Apparatus and method for depositing materials onto microelectronic workpieces

Information

  • Patent Grant
  • 7387685
  • Patent Number
    7,387,685
  • Date Filed
    Thursday, September 2, 2004
    19 years ago
  • Date Issued
    Tuesday, June 17, 2008
    16 years ago
Abstract
Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate. For example, the occluded passageway can be canted at an oblique angle relative to the first surface of the distributor plate so that gas flowing through the canted passageway changes direction as it passes through the distributor plate.
Description
TECHNICAL FIELD

The present invention is related to the field of thin film deposition in the manufacturing of micro-devices.


BACKGROUND

Thin film deposition techniques are widely used in the manufacturing of microelectronic devices to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the devices is constantly decreasing, and the number of layers in the devices is increasing. As a result, the density of components and the aspect ratios of depressions (e.g., the ratio of the depth to the size of the opening) is increasing. The size of workpieces is also increasing to provide more real estate for forming more dies (i.e., chips) on a single workpiece. Many fabricators, for example, are transitioning from 200 mm to 300 mm workpieces, and even larger workpieces will likely be used in the future. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms and corners in deep depressions that have very small openings.


One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed in a gas or vapor state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a thin solid film at the workpiece surface. The most common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.


Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials that are already formed on the workpiece. Implanted or doped materials, for example, migrate in the silicon substrate when a workpiece is heated. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is not desirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used. Thus, CVD techniques may not be appropriate for many thin film applications.


Atomic Layer Deposition (ALD) is another thin film deposition technique that addresses several of the drawbacks associated with CVD techniques. FIGS. 1A and 1B schematically illustrate the basic operation of ALD processes. Referring to FIG. 1A, a layer of gas molecules Ax coats the surface of a workpiece W. The layer of Ax molecules is formed by exposing the workpiece W to a precursor gas containing Ax molecules, and then purging the chamber with a purge gas to remove excess Ax molecules. This process can form a monolayer of Ax molecules on the surface of the workpiece W because the Ax molecules at the surface are held in place during the purge cycle by physical adsorption forces at moderate temperatures or chemisorption forces at higher temperatures. The layer of Ax molecules is then exposed to another precursor gas containing By molecules. The Ax molecules react with the By molecules to form an extremely thin solid layer of material on the workpiece W. The chamber is then purged again with a purge gas to remove excess By molecules.



FIG. 2 illustrates the stages of one cycle for forming a thin solid layer using ALD techniques. A typical cycle includes (a) exposing the workpiece to the first precursor Ax, (b) purging excess Ax molecules, (c) exposing the workpiece to the second precursor By, and then (d) purging excess By molecules. In actual processing several cycles are repeated to build a thin film on a workpiece having the desired thickness. For example, each cycle may form a layer having a thickness of approximately 0.5-1.0 Å, and thus it takes approximately 60-120 cycles to form a solid layer having a thickness of approximately 60 Å.



FIG. 3 schematically illustrates an ALD reactor 10 having a chamber 20 coupled to a gas supply 30 and a vacuum 40. The reactor 10 also includes a heater 50 that supports the workpiece W and a gas dispenser 60 in the chamber 20. The gas dispenser 60 includes a plenum 62 operatively coupled to the gas supply 30 and a distributor plate 70 having a plurality of holes 72. In operation, the heater 50 heats the workpiece W to a desired temperature, and the gas supply 30 selectively injects the first precursor Ax, the purge gas, and the second precursor By as shown above in FIG. 2. The vacuum 40 maintains a negative pressure in the chamber to draw the gases from the gas dispenser 60 across the workpiece W and then through an outlet of the chamber 20.


One drawback of ALD processing is that it is difficult to avoid mixing between the first and second precursors in the chamber apart from the surface of the workpiece. For example, a precursor may remain on surfaces of the gas dispenser or on other surfaces of the chamber even after a purge cycle. This results in the unwanted deposition of the solid material on components of the reaction chamber. The first and second precursors may also mix together in a supply line or other area of a reaction chamber to prematurely form solid particles before reaching the surface of the workpiece. Thus, the components of the ALD reactor and the timing of the Ax/purge/By/purge pulses of a cycle should not entrap or otherwise cause mixing of the precursors in a manner that produces unwanted deposits or premature reactions.


Another drawback of ALD processing is that the film thickness may be different at the center of the workpiece than at the periphery. To overcome this problem, the center of some distributor plates do not have any holes 72. In practice, however, this may cause the film at the center of the workpiece to be thinner than the film at the periphery. Moreover, the center portion of such plates may become coated with the solid material because it is difficult to purge all of the precursors from this portion of the gas dispenser 60 during normal purge cycles. Therefore, there is a need to resolve the problem of having a different film thickness at the center of the workpiece than at the periphery.


SUMMARY

The present invention is directed toward reactors for deposition of materials onto a micro-device workpiece, systems that include such reactors, and methods for depositing materials onto micro-device workpieces. In one embodiment, a reactor for depositing a material comprises a reaction chamber and a gas distributor that directs gas flows to a workpiece. The reaction chamber can include an inlet and an outlet, and the gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate. For example, the occluded passageway can be canted at an oblique angle relative to the first surface of the distributor plate so that gas flowing through the canted passageway changes direction as it passes through the distributor plate.


The compartment of the gas distributor can be defined by a sidewall, and the distributor plate can extend transverse relative to the sidewall. In one embodiment, the distributor plate has an inner region, an outer region, and a peripheral edge spaced laterally inward from the sidewall to define a gap between the peripheral edge and the sidewall. In other embodiments, the peripheral edge of the distributor plate can be coupled to the sidewall.


The distributor plate can have several different embodiments. The distributor plate, for example, can have a first plurality of passageways in the inner region that are canted at an oblique angle relative to the first surface of the distributor plate, and a second plurality of passageways in the outer region that are generally normal to the first surface of the distributor plate. In another embodiment, all of the passageways through the distributor plate can be canted at an angle. The size of the passageways can also vary across the distributor plate. In one embodiment, a first plurality of passageways in the inner region have a cross-sectional dimension of approximately 0.01-0.07 inch, and a second plurality of passageways in the outer region have a cross-sectional dimension of approximately 0.08-0.20 inch. In still other embodiments, a first plurality of passageways in the inner region are canted at a first oblique angle relative to the first surface of the distributor plate, and a second plurality of passageways in the outer region are canted at a second oblique angle relative to the first surface of the distributor plate. The canted passageways are generally angled downward and radially outward from the first surface to the second surface to direct the gas flow radially outward across the surface of the workpiece. For example, the canted passageways can extend at an angle of approximately 15 degrees to approximately 85 degrees relative to the first surface of the distributor plate. The passageways, however, can be angled at different angles or canted in different directions in other embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are schematic cross-sectional views of stages in atomic layer deposition processing in accordance with the prior art.



FIG. 2 is a graph illustrating a cycle for forming a layer using atomic layer deposition in accordance with the prior art.



FIG. 3 is a schematic representation of a system including a reactor for vapor deposition of a material onto a microelectronic workpiece in accordance with the prior art.



FIG. 4 is a schematic representation of a system having a reactor for depositing a material onto a micro-device workpiece in accordance with one embodiment of the invention.



FIG. 5 is an isometric, cross-sectional view illustrating a portion of a reactor for depositing a material onto a micro-device workpiece in accordance with an embodiment of the invention.



FIG. 6 is a cross-sectional view of a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.



FIG. 7 is a partial cross-sectional view of a distributor plate for use in a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.



FIG. 8 is a schematic representation of a system including a reactor for depositing a material onto a micro-device workpiece in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

The following disclosure is directed toward reactors for depositing a material onto a micro-device workpiece, systems including such reactors, and methods for depositing a material onto a micro-device workpiece. Many specific details of the invention are described below with reference to depositing materials onto micro-device workpieces. The term “micro-device workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, and other features are fabricated. For example, micro-device workpieces can be semiconductor wafers, glass substrates, insulative substrates, and many other types of materials. The term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquified or solidified by compression at a constant temperature). Additionally, several aspects of the invention are described with respect to Atomic Layer Deposition (“ALD”), but certain aspects may be applicable to other types of deposition processes. Several embodiments in accordance with the invention are set forth in FIGS. 4-8 and the related text to provide a thorough understanding of particular embodiments of the invention. A person skilled in the art will understand, however, that the invention may have additional embodiments, or that the invention may be practiced without several of the details in the embodiments shown in FIGS. 4-8.


A. Deposition Systems



FIG. 4 is a schematic representation of a system 100 for depositing a material onto a micro-device workpiece W in accordance with an embodiment of the invention. In this embodiment, the system 100 includes a reactor 110 having a reaction chamber 120 coupled to a gas supply 130 and a vacuum 140. For example, the reaction chamber 120 can have an inlet 122 coupled to the gas supply 130 and an outlet 124 coupled to the vacuum 140.


The gas supply 130 includes a plurality of gas sources 132 (identified individually as 132a-c), a valve assembly 133 having a plurality of valves 134 (identified individually as 134a-c), and a plurality of gas lines 136 and 137. The gas sources 132 can include a first gas source 132a for providing a first precursor gas “A,” a second gas source 132b for providing a second precursor gas “B,” and a third gas source 132c for providing a purge gas P. The first and second precursors A and B can be the constituents that react to form the thin, solid layer on the workpiece W. The p-urge gas P can a type of gas that is compatible with the reaction chamber 120 and the workpiece W. The first gas source 132a is coupled to a first valve 134a, the second gas source 132b is coupled to a second valve 134b, and the third gas source 132c is coupled to a third valve 134c. The valves 134a-c are operated by a controller 142 that generates signals for pulsing the individual gases through the reaction chamber 120 in a number of cycles. Each cycle can include a first pulse of the first precursor A, a second pulse of the purge gas, a third pulse of the second precursor B, and a fourth pulse of the purge gas.


The reactor 110 in the embodiment illustrated in FIG. 4 also includes a workpiece support 150 and a gas distributor 160 in the reaction chamber 120. The workpiece support 150 can be a plate having a heating element to heat the workpiece W to a desired temperature for catalyzing the reaction between the first precursor A and the second precursor B at the surface of the workpiece W. The workpiece support 150, however, may not be heated in all applications.


The gas distributor 160 is positioned at the inlet 122 of the reaction chamber 120. The gas distributor 160 has a compartment or plenum 162 that is defined, at least in part, by a sidewall 164. The compartment or plenum 162 can be further defined by a chamber lid 166. The gas distributor 160 further includes a distributor plate 170 having a first surface 171a facing the compartment 162, a second surface 171b facing away from the compartment 162, and a plurality of passageways 172 (identified by reference numbers 172a and 172b). As explained in more detail below, a gas flow F in the compartment 162 flows through the passageways 172a-b and through a gap 180 between the sidewall 164 and the distributor plate 170. As explained in more detail below, this particular embodiment of the distributor plate 170 performs the following functions: (a) directs the gas flow F to provide a more uniform film thickness across the workpiece W; and (b) limits areas in the reaction chamber where the precursors can adduct and mix prematurely before contacting the workpiece.


B. Gas Distributors and Distributor Plates



FIG. 5 illustrates a particular embodiment of the gas distributor 160 and the distributor plate 170 in greater detail. In this embodiment, the distributor plate 170 has an inner region 173a with a first plurality of passageways 172a and an outer region 173b with a second plurality of passageways 172b. The first passageways 172a extend from the first surface 171a to the second surface 171b, and at least a portion of each of the first passageways 172a is at least partially occluded along a flow path to the plate 170. In this particular embodiment, the first passageways 172a are occluded by being canted at an oblique angle relative to the first surface 171a and/or the plane defined by the plate 170. The term “occluded,” as used herein, is not limited to an obstruction that blocks the passageways 172, but rather means that some of the gas molecules flowing through the first passageways 172a cannot flow through the plate 170 along a direct “line-of-sight” between the first surface 171a and the second surface 171b normal to the plane defined by the plate 170. It will be appreciated that canting the first passageways 172a at an oblique angle relative to the plate 170 can either fully or at least partially block the direct line-of-sight to the workpiece while still allowing gas to flow through the first passageways 172a. The first passageways 172a can be canted at an angle of approximately 15° to approximately 85° relative to the plane defined by the plate 170. The second passageways 172b extend through the plate 170 generally normal to the first surface 171a such that they provide a direct line-of-sight to the workpiece throughout the full cross-sectional dimension of the second passageways 172b. The second passageways 172b can also have bevels 176 at the first surface 171a and/or the second surface 171b.


The distributor plate 170 is carried by a number of retainers 177 that are coupled to the lid 166 or another component of the reaction chamber 120. The retainers 177 are brackets, posts, or other suitable devices that can hold the distributor plate 170 relative to the inlet 122 and the sidewall 164. In this embodiment, the distributor plate 170 has a peripheral edge 175 spaced apart from the sidewall 164 by an annular gap 180. In operation, therefore, the gas flow F has a first component F1 that flows through the first passageways 172a, a second component F2 that flows through the second passageways 172b, and a third component F3 that flows through the gap 180. The first passageways 172a direct the first flow component F1 downward and radially outward to prevent over-saturating the center portion of the workpiece with the precursors. The second passageways 172b direct the second flow component F2 downward and generally normal to the plate 170 to provide more gas molecules to an outer region of the workpiece. The gap 180 also provides an enhanced flow of gas at the outer and peripheral regions of the workpiece.


Several embodiments of the distributor plate 170 are accordingly expected to provide more uniform saturation of the workpiece W with the first and second precursors A and B to provide a more uniform layer of material on the workpiece. Additionally, because the inner region 173a of the plate 170 includes the first plurality of passageways 172a, the surface areas upon which the first and second precursors A and B can adduct is reduced compared to conventional plates that do not have any openings in the inner region. This is expected to reduce the build up of the deposited material on the first surface 171a of the distributor plate 170. It is also expected that such a reduction in the surface area will enhance the ability to control the uniformity of the deposited layer and the endpoints of the gas pulses for better quality depositions and enhanced throughput.


The first passageways 172a can also have a different cross-sectional dimension than the second passageways 172b as shown in the particular embodiment illustrated in FIG. 5. The first passageways, for example, can have openings of approximately 0.01-0.07 inch, and the second passageways 172b can have openings of approximately 0.08-0.20 inch. In a particular embodiment, the first passageways 172a at the inner region 173a have a circular opening with a diameter of approximately 0.03 inch, and the second passageways 172b in the outer region 173b have a circular opening with a diameter of approximately 0.10 inch. It will be appreciated that the cross-sectional size of the first and second passageways 172a-b can be the same, or that they can have cross-sectional dimensions that are different than the ranges set forth above.


The passageways 172 can accordingly be configured to further enhance or restrict the gas flow to particular areas of the workpiece by canting, or otherwise occluding selected passageways, and/or varying the sizes of the cross-sectional dimensions of the passageways. In the embodiment shown in FIG. 5, for example, the smaller cross-sectional dimension of the first passageways 172a inhibits gas molecules from contacting the central region of the workpiece W, and the larger cross-sectional dimension of the second passageways 172b enhances the number of gas molecules that contact the outer region of the workpiece. Therefore, the cross-sectional dimensions and the angles of inclination of the passageways can be used either separately or together to provide the desired distribution of gas to the surface of the workpiece.



FIG. 6 is a cross-sectional view of a distributor plate 670 in accordance with another embodiment of the invention. Several components of the distributor plate 670 are the same as the distributor plate 170, and thus like reference numbers refer to like components in FIGS. 4-6. The distributor plate 670 can include a plurality of passageways 172 that are canted at an oblique angle relative to the plane defined by the plate 670. In this embodiment, all of the passageways 172 are canted at the same angle. The angle of inclination can be approximately 15 degrees to approximately 85 degrees. In operation, the embodiment of the distributor plate 670 shown in FIG. 6 has a first flow component F1 that flows radially outwardly and downward from the plate 670, and a second flow component F2 that flows through the gap 180. The passageways 172 can have the same cross-sectional dimensions, or they can have different cross-sectional dimensions similar to the plate 170 described above.



FIG. 7 is a partial cross-sectional view of a distributor plate 770 in accordance with another embodiment of the invention. The distributor plate 770 is similar to the distributor plate 170, and thus like reference numbers refer to like components in FIGS. 4, 5 and 7. In this embodiment, the first passageways 172a at the inner region 173a are canted at a first angle α, and the second passageways 172b in the second region 173b are canted at a second angle β. The angle α is generally less than the angle β relative to the plane P-P defined by the plate 770. As such, the first passageways 172a have a first occlusion area A1 in which there is no direct line-of-sight through the plate 770 to the workpiece W along a path normal to the plate 170. The second passageways 172b, however, have a smaller occlusion area A2 because the higher angle β allows gas to pass completely through a portion of the second passageways 172b along a path normal to the plate 770 or the workpiece W. By increasing the size of the occlusion area A1 for the first passageways 172a relative to the occlusion area A2 for the second passageways 172b, fewer gas molecules are likely to be deposited on the central region C of the workpiece W. It will be appreciated that the distributor plate 770 can have variable canting of the passageways 172 from the center to the perimeter of the plate along a continuum or throughout several regions in which the angle of incline increases toward the periphery of the plate 770. Accordingly, in other embodiments, the distributor plate 770 can have more than two regions in which the passageways are canted at different angles.


C. Additional Deposition Systems



FIG. 8 is a schematic illustration of another embodiment of a system 800 for depositing a material onto a microelectronic workpiece. The system 800 is similar to the system 100, and thus like reference numbers refer to like components in FIGS. 4 and 8. The difference between the system 800 and the system 100 is that the system 800 includes a gas distributor 860 with a distributor plate 870 that extends to the sidewall 164 to eliminate the gap 180 shown in FIG. 4. It will be appreciated that the distributor plate 870 can include any of the distributor plates explained above with reference to FIGS. 4-7. Therefore, other aspects of the invention include a completely enclosed compartment or plenum 862.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A reactor for vapor deposition of a material onto a microelectronic workpiece having an inner region and an outer region radially outward from the inner region, comprising: a reaction chamber having an inlet and an outlet; anda gas distributor in the reaction chamber, the gas distributor having a plenum through which a gas can flow along a flow path, the plenum having a distributor plate transverse to the flow path, and the distributor plate having a plurality of passageways extending through the plate, the passageways including first passageways having a first physical parameter and extending through the plate at an oblique angle relative to a plane defined by the plate and second passageways having a second physical parameter different than the first physical parameter and extending through the plate at an angle substantially perpendicular to the plane, and wherein the first passageways are in an inner region of the plate to supply the gas to the inner region of the microelectronic workpiece and the second passageways are in an outer region of the plate to supply the gas to the outer region of the microelectronic workpiece.
  • 2. The reactor of claim 1 wherein: the plenum comprises a sidewall; andthe distributor plate has a peripheral edge spaced laterally inward from the sidewall to define a gap between the peripheral edge and the sidewall.
  • 3. The reactor of claim 2 wherein the first passageways are canted at an angle of approximately 15° to approximately 85° relative to the plane defined by the distributor plate.
  • 4. The reactor of claim 2 wherein the first passageways in the inner region have a cross-sectional dimension of approximately 0.01-0.07 inch, and the second passageways in the outer region have a cross-sectional dimension of approximately 0.08-0.20 inch.
  • 5. The reactor of claim 1 wherein: the plenum comprises a sidewall; andthe distributor plate has a peripheral edge coupled to the sidewall.
  • 6. A reactor for vapor deposition of a material onto a microelectronic workpiece having an inner region and an outer region radially outward from the inner region, comprising: a reaction chamber having an inlet and an outlet; anda gas distributor in the reaction chamber that is coupled to the inlet, the gas distributor comprising a plenum having a single compartment through which a gas can flow and a distributor plate, the distributor plate having a first surface facing the compartment, a second surface facing away from the compartment, and a plurality of passageways extending from the first surface to the second surface, wherein the passageways include first passageways located at a central portion of the distributor plate to supply the gas to the inner region of the microelectronic workpiece, the first passageways extending at an oblique angle relative to the first surface of the distributor plate, and wherein the passageways also includes second passageways located in an outer region of the distributor plate to supply the gas to the outer region of the microelectronic workpiece, the second passageways having a physical characteristic different from the first passageways and extending through the plate at an angle substantially perpendicular to the first surface of the distributor plate.
  • 7. The reactor of claim 6 wherein: the compartment comprises a sidewall; andthe distributor plate has a peripheral edge spaced laterally inward from the sidewall to define a gap between the peripheral edge and the sidewall.
  • 8. The reactor of claim 7 wherein the first passageways are canted at an angle of approximately 15° to approximately 85° relative to the first surface of the distributor plate.
  • 9. The reactor of claim 7 wherein the first passageways in the central portion have openings of approximately 0.01-0.07 inch and the second passageways in the outer region have openings of approximately 0.08-0.20 inch.
  • 10. The reactor of claim 6 wherein: the compartment comprises a sidewall; andthe distributor plate has a peripheral edge coupled to the sidewall.
  • 11. A reactor for vapor deposition of a material onto a microelectronic workpiece having an inner region and an outer region radially outward from the inner region, comprising: a reaction chamber having an inlet and an outlet; anda gas distributor in the reaction chamber, the gas distributor having a plenum through which a gas can flow along a flow path, the plenum having a distributor plate transverse to the flow path, and the distributor plate having a plurality of passageways extending through the plate, the passageways including first passageways extending through the plate at an oblique angle relative to a plane defined by the plate to supply the gas to the inner region of the microelectronic workpiece, and second passageways extending through the plate at an angle substantially perpendicular to the plane to supply the gas to the outer region of the microelectronic workpiece, and wherein the first passageways are in an inner region of the plate and the second passageways are in an outer region of the plate.
  • 12. The reactor of claim 11 wherein: the plenum comprises a sidewall; andthe distributor plate has a peripheral edge spaced laterally inward from the sidewall to define a gap between the peripheral edge and the sidewall.
  • 13. The reactor of claim 11 wherein the first passageways have a first cross-sectional dimension and the second passageways have a second cross-sectional dimension different than the first cross-sectional dimension.
  • 14. The reactor of claim 11 wherein the first passageways are canted at an angle of approximately 15° to approximately 85° relative to the plane defined by the distributor plate.
  • 15. The reactor of claim 11 wherein the first passageways in the inner region have a cross-sectional dimension of approximately 0.01-0.07 inch, and the second passageways in the outer region have a cross-sectional dimension of approximately 0.08-0.20 inch.
  • 16. The reactor of claim 11 wherein: the plenum comprises a sidewall; andthe distributor plate has a peripheral edge coupled to the sidewall.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 10/191,889, entitled APPARATUS AND METHOD FOR DEPOSITING MATERIALS ONTO MICROELECTRONIC WORKPIECES,” filed Jul. 8, 2002 now U.S. Pat. No. 6,821,347, which is incorporated herein by reference in its entirety.

US Referenced Citations (395)
Number Name Date Kind
579269 Hent Mar 1897 A
2508500 de Lange May 1950 A
3522836 King Aug 1970 A
3618919 Beck Nov 1971 A
3620934 Endle Nov 1971 A
3630769 Hart et al. Dec 1971 A
3630881 Lester Dec 1971 A
3634212 Valayll et al. Jan 1972 A
4018949 Donakowski et al. Apr 1977 A
4242182 Popescu et al. Dec 1980 A
4269625 Molenaar et al. May 1981 A
4289061 Emmett Sep 1981 A
4313783 Davies et al. Feb 1982 A
4388342 Suzuki et al. Jun 1983 A
4397753 Czaja Aug 1983 A
4436674 McMenamin Mar 1984 A
4438724 Doehler et al. Mar 1984 A
4469801 Hiral et al. Sep 1984 A
4509456 Kleinert et al. Apr 1985 A
4545136 Izu et al. Oct 1985 A
4590042 Drage May 1986 A
4593644 Hanak Jun 1986 A
4681777 Engelken et al. Jul 1987 A
4826579 Westfall May 1989 A
4871417 Nishizawa et al. Oct 1989 A
4894132 Tanaka et al. Jan 1990 A
4911638 Bayne et al. Mar 1990 A
4923715 Matsuda et al. May 1990 A
4948979 Munakata et al. Aug 1990 A
4949669 Ishii et al. Aug 1990 A
4966646 Zdeblick Oct 1990 A
4977106 Smith Dec 1990 A
5015330 Okumura et al. May 1991 A
5017404 Paquet et al. May 1991 A
5020476 Bay et al. Jun 1991 A
5062446 Anderson Nov 1991 A
5076205 Vowles et al. Dec 1991 A
5090985 Soubeyrand Feb 1992 A
5091207 Tanaka et al. Feb 1992 A
5131752 Yu et al. Jul 1992 A
5136975 Bartholomew et al. Aug 1992 A
5172849 Barten et al. Dec 1992 A
5200023 Gifford et al. Apr 1993 A
5223113 Kaneko et al. Jun 1993 A
5232749 Gilton Aug 1993 A
5248527 Uchida et al. Sep 1993 A
5286296 Sato et al. Feb 1994 A
5325020 Campbell et al. Jun 1994 A
5364219 Takahashi et al. Nov 1994 A
5366557 Yu Nov 1994 A
5377429 Sandhu et al. Jan 1995 A
5380396 Shikida et al. Jan 1995 A
5409129 Tsukada et al. Apr 1995 A
5418180 Brown May 1995 A
5427666 Mueller et al. Jun 1995 A
5433787 Suzuki et al. Jul 1995 A
5433835 Demaray et al. Jul 1995 A
5445491 Nakagawa et al. Aug 1995 A
5453124 Moslehi et al. Sep 1995 A
5480818 Matsumoto et al. Jan 1996 A
5496410 Fukuda et al. Mar 1996 A
5498292 Ozaki et al. Mar 1996 A
5500256 Watabe et al. Mar 1996 A
5522934 Suzuki et al. Jun 1996 A
5536317 Crain et al. Jul 1996 A
5562800 Kawamura et al. Oct 1996 A
5575883 Nishikawa et al. Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5592581 Okase et al. Jan 1997 A
5595606 Fujikawa et al. Jan 1997 A
5599513 Masaki et al. Feb 1997 A
5624498 Lee et al. Apr 1997 A
5626936 Alderman May 1997 A
5640751 Faria Jun 1997 A
5643394 Maydan et al. Jul 1997 A
5654589 Huang et al. Aug 1997 A
5693288 Nakamura et al. Dec 1997 A
5716796 Bull et al. Feb 1998 A
5729896 Dalal et al. Mar 1998 A
5733375 Fukuda et al. Mar 1998 A
5746434 Boyd et al. May 1998 A
5754297 Nulman May 1998 A
5766364 Ishida et al. Jun 1998 A
5769950 Takasu et al. Jun 1998 A
5769952 Komino et al. Jun 1998 A
5788778 Shang et al. Aug 1998 A
5792269 Deacon et al. Aug 1998 A
5792700 Turner et al. Aug 1998 A
5803938 Yamaguchi et al. Sep 1998 A
5819683 Ikeda et al. Oct 1998 A
5820641 Gu et al. Oct 1998 A
5827370 Gu Oct 1998 A
5833888 Arya et al. Nov 1998 A
5846275 Lane et al. Dec 1998 A
5846330 Quirk et al. Dec 1998 A
5851294 Young et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5865417 Harris et al. Feb 1999 A
5866986 Pennington Feb 1999 A
5868159 Loan et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5885425 Hsieh et al. Mar 1999 A
5895530 Shrotriya et al. Apr 1999 A
5902403 Aitani et al. May 1999 A
5908947 Vaartstra Jun 1999 A
5911238 Bump et al. Jun 1999 A
5932286 Beinglass et al. Aug 1999 A
5940684 Shakuda et al. Aug 1999 A
5953634 Kajita et al. Sep 1999 A
5956613 Zhao et al. Sep 1999 A
5958140 Arami et al. Sep 1999 A
5961775 Fujimura et al. Oct 1999 A
5968587 Frankel Oct 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5994181 Hsieh et al. Nov 1999 A
5997588 Goodwin et al. Dec 1999 A
5998932 Lenz Dec 1999 A
6006694 DeOrnellas et al. Dec 1999 A
6008086 Schuegraf et al. Dec 1999 A
6016611 White et al. Jan 2000 A
6022483 Aral Feb 2000 A
6032923 Biegelsen et al. Mar 2000 A
6039557 Unger et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6045620 Tepman et al. Apr 2000 A
6059885 Ohashi et al. May 2000 A
6062256 Miller et al. May 2000 A
6070551 Li et al. Jun 2000 A
6079426 Subrahmanyam et al. Jun 2000 A
6080446 Tobe et al. Jun 2000 A
6086677 Umotoy et al. Jul 2000 A
6089543 Freerks Jul 2000 A
6090210 Ballance et al. Jul 2000 A
6109206 Maydan et al. Aug 2000 A
6113698 Raaijmakers et al. Sep 2000 A
6123107 Selser et al. Sep 2000 A
6129331 Henning et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6142163 McMillin et al. Nov 2000 A
6143077 Ikeda et al. Nov 2000 A
6143078 Ishikawa et al. Nov 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6149123 Harris et al. Nov 2000 A
6159297 Herchen et al. Dec 2000 A
6159298 Saito et al. Dec 2000 A
6160243 Cozad Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6173673 Golovato et al. Jan 2001 B1
6174366 Ihantola et al. Jan 2001 B1
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6178660 Emmi et al. Jan 2001 B1
6182603 Shang et al. Feb 2001 B1
6183563 Choi et al. Feb 2001 B1
6190459 Takeshita et al. Feb 2001 B1
6192827 Welch et al. Feb 2001 B1
6193802 Pang et al. Feb 2001 B1
6194628 Pang et al. Feb 2001 B1
6197119 Dozoretz et al. Mar 2001 B1
6200415 Maraschin Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6207937 Stoddard et al. Mar 2001 B1
6210754 Lu et al. Apr 2001 B1
6211033 Sandhu et al. Apr 2001 B1
6211078 Mathews Apr 2001 B1
6214714 Wang et al. Apr 2001 B1
6237394 Harris et al. May 2001 B1
6237529 Spahn May 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6251190 Mak et al. Jun 2001 B1
6255222 Xia et al. Jul 2001 B1
6263829 Schneider et al. Jul 2001 B1
6264788 Tomoyasu et al. Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6273954 Nishikawa et al. Aug 2001 B2
6277757 Lin et al. Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6280584 Kumar et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6287980 Hanazaki et al. Sep 2001 B1
6290491 Shahvandi et al. Sep 2001 B1
6291337 Sidhwa Sep 2001 B1
6294394 Erickson et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6303953 Doan et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6309161 Hofmeister Oct 2001 B1
6315859 Donohoe Nov 2001 B1
6321680 Cook et al. Nov 2001 B2
6328803 Rolfson et al. Dec 2001 B2
6329297 Balish et al. Dec 2001 B1
6333272 McMillin et al. Dec 2001 B1
6334928 Sekine et al. Jan 2002 B1
6342277 Sherman Jan 2002 B1
6346477 Kaloyeros et al. Feb 2002 B1
6347602 Goto et al. Feb 2002 B2
6347918 Blahnik Feb 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6358323 Schmitt et al. Mar 2002 B1
6364219 Zimmerman et al. Apr 2002 B1
6374831 Chandran et al. Apr 2002 B1
6383300 Saito et al. May 2002 B1
6387185 Doering et al. May 2002 B2
6387207 Janakiraman et al. May 2002 B1
6402806 Schmitt et al. Jun 2002 B1
6402849 Kwag et al. Jun 2002 B2
6415736 Hao et al. Jul 2002 B1
6419462 Horie et al. Jul 2002 B1
6420230 Derderian et al. Jul 2002 B1
6420742 Ahn et al. Jul 2002 B1
6425168 Takaku et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6432256 Raoux Aug 2002 B1
6432259 Noorbakhsh et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6435865 Tseng et al. Aug 2002 B1
6444039 Nguyen Sep 2002 B1
6450117 Murugesh et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6458416 Derderian et al. Oct 2002 B1
6461436 Campbell et al. Oct 2002 B1
6461931 Eldridge Oct 2002 B1
6474700 Redemann et al. Nov 2002 B2
6503330 Sneh et al. Jan 2003 B1
6506254 Bosch et al. Jan 2003 B1
6507007 Van Bilsen Jan 2003 B2
6508268 Kouketsu et al. Jan 2003 B1
6509280 Choi Jan 2003 B2
6534007 Blonigan et al. Mar 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6540838 Sneh et al. Apr 2003 B2
6541353 Sandhu et al. Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6562140 Bondestam et al. May 2003 B1
6562141 Clarke May 2003 B2
6573184 Park Jun 2003 B2
6579372 Park Jun 2003 B2
6579374 Bondestam et al. Jun 2003 B2
6580174 McCormick et al. Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6589868 Rossman Jul 2003 B2
6593644 Chiu et al. Jul 2003 B2
6596085 Schmitt et al. Jul 2003 B1
6602346 Gochberg et al. Aug 2003 B1
6613656 Li Sep 2003 B2
6622104 Wang et al. Sep 2003 B2
6630201 Chiang et al. Oct 2003 B2
6635965 Lee et al. Oct 2003 B1
6638672 Deguchi et al. Oct 2003 B2
6638879 Hsieh et al. Oct 2003 B2
6641673 Yang Nov 2003 B2
6663713 Robles et al. Dec 2003 B1
6666982 Brcka Dec 2003 B2
6673196 Oyabu et al. Jan 2004 B1
6689220 Nguyen Feb 2004 B1
6704913 Rossman Mar 2004 B2
6705345 Bifano Mar 2004 B1
6706334 Kobayashi et al. Mar 2004 B1
6734020 Lu et al. May 2004 B2
6770145 Saito et al. Aug 2004 B2
6787463 Mardian et al. Sep 2004 B2
6800139 Shinriki et al. Oct 2004 B1
6807971 Saito et al. Oct 2004 B2
6814813 Dando et al. Nov 2004 B2
6818249 Derderian Nov 2004 B2
6821347 Carpenter et al. Nov 2004 B2
6828218 Kim et al. Dec 2004 B2
6830652 Ohmi et al. Dec 2004 B1
6831315 Raaijmakers et al. Dec 2004 B2
6838114 Carpenter et al. Jan 2005 B2
6845734 Carpenter et al. Jan 2005 B2
6849131 Chen et al. Feb 2005 B2
6858264 Dando et al. Feb 2005 B2
6861094 Derderian et al. Mar 2005 B2
6861356 Matsuse et al. Mar 2005 B2
6869500 Lee et al. Mar 2005 B2
6881295 Nagakura et al. Apr 2005 B2
6884296 Basceri et al. Apr 2005 B2
6887521 Basceri May 2005 B2
6890386 DeDontney et al. May 2005 B2
6905547 Londergan et al. Jun 2005 B1
6905549 Okuda et al. Jun 2005 B2
6926775 Carpenter et al. Aug 2005 B2
6955725 Dando Oct 2005 B2
6966936 Yamasaki et al. Nov 2005 B2
6991684 Kannan et al. Jan 2006 B2
7022184 Van Wijck et al. Apr 2006 B2
7056806 Basceri et al. Jun 2006 B2
7086410 Chouno et al. Aug 2006 B2
20010001952 Nishizawa et al. May 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010012697 Mikata Aug 2001 A1
20010045187 Uhlenbrock Nov 2001 A1
20010050267 Hwang et al. Dec 2001 A1
20010054484 Komino Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020042205 McMillin et al. Apr 2002 A1
20020043216 Hwang et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020076490 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020094689 Park Jul 2002 A1
20020100418 Sandhu et al. Aug 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020108714 Doering et al. Aug 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020129768 Carpenter et al. Sep 2002 A1
20020132374 Basceri et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020185067 Upham Dec 2002 A1
20020195056 Sandhu et al. Dec 2002 A1
20020195145 Lowery et al. Dec 2002 A1
20020195201 Beer et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20030000473 Chae et al. Jan 2003 A1
20030003697 Agarwal et al. Jan 2003 A1
20030003730 Li Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030024477 Okuda et al. Feb 2003 A1
20030027428 Ng et al. Feb 2003 A1
20030027431 Sneh et al. Feb 2003 A1
20030031794 Tada et al. Feb 2003 A1
20030049372 Cook et al. Mar 2003 A1
20030066483 Lee et al. Apr 2003 A1
20030070609 Campbell et al. Apr 2003 A1
20030070617 Kim et al. Apr 2003 A1
20030070618 Campbell et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030094903 Tao et al. May 2003 A1
20030098372 Kim May 2003 A1
20030098419 Ji et al. May 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030192645 Liu et al. Oct 2003 A1
20030213435 Okuda et al. Nov 2003 A1
20040000270 Carpenter et al. Jan 2004 A1
20040003777 Carpenter et al. Jan 2004 A1
20040007188 Burkart et al. Jan 2004 A1
20040025786 Kontani et al. Feb 2004 A1
20040040502 Basceri et al. Mar 2004 A1
20040040503 Basceri et al. Mar 2004 A1
20040083959 Carpenter et al. May 2004 A1
20040083961 Basceri May 2004 A1
20040089240 Dando et al. May 2004 A1
20040099377 Newton et al. May 2004 A1
20040124131 Aitchison et al. Jul 2004 A1
20040226507 Carpenter et al. Nov 2004 A1
20040226516 Daniel et al. Nov 2004 A1
20040238123 Becknell et al. Dec 2004 A1
20050016956 Liu et al. Jan 2005 A1
20050016984 Dando Jan 2005 A1
20050022739 Carpenter et al. Feb 2005 A1
20050028734 Carpenter et al. Feb 2005 A1
20050039680 Beaman et al. Feb 2005 A1
20050039686 Zheng et al. Feb 2005 A1
20050045100 Derderian Mar 2005 A1
20050045102 Zheng et al. Mar 2005 A1
20050048742 Dip et al. Mar 2005 A1
20050059261 Basceri et al. Mar 2005 A1
20050061243 Sarigiannis et al. Mar 2005 A1
20050081786 Kubista et al. Apr 2005 A1
20050087130 Derderian Apr 2005 A1
20050087132 Dickey et al. Apr 2005 A1
20050087302 Mardian et al. Apr 2005 A1
20050120954 Carpenter et al. Jun 2005 A1
20050126489 Beaman et al. Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050145337 Derderian et al. Jul 2005 A1
20050164466 Zheng et al. Jul 2005 A1
20050217575 Gealy et al. Oct 2005 A1
20050217582 Kim et al. Oct 2005 A1
20050249873 Sarigiannis et al. Nov 2005 A1
20050249887 Dando et al. Nov 2005 A1
20050268856 Miller et al. Dec 2005 A1
20060115957 Basceri et al. Jun 2006 A1
20060121689 Basceri et al. Jun 2006 A1
20060134345 Rueger et al. Jun 2006 A1
20060165873 Rueger et al. Jul 2006 A1
20060198955 Zheng et al. Sep 2006 A1
20060204649 Beaman et al. Sep 2006 A1
20060205187 Zheng et al. Sep 2006 A1
20060213440 Zheng et al. Sep 2006 A1
20060237138 Qin Oct 2006 A1
Foreign Referenced Citations (15)
Number Date Country
19851824 May 2000 DE
4-213818 Aug 1992 JP
2002-164336 Jun 2002 JP
2001-254181 Sep 2002 JP
2005112371 May 2004 KR
598630 Feb 1978 SU
WO 9906610 Feb 1999 WO
WO 0040772 Jul 2000 WO
WO 0079019 Dec 2000 WO
WO 0245871 Jun 2002 WO
WO 02073329 Sep 2002 WO
WO 03008662 Jan 2003 WO
WO 03016587 Feb 2003 WO
WO 03033762 Apr 2003 WO
WO 03035927 May 2003 WO
Related Publications (1)
Number Date Country
20050133161 A1 Jun 2005 US
Continuations (1)
Number Date Country
Parent 10191889 Jul 2002 US
Child 10933604 US