropriate amount in any given instance may be ascertained by those skilled in the art or capable of determination by routine experimentation.
As used herein, the terms “virus vector,” “vector” or “gene delivery vector” refer to a virus (e.g., AAV) particle that functions as a nucleic acid delivery vehicle, and which comprises the vector genome (e.g., viral DNA [vDNA]) packaged within a virion. Alternatively, in some contexts, the term “vector” may be used to refer to the vector genome/vDNA alone.
A “rAAV vector genome” or “rAAV genome” is an AAV genome (i.e., vDNA) that comprises one or more heterologous nucleic acid sequences. rAAV vectors generally require only the terminal repeat(s) (TR(s)) in cis to generate virus. All other viral sequences are dispensable and may be supplied in trans (Muzyczka, (1992) Curr. Topics Microbiol. Immunol. 158:97). Typically, the rAAV vector genome will only retain the one or more TR sequence so as to maximize the size of the transgene that can be efficiently packaged by the vector. The structural and non-structural protein coding sequences may be provided in trans (e.g., from a vector, such as a plasmid, or by stably integrating the sequences into a packaging cell). In embodiments, the rAAV vector genome comprises at least one TR sequence (e.g., AAV TR sequence), optionally two TRs (e.g., two AAV TRs), which typically will be at the 5′ and 3′ ends of the vector genome and flank the heterologous nucleic acid, but need not be contiguous thereto. The TRs can be the same or different from each other.
The term “terminal repeat” or “TR” includes any viral terminal repeat or synthetic sequence that forms a hairpin structure and functions as an inverted terminal repeat (i.e., mediates the desired functions such as replication, virus packaging, integration and/or provirus rescue, and the like). The TR can be an AAV TR or a non-AAV TR. For example, a non-AAV TR sequence such as those of other parvoviruses (e.g., canine parvovirus (CPV), mouse parvovirus (MVM), human parvovirus B-19) or any other suitable virus sequence (e.g., the SV40 hairpin that serves as the origin of SV40 replication) can be used as a TR, which can further be modified by truncation, substitution, deletion, insertion and/or addition. Further, the TR can be partially or completely synthetic, such as the “double-D sequence” as described in U.S. Pat. No. 5,478,745 to Samulski et al.
An “AAV terminal repeat” or “AAV TR” may be from any AAV, including but not limited to serotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or any other AAV now known or later discovered (see, e.g., Table 1). An AAV terminal repeat need not have the native terminal repeat sequence (e.g., a native AAV TR sequence may be altered by insertion, deletion, truncation and/or missense mutations), as long as the terminal repeat mediates the desired functions, e.g., replication, virus packaging, integration, and/or provirus rescue, and the like.
The virus vectors of the disclosure can further be “targeted” virus vectors (e.g., having a directed tropism) and/or a “hybrid” parvovirus (i.e., in which the viral TRs and viral capsid are from different parvoviruses) as described in international patent publication WO00/28004 and Chao et al, (2000) Molecular Therapy 2:619.
The virus vectors of the disclosure can further be duplexed parvovirus particles as described in international patent publication WO 01/92551 (the disclosure of which is incorporated herein by reference in its entirety). Thus, in some embodiments, double stranded (duplex) genomes can be packaged into the virus capsids of the disclosure. Further, the viral capsid or genomic elements can contain other modifications, including insertions, deletions and/or substitutions.
As used herein, the term “amino acid” encompasses any naturally occurring amino acid, modified forms thereof, and synthetic amino acids.
Naturally occurring, levorotatory (L-) amino acids are shown in Table 3.
Alternatively, the amino acid can be a modified amino acid residue (nonlimiting examples are shown in Table 4) and/or can be an amino acid that is modified by post-translation modification (e.g., acetylation, amidation, formylation, hydroxylation, methylation, phosphorylation or sulfatation).
Further, the non-naturally occurring amino acid can be an “unnatural” amino acid (as described by Wang et al., Annu Rev Biophys Biomol Struct. 35:225-49 (2006)). These unnatural amino acids can advantageously be used to chemically link molecules of interest to the AAV capsid protein.
Modified AAV Capsid Proteins and Virus Capsids and Virus Vectors Comprising the Same.
The present disclosure provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification (e.g., a substitution and/or a deletion) in the amino acid sequence and virus capsids and virus vectors comprising the modified AAV capsid protein. The inventors have discovered that the modifications described herein can confer one or more desirable properties to virus vectors comprising the modified AAV capsid protein including without limitation, the ability to evade neutralizing antibodies. Thus, the present disclosure addresses some of the limitations associated with conventional AAV vectors.
Accordingly, in one aspect, the present disclosure provides an adeno-associated virus (AAV) capsid protein, comprising one or more amino acid modifications (e.g., substitutions and/or deletions), wherein the one or more modifications modify one or more antigenic sites on the AAV capsid protein. The modification of the one or more antigenic sites results in inhibition of binding by an antibody to the one or more antigenic sites and/or inhibition of neutralization of infectivity of a virus particle comprising said AAV capsid protein. The one or more amino acid modifications (e.g., substitutions and/or deletions) can be in one or more antigenic footprints identified by peptide epitope mapping and/or cryo-electron microscopy studies of AAV-antibody complexes containing AAV capsid proteins. In some embodiments, the one or more antigenic sites are common antigenic motifs or CAMs as described in WO 2017/058892, which is incorporated herein by reference in its entirety. In some embodiments, the antigenic sites are in a variable region (VR) of the AAV capsid protein, such as VR-I, VR-II, VR-III, VR-IV, VR-V, VR-VI, VR-VII, VR-VIII, VR-IX. In some embodiments, one or more antigenic sites is in the HI loop of the AAV capsid protein.
In some embodiments, the modified antigenic site can prevent antibodies from binding or recognizing or neutralizing AAV capsids. In some embodiments, the antibody is an IgG (including IgG1, IgG2a, IgG2b, IgG3), IgM, IgE or IgA.
In some embodiments, the modified antigenic site can prevent binding, recognition, or neutralization of AAV capsids by antibodies from different animal species, wherein the animal is human, canine, feline or equine.
In some embodiments, an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10, AAV10, AAV11, AAV12, AAVrh32.22, bovine AAV, or Avian AAV capsid protein comprises an amino acid modification (e.g., a substitution or deletion) in one or more of the regions identified in Table 5, below.
In some embodiments, the amino acid substitution replaces any eight amino acids in an AAV capsid protein from any one of the following serotypes: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10, AAV10, AAV11, AAV12, AAVrh32.22, bovine AAV, or Avian AAV. For example, the amino acid substitution may replace the following amino acids (VP1 numbering): 355-362, 363-370, 371-378, 379-386, 387-394, 395-402, 403-410, 411-418, 419-426, 427-434, 435-442, 443-450, 451-458, 459-466, 467-474, 475-482, 483-490, 491-498, 499-506, 507-514, 515-522, 523-530, 531-538, 539-546, 547-554, 555-562, 563-570, 571-578, 579-586, 587-594, 595-602, 603-610, 611-618, 619-626, 627-634, 635-642, 643-650, 651-658, 659-666, 667-674, 675-682, 683-690, 691-698, 699-706, 707-714, 715-722 in any of the above-listed AAV serotypes.
In some embodiments, the amino acid substitution is selected from the group consisting of SEQ ID NO: 12, 13, 14, 15, or 16. In some embodiments, the amino acid substitution has at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence homology with SEQ ID NO: 12, 13, 14, 15, or 16. In some embodiments, the substitution is at the amino acids corresponding to amino acids 587-594 of the wildtype AAV9 capsid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 587-594 of the wildtype AAV1 capsid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 587-594 of the wildtype AAV6 capsid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 589-596 of the wildtype AAV8 capsid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 587-594 of the wildtype AAVrh8 capsid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 589-596 of the wildtype AAVrh10 capsid.
In some embodiments, the amino acid substitution is selected from the group consisting of SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590 and 2761. In some embodiments, the amino acid substitution has at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence homology with SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590 or 2761. In some embodiments, the substitution is at the amino acids corresponding to amino acids 451-458 of the wildtype AAV9 capsid.
In some embodiments, the amino acid substitution is selected from the group consisting of SS, AA, SA, or AS. In some embodiments, the substitution is at the amino acids corresponding to amino acids 491 and 492 of the wildtype AAV9 capsid.
In some embodiments, an amino acid deletion comprises a deletion of at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten amino acids compared to the wildtype capsid. In some embodiments, the amino acid modification comprises a deletion of at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all eight amino acids in the region corresponding to amino acids 451 to 458 of the wildtype AAV9 capsid.
In some embodiments, an AAV capsid of the disclosure comprises one or more amino acid substitutions and one or more amino acid deletions. In some embodiments, a capsid comprises at least one amino acid substitution and at least one amino acid deletion. In some embodiments, a capsid comprises at least one amino acid substitution and at least one amino acid deletion, wherein the at least one amino acid substitution and the at least one amino acid deletion are immediately adjacent to one another in the capsid amino acid sequence.
The capsid proteins of this disclosure are modified to produce an AAV capsid that is present in an AAV virus particle or AAV virus vector that has a phenotype of evading neutralizing antibodies. The AAV virus particle or vector of this disclosure can also have a phenotype of enhanced or maintained transduction efficiency in addition to the phenotype of evading neutralizing antibodies.
In some embodiments, the one or more substitutions of the one or more antigenic sites can introduce one or more antigenic sites from a capsid protein of a first AAV serotype into the capsid protein of a second AAV serotype that is different from said first AAV serotype.
The AAV capsid protein of this disclosure can be a capsid protein of an AAV serotype selected from AAV1, AAV2, AAV3, AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAVrh.8, AAVrh.10, AAVrh.32.33, AAVrh74, bovine AAV, avian AAV or any other AAV now known or later identified. In some embodiments, the AAV capsid protein is of the AAV9 serotype. In some embodiments, the AAV capsid protein is chimeric. In some embodiments, the AAV capsid protein is an AAV8/9 chimera.
Several examples of a modified AAV capsid protein of this disclosure are provided herein. In the following examples, the capsid protein can comprise the specific substitutions described and in some embodiments can comprise fewer or more substitutions than those described. As used herein, “substitution” may refer to a single amino acid substitution, or a substitution of more than one amino acid. For example in some embodiments, a capsid protein of this disclosure can comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc., single amino acid substitutions. In some embodiments, a capsid protein of this disclosure can comprise one or more substitutions of multiple contiguous amino acids, such as one or more substitutions of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 contiguous amino acids.
Furthermore, in the embodiments described herein wherein an amino acid residue is substituted by any amino acid residue other than the amino acid residue present in the wild type or native amino acid sequence, the any other amino acid residue can be any natural or non-natural amino acid residue known in the art (see, e.g., Tables 3 and 4). In some embodiments, the substitution can be a conservative substitution and in some embodiments, the substitution can be a nonconservative substitution. In some embodiments, an AAV capsid protein comprises one or more amino acid substitutions, wherein the amino acid substitutions are selected from the sequences listed in Table 6.1.
In some embodiments, an AAV capsid protein comprises one or more amino acid substitutions, wherein the amino acid substitutions are selected from the sequences listed in Table 6.2.
In some embodiments, an AAV capsid protein comprises one or more amino acid substitutions, wherein the amino acid substitutions are selected from the sequences listed in Table 6.3.
In some embodiments, an AAV capsid protein may comprise a first substitution selected from the sequences listed in Table 6.1 and a second substitution selected from the sequences listed in Table 6.2. In some embodiments, an AAV capsid protein may comprise a first substitution selected from the sequences listed in Table 6.1 and a second substitution selected from the sequences listed in Table 6.3. In some embodiments, an AAV capsid protein may comprise a first substitution selected from the sequences listed in Table 6.2 and a second substitution selected from the sequences listed in Table 6.3. In some embodiments, an AAV capsid protein may comprise a first substitution selected from the sequences listed in Table 6.1, a second substitution selected from the sequences listed in Table 6.2, and a third substitution selected from the sequences listed in Table 6.3. In some embodiments, an AAV capsid protein may comprise a first substitution, a second substitution, and optionally a third substitution, as shown in Tables 6.4 and 6.5.
In some embodiments, the disclosure provides an AAV capsid protein that comprises an amino acid modification (e.g., substitution and/or deletion), wherein the amino acid modification modifies one or more antigenic sites on the AAV capsid protein.
In some embodiments, the disclosure provides an AAV capsid protein that comprises one or more amino acid substitutions, wherein the amino acid substitutions comprise at least one of SEQ ID NOs: 12, 13, 14, 15, and/or 16. In some embodiments, the substitution is at the amino acids corresponding to amino acids 587-594 of the wildtype AAV9 capsid.
In some embodiments, the disclosure provides an AAV capsid protein that comprises one or more amino acid substitutions, wherein the amino acid substitutions comprise at least one of SEQ ID NOs: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590 or 2761. In some embodiments, the substitution is at the amino acids corresponding to amino acids 451-458 of the wildtype AAV9 capsid.
In some embodiments, the disclosure provides an AAV capsid protein that comprises one or more amino acid substitutions, wherein the amino acid substitutions comprise at least one of the sequences SS, AA, SA, or AS. In some embodiments, the substitution is at the amino acids corresponding to amino acids 491-492 of the wildtype AAV9 capsid.
In some embodiments, a recombinant capsid protein has a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to the sequences of any one of SEQ ID NO: 173, 2762, 185, 191, 1384, 1625, 2763, 2110, 2352.
In some embodiments, the disclosure provides an AAV capsid protein, wherein the capsid protein comprises a substitution comprising a sequence of eight amino acids (X1-X2-X3-X4-X5-X6-X7-X8) (SEQ ID NO: 158) that does not occur in the native capsid protein sequence. In some embodiments, X1 is not A, X2 is not Q, X3 is not A, X4 is not Q, X5 is not A, X6 is not Q, X7 is not T, and X8 not G (SEQ ID NO: 2764). In some embodiments, X1 is not A, X2 is not Q, X4 is not Q, X6 is not Q, and X8 is not G (SEQ ID NO: 2765). In some embodiments, X1 is T, M, S, or R (SEQ ID NO: 2766). In some embodiments, X2 is I, S, K, T, or D (SEQ ID NO: 2767). In some embodiments, X3 is D, A, V, or Y (SEQ ID NO: 2768). In some embodiments, X4 is D or E (SEQ ID NO: 2769). In some embodiments, X5 is S, P, or A (SEQ ID NO: 2770). In some embodiments, X6 is L, I, or W (SEQ ID NO: 2771). In some embodiments, X7 is S, A, or T. In some embodiments, X8 is Y, I, E, or Q (SEQ ID NO: 2772).
In some embodiments, X1 is T, X2 is I, X3 is D, X4 is D, X5 is S, X6 is L, X7 is S, and X8 is Y (SEQ ID NO: 12). In some embodiments, X1 is M, X2 is S, X3 is A, X4 is E, X5 is P, X6 is I, X7 is A, and X8 is I (SEQ ID NO: 13). In some embodiments, X1 is S, X2 is K, X3 is V, X4 is E, X5 is S, X6 is W, X7 is T, and X8 is E (SEQ ID NO: 14). In some embodiments, X1 is S, X2 is T, X3 is V, X4 is D, X5 is S, X6 is I, X7 is A, and X8 is I (SEQ ID NO: 15). In some embodiments, X1 is R, X2 is D, X3 is Y, X4 is E, X5 is A, X6 is W, X7 is S, and X8 is Q (SEQ ID NO: 16).
In some embodiments, X1 is not I, X2 is not N, X3 is not G, X4 is not S, X5 is not G, X6 is not Q, X7 is not N, and X8 not Q. In some embodiments, X1 is not I, X2 is not N, X3 is not G, X4 is not S, X5 is not G, X6 is not Q, X7 is not N, or X8 is not Q. In some embodiments, X1 is S, Q, N or E. In some embodiments, X2 is E, N, I, F, G, or L. In some embodiments, X3 is E, N, P, D, or G. In some embodiments, X4 is G, N, H, S, or V. In some embodiments, X5 is A, D, Q, S, or Y. In some embodiments, X6 is N, L, P, S, T, D, or E. In some embodiments, X7 is S, A, L, N, E, I, or G. In some embodiments, X8 is Q, T, N, or S.
In some embodiments, X1 is S, X2 is E, X3 is N, X4 is G, X5 is A, X6 is N, X7 is S, and X8 is Q (SEQ ID NO: 159). In some embodiments, X1 is S, X2 is N, X3 is E, X4 is G, X5 is D, X6 is L, X7 is A, and X8 is T (SEQ ID NO 160). In some embodiments, X1 is Q, X2 is I, X3 is P, X4 is N, X5 is D, X6 is P, X7 is L, and X8 is N (SEQ ID NO: 1376). In some embodiments, X1 is N, X2 is F, X3 is P, X4 is H, X5 is D, X6 is S, X7 is N, and X8 is T (SEQ ID NO: 1377). In some embodiments, X1 is S, X2 is E, X3 is N, X4 is G, X5 is Q, X6 is T, X7 is E, and X8 is N (SEQ ID NO: 1378). In some embodiments, X1 is N, X2 is G, X3 is D, X4 is G, X5 is S, X6 is D, X7 is I, and X8 is Q (SEQ ID NO: 1379). In some embodiments, X1 is E, X2 is L, X3 is G, X4 is S, X5 is Y, X6 is E, X7 is G, and X8 is S (SEQ ID NO: 1380). In some embodiments, X1 is S, X2 is E, X3 is N, X4 is G, X5 is D, X6 is A, X7 is A, and X8 is T (SEQ ID NO: 2590). In some embodiments, X1 is S, X2 is E, X3 is N, X4 is V, X5 is Q, X6 is T, X7 is E, and X8 is N (SEQ ID NO: 2761).
In some embodiments, the disclosure provides an AAV capsid protein, wherein the capsid protein comprises a substitution comprising a sequence of two amino acids (X1-X2) that does not occur in the native capsid protein sequence. In some embodiments, X1 and X2 are each independently selected from S and A. In some embodiments, X1 is S and X2 is S. In some embodiments, X1 is A and X2 is A. In some embodiments, X1 is S and X2 is A. In some embodiments, X1 is A and X2 is S.
In some embodiments, the disclosure provides an AAV capsid protein that comprises one or more amino acid deletions, wherein the amino acid deletion comprises a deletion of at least six or at least 8 amino acids compared to the wildtype AAV capsid. In some embodiments, an AAV capsid protein comprises a deletion of eight consecutive amino acids compared to the native capsid protein sequence. In some embodiments, an AAV capsid protein comprises a deletion of six consecutive amino acids compared to the native capsid protein sequence.
In some embodiments, the deletion comprises a deletion of at least one amino acid in the region corresponding to amino acids 451 to 458 of the wildtype AAV9 capsid. In some embodiments, the deletion comprises a deletion of all amino acids in the region corresponding to amino acids 451 to 456 of the wildtype AAV9 capsid, or a deletion of all amino acids in the region corresponding to amino acids 451 to 458 of the wildtype AAV9 capsid. In some embodiments, the amino acid modification comprises a deletion of all amino acids in the region corresponding to amino acids 451 to 456 of the wildtype AAV9 capsid, and further comprises a substitution of the amino acids corresponding to amino acids 457 and 458 of the wildtype AAV9 capsid. The substitution may comprise either or both of N457D and Q458P.
In some embodiments, an AAV capsid protein comprises the sequence LSKTQTLK (SEQ ID NO: 1374) or the sequence LSKTDPQTLK (SEQ ID NO: 1375). In some embodiments, the AAV capsid protein comprising SEQ ID NO: 1374 or 1375 is of a serotype selected from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAVrh8, AAVrh10, AAVrh32.33, AAVrh74, Avian AAV and Bovine AAV.
In some embodiments, an AAV capsid protein comprises a first substitution comprising a sequence selected from SEQ ID NO: 12, 13, 14, 15, and 16; and a second substitution comprising a sequence selected from SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590, and 2761.
In some embodiments, an AAV capsid protein comprises a first substitution comprising a sequence selected from SEQ ID NO: 12, 13, 14, 15, and 16; and a second substitution comprising a sequence selected from SS, AA, SA, and AS.
In some embodiments, an AAV capsid protein comprises a first substitution comprising a sequence selected from SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590, and 2761; and a second substitution comprising a sequence selected from SS, AA, SA, and AS.
In some embodiments, an AAV capsid protein comprises a first substitution comprising a sequence selected from SEQ ID NO: 12, 13, 14, 15, and 16; a second substitution comprising a sequence selected from SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590 and 2761; and a third substitution comprising a sequence selected from SS, AA, SA, and AS.
In some embodiments, an AAV capsid protein comprises an amino acid deletion and a substitution comprising a sequence selected from SEQ ID NO: 12, 13, 14, 15, and 16.
In some embodiments, an AAV capsid protein comprises an amino acid deletion and a substitution comprising a sequence selected from SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590 and 2761.
In some embodiments, an AAV capsid protein comprises an amino acid deletion and a substitution comprising a sequence selected from SS, AA, SA, and AS.
In some embodiments, an AAV capsid protein comprises a deletion, a substitution comprising a sequence selected from SEQ ID NO: 12, 13, 14, 15, and 16; a substitution comprising a sequence selected from SEQ ID NO: 159, 160, 1376, 1377, 1378, 1379, 1380, 2590, and 2761; and a substitution comprising a sequence selected from SS, AA, SA, and AS.
In some embodiments, a recombinant capsid protein has a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 9 (AAV9) and comprises one or more of the following amino acid substitutions: I451S, I451Q, I451N, I451E, N452E, N452N, N452I, N452F, N452G, N452L, G453N, G453E, G453G, G453P, G453D, S454G, S454N, S454H, S454G, S454S, G455A, G455D, G455Q, G455S, G455Y, Q456N, Q456L, Q456P, Q456S, Q456T, Q456D, Q456E, N457S, N457A, N457L, N457N, N457E, N457E, N457G, Q458T, Q458N, Q458Q, Q458S, T491S, T491A, T492S, T492A, A587T, A587M, A587S, A587R, Q5881, Q588S, Q588K, Q588T, Q588D, A589D, A589V, A589Y, Q590D, Q590E, A591S, A591P, A591A, Q592L, Q5921, Q592W, T593S, T593A, T593T, G594Y, G5941, G594E, G594Q.
In some embodiments, a recombinant capsid protein has a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 9 (AAV9) and comprises at least one amino acid substitution selected from any of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, and 2761. In some embodiments, a recombinant capsid protein has a sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 9 (AAV9) and comprises at least two or at least three amino acid substitutions selected from any of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, and 2761.
In some embodiments, any of the AAV capsids described herein further comprise a substitution comprising the sequence K-X1-K-X2-T, wherein X1 and X2 are each independently selected from any amino acid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 312 to 316 of the wildtype AAV9 capsid.
In some embodiments, any of the AAV capsids described herein further comprise a substitution comprising the sequence T-X1-K-X2-D, wherein X1 and X2 are each independently selected from any amino acid. In some embodiments, the substitution is at the amino acids corresponding to amino acids 680 to 684 of the wildtype AAV9 capsid.
Any of the AAV capsids described herein may further comprise a modification (e.g., a substitution or a deletion) in the HI loop. The HI loop is a prominent domain on the AAV capsid surface, between β strands βH and βI, that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. In some embodiments, an AAV capsid comprises one, two, three, four, five, six, seven, or eight amino acid substitutions in the HI loop. In some embodiments, the AAV capsid comprises one or more of the following substitutions in the HI loop: P661R, T662S, Q666G, S667D, wherein the numbering corresponds to the wildtype AAV8 capsid (SEQ ID NO: 8). In some embodiments, the AAV capsid comprises one or more of the following substitutions in the HI loop: P659R, T660S, A661T, K664G, wherein the numbering corresponds to the wildtype AAV9 capsid (SEQ ID NO: 9).
In some embodiments, an AAV capsid protein comprises one, two, three, or four amino acid substitutions, wherein each substitution modifies a different antigenic site on the AAV capsid protein, and wherein at least one of the amino acid substitutions modifies the HI loop of the capsid protein.
In some embodiments, an AAV capsid protein comprises a first, a second, a third, and a fourth amino acid substitution. In some embodiments, at least one of the substitutions modifies the HI Loop of the capsid protein. In some embodiments, the AAV capsid comprises one or more of the following substitutions in the HI loop: P661R, T662S, Q666G, S667D, wherein the numbering corresponds to the wildtype AAV8 capsid (SEQ ID NO: 8); or P659R, T660S, A661T, K664G, wherein the numbering corresponds to the wildtype AAV9 capsid (SEQ ID NO: 9). In some embodiments, the disclosure provides an AAV capsid protein comprising the amino acid sequence of any one of SEQ ID NO: 17-21 or any one of SEQ ID NO: 165-1373, 1381-2589, 2672-2673. In some embodiments, the disclosure provides an AAV capsid protein comprising an amino acid sequence sharing at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to any one of SEQ ID NO: 17-21 or any one of SEQ ID NO: 165-1373, 1381-2589, or 2672-2673.
The present disclosure also provides a nucleotide sequence, or an expression vector comprising the same, that encodes one or more of the AAV capsid proteins of the disclosure. The nucleotide sequence may be a DNA sequence or an RNA sequence. The present disclosure also provides a cell that comprises one or more nucleotide sequences or expression vectors of the disclosure.
Also provided is an AAV capsid comprising an AAV capsid protein of this disclosure. Further provided herein is a viral vector comprising an AAV capsid of this disclosure as well as a composition comprising the AAV capsid protein, AAV capsid and/or viral vector of this disclosure in a pharmaceutically acceptable carrier.
In some embodiments, modification of the one or more antigenic sites results in inhibition of binding by an antibody to the one or more antigenic sites. In some embodiments, modification of the one or more antigenic sites results in inhibition of neutralization of infectivity of a virus particle comprising the AAV capsid protein.
As described herein, the nucleic acid and amino acid sequences of the capsid proteins from a number of AAV are known in the art. Thus, the amino acids “corresponding” to amino acid positions of the native AAV capsid protein can be readily determined for any other AAV (e.g., by using sequence alignments).
The disclosure contemplates that the modified capsid proteins can be produced by modifying the capsid protein of any AAV now known or later discovered. Further, the AAV capsid protein that is to be modified can be a naturally occurring AAV capsid protein (e.g., an AAV2, AAV3a or 3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10 or AAV11 capsid protein or any of the AAV shown in Table 2) but is not so limited. Those skilled in the art will understand that a variety of manipulations to the AAV capsid proteins are known in the art and the disclosure is not limited to modifications of naturally occurring AAV capsid proteins. For example, the capsid protein to be modified may already have alterations as compared with naturally occurring AAV (e.g., is derived from a naturally occurring AAV capsid protein, e.g., AAV2, AAV3a, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 or any other AAV now known or later discovered). In some embodiments, the capsid protein may be a chimeric capsid protein. In some embodiments, the capsid protein may be an engineered AAV, such as AAV2i8, AAV2g9, AAV-LK03, AAV7m8, AAV Anc80, AAV PHP.B. Such AAV capsid proteins are also within the scope of the present disclosure.
Thus, in particular embodiments, the AAV capsid protein to be modified can be derived from a naturally occurring AAV but further comprises one or more foreign sequences (e.g., that are exogenous to the native virus) that are inserted and/or substituted into the capsid protein and/or has been altered by deletion of one or more amino acids.
Accordingly, when referring herein to a specific AAV capsid protein (e.g., an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10 or AAV11 capsid protein or a capsid protein from any of the AAV shown in Table 2, etc.), it is intended to encompass the native capsid protein as well as capsid proteins that have alterations other than the modifications of the disclosure. Such alterations include substitutions, insertions and/or deletions. In particular embodiments, the capsid protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, less than 20, less than 30, less than 40, less than 50, less than 60, or less than 70 amino acids inserted therein (other than the insertions of the present disclosure) as compared with the native AAV capsid protein sequence. In embodiments, the capsid protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, less than 20, less than 30, less than 40, less than 50, less than 60, or less than 70 amino acid substitutions (other than the amino acid substitutions according to the present disclosure) as compared with the native AAV capsid protein sequence, in embodiments of the disclosure, the capsid protein comprises a deletion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, less than 20, less than 30, less than 40, less than 50, less than 60, or less than 70 amino acids (other than the amino acid deletions of the disclosure) as compared with the native AAV capsid protein sequence.
In particular embodiments, the AAV capsid protein has the native AAV capsid protein sequence or has an amino acid sequence that is at least about 90%, about 95%, about 97%, about 98% or about 99% similar or identical to a native AAV capsid protein sequence.
Methods of determining sequence similarity or identity between two or more amino acid sequences are known in the art. Sequence similarity or identity may be determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman, Adv. Appl. Math. 2, 482 (1981), by the sequence identity alignment algorithm of Needleman & Wunsch, J Mol. Biol. 48,443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85, 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, WI), the Best Fit sequence program described by Devereux et al., Nucl. Acid Res. 12, 387-395 (1984), or by inspection.
Another suitable algorithm is the BLAST algorithm, described in Altschul et al., J Mol. Biol. 215, 403-410, (1990) and Karlin et al., Proc. Natl. Acad. Sci. USA 90, 5873-5787 (1993). A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., Methods in Enzymology, 266, 460-480 (1996); http://blast.wustl/edu/blast/README.html. WU-BLAST-2 uses several search parameters, which are optionally set to the default values. The parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity.
Further, an additional useful algorithm is gapped BLAST as reported by Altschul et al, (1997) Nucleic Acids Res. 25, 3389-3402.
The disclosure also provides a virus capsid comprising, consisting essentially of, or consisting of the modified AAV capsid protein of the disclosure. In particular embodiments, the virus capsid is a parvovirus capsid, which may further be an autonomous parvovirus capsid or a dependovirus capsid. Optionally, the virus capsid is an AAV capsid. In particular embodiments, the AAV capsid is an AAV1, AAV2, AAV3a, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAVrh8, AAVrh10, AAVrh32.33, bovine AAV capsid, avian AAV capsid or any other AAV now known or later identified. A nonlimiting list of AAV serotypes is shown in Table 2 an AAV capsid of this disclosure can be any AAV serotype listed in Table 2 or derived from any of the foregoing by one or more insertions, substitutions and/or deletions. The modified virus capsids can be used as “capsid vehicles,” as has been described, for example, in U.S. Pat. No. 5,863,541. Molecules that can be packaged by the modified virus capsid and transferred into a cell include heterologous DNA, RNA, polypeptides, small organic molecules, metals, or combinations of the same.
Heterologous molecules are defined as those that are not naturally found in an AAV infection, e.g., those not encoded by a wild-type AAV genome. Further, therapeutically useful molecules can be associated with the outside of the chimeric virus capsid for transfer of the molecules into host target cells. Such associated molecules can include DNA, RNA, small organic molecules, metals, carbohydrates, lipids and/or polypeptides. In one embodiment of the disclosure the therapeutically useful molecule is covalently linked (i.e., conjugated or chemically coupled) to the capsid proteins. Methods of covalently linking molecules are known by those skilled in the art.
The modified virus capsids of the disclosure also find use in raising antibodies against the novel capsid structures. As a further alternative, an exogenous amino acid sequence may be inserted into the modified virus capsid for antigen presentation to a cell, e.g., for administration to a subject to produce an immune response to the exogenous amino acid sequence.
In other embodiments, the virus capsids can be administered to block certain cellular sites prior to and/or concurrently with (e.g., within minutes or hours of each other) administration of a virus vector delivering a nucleic acid encoding a polypeptide or functional RNA of interest. For example, the inventive capsids can be delivered to block cellular receptors on liver cells and a delivery vector can be administered subsequently or concurrently, which may reduce transduction of liver cells, and enhance transduction of other targets (e.g., skeletal, cardiac and/or diaphragm muscle).
According to representative embodiments, modified virus capsids can be administered to a subject prior to and/or concurrently with a modified virus vector according to the present disclosure. Further, the disclosure provides compositions and pharmaceutical formulations comprising the inventive modified virus capsids; optionally, the composition also comprises a modified virus vector of the disclosure.
The disclosure also provides nucleic acids (optionally, isolated nucleic acids) encoding the modified virus capsids and capsid proteins of the disclosure. Further provided are vectors comprising the nucleic acids, and cells (in vivo or in culture) comprising the nucleic acids and/or vectors of the disclosure. As one example, the present disclosure provides a virus vector comprising: (a) a modified AAV capsid of this disclosure; and (b) a nucleic acid comprising at least one terminal repeat sequence, wherein the nucleic acid is encapsidated by the AAV capsid.
Other suitable vectors include without limitation viral vectors (e.g., adenovirus, AAV, herpesvirus, vaccinia, poxviruses, baculoviruses, and the like), plasmids, phage, YACs, BACs, and the like. Such nucleic acids, vectors and cells can be used, for example, as reagents (e.g., helper packaging constructs or packaging cells) for the production of modified virus capsids or virus vectors as described herein.
Virus capsids according to the disclosure can be produced using any method known in the art, e.g., by expression from a baculovirus (Brown et al., (1994) Virology 198:477-488).
The modifications to the AAV capsid protein according to the present disclosure are “selective” modifications. This approach is in contrast to previous work with whole subunit or large domain swaps between AAV serotypes (see, e.g., international patent publication WO 00/28004 and Hauck et al., (2003) J. Virology 77:2768-2774). In particular embodiments, a “selective” modification results in the insertion and/or substitution and/or deletion of less than or equal to about 20, 18, 15, 12, 10, 9, 8, 7, 6, 5, 4 or 3 contiguous amino acids.
The modified capsid proteins and capsids of the disclosure can further comprise any other modification, now known or later identified.
For example, the AAV capsid proteins and virus capsids of the disclosure can be chimeric in that they can comprise all or a portion of a capsid subunit from another virus, optionally another parvovirus or AAV, e.g., as described in international patent publication WO 00/28004.
In some embodiments of this disclosure, the virus capsid can be a targeted virus capsid, comprising a targeting sequence (e.g., substituted or inserted in the viral capsid) that directs the virus capsid to interact with cell-surface molecules present on desired target tissue(s) (see, e.g., International patent publication WO 00/28004 and Hauck et al., (2003) J. Virology 77:2768-2774); Shi et al., Human Gene Therapy 17:353-361 (2006) [describing insertion of the integrin receptor binding motif RGD at positions 520 and/or 584 of the AAV capsid subunit]; and U.S. Pat. No. 7,314,912 [describing insertion of the PI peptide containing an RGD motif following amino acid positions 447, 534, 573 and 587 of the AAV2 capsid subunit]). Other positions within the AAV capsid subunit that tolerate insertions are known in the art (e.g., positions 449 and 588 described by Grifman et al., Molecular Therapy 3:964-975 (2001)).
For example, a virus capsid of this disclosure may have relatively inefficient tropism toward certain target tissues of interest (e.g., liver, skeletal muscle, heart, diaphragm muscle, kidney, brain, stomach, intestines, skin, endothelial cells, and/or lungs). A targeting sequence can advantageously be incorporated into these low-transduction vectors to thereby confer to the virus capsid a desired tropism and, optionally, selective tropism for particular tissue(s). AAV capsid proteins, capsids and vectors comprising targeting sequences are described, for example in international patent publication WO 00/28004. As another example, one or more non-naturally occurring amino acids as described by Wang et al., Annu Rev Biophys Biomol Struct. 35:225-49 (2006)) can be incorporated into an AAV capsid subunit of this disclosure at an orthogonal site as a means of redirecting a low-transduction vector to desired target tissue(s). These unnatural amino acids can advantageously be used to chemically link molecules of interest to the AAV capsid protein including without limitation: glycans (mannose-dendritic cell targeting); RGD, bombesin or a neuropeptide for targeted delivery to specific cancer cell types; RNA aptamers or peptides selected from phage display targeted to specific cell surface receptors such as growth factor receptors, integrins, and the like.
Methods of chemically modifying amino acids are known in the art (see, e.g., Greg T. Hermanson, Bioconjugate Techniques, 1st edition, Academic Press, 1996).
In some embodiments, the targeting sequence may be a virus capsid sequence (e.g., an autonomous parvovirus capsid sequence, AAV capsid sequence, or any other viral capsid sequence) that directs infection to a particular cell type(s).
As another nonlimiting example, a heparin or heparan sulfate binding domain (e.g., the respiratory syncytial virus heparin binding domain) may be inserted or substituted into a capsid subunit that does not typically bind HS receptors (e.g., AAV4, AAV5) to confer heparin and/or heparan sulfate binding to the resulting mutant.
B19 infects primary erythroid progenitor cells using globoside as its receptor (Brown et al, (1993) Science 262: 114). The structure of B19 has been determined to 8 Å resolution (Agbandje-McKenna et al, (1994) Virology 203: 106). The region of the B19 capsid that binds to globoside has been mapped between amino acids 399-406 (Chapman et al, (1993) Virology 194:419), a looped out region between β-barrel structures E and F (Chipman et al, (1996) Proc. Nat. Acad. Sci. USA 93:7502). Accordingly, the globoside receptor binding domain of the B19 capsid may be substituted into an AAV capsid protein of this disclosure to target a virus capsid or virus vector comprising the same to erythroid cells.
In some embodiments, the exogenous targeting sequence may be any amino acid sequence encoding a peptide that alters the tropism of a virus capsid or virus vector comprising the modified AAV capsid protein. In particular embodiments, the targeting peptide or protein may be naturally occurring or, alternately, completely or partially synthetic. Exemplary targeting sequences include ligands and other peptides that bind to cell surface receptors and glycoproteins, such as ROD peptide sequences, bradykinin, hormones, peptide growth factors (e.g., epidermal growth factor, nerve growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors I and II, etc.), cytokines, melanocyte stimulating hormone (e.g., a, β or γ), neuropeptides and endorphins, and the like, and fragments thereof that retain the ability to target cells to their cognate receptors. Other illustrative peptides and proteins include substance P, keratinocyte growth factor, neuropeptide Y, gastrin releasing peptide, interleukin 2, hen egg white lysozyme, erythropoietin, gonadolibcrin, corticostatin, β-endorphin, leu-enkephalin, rimorphin, alpha-neo-enkephalin, angiotensin, pneumadin, vasoactive intestinal peptide, neurotensin, motilin, and fragments thereof as described above. As yet a further alternative, the binding domain from a toxin (e.g., tetanus toxin or snake toxins, such as alpha-bungarotoxin, and the like) can be substituted into the capsid protein as a targeting sequence. In a yet further representative embodiment, the AAV capsid protein can be modified by substitution of a “nonclassical” import/export signal peptide (e.g., fibroblast growth factor-1 and -2, interleukin 1, HIV-1 Tat protein, herpes virus VP22 protein, and the like) as described by Cleves (Current Biology 7:R318 (1997)) into the AAV capsid protein. Also encompassed are peptide motifs that direct uptake by specific cells, e.g., a FVFLP (SEQ ID NO: 22) peptide motif triggers uptake by liver cells.
Phage display techniques, as well as other techniques known in the art, may be used to identify peptides that recognize any cell type of interest.
The targeting sequence may encode any peptide that targets to a cell surface binding site, including receptors (e.g., protein, carbohydrate, glycoprotein or proteoglycan). Examples of cell surface binding sites include, but are not limited to, heparan sulfate, chondroitin sulfate, and other glycosaminoglycans, sialic acid moieties found on mucins, glycoproteins, and gangliosides, MHC 1 glycoproteins, carbohydrate components found on membrane glycoproteins, including, mannose, N-acetylgalactosamine, N-acetyl-glucosamine, fucose, galactose, and the like.
In particular embodiments, a heparan sulfate (HS) or heparin binding domain is substituted into the virus capsid (for example, in an AAV capsid that otherwise does not bind to HS or heparin). It is known in the art that HS/heparin binding is mediated by a “basic patch” that is rich in arginines and/or lysines. In exemplary embodiments, a sequence following the motif BXXB (SEQ ID NO: 23), where “B” is a basic residue and X is neutral and/or hydrophobic can be employed. As a non-limiting example, BXXB can be RGNR (SEQ ID NO: 24). As another non-limiting example, BXXB is substituted for amino acid positions 262 through 265 in the native AAV2 capsid protein or at the corresponding position(s) in the capsid protein of another AAV serotype.
Table 7 shows other non-limiting examples of suitable targeting sequences.
As yet a further embodiment, the targeting sequence may be a peptide that can be used for chemical coupling (e.g., can comprise arginine and/or lysine residues that can be chemically coupled through their R groups) to another molecule that targets entry into a cell.
As another embodiment, the AAV capsid protein or virus capsid of the disclosure can comprise a mutation as described in WO 2006/066066. For example, the capsid protein can comprise a selective amino acid substitution at amino acid position 263, 705, 708 and/or 716 of the native AAV2 capsid protein or a corresponding change(s) in a capsid protein from another AAV serotype.
Additionally, or alternatively, in representative embodiments, the capsid protein, virus capsid or vector comprises a selective amino acid insertion directly following amino acid position 264 of the AAV2 capsid protein or a corresponding change in the capsid protein from other AAV. By “directly following amino acid position X” it is intended that the insertion immediately follows the indicated amino acid position (for example, “following amino acid position 264” indicates a point insertion at position 265 or a larger insertion, e.g., from positions 265 to 268, etc.).
Furthermore, in representative embodiments, the capsid protein, virus capsid or vector of this disclosure can comprise amino acid modifications such as described in PCT Publication No. WO 2010/093784 (e.g., 2i8) and/or in PCT Publication No. WO
2014/144229 (e.g., dual glycan).
In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have equivalent or enhanced transduction efficiency relative to the transduction efficiency of the AAV serotype from which the capsid protein, virus capsid or vector of this disclosure originated. In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have reduced transduction efficiency relative to the transduction efficiency of the AAV serotype from which the capsid protein, virus capsid or vector of this disclosure originated. In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have equivalent or enhanced tropism relative to the tropism of the AAV serotype from which the capsid protein, virus capsid or vector of this disclosure originated. In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have an altered or different tropism relative to the tropism of the AAV serotype from which the capsid protein, virus capsid or vector of this disclosure originated. In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have or be engineered to have tropism for brain tissue. In some embodiments of this disclosure, the capsid protein, virus capsid or vector of this disclosure can have or be engineered to have tropism for liver tissue.
The foregoing embodiments can be used to deliver a heterologous nucleic acid to a cell or subject as described herein. For example, the modified vector can be used to treat a lysosomal storage disorder such as a mucopolysaccharidosis disorder (e.g., Sly syndrome [β-glucuronidase], Hurler Syndrome [alpha-L-iduronidase], Scheie Syndrome [alpha-L-iduronidase], Hurler-Scheie Syndrome [alpha-L-iduronidase], Hunter's Syndrome [iduronate sulfatase], Sanfilippo Syndrome A [heparan sulfamidase], B [N-acetylglucosaminidase], C [acetyl-CoA:alpha-glucosaminide acetyltransferase], D [N-acetylglucosamine 6-sulfatase], Morquio Syndrome A [galactose-6-sulfate sulfatase], B [β-galactosidase], Maroteaux-Lamy Syndrome [N-acetylgalactosamine-4-sulfatase], etc.), Fabry disease (a-galactosidase), Gaucher's disease (glucocerebrosidase), or a glycogen storage disorder (e.g., Pompe disease; lysosomal acid alpha-glucosidase) as described herein.
Those skilled in the art will appreciate that for some AAV capsid proteins the corresponding modification will be an insertion and/or a substitution, depending on whether the corresponding amino acid positions are partially or completely present in the virus or, alternatively, are completely absent.
The disclosure also encompasses virus vectors comprising the modified capsid proteins and capsids of the disclosure. In particular embodiments, the virus vector is a parvovirus vector (e.g., comprising a parvovirus capsid and/or vector genome), for example, an AAV vector (e.g., comprising an AAV capsid and/or vector genome). In representative embodiments, the virus vector comprises a modified AAV capsid comprising a modified capsid subunit of the disclosure and a vector genome.
For example, in representative embodiments, the virus vector comprises: (a) a modified virus capsid (e.g., a modified AAV capsid) comprising a modified capsid protein of the disclosure; and (b) a nucleic acid comprising a terminal repeat sequence (e.g., an AAV TR), wherein the nucleic acid comprising the terminal repeat sequence is encapsidated by the modified virus capsid. The nucleic acid can optionally comprise two terminal repeats (e.g., two AAV TRs).
In representative embodiments, the virus vector is a recombinant virus vector comprising a heterologous nucleic acid encoding a polypeptide or functional RNA of interest. Recombinant virus vectors are described in more detail below.
In particular embodiments, the virus vectors of the disclosure (i) have reduced transduction of liver as compared with the level of transduction by a virus vector without the modified capsid protein; (ii) exhibit enhanced systemic transduction by the virus vector in an animal subject as compared with the level observed by a virus vector without the modified capsid protein; (iii) demonstrate enhanced movement across endothelial cells as compared with the level of movement by a virus vector without the modified capsid protein, and/or (iv) exhibit a selective enhancement in transduction of muscle tissue (e.g., skeletal muscle, cardiac muscle and/or diaphragm muscle), (v) exhibit a selective enhancement in transduction of liver tissue, and/or (vi) reduced transduction of brain tissues (e.g., neurons) as compared with the level of transduction by a virus vector without the modified capsid protein. In particular embodiments, the virus vector has systemic transduction toward liver.
It will be understood by those skilled in the art that the modified capsid proteins, virus capsids and virus vectors of the disclosure exclude those capsid proteins, capsids and virus vectors that have the indicated amino acids at the specified positions in their native state (i.e., are not mutants).
Methods of Producing Virus Vectors
The present disclosure further provides methods of producing the inventive virus vectors. Thus, in one embodiment, the present disclosure provides a method of producing an AAV vector that evades neutralizing antibodies, comprising: a) identifying contact amino acid residues that form a three dimensional antigenic footprint on an AAV capsid protein; b) generating a library of AAV capsid proteins comprising amino acid substitutions of the contact amino acid residues identified in (a); c) producing AAV particles comprising capsid proteins from the library of AAV capsid proteins of (b); d) contacting the AAV particles of (c) with cells under conditions whereby infection and replication can occur; e) selecting AAV particles that can complete at least one infectious cycle and replicate to titers similar to control AAV particles: 1) contacting the AAV particles selected in (e) with neutralizing antibodies and cells under conditions whereby infection and replication can occur; and g) selecting AAV particles that are not neutralized by the neutralizing antibodies of (f). Nonlimiting examples of methods for identifying contact amino acid residues include peptide epitope mapping and/or cryo-electron microscopy.
Resolution and identification of the antibody contact residues within the three dimensional antigenic footprint allows for their subsequent modification through random, rational and/or degenerate mutagenesis to generate antibody-evading AAV capsids that can be identified through further selection and/or screening.
Thus, in a further embodiment, the present disclosure provides a method of producing an AAV vector that evades neutralizing antibodies, comprising: a) identifying contact amino acid residues that form a three dimensional antigenic footprint on an AAV capsid protein; b) generating AAV capsid proteins comprising amino acid substitutions of the contact amino acid residues identified in (a) by random, rational and/or degenerate mutagenesis; c) producing AAV particles comprising capsid proteins from the AAV capsid proteins of (b); d) contacting the AAV particles of (c) with cells under conditions whereby infection and replication can occur; e) selecting AAV particles that can complete at least one infectious cycle and replicate to titers similar to control AAV particles; f) contacting the AAV particles selected in (e) with neutralizing antibodies and cells under conditions whereby infection and replication can occur; and g) selecting AAV particles that are not neutralized by the neutralizing antibodies of (f).
Nonlimiting examples of methods for identifying contact amino acid residues include peptide epitope mapping and/or cryo-electron microscopy. Methods of generating AAV capsid proteins comprising amino acid substitutions of contact amino acid residues by random, rational and/or degenerate mutagenesis are known in the art.
This comprehensive approach presents a platform technology that can be applied to modifying any AAV capsid. Application of this platform technology yields AAV antigenic variants derived from the original AAV capsid template without loss of transduction efficiency. As one advantage and benefit, application of this technology will expand the cohort of patients eligible for gene therapy with AAV vectors.
In one embodiment, the present disclosure provides a method of producing a virus vector, the method comprising providing to a cell: (a) a nucleic acid template comprising at least one TR sequence (e.g., AAV TR sequence), and (b) AAV sequences sufficient for replication of the nucleic acid template and encapsidation into AAV capsids (e.g., AAV rep sequences and AAV cap sequences encoding the AAV capsids of the disclosure). Optionally, the nucleic acid template further comprises at least one heterologous nucleic acid sequence. In particular embodiments, the nucleic acid template comprises two AAV ITR sequences, which are located 5′ and 3′ to the heterologous nucleic acid sequence (if present), although they need not be directly contiguous thereto.
The nucleic acid template and AAV rep and cap sequences are provided under conditions such that virus vector comprising the nucleic acid template packaged within the AAV capsid is produced in the cell. The method can further comprise the step of collecting the virus vector from the cell. The virus vector can be collected from the medium and/or by lysing the cells.
The cell can be a cell that is permissive for AAV viral replication. Any suitable cell known in the art may be employed. In particular embodiments, the cell is a mammalian cell. As another option, the cell can be a trans-complementing packaging cell line that provides functions deleted from a replication-defective helper virus, e.g., 293 cells or other E1a trans-complementing cells.
The AAV replication and capsid sequences may be provided by any method known in the art. Current protocols typically express the AAV rep/cap genes on a single plasmid. The AAV replication and packaging sequences need not be provided together, although it may be convenient to do so. The AAV rep and/or cap sequences may be provided by any viral or non-viral vector. For example, the rep/cap sequences may be provided by a hybrid adenovirus or herpesvirus vector (e.g., inserted into the E1a or E3 regions of a deleted adenovirus vector). EBV vectors may also be employed to express the AAV cap and rep genes. One advantage of this method is that EBV vectors are episomal, yet will maintain a high copy number throughout successive cell divisions (i.e., are stably integrated into the cell as extra-chromosomal elements, designated as an “EBV based nuclear episome,” see Margolski, (1992) Curr. Top. Microbiol. Immun. 158:67).
As a further alternative, the rep/cap sequences may be stably incorporated into a cell.
Typically the AAV rep/cap sequences will not be flanked by the TRs, to prevent rescue and/or packaging of these sequences.
The nucleic acid template can be provided to the cell using any method known in the art. For example, the template can be supplied by a non-viral (e.g., plasmid) or viral vector. In particular embodiments, the nucleic acid template is supplied by a herpesvirus or adenovirus vector (e.g., inserted into the E1a or E3 regions of a deleted adenovirus). As another illustration, Palombo et al., (1998) J. Virology 72:5025, describes a baculovirus vector carrying a reporter gene flanked by the AAV TRs. EBV vectors may also be employed to deliver the template, as described above with respect to the rep/cap genes.
In another representative embodiment, the nucleic acid template is provided by a replicating rAAV virus. In still other embodiments, an AAV provirus comprising the nucleic acid template is stably integrated into the chromosome of the cell.
To enhance virus titers, helper virus functions (e.g., adenovirus or herpesvirus) that promote a productive AAV infection can be provided to the cell. Helper virus sequences necessary for AAV replication are known in the art. Typically, these sequences will be provided by a helper adenovirus or herpesvirus vector. Alternatively, the adenovirus or herpesvirus sequences can be provided by another non-viral or viral vector, e.g., as a noninfectious adenovirus miniplasmid that carries all of the helper genes that promote efficient AAV production as described by Ferrari et al., (1997) Nature Med. 3: 1295, and U.S. Pat. Nos. 6,040,183 and 6,093,570.
Further, the helper virus functions may be provided by a packaging cell with the helper sequences embedded in the chromosome or maintained as a stable extrachromosomal element. Generally, the helper virus sequences cannot be packaged into AAV virions, e.g., are not flanked by TRs.
Those skilled in the art will appreciate that it may be advantageous to provide the
AAV replication and capsid sequences and the helper virus sequences (e.g., adenovirus sequences) on a single helper construct. This helper construct may be a non-viral or viral construct. As one nonlimiting illustration, the helper construct can be a hybrid adenovirus or hybrid herpesvirus comprising the AAV rep/cap genes.
In one particular embodiment, the AAV rep/cap sequences and the adenovirus helper sequences are supplied by a single adenovirus helper vector. This vector further can further comprise the nucleic acid template. The AAV rep/cap sequences and/or the rAAV template can be inserted into a deleted region (e.g., the E1a or E3 regions) of the adenovirus.
In a further embodiment, the AAV rep/cap sequences and the adenovirus helper sequences are supplied by a single adenovirus helper vector. According to this embodiment, the rAAV template can be provided as a plasmid template.
In another illustrative embodiment, the AAV rep/cap sequences and adenovirus helper sequences are provided by a single adenovirus helper vector, and the rAAV template is integrated into the cell as a provirus. Alternatively, the rAAV template is provided by an EBV vector that is maintained within the cell as an extrachromosomal element (e.g., as an EBV based nuclear episome).
In a further exemplary embodiment, the AAV rep/cap sequences and adenovirus helper sequences are provided by a single adenovirus helper. The rAAV template can be provided as a separate replicating viral vector. For example, the rAAV template can be provided by a rAAV particle or a second recombinant adenovirus particle.
According to the foregoing methods, the hybrid adenovirus vector typically comprises the adenovirus 5′ and 3′ cis sequences sufficient for adenovirus replication and packaging (i.e., the adenovirus terminal repeats and PAC sequence). The AAV rep/cap sequences and, if present, the rAAV template are embedded in the adenovirus backbone and are flanked by the 5′ and 3′ cis sequences, so that these sequences may be packaged into adenovirus capsids. As described above, the adenovirus helper sequences and the AAV rep/cap sequences are generally not flanked by TRs so that these sequences are not packaged into the AAV virions. Zhang et al., ((2001) Gene Ther. 18:704-12) describe a chimeric helper comprising both adenovirus and the AAV rep and cap genes.
Herpesvirus may also be used as a helper virus in AAV packaging methods. Hybrid herpesviruses encoding the AAV Rep protein(s) may advantageously facilitate scalable AAV vector production schemes. A hybrid herpes simplex virus type I (HSV-1) vector expressing the AAV-2 rep and cap genes has been described (Conway et al., (1999) Gene Therapy 6:986 and WO 00/17377.
As a further alternative, the virus vectors of the disclosure can be produced in insect cells using baculovirus vectors to deliver the rep/cap genes and rAAV template as described, for example, by Urabe et al., (2002) Human Gene Therapy 13: 1935-43.
AAV vector stocks free of contaminating helper virus may be obtained by any method known in the art. For example, AAV and helper virus may be readily differentiated based on size. AAV may also be separated away from helper virus based on affinity for a heparin substrate (Zolotukhin et al. (1999) Gene Therapy 6:973). Deleted replication-defective helper viruses can be used so that any contaminating helper virus is not replication competent. As a further alternative, an adenovirus helper lacking late gene expression may be employed, as only adenovirus early gene expression is required to mediate packaging of AAV virus. Adenovirus mutants defective for late gene expression are known in the art (e.g., ts100K and ts149 adenovirus mutants).
Recombinant Virus Vectors
The virus vectors of the present disclosure are useful for the delivery of nucleic acids to cells in vitro, ex vivo, and in vivo. In particular, the virus vectors can be advantageously employed to deliver or transfer nucleic acids to animal, including mammalian, cells. Thus, in some embodiments, a nucleic acid (“cargo nucleic acid”) may be encapsidated by a capsid protein of the disclosure.
In some embodiments, the disclosure provides a AAV vector comprising a recombinant capsid protein with at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity, with any one of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, or 2761. In some embodiments, an AAV vector comprises a recombinant capsid protein with at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity, with SEQ ID NO: 173, 2762, 185, 191, 1384, 1625, 2763, 2110, or 2352. In some embodiments, an AAV viral vector comprises a recombinant capsid protein with at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity, with any one of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, or 2761 and further comprises a cargo nucleic acid encapsidated by the capsid protein. In some embodiments, an AAV viral vector comprises a recombinant capsid protein with at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity, with SEQ ID NO: 173, 2762, 185, 191, 1384, 1625, 2763, 2110, or 2352 and further comprises a cargo nucleic acid encapsidated by the capsid protein.
The cargo nucleic acid sequence delivered in the virus vectors of the present disclosure may be any heterologous nucleic acid sequence(s) of interest. Nucleic acids of interest include nucleic acids encoding polypeptides, including therapeutic (e.g., for medical or veterinary uses) or immunogenic (e.g., for vaccines) polypeptides or RNAs.
Therapeutic polypeptides include, but are not limited to, cystic fibrosis transmembrane regulator protein (CFTR), dystrophin (including mini- and micro-dystrophins, see, e.g., Vincent et al, (1993) Nature Genetics 5: 130; U.S. Patent Publication No. 2003/017131; International publication WO/2008/088895, Wang et al., Proc. Natl. Acad. Sci. USA 97: 1 3714-13719 (2000); and Gregorevic et al., Mol. Ther. 16:657-64 (2008)), myostatin propeptide, follistatin, activin type 11 soluble receptor, IGF-1, apolipoproteins such as apoA (apoA1, apoA2, apoA4, apoA-V), apoB (apoB100, ApoB48), apoC (apoCI, apoCII, apoCIII, apoCIV), apoD, apoE, apoH, apoL, apo(a), anti-inflammatory polypeptides such as the Ikappa B dominant mutant, amyloid beta, tau, sarcospan, utrophin (Tinsley et al, (1996) Nature 384:349), mini-utrophin, clotting factors (e.g., Factor VIII, Factor IX, Factor X, etc.), erythropoietin, angiostatin, endostatin, catalase, tyrosine hydroxylase, superoxide dismutase, leptin, the LDL receptor, lipoprotein lipase, progranulin, ornithine transcarbamylase, β-globin, α-globin, spectrin, alpha-1-antitrypsin, adenosine deaminase, hypoxanthine guanine phosphoribosyl transferase, β-glucocerebrosidase, battenin, sphingomyelinase, lysosomal hexosaminidase A, branched-chain keto acid dehydrogenase, frataxin, RP65 protein, cytokines (e.g., alpha-interferon, beta-interferon, gamma-interferon, interleukin-2, interleukin-4, alpha synuclein, parkin, granulocyte-macrophage colony stimulating factor, lymphotoxin, and the like), peptide growth factors, neurotrophic factors and hormones (e.g., somatotropin, insulin, insulin-like growth factors 1 and 2, platelet derived growth factor, epidermal growth factor, fibroblast growth factor, nerve growth factor, neurotrophic factor-3 and -4, brain-derived neurotrophic factor, bone morphogenic proteins [including RANKL and VEGF], glial derived growth factor, transforming growth factor-α and -β, and the like), huntingin, lysosomal acid alpha-glucosidase, iduronate-2-sulfatase, N-sulfoglucosamine sulfohydrolase, alpha-galactosidase A, receptors (e.g., the tumor necrosis growth factor soluble receptor), S100A1, ubiquitin protein ligase E3, parvalbumin, adenylyl cyclase type 6, a molecule that modulates calcium handling (e.g., SERCA2A, Inhibitor 1 of PP1 and fragments thereof [e.g., WO 2006/029319 and WO 2007/100465]), a molecule that effects G-protein coupled receptor kinase type 2 knockdown such as a truncated constitutively active bARKct, anti-inflammatory factors such as IRAP, anti-myostatin proteins, aspartoacylase, monoclonal antibodies (including single chain monoclonal antibodies; an exemplary Mab is the Herceptin© Mab), neuropeptides and fragments thereof (e.g., galanin, Neuropeptide Y (see, U.S. Pat. No. 7,071,172)), angiogenesis inhibitors such as Vasohibins and other VEGF inhibitors (e.g., Vasohibin 2 [see, WO JP2006/073052]). Other illustrative heterologous nucleic acid sequences encode suicide gene products (e.g., thymidine kinase, cytosine deaminase, diphtheria toxin, and tumor necrosis factor), proteins that enhance or inhibit transcription of host factors (e.g., nuclease-dead Cas9 linked to a transcription enhancer or inhibitor element, zinc-finger proteins linked to a transcription enhancer or inhibitor element, transcription activator-like (TAL) effectors linked to a transcription enhancer or inhibitor element), proteins conferring resistance to a drug used in cancer therapy, tumor suppressor gene products (e.g., p53, Rb, Wt-1), TRAIL, FAS-ligand, and any other polypeptide that has a therapeutic effect in a subject in need thereof. AAV vectors can also be used to deliver monoclonal antibodies and antibody fragments, for example, an antibody or antibody fragment directed against myostatin (see, e.g., Fang et al., Nature Biotechnology 23:584-590 (2005)). Heterologous nucleic acid sequences encoding polypeptides include those encoding reporter polypeptides (e.g., an enzyme). Reporter polypeptides are known in the art and include, but are not limited to, Green Fluorescent Protein, β-galactosidase, alkaline phosphatase, luciferase, and chloramphenicol acetyltransferase gene.
Optionally, the heterologous nucleic acid encodes a secreted polypeptide (e.g., a polypeptide that is a secreted polypeptide in its native state or that has been engineered to be secreted, for example, by operable association with a secretory signal sequence as is known in the art).
Alternatively, in particular embodiments of this disclosure, the heterologous nucleic acid may encode an antisense nucleic acid, a ribozyme (e.g., as described in U.S. Pat. No. 5,877,022), RNAs that effect spliceosome-mediated/ram-splicing (see, Puttaraju et al, (1999) Nature Biotech. 17:246; U.S. Pat. Nos. 6,013,487; 6,083,702), interfering RNAs (RNAi) including siRNA, shRNA or miRNA that mediate gene silencing (see, Sharp et al, (2000) Science 287:2431), and other non-translated RNAs, such as “guide” RNAs (Gorman et al., (1998) Proc. Nat. Acad. Sci. USA 95:4929; U.S. Pat. No. 5,869,248 to Yuan et al.), and the like. Exemplary untranslated RNAs include RNAi against a multiple drug resistance (MDR) gene product (e.g., to treat and/or prevent tumors and/or for administration to the heart to prevent damage by chemotherapy), RNAi against myostatin (e.g., for Duchenne muscular dystrophy), RNAi against VEGF (e.g., to treat and/or prevent tumors), RNAi against phospholamban (e.g., to treat cardiovascular disease, see, e.g., Andino et al., J. Gene Med. 10: 132-142 (2008) and Li et al., Acta Pharmacol Sin. 26:51-55 (2005)); phospholamban inhibitory or dominant-negative molecules such as phospholamban S 16E (e.g., to treat cardiovascular disease, see, e.g., Hoshijima et al. Nat. Med. 8:864-871 (2002)), RNAi to adenosine kinase (e.g., for epilepsy), and RNAi directed against pathogenic organisms and viruses (e.g., hepatitis B and/or C virus, human immunodeficiency virus, CMV, herpes simplex virus, human papilloma virus, etc.).
Further, a nucleic acid sequence that directs alternative splicing can be delivered. To illustrate, an antisense sequence (or other inhibitory sequence) complementary to the 5′ and/or 3′ splice site of dystrophin exon 51 can be delivered in conjunction with a U1 or U7 small nuclear (sn) RNA promoter to induce skipping of this exon. For example, a DNA sequence comprising a U1 or U7 snRNA promoter located 5′ to the antisense/inhibitory sequence(s) can be packaged and delivered in a modified capsid of the disclosure.
In some embodiments, a nucleic acid sequence that directs gene editing can be delivered. For example, the nucleic acid may encode a guide RNA. In some embodiments, the guide RNA is a single guide RNA (sgRNA) comprising a crRNA sequence and a tracrRNA sequence. In some embodiments, the nucleic acid may encode a nuclease. In some embodiments, the nuclease is a zinc-finger nuclease, a homing endonuclease, a TALEN (transcription activator-like effector nuclease), a NgAgo (agronaute endonuclease), a SGN (structure-guided endonuclease), a RGN (RNA-guided nuclease), or modified or truncated variants thereof. In some embodiments, the RNA-guided nuclease is a Cas9 nuclease, a Cas12(a) nuclease (Cpf1), a Cas12b nuclease, a Cas12c nuclease, a TrpB-like nuclease, a Cas13a nuclease (C2c2), a Cas13b nuclease, or modified or truncated variants thereof. In some embodiments, the Cas9 nuclease is isolated or derived from S. pyogenes or S. aureus.
In some embodiments, a nucleic acid sequence that directs gene knockdown can be delivered. For example, the nucleic acid sequence may encode a siRNA, an shRNA, a microRNA, or an antisense nucleic acid. The virus vector may also comprise a heterologous nucleic acid that shares homology with and recombines with a locus on a host chromosome. This approach can be utilized, for example, to correct a genetic defect in the host cell.
The present disclosure also provides virus vectors that express an immunogenic polypeptide, e.g., for vaccination. The nucleic acid may encode any immunogen of interest known in the art including, but not limited to, immunogens from human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), influenza virus, HIV or SIV gag proteins, tumor antigens, cancer antigens, bacterial antigens, viral antigens, and the like.
The use of parvoviruses as vaccine vectors is known in the art (see, e.g., Miyamura el al, (1994) Proc. Nat. Acad. Sci USA 91:8507; U.S. Pat. No. 5,916,563 to Young et al, U.S. Pat. No. 5,905,040 to Mazzara et al, U.S. Pat. Nos. 5,882,652, 5,863,541 to Samulski et al). The antigen may be presented in the parvovirus capsid.
Alternatively, the antigen may be expressed from a heterologous nucleic acid introduced into a recombinant vector genome. Any immunogen of interest as described herein and/or as is known in the art can be provided by the virus vector of the present disclosure.
An immunogenic polypeptide can be any polypeptide suitable for eliciting an immune response and/or protecting the subject against an infection and/or disease, including, but not limited to, microbial, bacterial, protozoal, parasitic, fungal and/or viral infections and diseases. For example, the immunogenic polypeptide can be an orthomyxovirus immunogen (e.g., an influenza virus immunogen, such as the influenza virus hemagglutinin (HA) surface protein or the influenza virus nucleoprotein, or an equine influenza virus immunogen) or a lentivirus immunogen (e.g., an equine infectious anemia virus immunogen, a Simian Immunodeficiency Virus (SIV) immunogen, or a Human Immunodeficiency Virus (HIV) immunogen, such as the HIV or SIV envelope GP 160 protein, the HIV or SIV matrix/capsid proteins, and the HIV or SIV gag, pol and env genes products). The immunogenic polypeptide can also be an arenavirus immunogen (e.g., Lassa fever virus immunogen, such as the Lassa fever virus nucleocapsid protein and the Lassa fever envelope glycoprotein), a poxvirus immunogen (e.g., a vaccinia virus immunogen, such as the vaccinia LI or L8 gene products), a flavivirus immunogen (e.g., a yellow fever virus immunogen or a Japanese encephalitis virus immunogen), a filovirus immunogen (e.g., an Ebola virus immunogen, or a Marburg virus immunogen, such as NP and GP gene products), a bunyavirus immunogen (e.g., RVFV, CCHF, and/or SFS virus immunogens), or a coronavirus immunogen (e.g., an infectious human coronavirus immunogen, such as the human coronavirus envelope glycoprotein, or a porcine transmissible gastroenteritis virus immunogen, or an avian infectious bronchitis virus immunogen). The immunogenic polypeptide can further be a polio immunogen, a herpes immunogen (e.g., CMV, EBV, HSV immunogens), a mumps immunogen, a measles immunogen, a rubella immunogen, a diphtheria toxin or other diphtheria immunogen, a pertussis antigen, a hepatitis (e.g., hepatitis A, hepatitis B, hepatitis C, etc.) immunogen, and/or any other vaccine immunogen now known in the art or later identified as an immunogen.
Alternatively, the immunogenic polypeptide can be any tumor or cancer cell antigen. Optionally, the tumor or cancer antigen is expressed on the surface of the cancer cell.
Exemplary cancer and tumor cell antigens are described in S. A. Rosenberg (Immunity 10:281 (1991)). Other illustrative cancer and tumor antigens include, but are not limited to: BRCA1 gene product, BRCA2 gene product, gp100, tyrosinase, GAGE-1/2, BAGE, RAGE, LAGE, NY-ESO-1, CDK-4, β-catenin, MUM-1, Caspase-8, KIAA0205, HPVE, SART-1, FRAME, p15, melanoma tumor antigens (Kawakami et al., (1994) Proc. Natl. Acad. Sci. USA 91:3515; Kawakami et al., (1994) J. Exp. Med., 180:347; Kawakami et al., (1994) Cancer Res. 54:3124), MART-1, gp100, MAGE-1, MAGE-2, MAGE-3, CEA, TRP-1, TRP-2, P-15, tyrosinase (Brichard et al., (1993) J Exp. Med. 178:489); HER-2/neu gene product (U.S. Pat. No. 4,968,603), CA 125, LK26, FB5 (endosialin), TAG 72, AFP, CA 19-9, NSE, DU-PAN-2, CA50, SPan-1, CA72-4, HCG, STN (sialyl Tn antigen), c-erbB-2 proteins, PSA, L-CanAg, estrogen receptor, milk fat globulin, p53 tumor suppressor protein (Levine, (1993) Ann. Rev. Biochem. 62:623); mucin antigens (International Patent Publication No. WO 90/05142); telomerases; nuclear matrix proteins; prostatic acid phosphatase; papilloma virus antigens; and/or antigens now known or later discovered to be associated with the following cancers: melanoma, adenocarcinoma, thymoma, lymphoma (e.g., non-Hodgkin's lymphoma, Hodgkin's lymphoma), sarcoma, lung cancer, liver cancer, colon cancer, leukemia, uterine cancer, breast cancer, prostate cancer, ovarian cancer, cervical cancer, bladder cancer, kidney cancer, pancreatic cancer, brain cancer and any other cancer or malignant condition or metastasis thereof now known or later identified (see, e.g., Rosenberg, (1996) Ann. Rev. Med. 47:481-91).
As a further alternative, the heterologous nucleic acid can encode any polypeptide that is desirably produced in a cell in vitro, ex vivo, or in vivo. For example, the virus vectors may be introduced into cultured cells and the expressed gene product isolated therefrom.
It will be understood by those skilled in the art that the heterologous nucleic acid(s) of interest can be operably associated with appropriate control sequences. For example, the heterologous nucleic acid can be operably associated with expression control elements, such as transcription/translation control signals, origins of replication, polyadenylation signals, internal ribosome entry sites (IRES), promoters, and/or enhancers, and the like.
Further, regulated expression of the heterologous nucleic acid(s) of interest can be achieved at the post-transcriptional level, e.g., by regulating selective splicing of different introns by the presence or absence of an oligonucleotide, small molecule and/or other compound that selectively blocks splicing activity at specific sites (e.g., as described in WO 2006/119137).
Those skilled in the art will appreciate that a variety of promoter/enhancer elements can be used depending on the level and tissue-specific expression desired. The promoter/enhancer can be constitutive or inducible, depending on the pattern of expression desired. The promoter/enhancer can be native or foreign and can be a natural or a synthetic sequence. By foreign, it is intended that the transcriptional initiation region is not found in the wild-type host into which the transcriptional initiation region is introduced.
In particular embodiments, the promoter/enhancer elements can be native to the target cell or subject to be treated. In representative embodiments, the promoters/enhancer element can be native to the heterologous nucleic acid sequence. The promoter/enhancer element is generally chosen so that it functions in the target cell(s) of interest. Further, in particular embodiments the promoter/enhancer element is a mammalian promoter/enhancer element. The promoter/enhancer element may be constitutive or inducible.
Inducible expression control elements are typically advantageous in those applications in which it is desirable to provide regulation over expression of the heterologous nucleic acid sequence(s). Inducible promoters/enhancer elements for gene delivery can be tissue-specific or -preferred promoter/enhancer elements, and include muscle specific or preferred (including cardiac, skeletal and/or smooth muscle specific or preferred), neural tissue specific or preferred (including brain-specific or preferred), eye specific or preferred (including retina-specific and cornea-specific), liver specific or preferred, bone marrow specific or preferred, pancreatic specific or preferred, spleen specific or preferred, and lung specific or preferred promoter/enhancer elements. Other inducible promoter/enhancer elements include hormone-inducible and metal-inducible elements. Exemplary inducible promoters/enhancer elements include, but are not limited to, a Tet on/off element, a RU486-inducible promoter, an ecdysone-inducible promoter, a rapamycin-inducible promoter, and a metallothionein promoter.
In embodiments wherein the heterologous nucleic acid sequence(s) is transcribed and then translated in the target cells, specific initiation signals are generally included for efficient translation of inserted protein coding sequences. These exogenous translational control sequences, which may include the ATG initiation codon and adjacent sequences, can be of a variety of origins, both natural and synthetic.
The virus vectors according to the present disclosure provide a means for delivering heterologous nucleic acids into a broad range of cells, including dividing and non-dividing cells. The virus vectors can be employed to deliver a nucleic acid of interest to a cell in vitro, e.g., to produce a polypeptide in vitro or for ex vivo gene therapy. The virus vectors are additionally useful in a method of delivering a nucleic acid to a subject in need thereof e.g., to express an immunogenic or therapeutic polypeptide or a functional RNA. In this manner, the polypeptide or functional RNA can be produced in vivo in the subject. The subject can be in need of the polypeptide because the subject has a deficiency of the polypeptide. Further, the method can be practiced because the production of the polypeptide or functional RNA in the subject may impart some beneficial effect.
The virus vectors can also be used to produce a polypeptide of interest or functional RNA in cultured cells or in a subject (e.g., using the subject as a bioreactor to produce the polypeptide or to observe the effects of the functional RNA on the subject, for example, in connection with screening methods).
In general, the virus vectors of the present disclosure can be employed to deliver a heterologous nucleic acid encoding a polypeptide or functional RNA to treat and/or prevent any disease state for which it is beneficial to deliver a therapeutic polypeptide or functional RNA. Illustrative disease states include, but are not limited to: cystic fibrosis (cystic fibrosis transmembrane regulator protein) and other diseases of the lung, hemophilia A (Factor VIII), hemophilia B (Factor IX), thalassemia (β-globin), anemia (erythropoietin) and other blood disorders. Alzheimer's disease (GDF; neprilysin), multiple sclerosis (β-interferon), Parkinson's disease (glial-cell line derived neurotrophic factor [GDNF]), Huntington's disease (RNAi to remove repeats), Canavan's disease, amyotrophic lateral sclerosis, epilepsy (galanin, neurotrophic factors), and other neurological disorders, cancer (endostatin, angiostatin, TRAIL, FAS-ligand, cytokines including interferons; RNAi including RNAi against VEGF or the multiple drug resistance gene product, mir-26a [e.g., for hepatocellular carcinoma]), diabetes mellitus (insulin), muscular dystrophies including Duchenne (dystrophin, mini-dystrophin, insulin-like growth factor I, a sarcoglycan [e.g., α, β, γ], RNAi against myostatic myostatin propeptide, follistatin, activin type II soluble receptor, anti-inflammatory polypeptides such as the Ikappa B dominant mutant, sarcospan, utrophin, mini-utrophin, antisense or RNAi against splice junctions in the dystrophin gene to induce exon skipping [see, e.g., WO/2003/095647], antisense against U7 snRNAs to induce exon skipping [see, e.g., WO/2006/021724], and antibodies or antibody fragments against myostatin or myostatin propeptide) and Becker, Gaucher disease (glucocerebrosidase), Hurler's disease (a-L-iduronidase), adenosine deaminase deficiency (adenosine deaminase), glycogen storage diseases (e.g., Fabry disease [a-galactosidase] and Pompe disease [lysosomal acid alpha-glucosidase]) and other metabolic disorders, congenital emphysema (alpha-1-antitrypsin), Lesch-Nyhan Syndrome (hypoxan thine guanine phosphoribosyl transferase), Niemann-Pick disease (sphingomyelinase), Tay-Sachs disease (lysosomal hexosaminidase A), Maple Syrup Urine Disease (branched-chain keto acid dehydrogenase), retinal degenerative diseases (and other diseases of the eye and retina; e.g., PDGF for macular degeneration and/or vasohibin or other inhibitors of VEGF or other angiogenesis inhibitors to treat/prevent retinal disorders, e.g., in Type I diabetes), diseases of solid organs such as brain (including Parkinson's Disease [GDNF], astrocytomas [endostatin, angiostatin and/or RNAi against VEGF], glioblastomas [endostatin, angiostatin and/or RNAi against VEGF]), liver, kidney, heart including congestive heart failure or peripheral artery disease (PAD) (e.g., by delivering protein phosphatase inhibitor I (I-1) and fragments thereof (e.g., IIC), serca2a, zinc finger proteins that regulate the phospholamban gene, Barkct, [32-adrenergic receptor, 2-adrenergic receptor kinase (BARK), phosphoinositide-3 kinase (PI3 kinase), S100A1, parvalbumin, adenylyl cyclase type 6, a molecule that effects G-protein coupled receptor kinase type 2 knockdown such as a truncated constitutively active bARKct; calsarcin, RNAi against phospholamban; phospholamban inhibitory or dominant-negative molecules such as phospholamban S16E, etc.), arthritis (insulin-like growth factors), joint disorders (insulin-like growth factor 1 and/or 2), intimal hyperplasia (e.g., by delivering enos, inos), improve survival of heart transplants (superoxide dismutase), AIDS (soluble CD4), muscle wasting (insulin-like growth factor I), kidney deficiency (erythropoietin), anemia (erythropoietin), arthritis (anti-inflammatory factors such as I RAP and TNFa soluble receptor), hepatitis (a-interferon), LDL receptor deficiency (LDL receptor), hyperammonemia (ornithine transcarbamylase), Krabbe's disease (galactocerebrosidase), Batten's disease, spinal cerebral ataxias including SCA1, SCA2 and SCA3, phenylketonuria (phenylalanine hydroxylase), autoimmune diseases, and the like. The disclosure can further be used following organ transplantation to increase the success of the transplant and/or to reduce the negative side effects of organ transplantation or adjunct therapies (e.g., by administering immunosuppressant agents or inhibitory nucleic acids to block cytokine production). As another example, bone morphogenic proteins (including BNP 2, 7, etc., RANKL and/or VEGF) can be administered with a bone allograft, for example, following a break or surgical removal in a cancer patient.
In some embodiments, the virus vectors of the present disclosure can be employed to deliver a heterologous nucleic acid encoding a polypeptide or functional RNA to treat and/or prevent a liver disease or disorder. The liver disease or disorder may be, for example, primary biliary cirrhosis, nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), autoimmune hepatitis, hepatitis B, hepatitis C, alcoholic liver disease, fibrosis, jaundice, primary sclerosing cholangitis (PSC), Budd-Chiari syndrome, hemochromatosis, Wilson's disease, alcoholic fibrosis, non-alcoholic fibrosis, liver steatosis, Gilbert's syndrome, biliary atresia, alpha-1-antitrypsin deficiency, alagille syndrome, progressive familial intrahepatic cholestasis, Hemophilia B, Hereditary Angioedema (HAE), Homozygous Familial Hypercholesterolemia (HoFH), Heterozygous Familial Hypercholesterolemia (HeFH), Von Gierke's Disease (GSD I), Hemophilia A, Methylmalonic Acidemia, Propionic Acidemia, Homocystinuria, Phenylketonuria (PKU), Tyrosinemia Type 1, Arginase 1 Deficiency, Argininosuccinate Lyase Deficiency, Carbamoyl-phosphate synthetase 1 deficiency, Citrullinemia Type 1, Citrin Deficiency, Crigler-Najjar Syndrome Type 1, Cystinosis, Fabry Disease, Glycogen Storage Disease 1b, LPL Deficiency, N-Acetylglutamate Synthetase Deficiency, Ornithine Transcarbamylase Deficiency, Ornithine Translocase Deficiency, Primary Hyperoxaluria Type 1, or ADA SCID.
The disclosure can also be used to produce induced pluripotent stem cells (iPS). For example, a virus vector of the disclosure can be used to deliver stem cell associated nucleic acid(s) into a non-pluripotent cell, such as adult fibroblasts, skin cells, liver cells, renal cells, adipose cells, cardiac cells, neural cells, epithelial cells, endothelial cells, and the like.
Nucleic acids encoding factors associated with stem cells are known in the art. Nonlimiting examples of such factors associated with stem cells and pluripotency include Oct-3/4, the SOX family (e.g., SOX 1, SOX2, SOX3 and/or SOX 15), the KIf family (e.g., KIfI, KHZ KIf4 and/or KIf5), the Myc family (e.g., C-myc, L-myc and/or N-myc), NANOG and/or LIN28.
The disclosure can also be practiced to treat and/or prevent a metabolic disorder such as diabetes (e.g., insulin), hemophilia (e.g., Factor IX or Factor VIII), a lysosomal storage disorder such as a mucopolysaccharidosis disorder (e.g., Sly syndrome [β-glucuronidase], Hurler Syndrome [alpha-L-iduronidase], Scheie Syndrome [alpha-L-iduronidase], Hurler-Scheie Syndrome [alpha-L-iduronidase], Hunter's Syndrome [iduronate sulfatase], Sanfilippo Syndrome A [heparan sulfamidase], B [N-acetylglucosaminidase], C [acetyl-CoA:alpha-glucosaminide acetyltransferase], D [N-acetylglucosamine 6-sulfatase], Morquio Syndrome A [galactoses-sulfate sulfatase], B [β-galactosidase], Maroteaux-Lamy Syndrome [N-acetylgalactosamine-4-sulfatase], etc.), Fabry disease (alpha-galactosidase), Gaucher's disease (glucocerebrosidase), or a glycogen storage disorder (e.g., Pompe disease; lysosomal acid alpha-glucosidase).
Gene transfer has substantial use for understanding and providing therapy for disease states. There are a number of inherited diseases in which defective genes are known and have been cloned. In general, the above disease states fall into two classes: deficiency states, usually of enzymes, which are generally inherited in a recessive manner, and unbalanced states, which may involve regulatory or structural proteins, and which are typically inherited in a dominant manner. For deficiency state diseases, gene transfer can be used to bring a normal gene into affected tissues for replacement therapy, as well as to create animal models for the disease using antisense mutations. For unbalanced disease states, gene transfer can be used to create a disease state in a model system, which can then be used in efforts to counteract the disease state. Thus, virus vectors according to the present disclosure permit the treatment and/or prevention of genetic diseases.
The virus vectors according to the present disclosure may also be employed to provide a functional RNA to a cell in vitro or in vivo. The functional RNA may be, for example, a non-coding RNA. In some embodiments, expression of the functional RNA in the cell can diminish expression of a particular target protein by the cell. Accordingly, functional RNA can be administered to decrease expression of a particular protein in a subject in need thereof. In some embodiments, expression of the functional RNA in the cell can increase expression of a particular target protein by the cell. Accordingly, functional RNA can be administered to increase expression of a particular protein in a subject in need thereof. In some embodiments, expression of the functional RNA can regulate splicing of a particular target RNA in a cell. Accordingly, functional RNA can be administered to regulate splicing a particular RNA in a subject in need thereof. In some embodiments, expression of the functional RNA in the cell can regulate the function of a particular target protein by the cell. Accordingly, functional RNA can be administered to regulate the function of a particular protein in a subject in need thereof. Functional RNA can also be administered to cells in vitro to regulate gene expression and/or cell physiology, e.g., to optimize cell or tissue culture systems or in screening methods.
In addition, virus vectors according to the instant disclosure find use in diagnostic and screening methods, whereby a nucleic acid of interest is transiently or stably expressed in a cell culture system, or alternatively, a transgenic animal model.
The virus vectors of the present disclosure can also be used for various non-therapeutic purposes, including but not limited to use in protocols to assess gene targeting, clearance, transcription, translation, etc., as would be apparent to one skilled in the art. The virus vectors can also be used for the purpose of evaluating safety (spread, toxicity, immunogenicity, etc.). Such data, for example, are considered by the United States Food and Drug Administration as part of the regulatory approval process prior to evaluation of clinical efficacy.
As a further aspect, the virus vectors of the present disclosure may be used to produce an immune response in a subject. According to this embodiment, a virus vector comprising a heterologous nucleic acid sequence encoding an immunogenic polypeptide can be administered to a subject, and an active immune response is mounted by the subject against the immunogenic polypeptide. Immunogenic polypeptides are as described hereinabove. In some embodiments, a protective immune response is elicited.
Alternatively, the virus vector may be administered to a cell ex vivo and the altered cell is administered to the subject. The virus vector comprising the heterologous nucleic acid is introduced into the cell, and the cell is administered to the subject, where the heterologous nucleic acid encoding the immunogen can be expressed and induce an immune response in the subject against the immunogen. In particular embodiments, the cell is an antigen-presenting cell (e.g., a dendritic cell).
An “active immune response” or “active immunity” is characterized by “participation of host tissues and cells after an encounter with the immunogen. It involves differentiation and proliferation of immunocompetent cells in lymphoreticular tissues, which lead to synthesis of antibody or the development of cell-mediated reactivity, or both.” Herbert B. Herscowitz, Immunophysiology: Cell Function and Cellular Interactions in Antibody Formation, in IMMUNOLOGY: BASIC PROCESSES 117 (Joseph A. Bellanti ed., 1985). Alternatively stated, an active immune response is mounted by the host after exposure to an immunogen by infection or by vaccination. Active immunity can be contrasted with passive immunity, which is acquired through the transfer of preformed substances (antibody, transfer factor, thymic graft, interleukin-2) from an actively immunized host to a non-immune host.
A “protective” immune response or “protective” immunity as used herein indicates that the immune response confers some benefit to the subject in that it prevents or reduces the incidence of disease. Alternatively, a protective immune response or protective immunity may be useful in the treatment and/or prevention of disease, in particular cancer or tumors (e.g., by preventing cancer or tumor formation, by causing regression of a cancer or tumor and/or by preventing metastasis and/or by preventing growth of metastatic nodules). The protective effects may be complete or partial, as long as the benefits of the treatment outweigh any disadvantages thereof.
In particular embodiments, the virus vector or cell comprising the heterologous nucleic acid can be administered in an immunogenically effective amount, as described below.
The virus vectors of the present disclosure can also be administered for cancer immunotherapy by administration of a virus vector expressing one or more cancer cell antigens (or an immunologically similar molecule) or any other immunogen that produces an immune response against a cancer cell. To illustrate, an immune response can be produced against a cancer cell antigen in a subject by administering a virus vector comprising a heterologous nucleic acid encoding the cancer cell antigen, for example to treat a patient with cancer and/or to prevent cancer from developing in the subject. The virus vector may be administered to a subject in vivo or by using ex vivo methods, as described herein.
Alternatively, the cancer antigen can be expressed as part of the virus capsid or be otherwise associated with the virus capsid (e.g., as described above).
As another alternative, any other therapeutic nucleic acid (e.g., RNAi) or polypeptide (e.g., cytokine) known in the art can be administered to treat and/or prevent cancer.
As used herein, the term “cancer” encompasses tumor-forming cancers. Likewise, the term “cancerous tissue” encompasses tumors. A “cancer cell antigen” encompasses tumor antigens.
The term “cancer” has its understood meaning in the art, for example, an uncontrolled growth of tissue that has the potential to spread to distant sites of the body (i.e., metastasize). Exemplary cancers include, but are not limited to melanoma, adenocarcinoma, thymoma, lymphoma (e.g., non-Hodgkin's lymphoma, Hodgkin's lymphoma), sarcoma, lung cancer, liver cancer, colon cancer, leukemia, uterine cancer, breast cancer, prostate cancer, ovarian cancer, cervical cancer, bladder cancer, kidney cancer, pancreatic cancer, brain cancer and any other cancer or malignant condition now known or later identified. In representative embodiments, the disclosure provides a method of treating and/or preventing tumor-forming cancers.
The term “tumor” is also understood in the art, for example, as an abnormal mass of undifferentiated cells within a multicellular organism. Tumors can be malignant or benign. In representative embodiments, the methods disclosed herein are used to prevent and treat malignant tumors.
By the terms “treating cancer,” “treatment of cancer” and equivalent terms it is intended that the severity of the cancer is reduced or at least partially eliminated and/or the progression of the disease is slowed and/or controlled and/or the disease is stabilized. In particular embodiments, these terms indicate that metastasis of the cancer is prevented or reduced or at least partially eliminated and/or that growth of metastatic nodules is prevented or reduced or at least partially eliminated.
By the terms “prevention of cancer” or “preventing cancer” and equivalent terms it is intended that the methods at least partially eliminate or reduce and/or delay the incidence and/or severity of the onset of cancer. Alternatively stated, the onset of cancer in the subject may be reduced in likelihood or probability and/or delayed.
In particular embodiments, cells may be removed from a subject with cancer and contacted with a virus vector expressing a cancer cell antigen according to the instant disclosure. The modified cell is then administered to the subject, whereby an immune response against the cancer cell antigen is elicited. This method can be advantageously employed with immunocompromised subjects that cannot mount a sufficient immune response in vivo (i.e., cannot produce enhancing antibodies in sufficient quantities).
It is known in the art that immune responses may be enhanced by immunomodulatory cytokines (e.g., alpha-interferon, beta-interferon, gamma-interferon, omega-interferon, tau-interferon, interleukin-1-alpha, interleukin-1P, interleukin-2, interleukin-3, interleukin-4, interleukin 5, interleukin-6, interleukin-7, interleukin-8, interleukin-9, interleukin-10, interleukin-11, interleukin-12, interleukin-13, interleukin-14, interleukin-18, B cell Growth factor, CD40 Ligand, tumor necrosis factor-alpha, tumor necrosis factor-β, monocyte chemoattractant protein-1, granulocyte-macrophage colony stimulating factor, and lymphotoxin). Accordingly, immunomodulatory cytokines (preferably, CTL inductive cytokines) may be administered to a subject in conjunction with the virus vector. Cytokines may be administered by any method known in the art. Exogenous cytokines may be administered to the subject, or alternatively, a nucleic acid encoding a cytokine may be delivered to the subject using a suitable vector, and the cytokine produced in vivo.
Subjects, Pharmaceutical Formulations, and Modes of Administration
Virus vectors and capsids according to the present disclosure find use in both veterinary and medical applications. Suitable subjects include both avians and mammals. The term “avian” as used herein includes, but is not limited to, chickens, ducks, geese, quail, turkeys, pheasant, parrots, parakeets, and the like. The term “mammals” as used herein includes, but is not limited to, humans, non-human primates, bovines, ovines, caprines, equines, felines, canines, lagomorphs, etc. Human subjects include neonates, infants, juveniles, adults and geriatric subjects. In some embodiments, a human subject can be less than 6 months old, less than 2 years old, less than 5 years old, less than 10 years old, 10-18 years old, 19-29 years old, 30-35 years old, 36-40 years old, or older than 40 years old.
In representative embodiments, the subject is “in need” of the methods described herein.
In particular embodiments, a pharmaceutical composition is provided comprising a virus vector and/or capsid and/or capsid protein and/or virus particle of the disclosure in a pharmaceutically acceptable carrier and, optionally, other medicinal agents, pharmaceutical agents, stabilizing agents, buffers, carriers, adjuvants, diluents, etc. For injection, the carrier will typically be a liquid. For other methods of administration, the carrier may be either solid or liquid. For inhalation administration, the carrier will be respirable, and optionally can be in solid or liquid particulate form.
By “pharmaceutically acceptable” it is meant a material that is not toxic or otherwise undesirable, i.e., the material may be administered to a subject without causing any undesirable biological effects.
One aspect of the present disclosure is a method of transferring a nucleic acid to a cell in vitro. The virus vector may be introduced into the cells at the appropriate multiplicity of infection according to standard transduction methods suitable for the particular target cells. Titers of virus vector to administer can vary, depending upon the target cell type and number, and the particular virus vector, and can be determined by those of skill in the art without undue experimentation. In representative embodiments, at least about 103 infectious units, optionally at least about 105 infectious units are introduced to the cell.
The cell(s) into which the virus vector is introduced can be of any type, including but not limited to neural cells (including cells of the peripheral and central nervous systems, in particular, brain cells such as neurons and oligodendrocytes), lung cells, cells of the eye (including retinal cells, retinal pigment epithelium, and corneal cells), epithelial cells (e.g., gut and respiratory epithelial cells), muscle cells (e.g., skeletal muscle cells, cardiac muscle cells, smooth muscle cells and/or diaphragm muscle cells), dendritic cells, pancreatic cells (including islet cells), hepatic cells, myocardial cells, bone cells (e.g., bone marrow stem cells), hematopoietic stem cells, spleen cells, keratinocytes, fibroblasts, endothelial cells, prostate cells, germ cells, and the like. In representative embodiments, the cell can be any progenitor cell. As a further possibility, the cell can be a stem cell (e.g., neural stem cell, liver stem cell). As still a further alternative, the cell can be a cancer or tumor cell. Moreover, the cell can be from any species of origin, as indicated above.
The virus vector can be introduced into cells in vitro for the purpose of administering the modified cell to a subject. In particular embodiments, the cells have been removed from a subject, the virus vector is introduced therein, and the cells are then administered back into the subject. Methods of removing cells from subject for manipulation ex vivo, followed by introduction back into the subject are known in the art (see, e.g., U.S. Pat. No. 5,399,346). Alternatively, the recombinant virus vector can be introduced into cells from a donor subject, into cultured cells, or into cells from any other suitable source, and the cells are administered to a subject in need thereof (i.e., a “recipient” subject).
Suitable cells for ex vivo nucleic acid delivery are as described above. Dosages of the cells to administer to a subject will vary upon the age, condition and species of the subject, the type of cell, the nucleic acid being expressed by the cell, the mode of administration, and the like. Typically, at least about 102 to about 108 cells or at least about 103 to about 106 cells will be administered per dose in a pharmaceutically acceptable carrier. In particular embodiments, the cells transduced with the virus vector are administered to the subject in a therapeutically effective amount in combination with a pharmaceutical carrier.
In some embodiments, the virus vector is introduced into a cell and the cell can be administered to a subject to elicit an immunogenic response against the delivered polypeptide (e.g., expressed as a transgene or in the capsid). Typically, a quantity of cells expressing an immunogenically effective amount of the polypeptide in combination with a pharmaceutically acceptable carrier is administered. An “immunogenically effective amount” is an amount of the expressed polypeptide that is sufficient to evoke an active immune response against the polypeptide in the subject to which the pharmaceutical formulation is administered. In particular embodiments, the dosage is sufficient to produce a protective immune response (as defined above). The degree of protection conferred need not be complete or permanent, as long as the benefits of administering the immunogenic polypeptide outweigh any disadvantages thereof.
Thus, the present disclosure provides a method of administering a nucleic acid to a cell, the method comprising contacting the cell with the virus vector, virus particle and/or composition of this disclosure.
A further aspect of the disclosure is a method of administering the virus vector, virus particle and/or virus capsid of this disclosure to a subject. Thus, the present disclosure also provides a method of delivering a nucleic acid to a subject, comprising administering to the subject a virus particle, virus vector and/or composition of this disclosure. Administration of the virus vectors, virus particles and/or capsids according to the present disclosure to a human subject or an animal in need thereof can be by any means known in the art. Optionally, the virus vector, virus particle and/or capsid is delivered in a therapeutically effective dose in a pharmaceutically acceptable carrier. In preferred embodiments, a therapeutically effective amount of the virus vector, virus particle and/or capsid is delivered.
The virus vectors and/or capsids of the disclosure can further be administered to elicit an immunogenic response (e.g., as a vaccine). Typically, immunogenic compositions of the present disclosure comprise an immunogenically effective amount of virus vector and/or capsid in combination with a pharmaceutically acceptable carrier. Optionally, the dosage is sufficient to produce a protective immune response (as defined above). The degree of protection conferred need not be complete or permanent, as long as the benefits of administering the immunogenic polypeptide outweigh any disadvantages thereof. Subjects and immunogens are as described above.
Dosages of the virus vector and/or capsid to be administered to a subject depend upon the mode of administration, the disease or condition to be treated and/or prevented, the individual subject's condition, the particular virus vector or capsid, and the nucleic acid to be delivered, and the like, and can be determined in a routine manner. Exemplary doses for achieving therapeutic effects are titers of at least about 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015 transducing units, optionally about 108-1013 transducing units.
In particular embodiments, more than one administration (e.g., two, three, four or more administrations) may be employed to achieve the desired level of gene expression over a period of various intervals, e.g., daily, weekly, monthly, yearly, etc.
Exemplary modes of administration include oral, rectal, transmucosal, intranasal, inhalation (e.g., via an aerosol), buccal (e.g., sublingual), vaginal, intrathecal, intraocular, transdermal, in utero (or in ovo), parenteral (e.g., intravenous, subcutaneous, intradermal, intramuscular [including administration to skeletal, diaphragm and/or cardiac muscle], intradermal, intrapleural, intracerebral, and intraarticular), topical (e.g., to both skin and mucosal surfaces, including airway surfaces, and transdermal administration), intralymphatic, and the like, as well as direct tissue or organ injection (e.g., to liver, skeletal muscle, cardiac muscle, diaphragm muscle or brain). Administration can also be to a tumor (e.g., in or near a tumor or a lymph node). The most suitable route in any given case will depend on the nature and severity of the condition being treated and/or prevented and on the nature of the particular vector that is being used.
Administration to skeletal muscle according to the present disclosure includes but is not limited to administration to skeletal muscle in the limbs (e.g., upper arm, lower arm, upper leg, and/or lower leg), back, neck, head (e.g., tongue), thorax, abdomen, pelvis/perineum, and/or digits. Suitable skeletal muscles include but are not limited to abductor digiti minimi (in the hand), abductor digiti minimi (in the foot), abductor hallucis, abductor ossis metatarsi quinti, abductor pollicis brevis, abductor pollicis longus, adductor brevis, adductor hallucis, adductor longus, adductor magnus, adductor pollicis, anconeus, anterior scalene, articularis genus, biceps brachii, biceps femoris, brachialis, brachioradialis, buccinator, coracobrachialis, corrugator supercilii, deltoid, depressor anguli oris, depressor labii inferioris, digastric, dorsal interossei (in the hand), dorsal interossei (in the foot), extensor carpi radialis brevis, extensor carpi radialis longus, extensor carpi ulnaris, extensor digiti minimi, extensor digitorum, extensor digitorum brevis, extensor digitorum longus, extensor hallucis brevis, extensor hallucis longus, extensor indicis, extensor pollicis brevis, extensor pollicis longus, flexor carpi radialis, flexor carpi ulnaris, flexor digiti minimi brevis (in the hand), flexor digiti minimi brevis (in the foot), flexor digitorum brevis, flexor digitorum longus, flexor digitorum profundus, flexor digitorum superficial is, flexor hallucis brevis, flexor hallucis longus, flexor pollicis brevis. flexor pollicis longus, frontalis, gastrocnemius, geniohyoid, gluteus maximus, gluteus medius, gluteus minimus, gracilis, iliocostalis cervicis, iliocostalis lumborum, iliocostalis thoracis, illiacus, inferior gemellus, inferior oblique, inferior rectus, infraspinatus, interspinalis, intertransversi, lateral pterygoid, lateral rectus, latissimus dorsi, levator anguli oris, levator labii superioris, levator labii superioris alaeque nasi, levator palpebrae superioris, levator scapulae, long rotators, longissimus capitis, longissimus cervicis, longissimus thoracis, longus capitis, longus colli, lumbricals (in the hand), lumbricals (in the foot), masseter, medial pterygoid, medial rectus, middle scalene, multifidus, mylohyoid, obliquus capitis inferior, obliquus capitis superior, obturator externus, obturator internus, occipitalis, omohyoid, opponens digiti minimi, opponens pollicis, orbicularis oculi, orbicularis oris, palmar interossei, palmaris brevis, palmaris longus, pectineus, pectoralis major, pectoralis minor, peroneus brevis, peroneus longus, peroneus tertius, piriformis, plantar interossei, plantaris, platysma, popliteus, posterior scalene, pronator quadratus, pronator teres, psoas major, quadratus femoris, quadratus plantae, rectus capitis anterior, rectus capitis lateralis, rectus capitis posterior major, rectus capitis posterior minor, rectus femoris, rhomboid major, rhomboid minor, risorius, sartorius, scalenus minimus, semimembranosus, semispinalis capitis, semispinalis cervicis, semispinalis thoracis, semitendinosus, serratus anterior, short rotators, soleus, spinalis capitis, spinalis cervicis, spinalis thoracis, splenius capitis, splenius cervicis, sternocleidomastoid, sternohyoid, sternothyroid, stylohyoid, subclavius, subscapularis, superior gemellus, superior oblique, superior rectus, supinator, supraspinatus, temporalis, tensor fascia lata, teres major, teres minor, thoracis, thyrohyoid, tibialis anterior, tibialis posterior, trapezius, triceps brachii, vastus intermedius, vastus lateralis, vastus medialis, zygomaticus major, and zygomaticus minor, and any other suitable skeletal muscle as known in the art.
The virus vector and/or capsid can be delivered to skeletal muscle by intravenous administration, intra-arterial administration, intraperitoneal administration, limb perfusion, (optionally, isolated limb perfusion of a leg and/or arm; see, e.g. Arruda et al., (2005) Blood 105: 3458-3464), and/or direct intramuscular injection. In particular embodiments, the virus vector and/or capsid is administered to a limb (arm and/or leg) of a subject (e.g., a subject with muscular dystrophy such as DMD) by limb perfusion, optionally isolated limb perfusion (e.g., by intravenous or intra-articular administration). In embodiments of the disclosure, the virus vectors and/or capsids of the disclosure can advantageously be administered without employing “hydrodynamic” techniques. Tissue delivery (e.g., to muscle) of prior art vectors is often enhanced by hydrodynamic techniques (e.g., intravenous/intravenous administration in a large volume), which increase pressure in the vasculature and facilitate the ability of the vector to cross the endothelial cell barrier. In particular embodiments, the viral vectors and/or capsids of the disclosure can be administered in the absence of hydrodynamic techniques such as high volume infusions and/or elevated intravascular pressure (e.g., greater than normal systolic pressure, for example, less than or equal to a 5%, 10%, 15%, 20%, 25% increase in intravascular pressure over normal systolic pressure). Such methods may reduce or avoid the side effects associated with hydrodynamic techniques such as edema, nerve damage and/or compartment syndrome. Administration to cardiac muscle includes administration to the left atrium, right atrium, left ventricle, right ventricle and/or septum. The virus vector and/or capsid can be delivered to cardiac muscle by intravenous administration, intra-arterial administration such as intra-aortic administration, direct cardiac injection (e.g., into left atrium, right atrium, left ventricle, right ventricle), and/or coronary artery perfusion.
Administration to diaphragm muscle can be by any suitable method including intravenous administration, intra-arterial administration, and/or intra-peritoneal administration.
Delivery to a target tissue can also be achieved by delivering a depot comprising the virus vector and/or capsid. In representative embodiments, a depot comprising the virus vector and/or capsid is implanted into skeletal, cardiac and/or diaphragm muscle tissue or the tissue can be contacted with a film or other matrix comprising the virus vector and/or capsid. Such implantable matrices or substrates are described in U.S. Pat. No. 7,201,898.
In particular embodiments, a virus vector and/or virus capsid according to the present disclosure is administered to skeletal muscle, diaphragm muscle and/or cardiac muscle (e.g., to treat and/or prevent muscular dystrophy, heart disease [for example, PAD or congestive heart failure]).
In representative embodiments, the disclosure is used to treat and/or prevent disorders of skeletal, cardiac and/or diaphragm muscle.
In a representative embodiment, a method of treating and/or preventing muscular dystrophy in a subject in need thereof is provided, the method comprising: administering a treatment or prevention effective amount of a virus vector of the disclosure to a mammalian subject, wherein the virus vector comprises a heterologous nucleic acid encoding dystrophin, a mini-dystrophin, a micro-dystrophin, myostatin propeptide, follistatin, activin type II soluble receptor, IGF-1, anti-inflammatory polypeptides such as the Ikappa B dominant mutant, sarcospan, utrophin, a micro-dystrophin, laminin-a2, alpha-sarcoglycan, beta-sarcoglycan, gamma-sarcoglycan, delta-sarcoglycan, IGF-1, an antibody or antibody fragment against myostatin or myostatin propeptide, and/or RNAi against myostatin. In particular embodiments, the virus vector can be administered to skeletal, diaphragm and/or cardiac muscle as described elsewhere herein.
Alternatively, the disclosure can be practiced to deliver a nucleic acid to skeletal, cardiac or diaphragm muscle, which is used as a platform for production of a polypeptide (e.g., an enzyme) or functional RNA (e.g., RNAi, micro RNA, antisense RNA) that normally circulates in the blood or for systemic delivery to other tissues to treat and/or prevent a disorder (e.g., a metabolic disorder, such as diabetes [e.g., insulin], hemophilia [e.g., Factor IX or Factor VIII], a mucopolysaccharide disorder [e.g., Sly syndrome, Hurler Syndrome, Scheie Syndrome, Hurler-Scheie Syndrome, Hunter's Syndrome, Sanfilippo Syndrome A, B, C, D, Morquio Syndrome, Maroteaux-Lamy Syndrome, etc.] or a lysosomal storage disorder such as Gaucher's disease [glucocerebrosidase] or Fabry disease [a-galactosidase A] or a glycogen storage disorder such as Pompe disease [lysosomal acid alpha glucosidase]). Other suitable proteins for treating and/or preventing metabolic disorders are described herein. The use of muscle as a platform to express a nucleic acid of interest is described in U.S. Patent Pub. No. US 2002/0192189.
Thus, as one aspect, the disclosure further encompasses a method of treating and/or preventing a metabolic disorder in a subject in need thereof, the method comprising: administering a treatment or prevention effective amount of a virus vector of the disclosure to skeletal muscle of a subject, wherein the virus vector comprises a heterologous nucleic acid encoding a polypeptide, wherein the metabolic disorder is a result of a deficiency and/or defect in the polypeptide. Illustrative metabolic disorders and heterologous nucleic acids encoding polypeptides are described herein. Optionally, the polypeptide is secreted (e.g., a polypeptide that is a secreted polypeptide in its native state or that has been engineered to be secreted, for example, by operable association with a secretory signal sequence as is known in the art). Without being limited by any particular theory of the disclosure, according to this embodiment, administration to the skeletal muscle can result in secretion of the polypeptide into the systemic circulation and delivery to target tissue(s). Methods of delivering virus vectors to skeletal muscle is described in more detail herein.
The disclosure can also be practiced to produce noncoding RNA, such as antisense RNA, RNAi or other functional RNA (e.g., a ribozyme) for systemic delivery.
The disclosure also provides a method of treating and/or preventing congenital heart failure or PAD in a subject in need thereof, the method comprising administering a treatment or prevention effective amount of a virus vector of the disclosure to a mammalian subject, wherein the virus vector comprises a heterologous nucleic acid encoding, for example, a sarcoplasmic endoreticulum Ca2+-ATPase (SERCA2a), an angiogenic factor, phosphatase inhibitor I (I-1) and fragments thereof (e.g., 11C), RNAi against phospholamban; a phospholamban inhibitory or dominant-negative molecule such as phospholamban S16E, a zinc finger protein that regulates the phospholamban gene, beta-2-adrenergic receptor, beta-2-adrenergic receptor kinase (BARK), PI3 kinase, calsarcan, a β-adrenergic receptor kinase inhibitor (PARKct), inhibitor 1 of protein phosphatase 1 and fragments thereof (e.g., I1 C), S100A1, parvalbumin, adenylyl cyclase type 6, a molecule that effects G-protein coupled receptor kinase type 2 knockdown such as a truncated constitutively active bARKct, Pim-1, PGC-I α, SOD-1, SOD-2, EC-SOD, kallikrein, HIF, thymosin-p4, mir-1, mir-133, mir-206, mir-208 and/or mir-26a.
Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Alternatively, one may administer the virus vector and/or virus capsids of the disclosure in a local rather than systemic manner, for example, in a depot or sustained-release formulation. Further, the virus vector and/or virus capsid can be delivered adhered to a surgically implantable matrix (e.g., as described in U.S. Patent Publication No. US-2004-0013645-A1).
The virus vectors and/or virus capsids disclosed herein can be administered to the lungs of a subject by any suitable means, optionally by administering an aerosol suspension of respirable particles comprised of the virus vectors and/or virus capsids, which the subject inhales. The respirable particles can be liquid or solid. Aerosols of liquid particles comprising the virus vectors and/or virus capsids may be produced by any suitable means, such as with a pressure-driven aerosol nebulizer or an ultrasonic nebulizer, as is known to those of skill in the art. See, e.g., U.S. Pat. No. 4,501,729. Aerosols of solid particles comprising the virus vectors and/or capsids may likewise be produced with any solid particulate medicament aerosol generator, by techniques known in the pharmaceutical art.
The virus vectors and virus capsids can be administered to tissues of the CNS (e.g., brain, eye) and may advantageously result in broader distribution of the virus vector or capsid than would be observed in the absence of the present disclosure.
In particular embodiments, the delivery vectors described herein may be administered to treat diseases of the CNS, including genetic disorders, neurodegenerative disorders, psychiatric disorders and tumors. Illustrative diseases of the CNS include, but are not limited to Adrenomyeloneuropathy (AMN), Alzheimer's disease, Angelman Syndrome, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, trauma due to spinal cord or head injury, Tay Sachs disease (GM2 Gangliosidosis), Lesch-Nyhan disease, MC4R Obesity, Metachromatic Leukodystrophy (MLD), MPS I (Hurler/Scheie), MPS IIIA (Sanfilippo A), Niemann Pick C1, Rett Syndrome, Spinal Muscular Atrophy (SMA), AADC Deficiency, Monogenic Amyotropic Lateral Sclerosis (ALS), Alpha mannosidosis, Alzheimer's Disease, Aspartylglucosaminuria, Dravet Syndrome, Giant Axonal Neuropathy, Globoid Cell Leukodystrophy (Krabbe), Glut 1 Deficiency, GM1 Gangliosidosis, Infantile Neuronal Ceroid Lipfuscinosis (INCL, Batten), Juvenile Neuronal Ceroid Lipfuscinosis (JNCL, Batten), Late Infantile Neuronal Ceroid Lipfuscinosis (LINCL, Batten), MPS II (Hunter), MPS IIIB (Sanfilippo B), MPS IIIC (Sanfilippo C), MPS IVA (Morquio Syndrome), MPS VI (Maroteaux-Lamy), Peroxisome Biogenesis Disorders (Zellweger Syndrome Spectrum), Sandhoff Disease (GM2 Gangliosidosis), epilepsy, cerebral infarcts, psychiatric disorders including mood disorders (e.g., depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder), schizophrenia, drug dependency (e.g., alcoholism and other substance dependencies), neuroses (e.g., anxiety, obsessional disorder, somatoform disorder, dissociative disorder, grief, post-partum depression), psychosis (e.g., hallucinations and delusions), dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders (e.g., obesity, cachexia, anorexia nervosa, and bulemia) and cancers and tumors (e.g., pituitary tumors) of the CNS.
Disorders of the CNS include ophthalmic disorders involving the retina, posterior tract, and optic nerve (e.g., retinitis pigmentosa, diabetic retinopathy and other retinal degenerative diseases, uveitis, age-related macular degeneration, glaucoma).
Most, if not all, ophthalmic diseases and disorders are associated with one or more of three types of indications: (1) angiogenesis, (2) inflammation, and (3) degeneration. The delivery vectors of the present disclosure can be employed to deliver anti-angiogenic factors; anti-inflammatory factors; factors that retard cell degeneration, promote cell sparing, or promote cell growth and combinations of the foregoing.
Diabetic retinopathy, for example, is characterized by angiogenesis. Diabetic retinopathy can be treated by delivering one or more anti-angiogenic factors either intraocularly (e.g., in the vitreous) or periocularly (e.g., in the sub-Tenon's region). One or more neurotrophic factors may also be co-delivered, either intraocularly (e.g., intravitreally) or periocularly.
Uveitis involves inflammation. One or more anti-inflammatory factors can be administered by intraocular (e.g., vitreous or anterior chamber) administration of a delivery vector of the disclosure.
Retinitis pigmentosa, by comparison, is characterized by retinal degeneration. In representative embodiments, retinitis pigmentosa can be treated by intraocular (e.g., vitreal administration) of a delivery vector encoding one or more neurotrophic factors.
Age-related macular degeneration involves both angiogenesis and retinal
degeneration. This disorder can be treated by administering the inventive delivery vectors encoding one or more neurotrophic factors intraocularly (e.g., vitreous) and/or one or more anti-angiogenic factors intraocularly or periocularly (e.g., in the sub-Tenon's region).
Glaucoma is characterized by increased ocular pressure and loss of retinal ganglion cells. Treatments for glaucoma include administration of one or more neuroprotective agents that protect cells from excitotoxic damage using the inventive delivery vectors. Such agents include N-methyl-D-aspartate (NMDA) antagonists, cytokines, and neurotrophic factors, delivered intraocularly, optionally intravitreally.
In other embodiments, the present disclosure may be used to treat seizures, e.g., to reduce the onset, incidence or severity of seizures. The efficacy of a therapeutic treatment for seizures can be assessed by behavioral (e.g., shaking, ticks of the eye or mouth) and/or electrographic means (most seizures have signature electrographic abnormalities). Thus, the disclosure can also be used to treat epilepsy, which is marked by multiple seizures over time.
In one representative embodiment, somatostatin (or an active fragment thereof) is administered to the brain using a delivery vector of the disclosure to treat a pituitary tumor. According to this embodiment, the delivery vector encoding somatostatin (or an active fragment thereof) is administered by microinfusion into the pituitary. Likewise, such treatment can be used to treat acromegaly (abnormal growth hormone secretion from the pituitary). The nucleic acid (e.g., GenBank Accession No. J00306) and amino acid (e.g., GenBank Accession No. P01166; contains processed active peptides somatostatin-28 and somatostatin-14) sequences of somatostatins are known in the art.
In particular embodiments, the vector can comprise a secretory signal as described in U.S. Pat. No. 7,071,172.
In representative embodiments of the disclosure, the virus vector and/or virus capsid is administered to the CNS (e.g., to the brain or to the eye). The virus vector and/or capsid may be introduced into the spinal cord, brainstem (medulla oblongata, pons), midbrain (hypothalamus, thalamus, epithalamus, pituitary gland, substantia nigra, pineal gland), cerebellum, telencephalon (corpus striatum, cerebrum including the occipital, temporal, parietal and frontal lobes, cortex, basal ganglia, hippocampus and portaamygdala), limbic system, neocortex, corpus striatum, cerebrum, and inferior colliculus. The virus vector and/or capsid may also be administered to different regions of the eye such as the retina, cornea and/or optic nerve.
The virus vector and/or capsid may be delivered into the cerebrospinal fluid (e.g., by lumbar puncture) for more disperse administration of the delivery vector. The virus vector and/or capsid may further be administered intravascularly to the CNS in situations in which the blood-brain barrier has been perturbed (e.g., brain tumor or cerebral infarct).
The virus vector and/or capsid can be administered to the desired region(s) of the CNS by any route known in the art, including but not limited to, intrathecal, intra-ocular, intracerebral, intraventricular, intravenous (e.g., in the presence of a sugar such as mannitol), intranasal, intra-aural, intra-ocular (e.g., intra-vitreous, sub-retinal, anterior chamber) and peri-ocular (e.g., sub-Tenon's region) delivery as well as intramuscular delivery with retrograde delivery to motor neurons. In particular embodiments, the virus vector and/or capsid is administered in a liquid formulation by direct injection (e.g., stereotactic injection) to the desired region or compartment in the CNS. In other embodiments, the virus vector and/or capsid may be provided by topical application to the desired region or by intra-nasal administration of an aerosol formulation. Administration to the eye, may be by topical application of liquid droplets. As a further alternative, the virus vector and/or capsid may be administered as a solid, slow-release formulation (see, e.g., U.S. Pat. No. 7,201,898).
In yet additional embodiments, the virus vector can used for retrograde transport to treat and/or prevent diseases and disorders involving motor neurons (e.g., amyotrophic lateral sclerosis (ALS); spinal muscular atrophy (SMA), etc.). For example, the virus vector can be delivered to muscle tissue from which it can migrate into neurons.
The following numbered embodiments are included within the scope of the disclosure.
1. A recombinant adeno-associated virus (AAV) capsid protein, wherein the capsid protein comprises an amino acid substitution in an antigenic site of the AAV capsid protein, wherein the substitution has a sequence of any one of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, or 2761.
2. The recombinant AAV capsid protein of embodiment 1, wherein the substitution comprises a sequence of any one of SEQ ID NO: 14, 159, 160, 1376, 1377, 1379, 1380, or 2761.
3. The recombinant AAV capsid protein of embodiment 1 or 2, wherein the AAV capsid protein further comprises a deletion of one or more amino acids in a second antigenic site of the AAV capsid protein.
4. The recombinant AAV capsid protein of embodiment 3, wherein the deletion comprises a deletion of 6-8 amino acids from the second antigenic site.
5. A recombinant AAV capsid protein, wherein the capsid comprises a deletion of one or more amino acids in an antigenic site of the AAV capsid protein.
6. The recombinant AAV capsid protein of embodiment 5, wherein the capsid protein comprises a deletion of 6-8 amino acids in the antigenic site of the AAV capsid protein.
7. The recombinant AAV capsid protein of embodiment 5 or 6, wherein the capsid protein further comprises a substitution in a second antigenic site of the AAV capsid protein.
8. The recombinant AAV capsid protein of any one of embodiment 1-7, wherein the AAV capsid protein is of an AAV serotype selected from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAVrh.8, AAVrh.10, AAVrh32.33, AAVrh74, bovine AAV and avian AAV.
9. The recombinant AAV capsid protein of embodiment 8, wherein the AAV capsid protein is an AAV9 capsid protein, and the substitution is at the amino acid positions corresponding to amino acids 587-594 of the AAV9 capsid protein.
10. The recombinant AAV capsid protein of embodiment 8, wherein the AAV capsid protein is an AAV9 capsid protein, and the substitution is at the amino acid positions corresponding to amino acids 451-458 of the AAV9 capsid protein.
11. The recombinant AAV capsid protein embodiment 9, wherein the AAV capsid protein further comprises a deletion of at least one amino acid in the region corresponding to amino acids 451 to 458 of the AAV9 capsid protein.
12. The recombinant AAV capsid protein of embodiment 11, wherein the deletion comprises a deletion of all amino acids in the region corresponding to amino acids 451 to 458 of the AAV9 capsid protein.
13. The recombinant AAV capsid protein of embodiment 11, wherein the AAV capsid protein further comprises a deletion of all amino acids in the region corresponding to amino acids 451 to 456 of the AAV9 capsid protein.
14. The recombinant AAV capsid protein of embodiment 13, wherein the AAV capsid protein further comprises a substitution of the amino acids corresponding to amino acids 457 and 458 of the AAV9 capsid protein.
15. The recombinant AAV capsid protein of embodiment 14, wherein the substitution is N457D and Q458P.
16. The recombinant AAV capsid protein of embodiment 1, wherein the capsid protein comprises:
17. The recombinant AAV capsid protein of embodiment 1, wherein the capsid protein comprises:
18. The recombinant AAV capsid protein of embodiment 1, wherein the capsid protein comprises:
19. The recombinant AAV capsid protein of any one of embodiment 1 to 18, wherein the amino acid substitution and/or deletion results in inhibition of binding by an antibody to the one or more antigenic sites.
20. The recombinant AAV capsid protein of any one of embodiment 1 to 19, wherein the amino acid substitution and/or deletion results in inhibition of neutralization of infectivity of a virus particle comprising the AAV capsid protein.
21. The recombinant AAV capsid protein of any one of embodiment 1 to 20, wherein the AAV capsid protein further comprises a substitution that modifies the HI loop of the capsid.
22. The recombinant AAV capsid protein of embodiment 21, wherein the AAV capsid comprises one or more of the following substitutions in the HI loop:
23. An recombinant AAV capsid protein, wherein the capsid protein comprises a substitution comprising a sequence of eight amino acids (X1-X2-X3-X4-X5-X6—X7-X8) (SEQ ID NO: 158) that does not occur in the native capsid protein sequence.
24. The recombinant AAV capsid protein of embodiment 23, wherein X1 is not A, X2 is not Q, X3 is not A, X4 is not Q, X5 is not A, X6 is not Q, X7 is not T, and/or X8 is not G.
25. The recombinant AAV capsid protein of embodiment 23 or 24, wherein X1 is T, M, S, or R.
26. The recombinant AAV capsid protein of any one of embodiments 23-25, wherein X2 is I, S, K, T, or D.
27. The recombinant AAV capsid protein of any one of embodiments 23-26, wherein X3 is D, A, V, or Y.
28. The recombinant AAV capsid protein of any one of embodiments 23-27, wherein X4 is D or E.
29. The recombinant AAV capsid protein of any one of embodiments 23-28, wherein X5 is S, P, or A.
30. The recombinant AAV capsid protein of any one of embodiments 23-29, wherein X6 is L, I, or W.
31. The recombinant AAV capsid protein of any one of embodiments 23-30, wherein X7 is S, A, or T.
32. The recombinant AAV capsid protein of any one of embodiments 23-31, wherein X8 is Y, I, E, or Q.
33. The recombinant AAV capsid protein of embodiment 23, wherein X1 is T, X2 is I, X3 is D, X4 is D, X5 is S, X6 is L, X7 is S, and X8 is Y (SEQ ID NO: 12).
34. The recombinant AAV capsid protein of embodiment 23, wherein X1 is M, X2 is S, X3 is A, X4 is E, X5 is P, X6 is I, X7 is A, and X8 is I (SEQ ID NO: 13).
35. The recombinant AAV capsid protein of embodiment 23, wherein X1 is S, X2 is K, X3 is V, X4 is E, X5 is S, X6 is W, X7 is T, and X8 is E (SEQ ID NO: 14).
36. The recombinant AAV capsid protein of embodiment 23, wherein X1 is S, X2 is T, X3 is V, X4 is D, X5 is S, X6 is I, X7 is A, and X8 is I (SEQ ID NO: 15).
37. The recombinant AAV capsid protein of embodiment 23, wherein X1 is R, X2 is D, X3 is Y, X4 is E, X5 is A, X6 is W, X7 is S, and X8 is Q (SEQ ID NO: 16).
38. The recombinant AAV capsid protein of embodiment 23, wherein X1 is not I, X2 is not N, X3 is not G, X4 is not S, X5 is not G, X6 is not Q, X7 is not N, and/or X8 is not Q.
39. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, Q, N, or E.
40. The recombinant AAV capsid protein of embodiment 38 or 39, wherein X2 is E, N, I, F, G, or L.
41. The recombinant AAV capsid protein of any one of embodiment 38-40, wherein X3 is E, N, P, D, or G.
42. The recombinant AAV capsid protein of any one of embodiments 38-41, wherein X4 is G, N, H, S, or V.
43. The recombinant AAV capsid protein of any one of embodiments 38-42, wherein X5 is A, D, Q, S, or Y.
44. The recombinant AAV capsid protein of any one of embodiments 38-43, wherein X6 is N, L, P, S, T, D, or E.
45. The recombinant AAV capsid protein of any one of embodiments 38-44, wherein X7 is S, A, L, N, E, I, or G.
46. The recombinant AAV capsid protein of any one of embodiments 38-45, wherein X8 is Q, T, N, or S.
47. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, X2 is E, X3 is N, X4 is G, X5 is A, X6 is N, X7 is S, and X8 is Q (SEQ ID NO: 159).
48. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, X2 is N, X3 is E, X4 is G, X5 is D, X6 is L, X7 is A, and X8 is T (SEQ ID NO: 160).
49. The recombinant AAV capsid protein of embodiment 38, wherein X1 is Q, X2 is I, X3 is P, X4 is N, X5 is D, X6 is L, X7 is A, and X8 is T (SEQ ID NO: 1376).
50. The recombinant AAV capsid protein of embodiment 38, wherein X1 is N, X2 is F, X3 is P, X4 is H, X5 is D, X6 is S, X7 is N, and X8 is T (SEQ ID NO: 1377).
51. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, X2 is E, X3 is N, X4 is G, X5 is Q, X6 is T, X7 is E, and X8 is N (SEQ ID NO: 1378).
52. The recombinant AAV capsid protein of embodiment 38, wherein X1 is N, X2 is G, X3 is D, X4 is G, X5 is S, X6 is D, X7 is I, and X8 is Q (SEQ ID NO: 1379).
53. The recombinant AAV capsid protein of embodiment 38, wherein X1 is E, X2 is L, X3 is G, X4 is S, X5 is Y, X6 is E, X7 is G, and X8 is S (SEQ ID NO: 1380).
54. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, X2 is E, X3 is N, X4 is G, X5 is D, X6 is L, X7 is A, and X8 is T (SEQ ID NO: 2590).
55. The recombinant AAV capsid protein of embodiment 38, wherein X1 is S, X2 is E, X3 is N, X4 is V, X5 is Q, X6 is T, X7 is E, and X8 is N (SEQ ID NO: 2761).
56. A recombinant AAV capsid protein, wherein the capsid protein comprises a deletion of eight consecutive amino acids compared to the native capsid protein sequence.
57. A recombinant AAV capsid protein, wherein the capsid protein comprises a deletion of six consecutive amino acids compared to the native capsid protein sequence.
58. The recombinant AAV capsid protein of embodiment 56 or 57, wherein the capsid protein further comprises a substitution of one or more amino acids that does not occur in the native capsid protein sequence, wherein the substitution comprises any one of SEQ ID NO: 12-16, 159-160, 1376-1380, 2590, or 2761.
59. The AAV capsid protein of embodiment 56 or 57, wherein the capsid protein comprises a substitution immediately adjacent to the deletion.
60. A recombinant AAV capsid protein comprising the amino acid sequence that is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the sequence of any one of SEQ ID NO: 17-21, 165-1373, 1381-2589, 2762, or 2763.
61. A recombinant AAV capsid protein comprising the amino acid sequence of any one of SEQ ID NO: 17-21, 165-1373, 1381-2589, 2762, or 2763.
62. A recombinant capsid protein comprising an amino acid sequence that is at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the sequences of any one of SEQ ID NO: 173, 2762, 185, 191, 1384, 1625, 2763, 2110, or 2352.
63. The recombinant AAV capsid protein of embodiment 62, comprising the amino acid sequence of any one of SEQ ID NO: 173, 2762, 185, 191, 1384, 1625, 2763, 2110, or 2352.
64. A nucleotide sequence encoding a recombinant AAV capsid protein of any one of embodiments 1 to 64.
65. The nucleotide sequence of embodiment 64, wherein the nucleotide sequence is a DNA sequence.
66. The nucleotide sequence of embodiment 64, wherein the nucleotide sequence is an RNA sequence.
67. An expression vector comprising the nucleotide sequence of any one of embodiments 64-66.
68. A cell comprising the nucleotide sequence of any one of embodiments 64-66.
69. A cell comprising the expression vector of embodiment 67.
70. An AAV viral vector comprising the recombinant AAV capsid protein of any one of embodiments 1-64.
71. The AAV viral vector of embodiment 70, further comprising a cargo nucleic acid encapsidated by the capsid protein.
72. The AAV viral vector of embodiment 70, wherein the cargo nucleic acid encodes a therapeutic protein or RNA.
73. The AAV viral vector of embodiment 71 or 72, wherein the cargo nucleic acid encodes one or more of the following proteins: cystic fibrosis transmembrane regulator protein (CFTR), dystrophin, myostatin propeptide, follistatin, activin type 11 soluble receptor, IGF-I, Ikappa B dominant mutant, sarcospan, utrophin, mini-utrophin, Factor VIII, Factor IX, Factor X, erythropoietin, angiostatin, endostatin, catalase, tyrosine hydroxylase, superoxide dismutase, leptin, the LDL receptor, lipoprotein lipase, ornithine transcarbamylase, β-globin, α-globin, spectrin, alpha-1-antitrypsin, adenosine deaminase, hypoxanthine guanine phosphoribosyl transferase, β-glucocerebrosidase, sphingomyelinase, lysosomal hexosaminidase A, branched-chain keto acid dehydrogenase, RP65 protein, alpha-interferon, beta-interferon, gamma-interferon, interleukin-2, interleukin-4, granulocyte-macrophage colony stimulating factor, lymphotoxin, a peptide growth factors, a neurotrophic factors, somatotropin, insulin, insulin-like growth factors 1 or 2, platelet derived growth factor, epidermal growth factor, fibroblast growth factor, nerve growth factor, neurotrophic factor-3 or -4, brain-derived neurotrophic factor, RANKL, VEGF, glial derived growth factor, transforming growth factor-alpha or beta, lysosomal acid alpha-glucosidase, alpha-galactosidase A, tumor necrosis growth factor soluble receptor, S100A1, parvalbumin, adenylyl cyclase type 6, SERCA2A Inhibitor 1 of PP 1 or fragments thereof, truncated constitutively active bARKct, IRAP, anti-myostatin protein, aspartoacylase, trastuzumab, galanin, Neuropeptide Y, Vasohibin 2, thymidine kinase, cytosine deaminase, diphtheria toxin, tumor necrosis factor, p53, Rb, Wt-1, TRAIL, and/or FAS-ligand.
74. The AAV viral vector of embodiment 71 or 72, wherein the cargo nucleic acid encodes a micro-dystrophin protein.
75. The AAV viral vector of embodiment 71 or 72, wherein the cargo nucleic acid encodes a gene-editing molecule.
76. The AAV viral vector of embodiment 75, wherein the gene-editing molecule is a nuclease.
77. The AAV viral vector of embodiment 75 or 76, wherein the gene-editing molecule is a Cas9 nuclease.
78. The AAV viral vector of embodiment 75 or 76, wherein the gene-editing molecule is a Cpf1 nuclease.
79. The AAV viral vector of embodiment 75, wherein the gene-editing molecule is a guide RNA.
80. A pharmaceutical composition comprising the AAV viral vector of any one of embodiments 70-79.
81. The pharmaceutical composition of embodiment 80, wherein the composition further comprises a pharmaceutically acceptable carrier.
82. A pharmaceutical composition comprising the cell of embodiment 68 or 69.
83. The pharmaceutical composition of embodiment 82, wherein the composition further comprises a pharmaceutically acceptable carrier.
84. A method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of the AAV viral vector of any one of embodiments 70-79.
85. The method of embodiment 84, wherein the subject has a muscle disease or disorder.
86. The method of embodiment 85, wherein the muscle disease or disorder is selected from muscular dystrophy, myopathy, motor neuron disease, and cardiomyopathy.
87. The method of embodiment 86, wherein the muscular dystrophy is selected from the group consisting of dystrophinopathies, Duchenne muscular dystrophy, Becker muscular dystrophy, myotonic dystrophies, Eimery-Dreifuss muscular dystrophy, limb-girdle disease, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, distal muscular dystrophy, congenital muscular dystrophy, juvenile macular dystrophy, centronuclear myopathy, central core myopathy, and inclusion body myositis.
88. The method of embodiment 86, wherein the myopathy is selected from congenital myopathy, myofibrillar myopathy, endocrine myopathy, metabolic myopathy, toxic myopathy, and myopathy caused by a systemic illness.
89. The method of embodiment 86, wherein the motor neuron disease is selected from the group consisting of amyotrophic lateral sclerosis, spinal muscular atrophy, and spinal bulbar muscular atrophy.
90. The method of embodiment 86, wherein the cardiomyopathy is selected from the group consisting of hypertrophic cardiomyopathy, and dilated cardiomyopathy.
91. The method of embodiment 84, wherein the subject has a disease or disorder of the central nervous system.
92. The method of embodiment 91, wherein the disease or disorder of the central nervous system is selected from Adrenomyeloneuropathy (AMN), Angelman Syndrome, MC4R Obesity, Metachromatic Leukodystrophy (MLD), MPS I (Hurler/Scheie), MPS IIIA (Sanfilippo A), Niemann Pick C1, Rett Syndrome, Spinal Muscular Atrophy (SMA), AADC Deficiency, Monogenic Amyotropic Lateral Sclerosis (ALS), Alpha mannosidosis Alzheimer's Disease, Aspartylglucosaminuria, Canavan Disease, Dravet Syndrome, Giant Axonal Neuropathy, Globoid Cell Leukodystrophy (Krabbe), Glut 1 Deficiency, GM1 Gangliosidosis, Huntington's Disease, Infantile Neuronal Ceroid Lipfuscinosis (INCL, Batten), Juvenile Neuronal Ceroid Lipfuscinosis (JNCL, Batten), Late Infantile Neuronal Ceroid Lipfuscinosis (LINCL, Batten), MPS II (Hunter), MPS IIIB (Sanfilippo B), MPS IIIC (Sanfilippo C), MPS IVA (Morquio Syndrome), MPS VI (Maroteaux-Lamy) Parkinsons, Peroxisome Biogenesis Disorders (Zellweger Syndrome Spectrum), Sandhoff Disease (GM2 Gangliosidosis), and Tay-Sachs Disease (GM2 Gangliosidosis).
93. The method of any one of embodiments 84-92, wherein the subject is a mammal.
94. The method of embodiment 93, wherein the subject is a human.
95. A method of introducing a nucleic acid molecule into a cell, comprising contacting the cell with the AAV viral vector of any one of embodiments 70-79.
96. An AAV viral vector of any one of embodiments 70-79 for use as a medicament.
97. An AAV viral vector of any one of embodiments 70-79 for use in a method of treatment.
The following examples, which are included herein for illustration purposes only, are not intended to be limiting.
The method for generating antibody evading AAV mutants is as follows. The first step involves identification of conformational 3D antigenic epitopes on the AAV capsid surface, for example using cryo-electron microscopy. Selected residues within antigenic motifs are then subjected to mutagenesis using degenerate primers with each codon substituted by nucleotides NNK and gene fragments combined together by Gibson assembly and/or multistep PCR. Capsid-encoding genes containing a degenerate library of mutated antigenic motifs are cloned into a wild type AAV genome to replace the original Cap encoding DNA sequence, yielding a plasmid library. Plasmid libraries are then transfected into 293 producer cell lines with an adenoviral helper plasmid to generate AAV capsid libraries, which can then be subjected to selection. Successful generation of AAV libraries is confirmed via DNA sequencing.
In order to select for new AAV strains that can escape neutralizing antibodies (NAbs), AAV libraries are subjected to multiple rounds of infection in non-human primates. At each stage, tissues of interest are isolated from animal subjects. Cell lysates harvested from the tissues of interest are sequenced to identify AAV isolates escaping antibody neutralization. After multiple rounds of infection in non-human primates, the isolated sequences from each mutagenized region are combined in all permutations and combinations.
As a nonlimiting specific example, a common antigenic motif on an AAV capsid protein (VP1) was subjected to mutagenesis as described above. The degenerate libraries were then subjected to a first round of infection in a non-human primate (intravenous injection). Tissues were harvested at day 7 post-infection and sequenced to identify single AAV isolates.
Various AAV isolates were identified in muscle samples, including samples from bicep, gastrocnemius, intercostal, and diaphragm muscles. Results from this first round of evolution are shown in
The AAVs isolated during the first round of evolution were then reintroduced into a second non-human primate (intravenous injection). Muscle was harvested at day 7 post-infection and sequenced to identify single AAV isolates. The results from this second round of evolution are shown in
After the second round of evolution, the AAV isolates were modified further to include mutations within a second common antigenic motif and, optionally, additional rationally-selected mutations. This new library (
The AAVs isolated during the third round of evolution were then optionally subjected to further mutagenesis, and reintroduced into a fourth non-human primate (intravenous injection) (
A description of the dominant isolates from this iterative evolution process are provided in Table 6.1, 6.2 and 6.3, above.
To confirm whether the recombinant AAV vectors isolated from non-human primate muscle in Example 1 are generally infective and able to transduce cells in culture, various AAV vectors packaging a luciferase transgene were prepared, wherein each AAV vector included a capsid sequence comprising one or more of the substitutions listed in Tables 6.1 and 6.3. The AAV vectors were contacted with U87 cells (primary glioblastoma cell line) maintained under standard culture conditions. The cells were infected at a multiplicity of infection (MOI) of 20,000 vg/cell. 48 hours later, the cells were contacted with a bioluminescent substrate, and RFUs were measured.
As shown in
A HEK293 cell line was transfected with (i) a plasmid comprising either the wildtype AAV9 capsid sequence, or the SBI-1, SBI-2, SBI-4, or SBI-5 capsid sequence and (ii) separate plasmids comprising helper genes necessary for AAV production, according to a standard triple-transfection protocol. The cells were subsequently lysed and the virions were purified using an affinity column, CsCl density ultracentrifugation, and dialysis. After yield of each AAV was measured using a qPCR-based quantification approach. As shown in
This data confirms that AAVs comprising the recombinant capsid proteins are suitable for commercial manufacturing.
AAVs comprising either the SBI-1, SBI-8, or wildtype AAV9 capsids and packaging a luciferase transgene were produced according to a standard protocol. These AAVs were used to infect Lec2 cells (CHO cell variant,
The tested AAV vectors were able to successfully transduce all cell types tested, and dose-dependent levels of transduction were observed. This data demonstrates that the recombinant AAV vectors are infective and can be used to deliver a transgene to cells derived from various different tissues and from different species, even at low doses.
The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application is a national phase of International Application No. PCT/US2019/025610, filed Apr. 3, 2019, which claims priority to U.S. Provisional Application Ser. No. 62/819,389, filed Mar. 15, 2019, U.S. Provisional Application Ser. No. 62/776,793, filed Dec. 7, 2018, U.S. Provisional Application Ser. No. 62/770,240, filed Nov. 21, 2018, and U.S. Provisional Application Ser. No. 62/652,103, filed Apr. 3, 2018, each of which is incorporated by reference herein in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/025610 | 4/3/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/195444 | 10/10/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4039388 | Gal et al. | Aug 1977 | A |
4501729 | Boucher et al. | Feb 1985 | A |
4968603 | Slamon et al. | Nov 1990 | A |
5139941 | Muzyczka et al. | Aug 1992 | A |
5328470 | Nabel et al. | Jul 1994 | A |
5399346 | Anderson et al. | Mar 1995 | A |
5478745 | Samulski et al. | Dec 1995 | A |
5658776 | Flotte et al. | Aug 1997 | A |
5686240 | Schuchman et al. | Nov 1997 | A |
5863541 | Samulski et al. | Jan 1999 | A |
5869248 | Yuan et al. | Feb 1999 | A |
5877022 | Stinchcomb et al. | Mar 1999 | A |
5882652 | Valdes et al. | Mar 1999 | A |
5905040 | Mazzara et al. | May 1999 | A |
5916563 | Young et al. | Jun 1999 | A |
5962313 | Podsakoff | Oct 1999 | A |
6013487 | Mitchell | Jan 2000 | A |
6040183 | Ferrari et al. | Mar 2000 | A |
6083702 | Mitchell et al. | Jul 2000 | A |
6093570 | Ferrari et al. | Jul 2000 | A |
6156303 | Russell et al. | Dec 2000 | A |
6180613 | Kaplitt et al. | Jan 2001 | B1 |
6426198 | Carstea et al. | Jul 2002 | B1 |
6468524 | Chiorini et al. | Oct 2002 | B1 |
6468798 | Debs et al. | Oct 2002 | B1 |
6503888 | Kaplitt et al. | Jan 2003 | B1 |
6544785 | Palese et al. | Apr 2003 | B1 |
6562958 | Breton et al. | May 2003 | B1 |
6733757 | Patel et al. | May 2004 | B2 |
6822071 | Stephens et al. | Nov 2004 | B1 |
6962815 | Bartlett | Nov 2005 | B2 |
6984517 | Chiorini et al. | Jan 2006 | B1 |
7045675 | Carstea et al. | May 2006 | B2 |
7071172 | McCown et al. | Jul 2006 | B2 |
7105345 | Wilson et al. | Sep 2006 | B2 |
7198951 | Gao et al. | Apr 2007 | B2 |
7201898 | Monahan et al. | Apr 2007 | B2 |
7214786 | Kovalic et al. | May 2007 | B2 |
7252997 | Hallek et al. | Aug 2007 | B1 |
7259151 | Arbetman et al. | Aug 2007 | B2 |
7282199 | Gao et al. | Oct 2007 | B2 |
7314912 | Hallek et al. | Jan 2008 | B1 |
7473531 | Dornon | Jan 2009 | B1 |
7588772 | Kay et al. | Sep 2009 | B2 |
7712893 | Dobashi | May 2010 | B2 |
7718424 | Chiorini et al. | May 2010 | B2 |
7749492 | Bartlett et al. | Jul 2010 | B2 |
7777097 | Glazebrook et al. | Aug 2010 | B2 |
7790449 | Gao et al. | Sep 2010 | B2 |
7867484 | Samulski et al. | Jan 2011 | B2 |
7892809 | Bowles et al. | Feb 2011 | B2 |
7906111 | Wilson et al. | Mar 2011 | B2 |
8067014 | Kay et al. | Nov 2011 | B2 |
8299321 | Cao | Oct 2012 | B2 |
8318480 | Gao et al. | Nov 2012 | B2 |
8343764 | Abad et al. | Jan 2013 | B2 |
8445267 | Zhong et al. | May 2013 | B2 |
8628966 | Chatterjee et al. | Jan 2014 | B2 |
8664475 | Puzio et al. | Mar 2014 | B2 |
8679837 | Zolotukhin et al. | Mar 2014 | B2 |
8734809 | Gao et al. | May 2014 | B2 |
8802440 | Zhong et al. | Aug 2014 | B2 |
8889641 | Asokan et al. | Nov 2014 | B2 |
8906387 | Kay et al. | Dec 2014 | B2 |
8906675 | Gao et al. | Dec 2014 | B2 |
8927514 | Chatterjee et al. | Jan 2015 | B2 |
8952217 | Puzio et al. | Feb 2015 | B2 |
8962332 | Gao et al. | Feb 2015 | B2 |
9012224 | Bowles et al. | Apr 2015 | B2 |
9066966 | Puccio et al. | Jun 2015 | B2 |
9157098 | Zhong et al. | Oct 2015 | B2 |
9409953 | Asokan et al. | Aug 2016 | B2 |
9441244 | Schaffer et al. | Sep 2016 | B2 |
9475845 | Asokan et al. | Oct 2016 | B2 |
9567376 | Cronin et al. | Feb 2017 | B2 |
9585971 | Deverman et al. | Mar 2017 | B2 |
9587250 | Gao et al. | Mar 2017 | B2 |
9598468 | Weigel-Van Aken et al. | Mar 2017 | B2 |
9611302 | Srivastava et al. | Apr 2017 | B2 |
9623120 | Chatterjee et al. | Apr 2017 | B2 |
9677088 | Nakai et al. | Jun 2017 | B2 |
9677089 | Gao et al. | Jun 2017 | B2 |
9683268 | Barouch et al. | Jun 2017 | B2 |
9695220 | Vandenberghe et al. | Jul 2017 | B2 |
9719070 | Vandenberghe et al. | Aug 2017 | B2 |
9725485 | Srivastava et al. | Aug 2017 | B2 |
9737618 | Wilson et al. | Aug 2017 | B2 |
9737619 | Ansell et al. | Aug 2017 | B2 |
9775918 | Zhong et al. | Oct 2017 | B2 |
9777291 | Chatterjee et al. | Oct 2017 | B2 |
9783825 | Chatterjee et al. | Oct 2017 | B2 |
9790472 | Gao et al. | Oct 2017 | B2 |
9803218 | Chatterjee et al. | Oct 2017 | B2 |
9834789 | Chatterjee et al. | Dec 2017 | B2 |
9839696 | Chatterjee et al. | Dec 2017 | B2 |
9879275 | Nadzan et al. | Jan 2018 | B2 |
9890396 | Chatterjee et al. | Feb 2018 | B2 |
9909142 | Yazicioglu et al. | Mar 2018 | B2 |
9920097 | Zhong et al. | Mar 2018 | B2 |
9944908 | Vaten et al. | Apr 2018 | B2 |
9976157 | Poraty-Gavra et al. | May 2018 | B2 |
10011640 | Srivastava et al. | Jul 2018 | B2 |
10072251 | Gao et al. | Sep 2018 | B2 |
10077291 | Asokan et al. | Sep 2018 | B2 |
10081659 | Chiorini et al. | Sep 2018 | B2 |
10119125 | Vandenberghe et al. | Nov 2018 | B2 |
10214566 | Schaffer et al. | Feb 2019 | B2 |
10337027 | Puccio et al. | Jul 2019 | B2 |
10369193 | Passini et al. | Aug 2019 | B2 |
10385320 | Kay et al. | Aug 2019 | B2 |
10392632 | Wright et al. | Aug 2019 | B2 |
10406244 | Kay et al. | Sep 2019 | B2 |
10414803 | Nathwani et al. | Sep 2019 | B2 |
10426844 | Agbandje-McKenna et al. | Oct 2019 | B2 |
10526627 | Skuratowicz et al. | Jan 2020 | B2 |
10668094 | Karlish | Jun 2020 | B2 |
10745447 | Asokan et al. | Aug 2020 | B2 |
10907176 | Asokan et al. | Feb 2021 | B2 |
11077128 | Karlish | Aug 2021 | B2 |
11208438 | Asokan et al. | Dec 2021 | B2 |
20020192189 | Xiao et al. | Dec 2002 | A1 |
20030017131 | Park et al. | Jan 2003 | A1 |
20030053990 | Rabinowitz et al. | Mar 2003 | A1 |
20030225017 | Murdin et al. | Dec 2003 | A1 |
20040013645 | Monahan et al. | Jan 2004 | A1 |
20040031072 | La Rosa et al. | Feb 2004 | A1 |
20040071659 | Chang et al. | Apr 2004 | A1 |
20040166519 | Cargill et al. | Aug 2004 | A1 |
20040214272 | La Rosa et al. | Oct 2004 | A1 |
20050287122 | Bartlett et al. | Dec 2005 | A1 |
20060107345 | Alexandrov et al. | May 2006 | A1 |
20060123505 | Kikuchi et al. | Jun 2006 | A1 |
20060171926 | Passini et al. | Aug 2006 | A1 |
20060236419 | La Rosa et al. | Oct 2006 | A1 |
20070015238 | Snyder et al. | Jan 2007 | A1 |
20070124833 | Abad et al. | May 2007 | A1 |
20070196338 | Samulski et al. | Aug 2007 | A1 |
20070243526 | Kay et al. | Oct 2007 | A1 |
20080229439 | La Rosa et al. | Sep 2008 | A1 |
20090215879 | Diprimio et al. | Aug 2009 | A1 |
20090221620 | Luke et al. | Sep 2009 | A1 |
20090275107 | Lock et al. | Nov 2009 | A1 |
20090317417 | Vandenberghe et al. | Dec 2009 | A1 |
20100037352 | Alexandrov et al. | Feb 2010 | A1 |
20100047174 | Kay et al. | Feb 2010 | A1 |
20100095387 | Smith et al. | Apr 2010 | A1 |
20110061124 | Nadzan et al. | Mar 2011 | A1 |
20110067143 | La Rosa et al. | Mar 2011 | A2 |
20110124048 | Yun | May 2011 | A1 |
20110131679 | La Rosa et al. | Jun 2011 | A2 |
20110209246 | Kovalic et al. | Aug 2011 | A1 |
20110214206 | La Rosa et al. | Sep 2011 | A1 |
20110236353 | Wilson et al. | Sep 2011 | A1 |
20110294218 | Chatterjee et al. | Dec 2011 | A1 |
20120009268 | Asokan et al. | Jan 2012 | A1 |
20120137379 | Gao et al. | May 2012 | A1 |
20120216318 | La Rosa et al. | Aug 2012 | A1 |
20120255046 | Kay et al. | Oct 2012 | A1 |
20120322861 | Byrne et al. | Dec 2012 | A1 |
20130096182 | Chatterjee et al. | Apr 2013 | A1 |
20130152224 | Abad et al. | Jun 2013 | A1 |
20130185831 | Kovalic et al. | Jul 2013 | A1 |
20130195801 | Gao et al. | Aug 2013 | A1 |
20130203841 | Zhong et al. | Aug 2013 | A1 |
20130216501 | Zhong et al. | Aug 2013 | A1 |
20130224836 | Muramatsu | Aug 2013 | A1 |
20130225666 | Kaspar et al. | Aug 2013 | A1 |
20130326723 | La Rosa et al. | Dec 2013 | A1 |
20140017212 | Rebar | Jan 2014 | A1 |
20140037585 | Wright et al. | Feb 2014 | A1 |
20140050701 | Zhong et al. | Feb 2014 | A1 |
20140056854 | Asokan et al. | Feb 2014 | A1 |
20140057969 | Frost et al. | Feb 2014 | A1 |
20140130203 | La Rosa et al. | May 2014 | A1 |
20140162319 | Hareendran et al. | Jun 2014 | A2 |
20140199313 | Plesch et al. | Jul 2014 | A1 |
20140223605 | Puzio et al. | Aug 2014 | A1 |
20140259218 | Kovalic et al. | Sep 2014 | A1 |
20140296486 | Gao et al. | Oct 2014 | A1 |
20140335054 | Gao et al. | Nov 2014 | A1 |
20140341852 | Srivastava et al. | Nov 2014 | A1 |
20150050302 | Thess | Feb 2015 | A1 |
20150079038 | Deverman et al. | Mar 2015 | A1 |
20150082481 | La Rosa et al. | Mar 2015 | A1 |
20150126588 | Nakai et al. | May 2015 | A1 |
20150133530 | Srivastava et al. | May 2015 | A1 |
20150184189 | Abad et al. | Jul 2015 | A1 |
20150191739 | La Rosa et al. | Jul 2015 | A1 |
20150197763 | La Rosa et al. | Jul 2015 | A1 |
20150238550 | McCown | Aug 2015 | A1 |
20150344911 | Chatterjee et al. | Dec 2015 | A1 |
20160017295 | Schaffer et al. | Jan 2016 | A1 |
20160025657 | Shahbazmohamadi et al. | Jan 2016 | A1 |
20160106865 | Zhong et al. | Apr 2016 | A1 |
20160215024 | Vandenberghe et al. | Jul 2016 | A1 |
20160222067 | Gao et al. | Aug 2016 | A1 |
20160256571 | Corral-Debrinski et al. | Sep 2016 | A1 |
20160264984 | La Rosa et al. | Sep 2016 | A1 |
20160289275 | Chiorini et al. | Oct 2016 | A1 |
20160319294 | Kovalic et al. | Nov 2016 | A1 |
20160333372 | Srivastava et al. | Nov 2016 | A1 |
20160361439 | Agbandje-McKenna et al. | Dec 2016 | A1 |
20160369299 | Boye et al. | Dec 2016 | A1 |
20170007720 | Boye et al. | Jan 2017 | A1 |
20170028082 | Wilson et al. | Feb 2017 | A1 |
20170049910 | Cronin et al. | Feb 2017 | A1 |
20170067908 | Nakai et al. | Mar 2017 | A1 |
20170088852 | Dangoor et al. | Mar 2017 | A1 |
20170088858 | Gao et al. | Mar 2017 | A1 |
20170096683 | Scaria et al. | Apr 2017 | A1 |
20170130245 | Kotin et al. | May 2017 | A1 |
20170159027 | Wilson et al. | Jun 2017 | A1 |
20170166926 | Deverman et al. | Jun 2017 | A1 |
20170204144 | Deverman et al. | Jul 2017 | A1 |
20170211092 | Chatterjee et al. | Jul 2017 | A1 |
20170211093 | Chatterjee et al. | Jul 2017 | A1 |
20170211094 | Chatterjee et al. | Jul 2017 | A1 |
20170211095 | Chatterjee et al. | Jul 2017 | A1 |
20170240885 | Deverman et al. | Aug 2017 | A1 |
20170275337 | Srivastava et al. | Sep 2017 | A1 |
20170298323 | Vandenberghe et al. | Oct 2017 | A1 |
20170349911 | Gao et al. | Dec 2017 | A1 |
20180002722 | Asokan et al. | Jan 2018 | A1 |
20180030096 | Aslanidi et al. | Feb 2018 | A1 |
20180030479 | Gao et al. | Feb 2018 | A1 |
20180036428 | Zhong et al. | Feb 2018 | A1 |
20180066022 | Chalberg et al. | Mar 2018 | A1 |
20180066285 | Ojala et al. | Mar 2018 | A1 |
20180104289 | Venditti et al. | Apr 2018 | A1 |
20180105559 | Srivastava et al. | Apr 2018 | A1 |
20180112229 | Nadzan et al. | Apr 2018 | A1 |
20180119167 | Abad et al. | May 2018 | A1 |
20180135074 | Srivastava et al. | May 2018 | A1 |
20180135076 | Linden | May 2018 | A1 |
20180163227 | Chatterjee et al. | Jun 2018 | A1 |
20180214576 | Fitzgerald et al. | Aug 2018 | A1 |
20180244727 | Zhong et al. | Aug 2018 | A1 |
20180265863 | Esteves et al. | Sep 2018 | A1 |
20180355376 | Chiorini et al. | Dec 2018 | A1 |
20180362592 | Gao et al. | Dec 2018 | A1 |
20180371024 | Asokan et al. | Dec 2018 | A1 |
20190048041 | Asokan et al. | Feb 2019 | A1 |
20190055524 | Vandenberghe et al. | Feb 2019 | A1 |
20190085301 | Gao et al. | Mar 2019 | A1 |
20190100560 | Vandenberghe et al. | Apr 2019 | A1 |
20190249195 | Marsic et al. | Aug 2019 | A1 |
20190255192 | Kirn et al. | Aug 2019 | A1 |
20190262373 | Woodard et al. | Aug 2019 | A1 |
20190284576 | Qu et al. | Sep 2019 | A1 |
20190292561 | Qu et al. | Sep 2019 | A1 |
20190367562 | Asokan et al. | Dec 2019 | A1 |
20200109418 | Li et al. | Apr 2020 | A1 |
20200399321 | Asokan et al. | Dec 2020 | A1 |
20210115474 | McCoy et al. | Apr 2021 | A1 |
20210128652 | Dismuke | May 2021 | A1 |
20210324418 | Thomas et al. | Oct 2021 | A1 |
20210363191 | McCoy et al. | Nov 2021 | A1 |
20210371469 | McCoy et al. | Dec 2021 | A1 |
20220056478 | O'Banion | Feb 2022 | A1 |
20220064675 | McCoy et al. | Mar 2022 | A1 |
20220088152 | Mikati | Mar 2022 | A1 |
20220089651 | Asokan et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
101072879 | Nov 2007 | CN |
1033405 | Sep 2000 | EP |
1777296 | Apr 2007 | EP |
1887081 | Feb 2008 | EP |
2194140 | Jun 2010 | EP |
2359869 | Aug 2011 | EP |
2492347 | Aug 2012 | EP |
2660325 | Nov 2013 | EP |
2315833 | Apr 2015 | EP |
1453547 | Sep 2016 | EP |
2007795 | Nov 2016 | EP |
2675484 | May 2018 | EP |
2263692 | Sep 2018 | EP |
2206728 | Oct 2018 | EP |
3244931 | Oct 2018 | EP |
1633767 | Nov 2018 | EP |
3060575 | Dec 2018 | EP |
3250239 | Dec 2018 | EP |
3459965 | Mar 2019 | EP |
3511021 | Jul 2019 | EP |
3108000 | Aug 2019 | EP |
2014534245 | Dec 2014 | JP |
2457252 | Jul 2012 | RU |
WO-9005142 | May 1990 | WO |
WO-9811244 | Mar 1998 | WO |
WO-9901555 | Jan 1999 | WO |
WO-9961601 | Dec 1999 | WO |
WO-0017377 | Mar 2000 | WO |
WO-9961601 | Mar 2000 | WO |
WO-0023477 | Apr 2000 | WO |
WO-0028004 | May 2000 | WO |
WO-0028061 | Nov 2000 | WO |
WO-0111034 | Feb 2001 | WO |
WO-0181581 | Nov 2001 | WO |
WO-0192551 | Dec 2001 | WO |
WO-0210210 | Feb 2002 | WO |
WO-03000906 | Jan 2003 | WO |
WO-03008540 | Jan 2003 | WO |
WO-03033515 | Apr 2003 | WO |
WO-03042361 | May 2003 | WO |
WO-03052051 | Jun 2003 | WO |
WO-03095647 | Nov 2003 | WO |
WO-2004027019 | Apr 2004 | WO |
WO-2005033321 | Apr 2005 | WO |
WO-2006021724 | Mar 2006 | WO |
WO-2006029319 | Mar 2006 | WO |
WO-2006066066 | Jun 2006 | WO |
WO-2006073052 | Jul 2006 | WO |
WO-2006119137 | Nov 2006 | WO |
WO-2006119432 | Nov 2006 | WO |
WO-2007084773 | Jul 2007 | WO |
WO-2007089632 | Aug 2007 | WO |
WO-2007092563 | Aug 2007 | WO |
WO-2007100465 | Sep 2007 | WO |
WO-2007120542 | Oct 2007 | WO |
WO-2007127264 | Nov 2007 | WO |
WO-2008088895 | Jul 2008 | WO |
WO-2009037279 | Mar 2009 | WO |
WO-2009043936 | Apr 2009 | WO |
WO-2009105612 | Aug 2009 | WO |
WO-2009108274 | Sep 2009 | WO |
WO-2010093784 | Aug 2010 | WO |
WO-2010129021 | Nov 2010 | WO |
WO-2010138263 | Dec 2010 | WO |
WO-2011020118 | Feb 2011 | WO |
WO-2011020710 | Feb 2011 | WO |
WO-2011122950 | Oct 2011 | WO |
WO-2011133890 | Oct 2011 | WO |
WO-2012061744 | May 2012 | WO |
WO-2012064960 | May 2012 | WO |
WO-2012112578 | Aug 2012 | WO |
WO-2012178173 | Dec 2012 | WO |
WO-2013016315 | Jan 2013 | WO |
WO-2013027223 | Feb 2013 | WO |
WO-2013158879 | Oct 2013 | WO |
WO-2013170078 | Nov 2013 | WO |
WO-2013173512 | Nov 2013 | WO |
WO-2013190059 | Dec 2013 | WO |
WO-2014007858 | Jan 2014 | WO |
WO-2014045674 | Mar 2014 | WO |
WO-2014124282 | Aug 2014 | WO |
WO-2014144229 | Sep 2014 | WO |
WO-2014153083 | Sep 2014 | WO |
WO-2014193716 | Dec 2014 | WO |
WO-2014194132 | Dec 2014 | WO |
WO-2015013313 | Jan 2015 | WO |
WO-2015038958 | Mar 2015 | WO |
WO-2015054653 | Apr 2015 | WO |
WO-2015121501 | Aug 2015 | WO |
WO-2015164757 | Oct 2015 | WO |
WO-2015168666 | Nov 2015 | WO |
WO-2015181823 | Dec 2015 | WO |
WO-2015191508 | Dec 2015 | WO |
WO-2016054557 | Apr 2016 | WO |
WO-2016065001 | Apr 2016 | WO |
WO-2016081811 | May 2016 | WO |
WO-2016115382 | Jul 2016 | WO |
WO-2016115503 | Jul 2016 | WO |
WO-2016128558 | Aug 2016 | WO |
WO-2016128559 | Aug 2016 | WO |
WO-2016134338 | Aug 2016 | WO |
WO-2016150964 | Sep 2016 | WO |
WO-2016164642 | Oct 2016 | WO |
WO-2016172008 | Oct 2016 | WO |
WO-2016172155 | Oct 2016 | WO |
WO-2016179644 | Nov 2016 | WO |
WO-2017015102 | Jan 2017 | WO |
WO-2017058892 | Apr 2017 | WO |
WO-2017066764 | Apr 2017 | WO |
WO-2017070516 | Apr 2017 | WO |
WO-2017077451 | May 2017 | WO |
WO-2017096164 | Jun 2017 | WO |
WO-2017106236 | Jun 2017 | WO |
WO-2017139643 | Aug 2017 | WO |
WO-2017143100 | Aug 2017 | WO |
WO-2017147123 | Aug 2017 | WO |
WO-2017180854 | Oct 2017 | WO |
WO-2017192750 | Nov 2017 | WO |
WO-2017201248 | Nov 2017 | WO |
WO-2018022608 | Feb 2018 | WO |
WO-2018035213 | Feb 2018 | WO |
WO-2018049226 | Mar 2018 | WO |
WO-2018064624 | Apr 2018 | WO |
WO-2018075798 | Apr 2018 | WO |
WO-2018119330 | Jun 2018 | WO |
WO-2018152333 | Aug 2018 | WO |
WO-2018160582 | Sep 2018 | WO |
WO-2018170310 | Sep 2018 | WO |
WO-2018204764 | Nov 2018 | WO |
WO-2018209154 | Nov 2018 | WO |
WO-2018226785 | Dec 2018 | WO |
WO-2018237066 | Dec 2018 | WO |
WO-2019006418 | Jan 2019 | WO |
WO-2019025984 | Feb 2019 | WO |
WO-2019141765 | Jul 2019 | WO |
WO-2019168961 | Sep 2019 | WO |
WO-2019169004 | Sep 2019 | WO |
WO-2019169132 | Sep 2019 | WO |
WO-2019173434 | Sep 2019 | WO |
WO-2019173538 | Sep 2019 | WO |
WO-2019178412 | Sep 2019 | WO |
WO-2019195423 | Oct 2019 | WO |
WO-2019195444 | Oct 2019 | WO |
WO-2019195449 | Oct 2019 | WO |
WO-2019222444 | Nov 2019 | WO |
WO-2020016318 | Jan 2020 | WO |
WO-2020106916 | May 2020 | WO |
WO-2020142653 | Jul 2020 | WO |
WO-2020191300 | Sep 2020 | WO |
WO-2020232297 | Nov 2020 | WO |
WO-2021076911 | Apr 2021 | WO |
WO-2021076925 | Apr 2021 | WO |
Entry |
---|
Giles et al., “Mapping an Adena-associated Virus 9-Specific Neutralizing Epitope to Develop Next-Generation Gene Delivery Vectors”, Database accession No. PREV201801008873 ; & Journal of Virology, vol. 92, No. 20, Oct. 2018 (Oct. 2018), pages Article No. e01011-18,ISSN: 0022-538X(print), DOI: 10.1128/JVI.01011-18. |
Vance et al., “AAV Biology, Infectivity and Therapeutic Use from Bench to Clinic”, in “Gene Therapy—Principles and Challenges”, Nov. 26, 2015, InTech, XP93071802, ISBN: 978-953-51-2221-0, pp. 118-143, DOI: 10.5772/61988. |
ACS on STN, BD Registry, 1182714-10-8 [online] [retrieved on Apr. 30, 2019], 2009215879, Aug. 27, 2009, SEQ ID No. 7. |
ACS on STN, BD Registry, 1182714-97-1 [online] [retrieved on Apr. 30, 2019], 2009215879, Aug. 27, 2009, SEQ ID No. 210. |
Adachi et al., “Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing,” Nature Communications 5(1): 14 pages (2013). |
Agbandje et al. “The Structure of Human Parvovir B19 at 8 A; Resolution” Virology 203(1):106-115 (1994). |
Agbandje-McKenna et al. “AAV Capsid Structure and Cell Interactions” Methods in Molecular Biology, 807:47-92 (2011). |
Albright et al., “Mapping the Structural Determinants Required for AAVrh.10 Transport across the Blood-Brain Barrier,” Molecular Therapy 26(2), p. 1-14 (2017). |
Albright, “Modulation of Sialic Acid Dependence Influences the Central Nervous System Transduction Profile of Adeno-associated Viruses,” Journal of Virology 93(11), pp. 1-15 (2019). |
Altschul et al. “Basic Local Alignment Search Tool” Journal of Molecular Biology 215:403-410 (1990). |
Altschul et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Res. (1997) 25(17):3389-3402. |
Altschul et al. “Local Alignment Statistics” Methods in Enzymology 266:460-480 (1996). |
Altschul, SF et al., ‘Issues in searching molecular sequence databases,’ Nat. Genet., vol. 6, pp. 119-129, (Feb. 1994). |
Andino et al. “AAV-mediated knockdown of phospholamban leads to improved contractility and calcium handling in cardiomyocytes” The Journal of Gene Medicine 10:132-142 (2008). |
Arnold et al., “A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells,” Proc Natl Acad Sci USA 94(16):8842-8847 (1997). |
Arrunda et al., “Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model,” Blood 105:3458-3464 (2005). |
Askoan et al. “Adeno-Associated Virus Type 2 Contains an Integrin a5 1 Binding Domain Essential for Viral Cell Entry” Journal of Virology, 80(18):8961-8969 (2006). |
Asokan, et al., “Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle”, Nat Biotechnol, (Jan. 2010); 28(1): 79-82. |
Asuri et al., Directed Evolution of adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells, Molecular Therapy, Nature Publishing Group GB 20(2):329-338 (2013). |
Ballabh et al. “The blood-brain barrier: an overview: structure, regulation, and clinical implications” Neurobiology of Disease, 16:1-13 (2004). |
Bantel-Schaal et al., “Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblast,” J Virology 73:939 (1999). |
Bantel-Schaal et al. “Human Adeno-Associated Virus Type 5 Is Only Distantly Related to Other Known Primate Helper-Dependent Parvovirus” Journal of Virology 73(2):939-947 (1999). |
Bartlett, JS et al., ‘Selective and Rapid Uptake of Adeno-Associated Virus Type 2 in Brain,’ Hum. Gene Ther., 9(8):1181-1186, (May 1998). |
Bell et al. “Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid” Journal of Virology, 86(13):7326-7333 (2012). |
Bleker et al. “Mutational Analysis of Narrow Pores at the Fivefold Symmetry Axes of Adeno-Associated Virus Type 2 Capsids Reveals a Dual Role in Genome Packaging and Activation of Phospholipase A2 Activity” Journal of Virology, 79(4):2528-2540 (2005). |
Bordoli et al. “Protein structure homology modeling using SWISS-MODEL workspace” Nature Protocols, 4(1):1-13 (2008). |
Bowie, et al., “Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions.” Science (1990); 247: 1306-1310. |
Bowles et al. “Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector” Molecular Therapy, 20(2):443-455 (2012). |
Brichard et al. “The Tyrosinase Gene Codes for an Antigen Recognized by Autologous Cytolytic T Lymphocytes on HLA-AZ Melanomas” Journal of Experimental Medicine178:489-495 (1993). |
Brown et al. “Chimeric Parvovir 19 Capsids for the Presentation of Foreign Epitopes” Virology 198(2):477-488 (1994). |
Brown et al. “Erythrocyte P Antigen: Cellular Receptor for B19 Parvovir” Science 262(5130):114-117 (1993). |
Carrillo-Tripp et al. “VIPERdb2: an enhanced and web API enabled relational database for structural virology” Nucleic Acids Research, 37:D436-D442 (2009). |
Carstea, Ed et al. ‘Niemann-Pick C1 Disease Gene: Homology to Mediators of Cholesterol Homeostasis,’ Science, 277(5323): 228-231 (Jul. 1997). |
Cearley, C.N. et al. (2008). “Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain,” Mol. Ther. 16:1710-1718. |
Cearley et al. “Transduction Characteristics of Adeno-associated Virus Vectors Expressing Cap Serotypes 7, 8, 9, and Rh10 in the Mouse Brain” Molecular Therapy, 13(3):528-537 (2006). |
Chandler et al., “Systemic AAV9 gene therapy improves the lifespan of mice with Niemann-Pick disease, type C1,” Human Molecular Genetics 26(1):52-64 (2017). |
Chao et al. “Several Log Increase in Therapeutic Transgene Delivery by Distinct Adeno-Associated Viral Serotype Vectors” Molecular Therapy 2(6):619-623 (2000). |
Chapman et al. “Structure, Sequence, and Function Correlations among Parvovires” Virology 194(2):491-508 (1993). |
Chen et al. “Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors” Human Gene Therapy, 16(2):235-247 (2005). |
Chen, SH et al., ‘Gene therapy for brain tumors: Regression of experimental gliomas by adenovirus-mediated gene transfer in vivo,’ Proc. Natl Acad. Sci. USA, vol. 91, pp. 3054-3057, (Apr. 1994). |
Chiorini et al. “Cloning and Characterization of adeno-Associated Virus Type 5” Journal of Virology 73(2):1309-1319 (1999). |
Chiorini et al. “Cloning of adeno-Associated Virus Type 4 (AAV4). and Generation of Recombinant AAV4 Particles” Journal of Virology 71(9):6823-6833 (1997). |
Chipman et al. “Cryo-electron microscopy studies of empty capsids of human parvovirus 819 complexed with its cellular receptor” Proceedings of the National Academy of Sciences 93:7502-7506 (1996). |
Chirmule et al., “Humoral immunity to adeno-associated vir type 2 vectors following administration to murine and nonhuman primate mcle,” Journal of Virology, The American Society for Microbiology, , 74(5):2420-2425 (2000). |
Choi et al., “Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons,” Molecular Brain, Biomed Central Ltd, London UK, 7(1):17 pp. 1-10 (2014). |
Clark, KR et al., ‘Highly Purified Recombinant Adeno-Associated Virus Vectors Are Biologically Active and Free of Detectable Helper and Wild-Type Viruses,’ Hum. Gene Ther., 10(6):1031-1039, (Apr. 1999). |
Cleves, Ann E. “Protein transport: The nonclassical ins and outs” Current Biology7:R318-R320 (1997). |
Conway et al. “High-titer recombinant adeno-associated vir production utilizing a recombinant herpes simplex virus type 1 vector expressing AAV-2 Rep and Cap” Gene Therapy 6:986-993 (1999). |
Corpet, F et al., ‘Multiple sequence alignment with hierarchical clustering,’ vol. 16 No. 22, pp. 10881-10890, (Oct. 1988). |
Cotmore et al.,“The Family Parvoviridae,” Archives of Virology 159:1239-1247 (2014). |
DataBase GenBank: ABS91093.1, Aug. 10, 2007, [online] [retrieved on Feb. 14, 2020] Retrieved from Internet: https://www.ncbi.nlm.nih.gov/protein/ABS91093.1. |
DataBase GenBank: ACW56705.1, Sep. 24, 2009, [online] [retrieved on May 7, 2019] Retrieved from Internet:https://www.ncbi.nlm.nih.gov/protein/ACW56705.1?report=genbank&log$=prottop&blast_rank= 1&RID=D2CZ8TP9014, 1 page. |
De Jesus et al., “Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer,” EMBO Mol. Med. 4(8): 691-704 (2012). |
Devereux et al. “A comprehensive set of sequence analysis programs for the VAX” Nucleic Acids Research 12(1):387-395 (1984). |
Deverman, BE, Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain, Nat. Biotechnol., 34(2) :204-209. doi: 10.1038/nbt.3440. PubMed PMID: 26829320 (Epub Feb. 1, 2016). |
Dimattia et al. “Structural Insight into the Unique Properties of Adeno-Associated Virus Serotype 9,” Journal of Virology, 86(12):6947-6958 (2012). |
Dipasquale et al. “Identification of PDGFR as a receptor for MV-5 transduction” Nature Medicine, 9:1306-1312 (2003). (Abstract only). |
Diprimo, et al., “Surface loop dynamics in adeno-associated virus capsid assembly”, Journal of Virology (2008); vol. 82, No. 11, pp. 5178-5189. |
Emsley et al. “Features and development of Coot” Acta Crystallographica Section D: Biological Crystallography, D66:486-501 (2010). |
Extended European Search Report corresponding to European Patent Application No. 16737901.5 (6 pages). (dated May 15, 2018). |
Extended European Search Report corresponding to European Patent Application No. 20212583.7, dated May 3, 2021, 10 pages. |
Extended European Search Report issued by the European Patent Office for Application No. 16852471.8, dated Jul. 29, 2019, 13 pages. |
Extended European Search Report issued by the European Patent Office for U.S. Appl. No. 18/754,551, dated Jun. 4, 2021, 11 pages. |
Fang et al., “Stable antibody expression at therapeutic levels using the 2A peptide,” Nature Biotechnology 23:584-590 (2005). |
Felsenstein, Joseph “Confidence Limits on Phylogenies: An Approach Using the Bootstrap” Evolution, 39 (4):783-791 (1985). |
Ferrari et al. “New developments in the generation of Ad-free high-titer rAAV gene therapy vectors” Nature Medicine 3(11):1295-1297 (1997). |
Fisher, KJ et al., ‘Transduction with Recombinant Adeno-Associated Virus for Gene Therapy Is Limited by Leading-Strand Synthesis,’ J. Viral., 70(1):520-532 (LFU assay) (Jan. 1996). |
Foster et al., “Emerging Immunotherapies for Authoimmune Kidney Disease,” Hyman Vaccines & Immunotherapeutics 15(4):876-890 (2019). |
Foust et al. “Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes” Nature Biotechnology, 27(1):59-65 (2009). |
Gao et al. “Adeno-associated viruses undergo substantial evolution in primates during natural infections” Proceedings of the National Academy of Sciences, 100(10):6081-6086 (2003). |
Gao et al. “Clades of adeno-Associated Vires are Widely Disseminated in Human Tissues” Journal of Virology 78(12):6381-6388 (2004). |
Gao et al. “Novel adeno-associated viruses from Rhesus Monkeys as Vectors for human gene therapy,” Proceedings of the National Academy of Sciences 99(18):11854-11859 (2002). |
Genbank Accession No. AAR26465, Bovine Adeno-Associated Virus, dated May 25, 2004, 2 pages. |
Genbank Accession No. AAT46339, capsid protein [Adeno-associated virus 11], dated Nov. 30, 2004, 2 pages. |
Genbank Accession No. ABI16639, VP1 [Adeno-associated virus 12, dated Feb. 20, 2008, 2 pages. |
GenBank Accession No. AF028704 “Adeno-associated virus 6, complete genome,” Jan. 12, 1998 [online]. (Retrieved online Feb. 21, 2019]. |
GenBank Accession No. AF028705 “adeno-associated Virus 3B, complete genome” NCBI (2 pages). (Jan. 12, 1998). |
GenBank Accession No. AF043303 “Adeno-associated virus 2, complete genome,” May 20, 2010 [online]. (Retrieved online Feb. 21, 2019]. |
GenBank Accession No. AF063497 “Adeno-associated virus 1, complete genome,” Apr. 27, 1999 [online]. (Retrieved online Feb. 21, 2019]. |
Genbank Accession No. AF085716, Adeno-associated virus 5 DNA binding trs helicase (Rep22) and capsid protein (VP1) genes, complete cds., dated Feb. 9, 1999, 3 pages. |
GenBank Accession No. AF258783.1 ‘Felis catus Niemann-Pick type C1 disease protein (NPC1) mRNA, complete eds’ (2000). |
GenBank Accession No. AF288061 “Hamster parvoVirus 5' terminal hairpin gene sequence” NCBI (1 page). (Apr. 13, 2001), replaced by AH009962. |
GenBank Accession No. AF513851 “Adeno-associated virus 7 nonstructural protein and capsid protein genes, complete cds,” Sep. 5, 2002 [online]. (Retrieved online Feb. 21, 2019]. |
GenBank Accession No. AF513852 “Adeno-associated virus 8 nonstructural protein and capsid protein genes, complete cds,” Sep. 5, 2002 [online]. (Retrieved online Feb. 21, 2019]. |
GenBank Accession No. AH009962 “Hamster parvovir” NCBI (1 page). (Aug. 25, 2016), replaced AF288061. |
GenBank Accession No. AY028223 “B19 Virus isolate patient_A.1.1 genomic sequence” NCB/ (1 page). (Apr. 16, 2001). |
GenBank Accession No. AY028226 “819 Virus isolate patient_A.2.1 genomic sequence” NCB/ (1 page). (Apr. 16, 2001). |
Genbank Accession No. AY186198, Avian adeno-associated virus ATCC VR-865, complete genome, dated Jun. 5, 2003, 3 pages. |
Genbank Accession No. AY242997, Non-Human primate Adeno-associated virus isolate AAVrh.8 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY242998, Non-Human primate Adeno-associated virus isolate AAVrh.37 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY242999, Non-Human primate Adeno-associated virus isolate AAVrh.36 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243000, Non-Human primate Adeno-associated virus isolate AAVrh.35 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243001, Non-Human Primate Adeno-associated Virus Isolate AAVrh.34 caapsid protein (VP1) gene, complete cds., dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243002, Non-Human Primate Adeno-associated Virus Isolate AAVrh.33 caapsid protein (VP1) gene, complete cds. dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243003, Non-Human Primate Adeno-associated Virus Isolate AAVrh.32 caapsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243007, Non-Human Primate Adeno-associated Virus Isolate AAVrh.2 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243013, Non-Human primate Adeno-associated virus isolate AAVrh.13 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243015, Non-Human primate Adeno-associated virus isolate AAVrh.10 capsid protein (VP1) gene, complete cds dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243016, Non-Human primate Adeno-associated virus isolate AAVcy.6 capsid protein (VP1) gene, complete cds dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243017, Non-Human primate Adeno-associated virus isolate AAVcy.5 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243018, Non-Human primate Adeno-associated virus isolate AAVcy.4 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243019, Non-Human primate Adeno-associated virus isolate AAVcy.3 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243020, Non-Human primate Adeno-associated virus isolate AAVcy.2 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243021, Non-Human primate Adeno-associated virus isolate AAVch.5 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243022, Non-Human primate Adeno-associated virus isolate AAVbb.2 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY243023, Non-Human primate Adeno-associated virus isolate AAVbb.1 capsid protein (VP1) gene, complete cds, dated May 14, 2003, 2 pages. |
Genbank Accession No. AY388617, Bovine adeno-associated virus, complete genome, dated May 25, 2004, 3 pages. |
Genbank Accession No. AY530553, Adeno-associated virus isolate pi.1 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530554, Adeno-associated virus isolate pi.2 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530555, Adeno-associated virus isolate pi.3 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530556, Adeno-associated virus isolate rh.1 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530557, Adeno-associated virus isolate rh.25 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530558, Adeno-associated virus isolate rh.38 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530559, Adeno-associated virus isolate rh.40 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530560, Adeno-associated virus isolate rh.43 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530561, Adeno-associated virus isolate rh.48 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530562, Adeno-associated virus isolate rh.49 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530563, Adeno-associated virus isolate rh.50 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530564, Adeno-associated virus isolate rh.51 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530565, Adeno-associated virus isolate rh.52 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530566, Adeno-associated virus isolate rh.53 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530567, Adeno-associated virus isolate rh.54 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530568, Adeno-associated virus isolate rh.55 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530569, Adeno-associated virus isolate rh.57 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530570, Adeno-associated virus isolate rh.58 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530572, Adeno-associated virus isolate rh.61 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530573, Adeno-associated virus isolate rh.62 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530574, Adeno-associated virus isolate rh.64 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530575, Adeno-associated virus isolate hu.1 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530576, Adeno-associated virus isolate hu.10 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530577, Adeno-associated virus isolate hu.11 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530578, Adeno-associated virus isolate hu.13 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
GenBank Accession No. AY530579 “adeno-associated Virus 9 isolate hu.14 capsid protein VP1 (cap). gene, complete eds” NCBI (2 pages). (Jun. 24, 2004). |
Genbank Accession No. AY530580, Adeno-associated virus isolate hu.15 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530581, Adeno-associated virus isolate hu.16 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530582, Adeno-associated virus isolate hu.17 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530583, Adeno-associated virus isolate hu.18 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530584, Adeno-associated virus isolate hu.19 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530585, Adeno-associated virus isolate hu.2 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530586, Adeno-associated virus isolate hu.20 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530587, Adeno-associated virus isolate hu.21 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530588, Adeno-associated virus isolate hu.22 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530589, Adeno-associated virus isolate hu.23 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530590, Adeno-associated virus isolate hu.24 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530591, Adeno-associated virus isolate hu.25 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530592, Adeno-associated virus isolate hu.27 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530593, Adeno-associated virus isolate hu.28 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530594, Adeno-associated virus isolate hu.29 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530595, Adeno-associated virus isolate hu.3 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530596, Adeno-associated virus isolate hu.31 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530597, Adeno-associated virus isolate hu.32 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530598, Adeno-associated virus isolate hu.34 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530599, Adeno-associated virus isolate hu.35 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530600, Adeno-associated virus isolate hu.37 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530601, Adeno-associated virus isolate hu.39 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530602, Adeno-associated virus isolate hu.4 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530603, Adeno-associated virus isolate hu.40 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530604, Adeno-associated virus isolate hu.41 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530605, Adeno-associated virus isolate hu.42 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530606, Adeno-associated virus isolate hu.43 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530607, Adeno-associated virus isolate hu.44 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530608, Adeno-associated virus isolate hu.45 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530609, Adeno-associated virus isolate hu.46 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530610, Adeno-associated virus isolate hu.47 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530611, Adeno-associated virus isolate hu.48 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 4 pages. |
Genbank Accession No. AY530612, Adeno-associated virus isolate hu.49 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530613, Adeno-associated virus isolate hu.51 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530614, Adeno-associated virus isolate hu.52 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530615, Adeno-associated virus isolate hu.53 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530616, Adeno-associated virus isolate hu.54 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530617, Adeno-associated virus isolate hu.55 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530618, Adeno-associated virus isolate hu.56 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530619, Adeno-associated virus isolate hu.57 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530620, Adeno-associated virus isolate hu.58 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530621, Adeno-associated virus isolate hu.6 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530622, Adeno-associated virus isolate hu.60 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530623, Adeno-associated virus isolate hu.61 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530624, Adeno-associated virus isolate hu.63 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530625, Adeno-associated virus isolate hu.64 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530626, Adeno-associated virus isolate hu.66 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530627, Adeno-associated virus isolate hu.67 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530628, Adeno-associated virus isolate hu.7 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY530629, Adeno-associated virus isolate hu.9 capsid protein VP1 (cap) gene, complete cds, dated Jun. 24, 2004, 2 pages. |
Genbank Accession No. AY629583, Avian adeno-associated virus strain DA-1, complete genome, dated Sep. 10, 2004, 3 pages. |
Genbank Accession No. AY631966, Adeno-associated virus 11 nonstructural protein and capsid protein genes, complete cds, dated Nov. 30, 2004, 3 pages. |
Genbank Accession No. AY695370, Adeno-associated virus isolate hu.T17 capsid protein VP1 (cap) gene, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695371, Adeno-associated virus isolate hu.T32 Rep 78 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695372, Adeno-associated virus isolate hu.T40 Rep 78 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695373, Adeno-associated virus isolate hu.T70 Rep 78 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695374, Adeno-associated virus isolate hu.T32 Rep 71 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695375, Adeno-associated virus isolate hu.T88 Rep 78 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695376, Adeno-associated virus isolate hu.S17 Rep 78 protein and capsid protein VP1 (cap) genes, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695377, Adeno-associated virus isolate hu.LG15 capsid protein VP1 (cap) gene, complete cds, dated Nov. 15, 2005, 3 pages. |
Genbank Accession No. AY695378, Adeno-associated virus isolate hu.T41 capsid protein VP1 (cap) gene, complete cds, dated Nov. 15, 2005, 2 pages. |
GenBank Accession No. BC045895 ‘Dania rerio Niemann-Pick disease, type C2, mRNA (cDNA clone MGC:56070 IMAGE:5409780), complete eds’ (2003). |
GenBank Accession No. BC054539 ‘Mus musculus Niemann Pick type C1, mRNA (cDNA clone MGC:62352 IMAGE:6405214), complete eds’ (2006). |
GenBank Accession No. BC090541 ‘Dania rerio Niemann-Pick disease, type C1, mRNA (cDNA clone IMAGE:7149020), partial eds’ (2016). |
GenBank Accession No. BC102504 ‘Bos taurus Niemann-Pick disease, type C2, mRNA (cDNA clone MGC:127986 IMAGE:7954223), complete eds’ (2007). |
GenBank Accession No. BC117178 ‘Homo sapiens NPC1 (Niemann-Pick disease, type C1, gene)-like 1, mRNA (cDNA clone MGC:150787 IMAGE:40125729), complete eds’ (2006). |
GenBank Accession No. BC143756 ‘Homo sapiens NPC1 (Niemann-Pick disease, type C1, gene)-like 1, mRNA (cDNA clone MGC:177287 IMAGE:9052270), complete eds’ (2009). |
GenBank Accession No. BC151276 ‘Bos taurus Niemann-Pick disease, type C1, mRNA (cDNA clone MGC:152602 IMAGE:8433293), complete eds’ (2007). |
Genbank Accession No. DQ813647, Adeno-Associated Virus 12 Rep 78 and VP1 genes, complete cds., dated Feb. 20, 2008, 3 pages. |
GenBank Accession No. J00306 “Human somatostatin I gene and flanks” NCBJ (2 pages). (Jan. 13, 1995). |
GenBank Accession No. J01901 “adeno-associated Virus 2, complete genome” NCBJ (3 paqes). (Apr. 27, 1993). |
GenBank Accession No. J02275 “Minute Virus of mice, complete genome” NCBJ (4 pages). (May 22, 1995). |
GenBank Accession No. KJ893081 ‘Synthetic construct Homo sapiens clone ccsbBroadEn 02475 NPC2 qene, encodes complete protein’ (2015). |
Genbank Accession No. MI332400.1, Sequence 20 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332401.1, Sequence 21 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332402.1, Sequence 22 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332403.1, Sequence 23 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332404.1, Sequence 24 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332405.1, Sequence 25 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332406.1, Sequence 26 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332407.1, Sequence 27 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332408.1, Sequence 28 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332409.1, Sequence 29 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332410.1, Sequence 30 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332411.1, Sequence 31 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332412.1, Sequence 32 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332413.1, Sequence 33 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332414.1, Sequence 34 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
Genbank Accession No. MI332415.1, Sequence 35 from U.S. Pat. No. 9,839,696, dated Feb. 12, 2018, 2 pages. |
GenBank Accession No. NC_000883 “Human parvoVirus 819, complete genome” NCBI (4 pages). (Feb. 10, 2015). |
GenBank Accession No. NC_001358 “ParvoVirus H1, complete genome” NCBI (3 pages). (Feb. 10, 2015). |
GenBank Accession No. NC_001401 “adeno-associated Virus—2, complete genome” NCBI (5 pages). (Dec. 2, 2014). |
GenBank Accession No. NC_001510 “Minute Virus of mice, complete genome” NCBI (5 pages). (Mar. 28, 2016). |
GenBank Accession No. NC_001701 “Goose parvovir, complete genome” NCBI (4 pages). (Jan. 28, 2010). |
GenBank Accession No. NC_001729 “adeno-associated vir-3, complete genome” NCBI (3 pages). (Jun. 28, 2010). |
Genbank Accession No. NC_001729, Adeno-associated virus-3, complete genome, dated Aug. 13, 2018, 3 pages. |
Genbank Accession No. NC_001829, Adeno-associated virus-4, complete genome, dated Aug. 13, 2018, 3 pages. |
GenBank Accession No. NC_001829 “adeno-associated Virus-4, complete genome” NCBI (3 pages). (Jan. 28, 2010). |
GenBank Accession No. NC_001862 “adeno-associated Virus 6, complete genome” NCBJ (3 pages). (Jan. 12, 2004). |
Genbank Accession No. NC_001863, Adeno-associated virus 3B, complete genome, dated Jan. 12, 2004, 4 pages. |
GenBank Accession No. NC_002077 “adeno-associated Virus-1, complete genome” NCBI (3 pages). (Mar. 11, 2010). |
Genbank Accession No. NC_004828, Avian adeno-associated virus ATCC VR-865, complete genome, dated Aug. 13, 2018, 3 pages. |
Genbank Accession No. NC_005889, Bovine adeno-associated virus, complete genome, dated Aug. 13, 2018, 3 pages. |
Genbank Accession No. NC_006148.1, Snake parvovirus 1, complete genome, dated Aug. 13, 2018, 3 pages. |
GenBank Accession No. NC_006152 “adeno-associated Virus 5, complete genome” NCBI (3 pages). (Dec. 8, 2008). |
GenBank Accession No. NC_006261 “adeno-associated Virus-8, complete genome” NCBI (3 pages). (Mar. 11, 2010). |
Genbank Accession No. NC_006263, Avian adeno-associated virus strain DA-1, complete genome, dated Aug. 13, 2018, 3 pages. |
GenBank Accession No. NM 000271.4 ‘Homo sapiens cholesterol transporter 1 (NPC1), mRNA’ (2017). |
GenBank Accession No. NM 008720.2 ‘Mus musculus cholesterol transporter 1 (Npc1), mRNA’ (2017). |
GenBank Accession No. NM 023409.4 ‘Mus musculus NPC intracellular cholesterol transporter 2 (Npc2 mRNA’ (2017). |
GenBank Accession No. NM 173918 Bos taurus NPC intracellular cholesterol transporter 2 (NPC2), mRNA-;-(2017). |
GenBank Accession No. NM_006432.3 ‘Homo sapiens NPC intracellular cholesterol transporter 2 (NPC2), mRNA’ (2017). |
GenBank Accession No. NM_214206 “Sus scrofa NPC intracellular cholesterol transporter 2 (NPC2), mRNA,” dated Jun. 20, 2021, 2 pages. |
GenBank Accession No. NP_044927 “capsid [Adeno-associated Virus-4]” NCBI (2 pages). (Jan. 28, 2010). |
GenBank Accession No. P01166 “Somatostatin precursor [Contains:Somatostatin 28; Somatostatin-14]” NCBI (2 pages). (Sep. 15, 2003). |
GenBank Accession No. P61278 “Somatostatin precursor [Contains: Somatostatin 28; Somatostatin-14]” NCBI (2 pages). (Nov. 13, 2019). |
GenBank Accession No. U89790 “Adeno-associated virus 4, complete genome,” Aug. 21, 1997 [online]. (Retrieved online Feb. 21, 2019]. |
GenBank Accession No. X01457 “ParvoVirus h-1, complete genome” NCBI (3 pages). (Apr. 18, 2005). |
Genbank Accession No. Y18065, adeno-associated virus type 5 partial genome (cap and rep genes complete), dated Jan. 15, 1999, 3 pages. |
Genbank Accession No. NC_001401, Adeno-associated virus-2, complete genome, dated Aug. 13, 2018, 6 pages. |
Genbank Accession No. NC_002077, Adeno-associated virus-1, dated Aug. 13, 2018, 3 pages. |
GenBank Accession No. BC002532 ‘Homo sapiens Niemann-Pick disease, type C2, mRNA (cDNA clone MGC:1333 IMAGE:3140870), complete eds’ (2006). |
GenBank Accession No. NC_001540 “Bovine parvovir, complete genome” NCBI (4 pages). (Nov. 30, 2009). |
Gonzales, “Cross-Species Evolution of Synthetic AAV Strains for clinical Translation,” ASGCT, 23 pages. (2020). |
Gorman et al. “Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs” Proceedings of the National Academy of Sciences 95:4929:4934 (1998). |
Govindasamy et al., “Structural Insights into Adeno-Associated Virus Serotype 5,” J. Virology 87: 11187-11199 (2013). |
Govindasamy et al., “Structurally mapping the diverse phenotype of adeno-associated virus serotype 4,” J. Virol 80:11556-11570 (2006). |
Gray et al. “Preclinical Differences of Intravascular MV9 Delivery to Neurons and Glia: A Comparative Study of Adult Mice and Nonhuman Primates” Molecular Therapy, 19(6):1058-1069 (2011). |
Gregorevic et al. “Systemic Microdystrophin Gene Delivery Improves Skeletal Mcle Structure and Function in Old Dystrophic mdx Mice” Molecular Therapy 16(4):657-664 (2008). |
Grieger, et al., “Separate Basic Region Motifs within the Adeno-Associated Virus Capsid Proteins Are Essential for Infectivity and Assembly.” J. Viral. (2006), 80(11): 5199-5210. |
Grifman, et al., “Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids”. Molecular Therapy (2001); vol. 3, No. 6, pp. 964-975. |
Grimm et al., “In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated vires,” Journal of Virology, The American Society for Microbiology, 82(12):5887-5911 (2008). |
Gurda et al. “Capsid Antibodies to Different adeno-Associated Virus Serotypes Bind Common Regions” Journal of Virology, 87(16):9111-9124 (2013). |
Gurda et al., “Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8,” Journal of Virology 86(15): 7739-7751 (2012). |
Hadaczek et al. “Transduction of Nonhuman Primate Brain with Adeno-Associated Virus Serotype 1: Vector Trafficking and Immune Response” Human Gene Therapy, 20(3):225-237 (2009). |
Hajitou et al., “Vascular targeting: recent advances and therapeutic perspectives,” TCM 16:80-88 (2006). |
Hauck et al. “Characterization of Tissue Tropism Determinants of Adeno-Associated Virus Type 1” Journal of Virology 77(4):2768-2774 (2003). |
Havlik, Engineering A Humanized AAV8 Capsid Through Interative Structure-Guided Evolution ASGCT, 24 pages. (2019). |
Havlik et al., “Co-Evolution of AAV Capsid Antigenicity and Tropism Through a Structure-Guided Approach,” ASGCT, 39 pages (2020). |
Higgins, Desmond G., and Sharp, Paul M. “Clustal: a package for performing multiple sequence alignment on a microcomputer.” Gene (1988); 73.1: 237-244. |
Higgins, DG et al., ‘Fast and sensitive multiple sequence alignments on a microcomputer,’ Comput Appl Biosci., 5(2):151-3, (Apr. 1989). |
Hoshijima et al. “Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery” Nature Medicine 8:864-871 (2002). |
Huang et al. “Characterization of the adeno-Associated Virus 1 and 6 Sialic Acid Binding Site” Journal of Virology, 9 (11):5219-5230 (2016). |
Huang et al. “ParvoVirus qlycan interactions” Current Opinion in Virology 7:108-118 (2014). |
Huang, X et al., ‘Dynamic programming algorithms for restriction map comparison,’ Cabios, Vo1.8, No. 5., pp. 511-520, (1992). |
Hughes et al., “AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease,” Human Molecular Genetics 27(17)3079-3098 (2018). |
International Search Report and the Written Opinion of the International Searching Authority corresponding to International Patent Application No. PCT/2018/018381 (14 pages) (mailed Jul. 5, 2018). |
International Search Report and the Written Opinion of the International Searching Authority corresponding to International Patent Application No. PCT/US2019/020053 (10 pages) (mailed Jun. 6, 2019). |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2020/056015,dated Feb. 12, 2021, 17 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2020/056031,dated Feb. 15, 2021, 18 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/2016/013460, dated May 12, 2016, 11 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/2016/054143, dated Mar. 23, 2017, 33 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/2020/023877, dated Aug. 3, 2020, 21 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2016/026524, dated Jan. 9, 2016, 10 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2018/038584 dated Aug. 24, 2018, 11 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2019/062531, dated Apr. 1, 2020, 12 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2020/032978, dated Oct. 15, 2020, 14 pages. |
International Search Report of International PCT/US2016/026524, mailed Sep. 1, 2016. |
Invitation to Pay issued by the International Searching Authority for Application No. PCT/US21/30937, dated Aug. 16, 2021, 3 pages. |
Invitation to Pay issued by the International Searching Authority for Application No. PCT/US2019/062531, dated Feb. 3, 2020, 2 pages. |
Janson, C. et al., ‘Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain,’ Hum. Gene Ther., 13(11):1391-1412 (Jul. 2002). |
Kailasan et al., “Structure of an enteric pathogen, bovine parvovirus,” Virology 89:2603-2614 (2015). |
Kaplitt, M.G. et al. (1994). “Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain,” Nature Genetics 6:148-154. |
Karlin et al. “Applications and statistics for multiple high-scoring segments in molecular sequences” Proceedings of National Academy of Sciences 90:5873-5877 (1993). |
Kashiwakura et al. “Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection” Journal of Virology, 79(1).609-614 (2005). |
Kauffman et al., “Mechanism Matters: A Taxonomy of Cell Penetrating Peptides,” Trends in Biochemcial Sciences, Elsevier, Amsterdam, NL 40(12):749-764 (2015). |
Kawakami et al. “Cloning of the gene coding for a shared human melanoma antigen recognized by autologo T cells infiltrating into tumor” Proceedings of the National Academy of Sciences 91:3515-3519 (1994). |
Kawakami et al. “Identification of the Immunodominant Peptides of the MART-1 Human Melanoma Antigen Recognized by the Majority of HLA-A2-restricted Tumor Infiltrating Lymphocytes” The Journal of Experimental Medicine 180:347-352 (1994). |
Koivunen et al., “Identification of Receptor Ligands with Phase Display Peptide Libraries,” J. Nucl. Med. 40:883-888 (1999). |
Krissinel et al. “Secondary-structure matching (SSM)., a new tool for fast protein structure alignment in three dimensions” Acta Crystallographica Section D: Biological Crystallography, D60:2256-2268 (2004). |
Kumar et al. “MEGA?: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets” Molecular Biology and Evolution, 33(7):1870-1874 (2016). |
Lein et al. “Genome-wide atlas of gene expression in the adult mouse brain” Nature, 445(7124):168-176 (2007). (Abstract only). |
Lerch et al, “The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion,” Virology 403(1):26-36 (2010). |
Levine et al. “The Tumor Suppressor Genes” Annual Review of Biochemistry 62:623-651 (1993). |
Li et al. “Construction of phospholamban antisense RNA recombinant adeno-associated Virus vector and its effects in rat cardiomyocytes” Acta Pharmalogica Sinica 26(1).51-55 (2005). |
Li et al. “Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Mcle Gene Transfer” Molecular Therapy, 24(1):53-65 (2016). |
Li et al. “Engineering and Selection of Shuffled AAV Genomes: A New Strategy for Producing Targeted Biological Nanoparticles” Molecular Therapy, 16(7):1252-1260 (2008). |
Li et al. “Single Amino Acid Modification of adeno-Associated Virus Capsid Changes Transduction and Humeral Immune Profiles” Journal of Virology, 86(15):7752-7759 (2012). |
Lisowski et al., “Selection and evaluation of clinically relevant AAV variants in a xenograft liver model,” Nature 506(7488):A73382-386 (2014). |
Loftus, SK et al., ‘Murine Model of Niemann-Pick C Disease: Mutation in a Cholesterol Homeostasis Gene,’ Science, 277(5323):232-235 (Jul. 1997). |
Madigan et al. “Engineering AAV receptor footprints for gene therapy” Current Opinion in Virology, 18:89-96 (2016). |
Margolskee, R. F. “Epstein-Barr Virus Based Expression Vectors” Current Topics in Microbiology and Immunology 158:67-95 (1992). |
Mauro et al., “A critical analysis of codon optimization in human therapeutics,” Trends in Molecular Medicine, Nov. 2014, vol. 20, No. 11, pp. 604-613. |
McCarty, D.M., et al., “Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis,” Gene Therapy 8, 1248-1254 (2001). |
McLaughlin et al., “Adeno-associated virus general transduction vectors: analysis of proviral structures,” J. Virol., (1988) 62:1963-1973. |
Miller et al. “Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1” Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 62(Pt 12):1271-1274 (2006). |
Mingozzi et al. “Immune responses to AAV vectors: overcoming barriers to successful gene therapy” Blood, 122 (1):23-36 (2013). |
Mingozzi et al., “Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape,” Annual Review of Virology 1(1):511-534 (2017). |
Miyamura et al. “ParvoVirus particles at platforms for protein presentation” Proceedings of National Academy of Sciences 91:8507-8511 (1995). |
Muller et al. “Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors”, Nat Biotechnol, Sep. 2003; 21(9):1040-6. Epub Aug. 3, 2003. |
Mori et al. “Two novel adeno-associated vires from cynomolg monkey:pseudotyping characterization of capsid protein” Virology 330:375-383 (2004). |
Muramatsu et al. “Nucleotide Sequencing and Generation of an Infectious Clone of adeno-Associated Virus 3”, Virology, 221(0367):208-217 (1996). |
Murlidharan et al. “265. Polysialic Acid as a Novel Regulator of AAV Tropism in the Developing Brain” Molecular Therapy 23(Supplement 1):S106 (2015), 1 page. |
Murlidharan et al. “Biology of adeno-associated viral vectors in the central nervous system” Frontiers in Molecular Neuroscience, 7(76):1-9 (2014). |
Murlidharan et al. “CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector” Molecular Therapy: Nucleic Acids, 5:e338 (2016). |
Murlidharan et al. “Glymphatic fluid transport controls paravascular clearance of MV vectors from the brain” JCI Insight, 1(14):e88034 (2016). |
Murlidharan et al. “Unique Glycan Signatures Regulate adeno-Associated Virus Tropism in the Developing Brain” Journal of Virology 89(7):3976-3987 (2015). |
Muzyczka, N. “Use of adeno-Associated Virus as a General Transduction Vector for Mammalian Cells,” Current Topics in Microbiology and Immunology 158:97-129 (1992). |
Nam et al. “Structure of Adeno-Associated Virus Serotype 8, a Gene Therapy Vector” Journal of Virology, 81 (22):12260-12271 (2007). |
Nathwani et al. “Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B” The New England Journal of Medicine, 371(21):1994-2004 (2014). |
Needleman and Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins.” J Mol Biol. (1970); 48(3): 443-453. |
Newton & Deutscher, Phage Peptide Display in Handbook of Experimental Pharmacology, pp. 145-163, Springer-Verlag, Berlin (2008). |
Ng et al. “Structural Characterization of the Dual Glycan Binding adeno-Associated Virus Serotype 6” Journal of Virology, 84(24):12945-12957 (2010). |
Nguyen Vu et al., “Cerebellar Purkinje cell activity drives motor learning”, Nature Neuroscience 16(12):1734-1736 (2013). |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US20/15386, dated Apr. 27, 2020, 14 pages. |
Padron et al. “Structure of adeno-Associated Virus Type 4” Journal of Virology 79(8):5047-5058 (2005). |
Palombo et al. “Site-Specific Integration in Mammalian Cells Mediated by a New Hybrid Baculovir-Adeno-Associated Virus Vector” Journal ofvirology72(6):5025-5034 (1998). |
Papadakis, Ed et al., ‘Promoters and Control Elements: Designing Expression Cassettes for Gene Therapy,’ Curr. Gene Therapy, vol. 4, No. 1, pp. 89-113, (Mar. 2004). |
Partial Supplementary European Search Report issued by the European Patent Office for Application No. 16852471.8, dated Apr. 24, 2019, 17 pages. |
Passini, Ma et al., ‘Distribution of a Lysosomal Enzyme in the Adult Brain by Axonal Transport and by Cells of the Rostral Migratory Stream,’ J. Neuroscience, 22(15):6437-6446 (Aug. 2002). |
Paul, Ca et al., ‘Adenovirus Expressing an NPCI-GFP Fusion Gene Corrects Neuronal and Nonneuronal Defects Associated With Niemann Pick Type C Disease,’ J. Neurosci. Res., vol. 81, No. 5, pp. 706-719 (Sep. 2005). |
Pillay et al. “An essential receptor for adeno-associated virus infection” Nature, 530(7588):108-112 (2016). |
Pulicherla et al. “Engineering Liver-detargeted AAV9 Vectors for Cardiac and Mculoskeletal Gene Transfer” Molecular Therapy, 19(6):1070-1078 (2011). |
Puttaraju et al. “Spliceosome-mediated RNA trans-splicing as a tool for gene therapy” Nature Biotechnology 17:246-252 (1999). |
Robbins et al. “Recognition of Tyrosinase by Tumor-infiltrating Lymphocytes from a Patient Responding to Immunotherapy” Cancer Research 54:3124-3126 (1994). |
Rosenberg et al. “A New Era for Cancer Immunotherapy Based on the Genes that Encode Cancer Antigens” Immunity 10:281-287 (1999). |
Rosenberg et al. “Comparative Efficacy and Safety of Multiple Routes of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates” Human Gene Therapy Clinical Development, 25(3):164-177 (2014). |
Rosenberg “The Immunotherapy of Solid Cancers Based on Cloning the Genes Encoding Tumor-Rejection Antigens” Annual Review of Medicine 47:481-491 (1996). |
Saitou, N. et al. (1987). “The neighbor-joining method: A new method for reconstructing phylogenetic trees,” Mol. Biol. Evol. 4:406-425. |
Salinas et al. “A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins” Nature Reviews Microbiology, 8(9):645-655 (2010). (Abstract only). |
Selot et al., “Developing Immunologically Inert Adeno-Associated Virus (AAV). Vectors for Gene Therapy: Possibilities and Limitations,” Current Pharmaceutical Biotechnology, Bentham Science Publishers, NL 14(12).1072-1082 (2013). |
Shade et al. “Nucleotide Sequence and Genome Organization of Human ParvoVirus B19 Isolated from the Serum of a Child during Aplastic Crisis” Journal of Virology 28(3):921-936 (1986). |
Sharp et al. “RNA Interference” Science 287(5462):2431-2433 (2000). |
Shen et al. “Engraftment of a Galactose Receptor Footprint onto adeno-associated Viral Capsids Improves Transduction Efficiency” The Journal of Biological Chemistry, 288(40):28814-28823 (2013). |
Shen et al., Multiple Roles for Sialylated Glycans in Determining the Cardiopulmonary Tropism of Adeno-Associated Virus 4, Journal of Virology 87(24):13206-13213 (2013). |
Shi et al. “Insertional Mutagenesis at Positions 520 and 584 of adeno-Associated Virus Type 2 (AAV2). Capsid Gene and Generation of AAV2 Vectors with Eliminated Heparin-Binding Ability and Introduced Novel Tropism” Human Gene Therapy 17:353-361 (2006). |
Sirin S, Apgar JR, Bennett EM, Keating AE. AB-Bind: Antibody binding mutational database for computational affinity predictions. Protein Sci. Feb. 2016;25(2):393-409. Epub Nov. 6, 2015. |
Smith et al, “Comparison of Biosequences”, Advanced in Applied Mathematics, vol. 2, Issue 4, Dec. 1981, pp. 482-489. |
Smith et al., “Structural Mapping of AAV9 Antigenic Sites and the Engineering of Immune Escape Variants,” Molecular Therapy; 20th Annual Meeting of the American Society of Gene and Cell Therapy (ASGCT).; Washington, DC, A; May 10-13, 2017, Nature Publishing Group, GB vol. 25, No. 5, Suppl 1 (2017). |
Smith, TF et al., ‘Identification of Common Molecular Subsequences,’ Journal of Molecular Biology, 147:195-197, PMID 7265238. doi:10.1016/0022-2836(81)90087-5, (1981). |
Sonntag et al. “Adeno-Associated Virus Type 2 Capsids with Externalized VP1NP2 Trafficking Domains Are Generated prior to Passage through the Cytoplasm and Are Maintained until Uncoating Occurs in the Nucleus” Journal of Virology, 80(22):11040-11054 (2006). |
Srivastava et al. “Nucleotide Sequence and Organization of the Adeno Associated Virus 2 Genome.” Journal of Virology (1983); 45:2, p. 555-564. |
Summerford et al. “Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for adeno-Associated Virus Type 2 Virions” Journal of Virology, 72(2):1438-1445 (1998). |
Tellez et al. “Characterization of Naturally-Occurring Humoral Immunity to AAV in Sheep” PLoS ONE, 8(9):e75142 (2013). |
Tinsley et al. “Amelioration of the dystrophic phenotype of mdx mice ing a truncated utrophin transQene” Nature 384(6607):349-353 (1996). |
Titeux et al., “SIN Retroviral Vectors Expressing COL7A1 Under Human Promoters for Ex Vivo Gene Therapy of Recessive Dystrophic Epidermolysis Bullosa,” Mol. Ther., 2010 18:1509-1518. |
Tsao et al. The Three-Dimensional Structure of Canine ParvoVirus and Its Functional Implications Science 251(5000):1456-1464 (1991). |
Tse et al., “Strategies to Circumvent Humoral Immunity to Adeno-Associated Viral Vectors,” Expert Opinion on Biological Therapy 15(6):845-855 (2015). |
Tse et al., “Structure-guided evolution of antigenically distinct adeno-associated Virus variants for immune evasion”, Proceedings of the National Academy of Sciences of The United States of America 114(24):E4812-E4821 (2017). |
Tseng et al. “Adeno-Associated Virus Serotype 1 (AAV1).-and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in ParvoVirus Antigenic Reactivity” Journal of Virology, 89(3):1794-1808 (2015). |
Tseng et al. “Generation and characterization of anti-adeno-associated Virus serotype 8 (AAV8). and anti-AAV9 monoclonal antibodies” Journal of Virological Methods, 236:105-110 (2016). |
Tseng et al. “Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors” Frontiers in Immunology, 5(9):1-11 (2014). |
UniProt Accession No. O15118, dated May 30, 2000, 21 pages. |
Urabe et al. “Insect Cells as a Factory to Produce adeno-Associated Virus Type 2 Vectors” Human Gene Therapy 13:1935-1943 (2002). |
Various: Abstracts , 20th Annual Meeting of the American-Society-of-Gene-and-Cell-Therapy (ASGCT); Washington, DC, USA; May 10-13, 2017 , Molecular Therapy : The Journal of the American Society of Gene Therapy 25:1-363 (2017). |
Veldwijk, MR et al., ‘Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks,’ Mal. Ther., 6(2):272-8 (Aug. 2002). |
Vincent et al. “Long-term correction of moe dystrophic degeneration by adenovir-mediated transfer of a minidystrophin gene” Nature Genetics 5:130-134 (1993). |
Walters et al. “Structure of adeno-Associated Virus Serotype 5” Journal of Virology 78(7):3361-3371 (2004). |
Wang et al. “Adeno-associated Virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model” Proceedings of the National Academy of Sciences 97(25):13714-13719 (2000). |
Wang et al., “Selection of neutralizing antibody-resistant AAV8 variants with structure-guided site-specific saturated mutagenesis,” Molecular Therapy, 2011, vol. 19 Suppl. 1, S129. |
Wang et al. “Expanding the genetic code” Annual Review of Biophysics and Biomolecular Structure 35:225-249 (2006). |
Wassif, CA et al., ‘High Incidence of Unrecognized Visceral/Neurological Lateonset Niemann-Pick Disease, type C1 Predicted by Analysis of Massively Parallel Sequencinq Data Sets,’ Genet Med., 18(1):41-48 (Jan. 2016). |
Weller et al. “Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6” Nature Medicine, 16(6):662-664 (2010). |
Williams et al. “Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis” Journal of Leukocyte Biology, 91(3):401-415 (2012). |
Winkler et al., “Changing the Antigen Binding Specificity by Single Point Mutations of an Anti-p24 (HIV-1) Antibody”, The Journal of Immunology, 165: 4505-4514 (2000). |
Work, et al., “Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses.” Mol. Ther.; vol. 13, No. 4, pp. 683-693 (Apr. 2006). |
Wu et al. “alpha2,3 and alpha2,6 N-Linked Sialic Acids Facilitate Efficient Binding and Transduction by Adeno-Associated Virus Types 1 and 6” Journal of Virology, 80(18):9093-9103 (2006). |
Wu et al. “Single Amino Acid Changes Can Influence Titer, Heparin Binding, and Tissue Tropism in Different adeno-Associated Virus Serotypes” Journal of Virology, 80(22):11393-11397 (2006). |
Xiao et al. “Gene Therapy Vectors Based on adeno-Associated Virus Type 1” Journal of Virology 73(5):3994-4003 (1999). |
Xiao et al., “Gene transfer by adeno-associated virus vectors into the central nervous system,” Exp. Neurobiol., (1997) 144:113-124. |
Xiao et al. “Interpretation of Electron Density with Stereographic Roadmap Projections” Journal of Structural Biology, 158(2):182-187 (2007). |
Xie et al. “Canine ParvoVirus Capsid Structure, Analyzed at 2.9 A Resolution” Journal of Molecular Biology 264(3):497-420 (1996). |
Xie et al. “The atomic structure of adeno-associated Virus (AAV-2)., a vector for human gene therapy” Proceeding of the National Academy of Sciences 99(16):10405-10410 (2002). |
Xie, J. et al., “Short DNA Hairpins Compromise Recombinant Adeno-Associated Virus Genome Homogeneity,” Mol. Ther., 25(6): 1363-1374 (2017). |
Yang et al. “Global CNS Transduction of Adult Mice by Intravenously Delivered rAAVrh.8 and rAAVrh.10 and Nonhuman Primates by rAAVrh.1O” Molecular Therapy, 22(7):1299-1309 (2014). |
Zhang, “Endocytic mechanisms and drug discovery in neurodegenerative diseases,” Frontiers in Bioscience 13:6086-6105 (2008). |
Zhang et al. “Several rAAV Vectors Efficiently Cross the Blood-brain Barrier and Transduce Neurons and Astrocytes in the Neonatal Mouse Central Nervous System” Molecular Therapy, 19(8):1440-1448 (2011). |
Zhang et al. “Recombinant adeno Virus expressing adeno-associated Virus cap and rep proteins supports production of high-titer recombinant adeno-associated vir” Gene Therapy 8:704-712 (2001). |
Zinn, E. et al., “In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector,” Cell Reports, Aug. 2015; 12:1056-1068. |
Zolotukhin, et al., “Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield.” Gene Therapy (1999); vol. 6, pp. 973-985. |
Xu et al., “Antisense RNA: the new favorite in genetic research” Journal of Zhejiang University Sci B. (2018) 19(10):739-749. |
Chen et al., “Modification and application of the third-generation adenovirus vectors.” Academic Journal of Second Military Medical University (2007): 32-35. |
Asokan et al., “The AVV Vector Toolkit: Poised at the Clinical Crossroads,” Molecular Therapy 20(4):699-708 (2012). |
Bennett et al. “AAV6 K531 serves a dual function in selective receptor and antibody ADK6 recognition” Virology, 18:369-376 (2018). |
Clapcote SJ, et al., “ Mutation I810N in the alpha3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS,” Proc Natl Acad Sci USA. 106(33):14085-14090 (2009). |
European Search Report for European Application No. EP19760157.8 dated Nov. 18, 2021, 6 pages. |
Piguet Françoise et al., “Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia”, Molecular Therapy, Nature Publishing Group, GB 26(8), pp. 1-13 (2018). |
Ghusayni, R. et al., “Magnetic resonance imaging volumetric analysis in patients with Alternating hemiplegia of childhood: A pilot study,” Eur J Paediatr Neurol. 26:15-19 (2020). |
Heinzen, EL et al., “De nova mutations in ATP1A3 cause alternating hemiplegia of childhood,” Nat Genet. 44 (9):1030-1034 (2012). |
Helseth AR, et al., “Novel E815K knock-in mouse model of alternating hemiplegia of childhood,” Neurobiol Dis. 119:100-112 (2018). |
Holm, R. et al., “B. Neurological disease mutations of a3 Na+, K+-ATPase: Structural and functional perspectives and rescue of compromised function,” Biochim Biophys Acta. 1857(11):1807-1828 (2016). |
Hunanyan AS, et al., Knock-in mouse model of alternating hemiplegia of childhood: behavioral and electrophysiologic characterization. Epilepsia. 56(1):82-93 (2015). |
Hunanyan AS, et al., “Mechanisms of increased hippocampal excitability in the Mashl+/- mouse model of Na+ /K+ -ATPase dysfunction,” Epilepsia 59(7):1455-1468 (2018). |
Ikeda, K. et al., “Knockout of sodium pump a3 subunit gene(Atp1a3−/−) results in perinatal seizure and defective respiratory rhythm generation,” Brain Res. 1666:27-37 (2017). |
International Search Report and Written Opinion for International Application No. PCT/US2021/030937 dated Oct. 29, 2021, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2021/046699 dated Jan. 12, 2022, 17 pages. |
International Search Report and Written Opinion issued by the International Searching Authority for Application No. PCT/US2022/012542, dated Jun. 3, 2022, 10 pages. |
Isaksen, T.J. et al., “Hypothermia-induced dystonia and abnormal cerebellar activity in a mouse model with a single disease-mutation in the sodium-potassium pump,” PLoS Genet. 13(5):e1006763, pp. 1-23 (2017). |
Kells, A.P., et al., “AAV-Mediated Gene Delivery of BDNF or GDNF is Neuroprotective in a Model of Huntington Disease,” Molecular Therapy, May 2004, vol. 9(5), pp. 682-688. |
Kirshenbaum GS, et al., “ Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na +, K+-ATPase a3 missense mutant mice,” PLoS One. 8(3):e60141, pp. 1-15 (2013). |
Kuck et al. “Development of AAV serotype-specific ELISAs using novel monoclonal antibodies” Journal of Virological Methods, 140(1-2):17-24 (2007) (Abstract only). |
Lux et al. “Green Fluorescent Protein-Tagged Adeno-Associated Virus Particles Allow the Study of Cytosolic and Nuclear Trafficking” Journal of Virology, 79{18):11776-11787 (2005). |
Masoud, M. et al., “Diagnosis and Treatment of Alternating Hemiplegia of Childhood,” Curr Treat Options Neurol. 19(2):8 (2017). |
McCraw et al. “structurE of adeno-associated virus-2 In Complex with Neutralizing Monoclonal antibodY A20” Virology, 431(1-2):40-49 (2012). |
Mikati MA, et al., “Alternating hemiplegia of childhood: clinical manifestations and long-term outcome,” Pediatr Neurol. 23(2):134-141 (2000). |
Needleman and Wunsch, “A General method applicable to the search for similarities in the Amino Acid Sequence of two proteins”, Journal of Molecular Biology (1970); 48(3): 443-453. |
Powell et al. Characterization of a Novel Adena-Associated Viral Vector with Preferential Oligodendrocyte Tropism. Gene Therapy, 2016. 23:807-814. |
Severino, M. et al., “White matter and cerebellar involvement in alternating hemiplegia of childhood,” J Neurol. 267 (5):1300-1311 (2020). |
Veron et al. “Humeral and Cellular Capsid-Specific Immune Responses to Adena-Associated Virus Type 1 in andomized Healthy Donors” The Journal of Immunology, 188:6418-6424 (2012). |
Wang; Q. et al., “Identification of an adeno-associated Virus binding epitope for AVB sepharose affinity resin,” Molecular Therapy—Methods & Clinical Development vol. 2, pp. 1-6 (2015). |
Wobus et al. “Monoclonal Antibodies against the Adeno-Associated Virus Type 2 (AAV-2) Capsid: Epitope Mapping and Identification of Capsid Domains Involved in AAV-2-Cell Interaction and Neutralization of AAV-2 Infection,” J. of Virology, 74(19):9281-9293 (2000). |
Ye Q, et al., “The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding,” EMBO J. 36(16):2419-2434 (2017). |
Zhong et al. “Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficienc ransduction at lower doses” Proceedings of the National Academy of Sciences USA, 105(22):7827-7832 (2008). |
Zhong et al. “Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression” Virology, 381(2):194-202 (2008). |
Zolotukhin et al. “Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors” Methods, 28(2):158-167 (2002) {Abstract only). |
Number | Date | Country | |
---|---|---|---|
20210371471 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62819389 | Mar 2019 | US | |
62776793 | Dec 2018 | US | |
62770240 | Nov 2018 | US | |
62652103 | Apr 2018 | US |