Generally, modern displays may be illuminated via OLED or LED. In the case of an OLED illuminated display, the OLED is controlled via an OLED driver chip (also called simply “OLED driver” or a “controller”). An OLED driver is a current-controlling integrated circuit (“IC”) that controls and drives electrical current through (or sinks current from) OLED pixels. The amount of current driven via an OLED driver usually ranges from a few hundred microamps per pixel to a couple milliamps per pixel. Typically, OLED drivers are designed to address and control anywhere from a few thousand to many thousands of pixels because most graphical displays have many pixels. For example, even a small 96×128 pixel display has over 10,000 individual areas to control, while many basic, though larger displays may easily have between 250 k to 2 M+ pixels. Regardless, OLED drivers are very small because of the markets for which they are designed. In some instances, the lateral dimensions of an OLED driver may be as small as 2 mm by 10-15 mm, and a height dimension may be less than 1 mm thick. Despite the small size, an OLED driver may have hundreds of pins on the bottom side thereof via which the connected pixels are controlled.
Additionally, OLED drivers usually have standard interfaces via which the OLED drivers can be controlled using standard computer devices. The interfaces enable calibration of the drivers' output (e.g., adjustments to brightness uniformity or color balance, etc. and synchronization of multiple drivers in a single system. Furthermore, OLED drivers are relatively inexpensive, currently costing about $1.00 each.
An LED driver chip is used to drive an LED illuminated display, and is somewhat similar to an OLED driver. Compared to the size of OLED drivers, LED drivers are typically relatively large and are further designed to deliver a large amount of current to LEDs (e.g., ranging from 10 mA to many hundreds of mA). Inasmuch as the amount of current applied to an LED affects the brightness of the LED, in a typical LED array where there are relatively few LEDs, the LEDs used need to be very bright. Even if the selected LED driver can be dimmed to be very low current, the LED driver is still often relatively large due to the design capability of going from very low to very high. For example, an LED driver that can control 48 pixels or even 1200 in a matrix, might be 7 mm×7 mm×2 mm. An LED driver as described here, can currently cost about $5.00 each. The LED driver size and cost has not been greatly influenced by low cost high volume markets like OLED display controllers.
A micro-sized semiconductor die, such as unpackaged (e.g., bare die) micro-sized LEDs that are contemplated for use in display backlighting apparatuses are extremely small and thin compared to more commonly used LEDs, which are easier to implement in a display. For example, the thickness of an unpackaged micro-sized LED die (e.g., height that a die extends above a surface) may range from about 12 microns to about 400 microns, and a lateral dimension of a micro-sized LED die may range from about 20 microns to about 800 microns. Furthermore, micro-sized LED die are currently substantially less expensive than the larger more commonly used LEDs.
Despite the size difference, micro-sized LEDs can handle the range of current of the larger, more commonly used LEDs (e.g., (10-20 mA). However, in view of the size and cost savings associated with micro-sized LEDs, it is possible to implement between a few hundred to a few thousands or more in a display or illumination circuit that would normally use a significantly smaller number of the larger LEDs. In such a situation using a greater quantity of micro-sized LEDs, the individual LEDs do not need to be extremely bright because collectively the group is very bright. Further, by minimizing the brightness, the micro-sized LEDs last longer and are more energy efficient than the larger counterparts. For example, the micro-sized LEDs may be energized using current ranging from a μA level to low single digit mA level. Such low current levels match well with the capabilities of an OLED driver. Thus, in an example embodiment, using an OLED driver to drive micro-sized LEDs, the features, economies of scale, and size associated with the OLED driver are complementary to the micro-sized LEDs, thereby enabling a superior level of LED lighting control resolution is that is unseen conventionally. Nevertheless, in another embodiment, the use of an LED driver may also provide similar results. Indeed, a smaller LED driver may be made and may be well-suited for driving low current to a large or small number of LEDs in parallel or in a matrix.
In view of the above information and advantages discovered, a unique control scheme of distributed control of an LED array is described herein below.
The Detailed Description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items. Furthermore, the drawings may be considered as providing an approximate depiction of the relative sizes of the individual components within individual figures. However, the drawings are not to scale, and the relative sizes of the individual components, both within individual figures and between the different figures, may vary from what is depicted. In particular, some of the figures may depict components as a certain size or shape, while other figures may depict the same components on a larger scale or differently shaped for the sake of clarity.
This disclosure is directed to a method and apparatus of a distributed control scheme for controlling an LED array. The LEDs of the array may be of any size, including but not limited to micro-sized LEDs, and may be controlled in groupings of as small as 1 LED, or 2 LEDs, or 3 LEDs, or 4 LEDs, or more. That is, in an array of LEDs, for example used to illuminate a display device, a plurality of OLED or LED drivers (“controllers”) may be distributed throughout the array, disposed among the LEDs and connected thereto, to drive the LEDs in groups of one or more LEDs per driver. The implementation of the aforementioned drivers as used in a device, such as a display device, according to the instant application, may provide a smaller, cheaper, faster, and more versatile system for controlling an LED array.
In an embodiment,
In an embodiment, LED control chips, such as those described above, may be distributed throughout the LED array itself, and may all be connected to the same power and data lines. An LED array having controllers distributed as such may provide greater ability to scale the LED array to custom fit a wide range of display sizes.
In an embodiment, an LED array with controllers may be formed as a “lightstring.” A lightstring may be a circuit strip of controlled LEDs (hence, lightstring) that can be cut to a desired length and laid in numerous rows to create any sized TV backlight. The circuit strip may therefore include OLED controllers or LED controllers distributed along a length of the strip interspersed by one or more groups of LEDs. As such, the control of the LEDs may scale simply with the predetermined size of the backlight. Furthermore, the lightstring circuit may have a couple power traces and a few data signals that run the length thereof with the controllers being individually connected to a unique segment of LEDs along the strip. A lightstring may be manufactured using a machine and/or method as disclosed in U.S. Pat. No. 9,633,883.
In an embodiment of a display device implementing a lightstring, a plurality of rows or columns of the lightstring LED strips may be laid down behind a display panel, which significantly simplifies manufacturing. That is, a series of lightstrings laid consecutively with or without spacing therebetween, where each lightstring is cut to the appropriate length for the particular display device minimizes the need for expensive tooling for conventional giant circuits.
As indicated above, a display device implementing an array of LEDs with controllers disposed among the LEDs provides distributed control of the LEDs, so the control circuits scale evenly with the LEDs making the design modular for various display sizes.
In
In
Moreover, the lightstrings may be strips of different pitch (distance between LEDs) may be made for different qualities of TVs. As non-limiting examples, an embodiment of a display device may include strips with LEDs every 40 mm, and the strips may be spaced apart by 40 mm center-to-center, or strips may have a 10 mm LED pitch four times as many strips (compared to spacing at 40 mm apart) to produce an even higher quality backlight that is also thinner than the 40 mm example, because thickness of the light diffuser of the display is ¼ of the 40 mm, since the LED spacing is ¼ the distance of the 40 mm version.
Furthermore, in an embodiment of a display device using an array of LEDs where the individual LEDs can have their brightness controlled, the dynamic range of LCD displays (back or edge lit by LEDs) may increase to an extent to rival the dynamic range capabilities of an OLED TV, for example. For instance, such a display may have blacker blacks and much brighter whites, which an OLED display is incapable of producing. Generally, the smaller the pitch between LEDs, the more accurate the local dimming capabilities may be. One reason that dynamic range is sometimes an issue with LCDs is that the LCD shutters are unable to block the light completely enough, which leads to some light leakage or glow. Whereas with an OLED display, the OLED provides mini light sources, which when turned off, become completely black. Thus, by distributing the control of an LED array so an individual backlight may be turned off, there is no light to pass through a shutter to leak.
A display device, such as a TV or computer or phone screen may integrate the backlight control with the image data and timing controller of the display such that the backlight works in harmony with the display to do complex localized dimming and provide efficiency improvements. Thus, a display manufacturer need not redesign a large and/or expensive PCB and circuit to simply add a few more channels. To the contrary, an LED array having controllers distributed as disclosed herein allows one to easily add more and/or longer strips of lightstring in the backlight housing. The host controller functionality may therefore be much simpler and may send out data to more LED drivers on the same data bus based on a software definition of the driver arrangement.
Although several embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the claimed subject matter.
This application claims priority to and incorporates U.S. Provisional Patent Application 62/451,630, filed Jan. 27, 2017, entitled “Apparatus and Method for Distributed Control of a Semiconductor Device Array,” in its entirety by reference. This application also incorporates U.S. patent application Ser. No. 14/939,896, now patented as U.S. Pat. No. 9,633,883, filed on Nov. 12, 2015, entitled “Apparatus for Transfer of Semiconductor Devices,” in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
62451630 | Jan 2017 | US |