Apparatus and method for intra-cardiac mapping and ablation

Information

  • Patent Grant
  • 10828093
  • Patent Number
    10,828,093
  • Date Filed
    Thursday, September 7, 2017
    7 years ago
  • Date Issued
    Tuesday, November 10, 2020
    4 years ago
Abstract
An intra-cardiac mapping system is based on locating the ports through which blood flows in or out the heart chambers. For many procedures, such as ablation to cure atrial fibrillation, locating the pulmonary veins and the mitral valve accurately allows to perform a Maze procedure. The location of the ports and valves is based on using the convective cooling effect of the blood flow. The mapping can be performed by a catheter-deployed expandable net or a scanning catheter. The same net or catheter can also perform the ablation procedure.
Description
TECHNICAL FIELD

This disclosure generally relates to minimally invasive heart surgery, also known as percutaneous cardiac surgery and particularly relates to percutaneous mapping and ablation.


BACKGROUND

Atrial fibrillation is a well known disorder in which spurious electrical signals cause an irregular heart beat. The disorder has a well known cure known as the Maze procedure, in which a border is ablated around the sources of the spurious signals, typically in the left atrium but sometimes in the right atrium. The procedure is very commonly performed under direct vision, but difficult to perform percutaneously via a catheter because of the associated risk. Any error in navigation inside the heart can cause fatal damage. The key to a percutaneous procedure is mapping of the inside of the right and left atrium. Access to the right atrium is simple via the superior vena cava; the left atrium can be reached i) by perforating the transatrial septum, ii) via the aorta and the left ventricle or iii) via the pulmonary veins.


Prior approaches to map the inside of the atrium relied on electrical activity picked up from the atrium wall. These approaches require intimate electrical contact, not always possible because of scar tissue and deposits. These approaches may fail to accurately map the edges of the openings where the veins enter the atrium; information that is useful for correct placement of the ablation pattern. Other mapping methods, such as using an array of ultrasonic transducers, are not practical since such arrays typically will not fit through a catheter of a reasonable size (8-10 mm diameter). A superior mapping apparatus and method, that enables safe execution of the Maze and other intra-cardiac procedures is desirable.


A good survey article on the subject is: “Ablation of Atrial Fibrillation: Energy Sources and Navigation Tools: A survey” by Ruediger Becker and Wolfgang Schoels (J. of Electrocardiology, Vol 37, 2004, pp 55-61). The article includes an extensive bibliography.


SUMMARY

Embodiments of an intra-cardiac mapping system are based on locating openings or ports and values through which blood flows in or out of the heart chambers. For many procedures, such as ablation to cure atrial fibrillation, accurately locating the pulmonary veins and the mitral valve allows performance of a Maze procedure. The openings, ports and valves may be located based on the convective cooling effect of the blood flow. The mapping can be performed by a catheter-deployed expandable net or a scanning catheter. The same net or catheter can also perform the ablation procedure.


In one embodiment, a method for intra-cardiac mapping comprises: introducing a plurality of flow sensors into an intra-cardiac cavity: locating points in a wall forming said cavity based on sensing blood flow; and mapping said walls of said cavity based on said points. The method for intra-cardiac mapping may include said blood flow being sensed by its convective cooling effect on a heated sensor. The method for intra-cardiac mapping may include said sensing being done by a steerable linear array. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by RF ablation. The method for intra-cardiac mapping may include being used for treating atrial fibrillation by microwave ablation. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by cryogenic ablation. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by laser ablation. The method for intra-cardiac mapping may include said blood flow being sensed by the resistance change of a heated resistive wire.


In another embodiment, a method for intra-cardiac mapping comprises: introducing an expandable sensing mesh into said cavity via a catheter; using said mesh to locate openings in walls forming said cavity based on the convective heat transfer of blood flowing through said holes; and mapping inside of said cavity based on location of said openings. The method for intra-cardiac mapping may include said blood flow being sensed by its convective cooling effect on a heated sensor. The method for intra-cardiac mapping may include said sensing being done by a steerable linear array. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by RF ablation. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by microwave ablation. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by cryogenic ablation. The method for intra-cardiac mapping may include said mapping being used for treating atrial fibrillation by laser ablation. The method for intra-cardiac mapping may include said blood flow being sensed by the resistance change of a heated resistive wire. The method for intra-cardiac mapping may include said mesh comprising small coils of nickel wire wound on a mesh of a flexible insulator. The method for intra-cardiac mapping may include an electronic switch used to minimize the number of electrical wires passing through said catheter.


In yet another embodiment, a method for treating atrial fibrillation comprises: introducing at least one flow sensor into an intra-cardiac cavity; locating points in a wall forming said cavity based on sensing blood flow; mapping walls of said cavity based on said points; and ablating a pattern into walls of said cavity based on said mapping. The method for treating atrial fibrillation may include said blood flow being sensed by its convective cooling effect on a heated sensor. The method for treating atrial fibrillation may include said sensing being done by a steerable linear array. The method for treating atrial fibrillation may include said mapping being used for treating atrial fibrillation by RF ablation. The method for treating atrial fibrillation may include said mapping being used for treating atrial fibrillation by microwave ablation. The method for treating atrial fibrillation may include said mapping being used for treating atrial fibrillation by cryogenic ablation. The method for treating atrial fibrillation may include said mapping being used for treating atrial fibrillation by laser ablation. The method for treating atrial fibrillation may include said blood flow being sensed by the resistance change of a heated resistive wire. The method for treating atrial fibrillation may include said flow sensors also acting as electrodes for said ablation. The method for treating atrial fibrillation may include said flow sensor being based on temperature sensing and a same sensor being used to monitor temperature during said ablation. The method for treating atrial fibrillation may include said ablation being unipolar. The method for treating atrial fibrillation may include said ablation being bipolar. The method for treating atrial fibrillation may include said ablated pattern being a Maze procedure.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. It is to be understood that the attached drawings are for purposes of illustrating the concepts of the invention and may not be to scale. For example, the sizes, relative positions, shapes, and angles of or associated with elements in the drawings are not necessarily drawn to scale, and some elements may be arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn may differ from their actual shapes and, in this regard, may be selected instead of the respective actual shapes for ease of recognition in the drawings.



FIG. 1 is a cross sectional view of the heart showing the mapping mesh deployed in the left atrium.



FIG. 2 is a cross sectional view of the sensing device.



FIGS. 3A and 3B are isometric views of the mesh in both folded and expanded position.



FIG. 4 is an isometric enlarged view of a portion of the mesh.



FIG. 5 is an electrical schematic of a mapping and ablation system.



FIG. 6 is an electrical schematic of a simplified mapping system.



FIG. 7 is a schematic view of the display console of the system.



FIGS. 8A and 8B are graphical views of a mapping that illustrate an interpolation principle.



FIG. 9 is a cross sectional view of an alternate embodiment, using mechanical or manual scanning in one axis.



FIG. 10 is a cross sectional view of an alternate embodiment, using mechanical scanning in two dimensions.



FIG. 11 shows the use of the invention for bipolar ablation.





DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with apparatuses and methods for intra-cardiac mapping and ablation have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.


Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its non-exclusive sense including “and/or” unless the content clearly dictates otherwise.


The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.



FIG. 1 shows a sensing and ablation mesh 7 inserted into a left atrium 3 of a heart 1 according to one illustrated embodiment.


By way of example, the mesh 7 may be delivered via a catheter 60 inserted via a superior vena cava 4 and penetrating a transatrial septum from a right atrium 2 of the heart 1. The mesh 7 is communicatively coupled to the rest of the system, for example, by electrical wires 6.


Before any ablation takes place, the inside of the left atrium 3 is mapped in order to locate the openings or ports 8 leading to the pulmonary veins 5, as well as the mitral valve 9. A typical Maze procedure ablates a “fence” around openings or ports 8 to stop propagation of spurious electrical signals which cause the heart 1 to contract at the wrong times.


The mapping may locate some or all of the openings or ports 8 through which blood flows in and out of the left atrium 3, as the Maze procedure is mainly concerned with the location of these openings or ports 8. By the way of example, in the left atrium 3, the four openings or ports 8 leading to the pulmonary veins 5 as well as the mitral valve 9 may be located. The location of these openings or ports 8 may be based on the fact that the convective cooling effect of the blood is significant, and a slightly heated mesh 7 pressed against the walls of the left and/or right atrium 3, 2 will be cooler at the areas which are spanning the openings or ports 8 carrying blood.



FIG. 2 shows the ablation mesh 7 covered by miniature heating and/or temperature sensing elements 10a-10c flow (collectively 10, only three illustrated in the figure). Each one of these elements 10a-10c comprises a few turns of a resistive wire, for example nickel wire, wound on an electrically insulated mesh. A low current is passed through each element 10, raising a temperature of the element 10 by about 1 degree C. above normal blood temperature. A first element 10b, which lies across an opening or port 8 of one of the pulmonary veins 5, will be cooled by blood flow. The other elements are against a wall 3 and hence do not lie across any of the openings or ports 8.


By identifying the relatively cooler elements 10a, 10c on the mesh 7, the location of the openings or ports 8 may be found.


This method does not require intimate contact with the wall 3, as the cooling effect is significant even a few millimeters away from the opening.


The same elements 10 can be used as ablation electrodes during an ablation stage. It was found that the power required to raise the temperature of the mesh 7 by a small but easily detectable amount is very small, on the order of 10-50 mW per element 10. If the elements 10 are made of a material that has a significant change in resistance with temperature, the temperature drop can be sensed by measuring a voltage across the element 10 when driven by a constant current. A good choice for element material is nickel wire, which is inert, highly resistive and has a significant temperature coefficient of resistance (about 0.6% per deg C.). Since the resistance of the elements 10 is low (typically 0.1-1 ohm), the electrical noise is very low and temperature changes as low as 0.1 deg can be easily detected. For even higher detection sensitivity, the voltage waveform can be sampled in sychronization with the heart rate or the average voltage removed and only the change amplified. Such methods are referred to as “AC coupling”. A further refinement to reduce the electrical noise is to pass the signal through a digital band pass filter having a center frequency tracking the heart rate. To avoid any potential tissue damage, the temperature of the elements 10 of the mesh 7 is only slightly above the blood temperature, typically 0.1-3 degrees C. above blood temperature.



FIG. 3A shows the mesh 7 in a compressed configuration “A” and FIG. 3B shows the mesh 7 in an expanded configuration “B”. Since the mesh 7 has to fit into a catheter 60, the mesh 7 should be very flexible. Besides elements 10 discussed earlier, there is also a large number of leads 13 coming out of the mesh 7. Leads 13 can be loose, as shown in FIG. 3B, or may be bonded to the mesh 7. To avoid feeding a large number of wires all the way to an operating console, an electronic selector switch may be employed, which may, for example, be mounted in the catheter 60. This reduces the number of electrical wires from over 100 to about 10. The mesh 7 can be self-expanding (elastic) or balloon-expandable. Self expanding allows normal blood flow during the procedure. For balloon expandable devices, the expansion balloon should be removed before the mapping, to avoid blocking the flow of blood.



FIG. 4 shows the mesh 7 in more detail. Insulated longitudinal (i.e., parallel to catheter) wires 25 are crossed by cross wires 26. Each section of the mesh 7 is covered by a few turns of thin (0.05-0.2 mm) nickel wire 10 having leads 13. The leads 13 can be regular thin copper wire. The longitudinal wires 25 can be stiffer than the cross wires 26, therefore can be made self-expanding by incorporating a core 14 made of coiled flexible metal wire such as Nitinol. A metallic core may interfere with the ablation process at higher frequencies and can be replaced by simply making the longitudinal wires 25 of a polymeric material thicker than the cross wires 26. The cross wires 26, which may form rings around wires 25, should be very flexible to compress into the catheter 60. The cross wires 26 could incorporate a very thin wire or coiled up wire. Use of a flexible mesh 7 not only allows percutaneous delivery, but also permits the mesh 7 to follow the atrial volume change each heartbeat. The mesh 7 should stay in contact with or close to the atrial wall during the cardiac cycle, otherwise the measurement and the ablation may only be performed during parts of the cardiac cycle. The diameter of the longitudinal wires 25 and cross wires 26 are typically 0.2-1 mm. The mesh 7 may include about 10-20 longitudinal wires 25 and about 10-20 cross wires 26. The insulation can be any polymeric material such as thin enamel or polymer coating. Practically any polymer can be used, as the maximum temperature it will be subject to, including during the ablation phase, is around 100 degrees C.



FIG. 5 shows an electrical system, according to one illustrated embodiment. The elements 10 may be resistive heaters wound on the mesh 7. Each of the elements 10 is connected by electronic element switches 15 (typically FET or MOS-FET type) to a single pair of wires leading out of the body to a mode selection switch 17. Element switches 15 are selected by de-multiplexer or selector 16. The de-multiplexer or selector 16 is controlled by a small number of wires or even a single wire if data is sent in serial form, by a multiplexer 22. Element switches 15 and de-multiplexer or selector 16 may be built into the catheter 60, which may, for example, be located near the point of deployment of the mesh 7. The element switches 15 have to carry significant power during the ablation phase.


The mode selection 17 selects between a mapping mode (position shown in the drawing) and an ablation mode (second position of switch). In the mapping mode, a current is created by a voltage source 18 and resistor 19 (e.g., forming a constant current source) and routed into a selected element 10 by the element switches 15. For each measurement, the two element switches 15 that are connected to the scanned element 10 are in an enabled state (ON), the rest of the element switches being in a disabled state (OFF). The voltage drop across an element 10 is measured by an analog to digital (A/D) converter 20 and fed to a control computer 23. For greater accuracy, four terminal sensing can be employed. In a preferred embodiment, the detection is AC coupled, therefore the DC voltage drops along the wires are of no consequence, and no four-terminal sensing is needed. For AC coupling, the control computer 23 may include a 0.5 Hz low pass filter, which may be implemented in software. The slight disadvantage of the AC coupled method approach is speed, as the low signal frequency (e.g., about 1 Hz), requires a few seconds per measurement. Other temperature sensors and/or approaches, such as thermistors or thermocouples, can be used in conjunction with the elements 10. Mapping is achieved by turning on all of the elements 10 (e.g., sequentially) and measuring the temperature of each. A map may be formed in the control computer 23 and the lower temperature spots on the mesh correspond to the openings or ports 8 leading to the veins or valves.


When the mode selection switch 17 is in the ablation mode, a generator 21 (e.g., Radio Frequency (RF)) is connected (e.g., sequentially) to selected elements 10 by the control computer 23 addressing the multiplexer 22 which controls the element switches 15 via the de-multiplex selector 16. The complete operation, including scanning and ablation, can be completed in less than 5 minutes. The configuration illustrated in FIG. 5 implies unipolar ablation; however bipolar ablation can be used as well and is discussed below. Clearly other sources of ablation can be used besides RF. Frequencies from DC to microwaves can be used, as well as delivery of laser power via optical fibers or cryogenics via thin tubes. For laser ablation element switches 15 are optical switches, while for cryogenic ablation the element switches 15 are valves, and in some embodiments may take the form of heated elements such as resistive wires.


During ablation it is desirable to monitor the temperature of the mode selection switch 17 to the mapping position several times during the ablation procedure. The measured temperatures can be displayed on a display 32 (FIG. 7). RF ablation is typically performed at frequencies of 100 KHz-1 MHz and power levels which depend on the size of the elements 10, but can be as high as 100 W. Various RF ablation techniques and equipment are well known in the art.



FIG. 6 shows an embodiment in which the mapping system is separate from the ablation system. In this system, the mesh 7 has very few connecting wires. As illustrated, each longitudinal wire 25 has a single output wire and each cross wire 26 has a single output wire 13. For a 10×10 mesh 7 with 100 nodes, only twenty-one wires are needed (ten plus ten plus ground wire), instead of two hundred wires. This allows all wires to be brought directly out of the catheter 60. This also allows placement of selector switches 16 and 24 together with the control system. For example, if the element marked as “A” is selected; a current is selected to run through the longitudinal wire 25 which includes element A. The voltage drop is sensed by the two circumferential wires 13 that connect directly to A. Since no current flows in the other elements at the time of measurement, the voltage drop is only caused by element A. It is sensed by A/D converter 20 via double pole selector 24.


After a map is established, it is displayed on a display screen 32 as shown in FIG. 7. The surgeon can select which elements 10 will cause tissue ablation in the atrium. The pattern formed is along the line of the standard Maze procedure. The location of the pulmonary veins 5 and the mitral valve 9 is inferred from the temperature date and drawn on the display screen.



FIGS. 8A and 8B demonstrate the principle of accurate location of the veins and valves even if the grid is relatively coarse. The exact location can be interpolated based on the fact that when only part of the element 10 is exposed to the blood flow. By the way of example, if the temperature of the mesh 7 is 1 degree C. above blood temperature and equals the blood temperature under normal blood flow (this was experimentally verified), the temperatures of a group of elements 10 will be as shown in FIG. 8A when aligned with the opening or port 8 of vein 5. The number near each element 10 is the temperature drop. When moved, some of the elements 10 will only be partially positioned in the flow path under vein 5, as shown by FIG. 8B. The temperatures of those elements 10 will be between 0 and 1 degree above blood temperature. The exact temperature drop between 0 to 1 corresponds with the exact shift. This allows accurate determination of the location and size of each opening or port 8, data used by the control computer 23 to draw the map shown in FIG. 7. A grid spacing of 10 mm allows about 1 mm accuracy.


An alternative to a full mesh is a partial mesh, or even a single sensor, that is mechanically scanned across the area to be mapped. FIG. 9 shows a linear sensor array 27 pushed into the atrium 2 via vein 4 by the catheter 60. The linear sensor array 27 has a linear array of elements 10 similar to those used in the full mesh 7. After a linear mapping is performed the linear sensor array 27 is rotated (as shown by broken line 27′) a small amount (10-20 degrees) by stem 11 (similar to electrical wires 6) and a new scan is performed. The same procedures previously described may be used for ablation.



FIG. 10 shows the use of a single steerable catheter 28 as a mapping and ablation tool. Steerable catheters are controlled remotely by mechanical, magnetic, hydraulic or other means. A steerable catheter 28 can be used to scan the inside of the atrium 3 by bending, as shown in broken line 28′. The location is monitored by external or internal sensors. A position of a tip of the steerable catheter 28 can also be monitored by fluoroscopy. The catheter tip contains a heating and/or ablation element 10. Steerable catheters 28 may advantageously carry a wide range of ablation systems, since only one connection and one point is needed.


A full mesh trades a higher complexity for better speed and accuracy when compared to linear arrays or single point scanning.


The previous examples were of unipolar ablation, with the ablation current returning to ground via the patient's body. The disclosed system can also be used for bipolar ablation as shown in FIG. 11. In unipolar ablation the same voltage is connected to both leads 13 and 13′ of an element 10. In bipolar abalation the voltage is connected to lead 13 while the other end, 13′, is grounded. It is important that the element 10 will be of sufficient resistance to cause most of the ablation current to flow through heart tissue 1. Electrodes 30 make contact with tissue 1 while the wire used in the element 10 is covered by an insulator. The advantage of bipolar ablation is better control of ablation depth. Typical ablation temperatures are 60-80 degrees C. At a higher temperature the tissue 1 becomes less conductive, forcing the ablation current to seek a new path. This promotes full ablation of the tissue 1. The element 10 can also be designed to assist ablation by creating heat when ablation voltage is applied across it.


One possible advantage of at least some of the presently disclosed embodiments over electrical potential mapping methods is that the presently disclosed embodiments do not require perfect contact between the mesh 7 and the tissue 1. The presently disclosed embodiments may also advantageously be less sensitive to the surface properties of the tissue, such as scar tissue or plaque.


If the mesh is separated from the tissue by a thin layer of blood, both the temperature sensing and the ablation functions of the presently disclosed embodiments will still function properly.


The word “element” in this disclosure has to be interpreted in a broad sense as any element capable of sensing blood flow. Clearly the elements do not need to be heaters, as cooling elements will work equally well. If a material is injected into the blood flow, any sensor capable of detecting this material can be used to detect blood flow. By the way of example, if the blood is cooled or warmed slightly before returning to the heart only temperatures sensors are needed. Since temperature differences as low as 0.1 degree C. can be detected reliably, it is fairly simple to heat or cool the blood slightly before it returns to the heart (even by a simple external pad).


The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents. U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A method comprising: providing a structure and a plurality of elements arranged on the structure;performing a mapping function based at least on information acquired from an activation of at least a group of elements in the plurality of elements, the activation including each element in the group of elements being activated to generate heat sufficient to cause a mapping temperature that does not exceed a slightly above blood temperature that is insufficient to cause tissue ablation;displaying a representation of a first spatial distribution of at least the group of elements; anddisplaying, for each particular element in the group of elements, respective information related to the heat generated by the activation of the particular element.
  • 2. The method of claim 1, comprising displaying, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element at least proximate a location of the particular element in the displayed representation of the first spatial distribution of at least the group of elements.
  • 3. The method of claim 1, comprising displaying all of the respective information for all elements in the group of elements according to a second spatial distribution, the second spatial distribution corresponding to the first spatial distribution of at least the group of elements.
  • 4. The method of claim 1, comprising displaying, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element at least proximate to a displayed representation of the particular element.
  • 5. The method of claim 1, comprising displaying a map of at least a portion of an intra-cardiac cavity.
  • 6. The method of claim 5, comprising displaying, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element in a superimposed relationship with the map.
  • 7. The method of claim 1, comprising displaying information interpolated from the respective information related to the heat generated by the activation of each of multiple ones of the particular elements in the group of elements.
  • 8. The method of claim 1, comprising displaying, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element prior to an activation of at least one element in the plurality of elements to ablate tissue.
  • 9. The method of claim 1, comprising sensing respective data from each activated particular element in at least the group of elements, and determining the respective information related to the heat generated by the activation of the particular element based on the sensed respective data.
  • 10. The method of claim 1, comprising receiving a selection of one or more elements in the plurality of elements for respective activation thereof to ablate tissue, the selection based at least in part on the respective information related to the heat generated by the activation of each element of at least some elements in the group of elements.
  • 11. The method of claim 1, wherein each element of at least some elements in the plurality of elements is activatable to emit radiofrequency energy sufficient for tissue ablation.
  • 12. The method of claim 1, wherein each element of at least some elements in the group of elements is activatable to emit radiofrequency energy sufficient for tissue ablation.
  • 13. The method of claim 1, wherein each mapping temperature is in a range of 0.1 to 3 degrees Celsius above blood temperature.
  • 14. A medical system comprising: a display console; anda control computer connected to the display console and a plurality of elements arranged on a structure, the control computer configured to:perform a mapping function based at least on information acquired from an activation of at least a group of elements in the plurality of elements, the activation including each element in the group of elements being activated to generate heat sufficient to cause a mapping temperature that does not exceed a slightly above blood temperature that is insufficient to cause tissue ablation;cause the display console to display a representation of a first spatial distribution of at least the group of elements; andcause the display console to display, for each particular element in the group of elements, respective information related to the heat generated by the activation of the particular element.
  • 15. The medical system of claim 14, wherein the control computer is configured to cause the display console to display, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element at least proximate to a location of the particular element in the displayed representation of the first spatial distribution of at least the group of elements.
  • 16. The medical system of claim 14, wherein the control computer is configured to cause the display console to display all of the respective information for all elements in the group of elements according to a second spatial distribution, the second spatial distribution corresponding to the first spatial distribution of at least the group of elements.
  • 17. The medical system of claim 14, wherein the control computer is configured to cause the display console to display, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element at least proximate to a displayed representation of the particular element.
  • 18. The medical system of claim 14, wherein the control computer is configured to cause the display console to display a map of at least a portion of an intra-cardiac cavity.
  • 19. The medical system of claim 18, wherein the control computer is configured to cause the display console to display, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element in a superimposed relationship with the map.
  • 20. The medical system of claim 14, wherein the control computer is configured to cause the display console to display information interpolated from the respective information related to the heat generated by the activation of each of multiple ones of the particular elements in the group of elements.
  • 21. The medical system of claim 14, wherein the control computer is configured to cause the display console to display, for each particular element in the group of elements, the respective information related to the heat generated by the activation of the particular element prior to an activation of at least one element in the plurality of elements to ablate tissue.
  • 22. The medical system of claim 14, wherein the control computer is configured to receive respective data sensed by each particular element in at least the group of elements, and to determine the respective information related to the heat generated by the activation of the particular element based on the sensed respective data.
  • 23. The medical system of claim 14, wherein the control computer is configured to process a selection of one or more elements in the plurality of elements for respective activation thereof to ablate tissue, the selection based at least in part on the respective information related to the heat generated by the activation of each element of at least some of the elements in the group of elements.
  • 24. The medical system of claim 14, wherein each element of at least some elements in the plurality of elements is activatable to emit radiofrequency energy sufficient for tissue ablation.
  • 25. The medical system of claim 14, wherein each element of at least some elements in the group of elements is activatable to emit radiofrequency energy sufficient for tissue ablation.
  • 26. The medical system of claim 14, wherein each element of at least some elements in the plurality of elements comprises a metal coil.
  • 27. The medical system of claim 14, wherein each mapping temperature is in a range of 0.1 to 3 degrees Celsius above blood temperature.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior U.S. patent application Ser. No. 14/804,810, filed Jul. 21, 2015, now U.S. Pat. No. 9,987,083, issued Jun. 5, 2018, which is a continuation of prior U.S. patent application Ser. No. 13/785,931, filed Mar. 5, 2013, now U.S. Pat. No. 9,119,633, issued on Sep. 1, 2015, which is a continuation-in-part of prior U.S. patent application Ser. No. 11/475,950, filed Jun. 28, 2006, now U.S. Pat. No. 8,920,411, issued on Dec. 30, 2014, the entire disclosure of each of these applications is hereby incorporated herein by reference.

US Referenced Citations (632)
Number Name Date Kind
4114202 Roy et al. Sep 1978 A
4164046 Cooley Aug 1979 A
4225148 Andersson Sep 1980 A
4240441 Khalil Dec 1980 A
4263680 Reul et al. Apr 1981 A
4273128 Lary Jun 1981 A
4411266 Cosman Oct 1983 A
4490859 Black et al. Jan 1985 A
4543090 McCoy Sep 1985 A
4699147 Chilson et al. Oct 1987 A
4770187 Lash et al. Sep 1988 A
4787369 Allred, III et al. Nov 1988 A
4794912 Lia Jan 1989 A
4850957 Summers Jul 1989 A
4887613 Farr et al. Dec 1989 A
4890602 Hake Jan 1990 A
4890612 Kensey Jan 1990 A
4893613 Hake Jan 1990 A
4895166 Farr et al. Jan 1990 A
4905667 Foerster et al. Mar 1990 A
4921499 Hoffman et al. May 1990 A
4940064 Desai Jul 1990 A
4942788 Farr et al. Jul 1990 A
4979514 Sekii et al. Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5026384 Farr et al. Jun 1991 A
5047047 Yoon Sep 1991 A
5122137 Lennox Jun 1992 A
5127902 Fischell Jul 1992 A
5153151 Aitken Oct 1992 A
5156151 Imran Oct 1992 A
5174299 Nelson Dec 1992 A
5176693 Pannek, Jr. Jan 1993 A
5178620 Eggers et al. Jan 1993 A
5192291 Pannek, Jr. Mar 1993 A
5195505 Josefsen Mar 1993 A
5201316 Pomeranz et al. Apr 1993 A
5228442 Imran Jul 1993 A
5242386 Holzer Sep 1993 A
5245987 Redmond et al. Sep 1993 A
5255679 Imran Oct 1993 A
5279299 Imran Jan 1994 A
5293869 Edwards et al. Mar 1994 A
5297549 Beatty et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5312435 Nash et al. May 1994 A
5317952 Immega Jun 1994 A
5324284 Imran Jun 1994 A
5327889 Imran Jul 1994 A
5341807 Nardella Aug 1994 A
5345936 Pomeranz et al. Sep 1994 A
5351679 Mayzels et al. Oct 1994 A
5366443 Eggers et al. Nov 1994 A
5370679 Atlee, III Dec 1994 A
5379773 Hornsby Jan 1995 A
5397321 Houser et al. Mar 1995 A
5419767 Eggers et al. May 1995 A
5450860 O'Connor Sep 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5478353 Yoon Dec 1995 A
5485849 Panescu et al. Jan 1996 A
5496267 Drasler et al. Mar 1996 A
5499981 Kordis Mar 1996 A
5531760 Alwafaie Jul 1996 A
5545193 Fleischman et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5555883 Avitall Sep 1996 A
5557967 Renger Sep 1996 A
5575810 Swanson et al. Nov 1996 A
5593424 Northrup, III Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5620481 Desai et al. Apr 1997 A
5630813 Kieturakis May 1997 A
5637090 McGee et al. Jun 1997 A
5662587 Grundfest et al. Sep 1997 A
5681308 Edwards et al. Oct 1997 A
5681336 Clement et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5687737 Branham et al. Nov 1997 A
5697285 Nappi et al. Dec 1997 A
5713896 Nardella Feb 1998 A
5713942 Stern et al. Feb 1998 A
5716397 Myers Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5728114 Evans et al. Mar 1998 A
5730127 Avitall Mar 1998 A
5738096 Ben-Haim Apr 1998 A
5762066 Law et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5782239 Webster, Jr. Jul 1998 A
5782879 Rosborough et al. Jul 1998 A
5800495 Machek et al. Sep 1998 A
5823189 Kordis Oct 1998 A
5824066 Gross Oct 1998 A
5836947 Fleischman et al. Nov 1998 A
5836990 Li Nov 1998 A
5853422 Huebsch et al. Dec 1998 A
5868743 Saul Feb 1999 A
5868755 Kanner et al. Feb 1999 A
5876343 Teo Mar 1999 A
5879295 Li et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5885278 Fleischman Mar 1999 A
5891136 McGee et al. Apr 1999 A
5893847 Kordis Apr 1999 A
5904711 Flom et al. May 1999 A
5916163 Panescu et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5921924 Avitall Jul 1999 A
5935075 Casscells et al. Aug 1999 A
5935079 Swanson et al. Aug 1999 A
5941251 Panescu et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5968040 Swanson et al. Oct 1999 A
5984950 Cragg et al. Nov 1999 A
6001069 Tachibana et al. Dec 1999 A
6001093 Swanson et al. Dec 1999 A
6014581 Vvhayne et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6030382 Fleischman et al. Feb 2000 A
6036689 Tu et al. Mar 2000 A
6063082 DeVore et al. May 2000 A
6071282 Fleischman Jun 2000 A
6104944 Martinelli Aug 2000 A
6106460 Panescu Aug 2000 A
6106522 Fleischman et al. Aug 2000 A
6119030 Morency Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6138043 Avitall Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6210432 Solem et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6217573 Webster Apr 2001 B1
6240307 Beatty May 2001 B1
6241747 Ruff Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6254598 Edwards Jul 2001 B1
6258258 Sartori et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6304769 Arenson et al. Oct 2001 B1
6306135 Ellman et al. Oct 2001 B1
6308091 Avitall Oct 2001 B1
6319249 Tollner Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6330478 Lee et al. Dec 2001 B1
6346105 Tu et al. Feb 2002 B1
6350263 Wetzig et al. Feb 2002 B1
6358258 Arcia et al. Mar 2002 B1
6383151 Diederich et al. May 2002 B1
6389311 Whayne et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6391048 Ginn et al. May 2002 B1
6391054 Carpentier et al. May 2002 B2
6402781 Langberg et al. Jun 2002 B1
6436052 Nikolic et al. Aug 2002 B1
6475223 Vverp et al. Nov 2002 B1
6485409 Voloshin et al. Nov 2002 B1
6485482 Belef Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6506210 Kanner Jan 2003 B1
6514249 Maguire et al. Feb 2003 B1
6517534 McGovern Feb 2003 B1
6529756 Phan et al. Mar 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540670 Hirata et al. Apr 2003 B1
6551310 Ganz et al. Apr 2003 B1
6551312 Zhang et al. Apr 2003 B2
6569160 Goldin et al. May 2003 B1
6569198 Wilson et al. May 2003 B1
6575971 Hauck et al. Jun 2003 B2
6589208 Ewers et al. Jul 2003 B2
6616684 Vidlund et al. Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6632238 Ginn et al. Oct 2003 B2
6635056 Kadhiresan et al. Oct 2003 B2
6640119 Budd et al. Oct 2003 B1
6652515 Maguire et al. Nov 2003 B1
6652517 Hall et al. Nov 2003 B1
6662034 Segner et al. Dec 2003 B2
6666862 Jain et al. Dec 2003 B2
D484979 Fontaine Jan 2004 S
6704590 Haldeman Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6725085 Schwartzman et al. Apr 2004 B2
6726716 Marquez Apr 2004 B2
6733499 Scheib May 2004 B2
6735465 Panescu May 2004 B2
6760616 Hoey et al. Jul 2004 B2
6780197 Roe et al. Aug 2004 B2
6788969 Dupree et al. Sep 2004 B2
6795721 Coleman et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6824562 Mathis et al. Nov 2004 B2
6837886 Collins et al. Jan 2005 B2
6852076 Nikolic et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6890353 Cohn May 2005 B2
6892091 Ben-Haim et al. May 2005 B1
6899674 Viebach et al. May 2005 B2
6907297 Wellman et al. Jun 2005 B2
6908478 Alferness et al. Jun 2005 B2
6913576 Bowman Jul 2005 B2
6918903 Bass Jul 2005 B2
6926669 Stewart et al. Aug 2005 B1
6936047 Nasab et al. Aug 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6949122 Adams et al. Sep 2005 B2
6955640 Sanders et al. Oct 2005 B2
6960206 Keane Nov 2005 B2
6960229 Mathis et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6994093 Murphy et al. Feb 2006 B2
6997925 Maguire et al. Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7001383 Keidar Feb 2006 B2
7003342 Plaza Feb 2006 B2
7025776 Houser et al. Apr 2006 B1
7044135 Lesh May 2006 B2
7048734 Fleischman et al. May 2006 B1
7050848 Hoey et al. May 2006 B2
7052487 Cohn et al. May 2006 B2
7068867 Adoram et al. Jun 2006 B2
7141019 Pearlman Nov 2006 B2
7144363 Pai et al. Dec 2006 B2
7166127 Spence et al. Jan 2007 B2
7174201 Govari et al. Feb 2007 B2
7177677 Kaula et al. Feb 2007 B2
7186210 Feld et al. Mar 2007 B2
7187964 Khoury Mar 2007 B2
7189202 Lau et al. Mar 2007 B2
7194294 Panescu et al. Mar 2007 B2
7198635 Danek et al. Apr 2007 B2
7252664 Nasab et al. Aug 2007 B2
7255695 Falwell et al. Aug 2007 B2
7276044 Ferry et al. Oct 2007 B2
7279007 Nikolic et al. Oct 2007 B2
7282030 Frei et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303526 Sharkey et al. Dec 2007 B2
7335196 Swanson et al. Feb 2008 B2
7340307 Maguire et al. Mar 2008 B2
7481808 Koyfman et al. Jan 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7530980 Hooven May 2009 B2
7575566 Scheib Aug 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
7610078 Willis Oct 2009 B2
7633502 Willis et al. Dec 2009 B2
7660452 Zwirn et al. Feb 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7738967 Salo Jun 2010 B2
8012149 Jackson Sep 2011 B2
8103338 Harlev et al. Jan 2012 B2
D654588 Taube et al. Feb 2012 S
8118853 Grewe Feb 2012 B2
8150499 Gelbart et al. Apr 2012 B2
D660967 Braido et al. May 2012 S
8200308 Zhang et al. Jun 2012 B2
8216216 Warnking et al. Jul 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8224432 Macadam et al. Jul 2012 B2
8326419 Rosenberg et al. Dec 2012 B2
8352019 Starks Jan 2013 B2
8398631 Ganz Mar 2013 B2
8401645 Rosenberg et al. Mar 2013 B2
8414508 Thapliyal et al. Apr 2013 B2
8442613 Kim et al. May 2013 B2
8442625 Markowitz et al. May 2013 B2
8457371 Markowitz et al. Jun 2013 B2
8463368 Harlev et al. Jun 2013 B2
8532734 Markowitz et al. Sep 2013 B2
8571647 Harlev et al. Oct 2013 B2
8615287 Harlev et al. Dec 2013 B2
8657814 Werneth et al. Feb 2014 B2
8663120 Markowitz et al. Mar 2014 B2
8706260 Stewart et al. Apr 2014 B2
8725240 Harlev et al. May 2014 B2
8831701 Markowitz et al. Sep 2014 B2
8834461 Werneth et al. Sep 2014 B2
8849384 Greenspan Sep 2014 B2
D717954 Hjelle et al. Nov 2014 S
8897516 Turgeman Nov 2014 B2
8920411 Gelbart et al. Dec 2014 B2
8926605 McCarthy et al. Jan 2015 B2
8932284 McCarthy et al. Jan 2015 B2
8961506 McCarthy et al. Feb 2015 B2
9033893 Spector May 2015 B2
9044245 Condie et al. Jun 2015 B2
9095350 Condie et al. Aug 2015 B2
9101333 Schwartz Aug 2015 B2
9107599 Harlev et al. Aug 2015 B2
9119633 Gelbart Sep 2015 B2
9119634 Gelbart et al. Sep 2015 B2
9179860 Markowitz et al. Nov 2015 B2
9179972 Olson Nov 2015 B2
9198713 Wallace et al. Dec 2015 B2
9204935 Hauck et al. Dec 2015 B2
9265434 Merschon et al. Feb 2016 B2
9277872 Harlev et al. Mar 2016 B2
9277960 Weinkam et al. Mar 2016 B2
9282910 Narayan et al. Mar 2016 B2
9289606 Paul Mar 2016 B2
9332920 Thakur et al. May 2016 B2
9398862 Harlev et al. Jul 2016 B2
9408544 Laughner et al. Aug 2016 B2
9433465 Gliner et al. Sep 2016 B2
9439578 Thakur et al. Sep 2016 B2
9456759 Lian et al. Oct 2016 B2
9474491 Li et al. Oct 2016 B2
9486272 Bonyak et al. Nov 2016 B2
9504518 Condie et al. Nov 2016 B2
9532725 Laughner et al. Jan 2017 B2
9532828 Condie et al. Jan 2017 B2
9554718 Bar-Tal et al. Jan 2017 B2
9554847 Govari et al. Jan 2017 B2
9572620 Ryu et al. Feb 2017 B2
9579064 Kovtun et al. Feb 2017 B2
9603651 Ghosh Mar 2017 B2
9603661 Gelbart et al. Mar 2017 B2
9610045 Du et al. Apr 2017 B2
9622806 Mihalik Apr 2017 B2
9629567 Porath et al. Apr 2017 B2
9636032 Thakur et al. May 2017 B2
9655535 Narayan et al. May 2017 B2
9662033 Severino May 2017 B2
9693699 Spector et al. Jul 2017 B2
9730603 Laughner et al. Aug 2017 B2
9737267 Strom et al. Aug 2017 B2
9743854 Stewart et al. Aug 2017 B2
9763587 Altmann Sep 2017 B2
9763625 Laughner et al. Sep 2017 B2
9782094 Du et al. Oct 2017 B2
9795314 Laughner et al. Oct 2017 B2
9814523 Condie et al. Nov 2017 B2
9848833 Govari et al. Dec 2017 B2
9861802 Mickelsen Jan 2018 B2
9875578 Zar et al. Jan 2018 B2
9895079 Massarwa et al. Feb 2018 B2
9913589 Scharf et al. Mar 2018 B2
9918649 Thakur et al. Mar 2018 B2
9918788 Paul et al. Mar 2018 B2
9940747 Katz et al. Apr 2018 B2
9949657 Ravuna et al. Apr 2018 B2
9955889 Urman et al. May 2018 B2
9980653 Lichtenstein et al. May 2018 B2
9987083 Gelbart Jun 2018 B2
9987084 Gelbart Jun 2018 B2
10004413 Bokan et al. Jun 2018 B2
10010368 Laske et al. Jul 2018 B2
10016145 Thakur et al. Jul 2018 B2
10028783 Gelbart et al. Jul 2018 B2
10064678 Corvi et al. Sep 2018 B2
10085659 Laughner et al. Oct 2018 B2
20010003158 Kensey et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20010021867 Kordis et al. Sep 2001 A1
20020002329 Avitall Jan 2002 A1
20020016628 Langberg et al. Feb 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020087157 Sliwa, Jr. et al. Jul 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020099415 Panescu et al. Jul 2002 A1
20020107478 Wendlandt Aug 2002 A1
20020107511 Collins et al. Aug 2002 A1
20020107530 Saucer et al. Aug 2002 A1
20020115941 Whayne et al. Aug 2002 A1
20020115944 Mendes et al. Aug 2002 A1
20020165535 Lesh et al. Nov 2002 A1
20020169445 Jain et al. Nov 2002 A1
20020169504 Alferness et al. Nov 2002 A1
20020177782 Penner Nov 2002 A1
20020183836 Liddicoat et al. Dec 2002 A1
20020183841 Cohn et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20030028118 Dupree et al. Feb 2003 A1
20030028183 Sanchez et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030050685 Nikolic et al. Mar 2003 A1
20030055420 Kadhiresan et al. Mar 2003 A1
20030060820 Maguire et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078494 Panescu et al. Apr 2003 A1
20030078509 Panescu Apr 2003 A1
20030078671 Lesniak et al. Apr 2003 A1
20030105384 Sharkey et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030109770 Sharkey et al. Jun 2003 A1
20030125726 Maguire et al. Jul 2003 A1
20030176810 Maahs et al. Sep 2003 A1
20030181819 Desai Sep 2003 A1
20030229395 Cox Dec 2003 A1
20040002626 Feld et al. Jan 2004 A1
20040006337 Nasab et al. Jan 2004 A1
20040054279 Hanley Mar 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040176797 Opolski Sep 2004 A1
20040181139 Falwell et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040243170 Suresh et al. Dec 2004 A1
20040249408 Murphy et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010206 Nasab et al. Jan 2005 A1
20050015109 Lichtenstein Jan 2005 A1
20050054938 Wehman et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050064665 Han Mar 2005 A1
20050065420 Collins et al. Mar 2005 A1
20050065504 Melsky et al. Mar 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096047 Haberman et al. May 2005 A1
20050096647 Steinke et al. May 2005 A1
20050107723 Wehman et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050125030 Forsberg et al. Jun 2005 A1
20050148892 Desai Jul 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050154252 Sharkey et al. Jul 2005 A1
20050165388 Bhola Jul 2005 A1
20050182365 Hennemann et al. Aug 2005 A1
20050187620 Pai et al. Aug 2005 A1
20050197593 Burbank et al. Sep 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050203558 Maschke Sep 2005 A1
20050209636 Widomski et al. Sep 2005 A1
20050216054 Widomski et al. Sep 2005 A1
20050240249 Tu et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050251132 Oral et al. Nov 2005 A1
20050256521 Kozel Nov 2005 A1
20050261580 Willis et al. Nov 2005 A1
20050267458 Paul et al. Dec 2005 A1
20050267574 Cohn et al. Dec 2005 A1
20060009755 Sra Jan 2006 A1
20060009756 Francischelli et al. Jan 2006 A1
20060014998 Sharkey et al. Jan 2006 A1
20060015002 Moaddeb et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060015038 Weymarn-Scharli Jan 2006 A1
20060015096 Hauck et al. Jan 2006 A1
20060025800 Suresh Feb 2006 A1
20060030881 Sharkey et al. Feb 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060085049 Cory et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060100618 Chan et al. May 2006 A1
20060106298 Ahmed et al. May 2006 A1
20060135968 Schaller Jun 2006 A1
20060135970 Schaller Jun 2006 A1
20060173251 Govari et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060199995 Vijay Sep 2006 A1
20060229491 Sharkey et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060235314 Migliuolo et al. Oct 2006 A1
20060264980 Khairkhahan et al. Nov 2006 A1
20060281965 Khairkhahan et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20060293725 Rubinsky et al. Dec 2006 A1
20070016068 Grunwald et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070038208 Kefer Feb 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070083195 Werneth et al. Apr 2007 A1
20070088362 Bonutti et al. Apr 2007 A1
20070115390 Makara et al. May 2007 A1
20070118215 Moaddeb May 2007 A1
20070129717 Brown, III et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070198058 Gelbart et al. Aug 2007 A1
20070213578 Khairkhahan et al. Sep 2007 A1
20070213815 Khairkhahan et al. Sep 2007 A1
20070232858 Macnamara et al. Oct 2007 A1
20070249999 Sklar et al. Oct 2007 A1
20070270688 Gelbart et al. Nov 2007 A1
20070299343 Waters Dec 2007 A1
20080004534 Gelbart et al. Jan 2008 A1
20080004643 To et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080045778 Lichtenstein et al. Feb 2008 A1
20080071298 Khairkhahan et al. Mar 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080262337 Falwell et al. Oct 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080312713 Wilfley et al. Dec 2008 A1
20090018617 Skelton et al. Jan 2009 A1
20090024138 Saleh Jan 2009 A1
20090069704 MacAdam et al. Mar 2009 A1
20090131930 Gelbart et al. May 2009 A1
20090157058 Ferren et al. Jun 2009 A1
20090171274 Harlev et al. Jul 2009 A1
20090182325 Werneth et al. Jul 2009 A1
20090192441 Gelbart et al. Jul 2009 A1
20090253976 Harlev et al. Oct 2009 A1
20090270737 Thornton Oct 2009 A1
20090287271 Blum et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20100016762 Thapliyal et al. Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100113928 Thapliyal et al. May 2010 A1
20100113985 Thapliyal et al. May 2010 A1
20100121147 Oskin et al. May 2010 A1
20100211052 Brown et al. Aug 2010 A1
20100249771 Pearson et al. Sep 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20100286551 Harlev et al. Nov 2010 A1
20110034912 De Graff et al. Feb 2011 A1
20110125172 Gelbart et al. May 2011 A1
20110172658 Gelbart et al. Jul 2011 A1
20110213231 Hall et al. Sep 2011 A1
20110282491 Prisco et al. Nov 2011 A1
20120078076 Stewart et al. Mar 2012 A1
20120136346 Condie et al. May 2012 A1
20120136348 Condie et al. May 2012 A1
20120158016 Gelbart et al. Jun 2012 A1
20120165829 Chen et al. Jun 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120172867 Ryu et al. Jul 2012 A1
20120271135 Burke et al. Oct 2012 A1
20120277567 Harlev et al. Nov 2012 A1
20130066220 Weinkam et al. Mar 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130172883 Lopes et al. Jul 2013 A1
20130178850 Lopes et al. Jul 2013 A1
20130178851 Lopes et al. Jul 2013 A1
20130184705 Gelbart et al. Jul 2013 A1
20130184706 Gelbart et al. Jul 2013 A1
20130190587 Lopes et al. Jul 2013 A1
20130190741 Moll et al. Jul 2013 A1
20130197513 Lopes et al. Aug 2013 A1
20130241929 Massarwa et al. Sep 2013 A1
20130274562 Ghaffari et al. Oct 2013 A1
20130296679 Condie et al. Nov 2013 A1
20130296850 Olson Nov 2013 A1
20130304065 Lopes et al. Nov 2013 A1
20130310828 Reinders et al. Nov 2013 A1
20130345538 Harlev et al. Dec 2013 A1
20140114307 Moisa et al. Apr 2014 A1
20140121659 Paul et al. May 2014 A1
20140213894 Gelbart et al. Jul 2014 A1
20140296850 Condie et al. Oct 2014 A1
20140303610 McCarthy et al. Oct 2014 A1
20140303614 McCarthy et al. Oct 2014 A1
20140350552 Highsmith Nov 2014 A1
20140364848 Heimbecher et al. Dec 2014 A1
20150045660 Gelbart et al. Feb 2015 A1
20150105701 Mayer et al. Apr 2015 A1
20150126993 Gelbart et al. May 2015 A1
20150157400 Gelbart et al. Jun 2015 A1
20150182740 Mickelsen Jul 2015 A1
20150245798 Gelbart et al. Sep 2015 A1
20150250539 Gelbart et al. Sep 2015 A1
20150351837 Gelbart et al. Dec 2015 A1
20150366508 Chou et al. Dec 2015 A1
20160008061 Fung et al. Jan 2016 A1
20160058505 Condie et al. Mar 2016 A1
20160106498 Highsmith Apr 2016 A1
20160287137 Condie et al. Oct 2016 A1
20160346030 Thapliyal et al. Dec 2016 A1
20160361111 Seidel Dec 2016 A1
20160367315 Moisa et al. Dec 2016 A1
20170020604 Lopes et al. Jan 2017 A1
20170035486 Lopes et al. Feb 2017 A1
20170035499 Stewart et al. Feb 2017 A1
20170065339 Mickelsen Mar 2017 A1
20170065340 Long Mar 2017 A1
20170079712 Levin et al. Mar 2017 A1
20170092013 Perlman et al. Mar 2017 A1
20170103570 Zar et al. Apr 2017 A1
20170105627 Katz et al. Apr 2017 A1
20170119453 Ryu et al. May 2017 A1
20170143414 Sliwa et al. May 2017 A1
20170156792 Ziv-Ari et al. Jun 2017 A1
20170202470 Urman et al. Jul 2017 A1
20170202516 Bar-Tal et al. Jul 2017 A1
20170202521 Urman et al. Jul 2017 A1
20170312012 Harlev et al. Nov 2017 A1
20180036074 Gelbart et al. Feb 2018 A1
20180036075 Gelbart et al. Feb 2018 A1
20180036076 Gelbart et al. Feb 2018 A1
20180036077 Gelbart et al. Feb 2018 A1
20180042671 Gelbart et al. Feb 2018 A1
20180042674 Mickelsen Feb 2018 A1
20180042675 Long Feb 2018 A1
20180055565 Gelbart et al. Mar 2018 A1
20180056074 Clark et al. Mar 2018 A1
20180064488 Long et al. Mar 2018 A1
20180068439 Hareland Mar 2018 A1
20180093088 Mickelsen Apr 2018 A1
20180110561 Levin et al. Apr 2018 A1
20180125575 Schwartz et al. May 2018 A1
20180158238 Cohen et al. Jun 2018 A1
20180160978 Cohen et al. Jun 2018 A1
20180161097 Zoabi et al. Jun 2018 A1
20180177467 Katz et al. Jun 2018 A1
20180177552 Zoabi et al. Jun 2018 A1
20180182157 Zar et al. Jun 2018 A1
20180182159 Cohen et al. Jun 2018 A1
20180190009 Cohen et al. Jul 2018 A1
20180199976 Fischer Jul 2018 A1
20180199990 Monir et al. Jul 2018 A1
20180200497 Mickelsen Jul 2018 A1
20180206920 Pappone et al. Jul 2018 A1
20180214202 Howard et al. Aug 2018 A1
20180242868 Cohen et al. Aug 2018 A1
20180256055 Zigelman et al. Sep 2018 A1
20180296114 Welsh et al. Oct 2018 A1
20180325597 Schwartz et al. Nov 2018 A1
Foreign Referenced Citations (68)
Number Date Country
101797181 Aug 2010 CN
102010026210 Jan 2012 DE
102011085720 May 2013 DE
0723467 Jul 1996 EP
1169976 Jan 2002 EP
1240868 Sep 2002 EP
1182980 Jun 2006 EP
1280467 Nov 2008 EP
1451595 Jul 2009 EP
1909679 Nov 2013 EP
2307098 Mar 2015 EP
2848191 Mar 2015 EP
2873365 May 2015 EP
2984986 Feb 2016 EP
2645953 Aug 2016 EP
2661236 Aug 2016 EP
2749213 Sep 2016 EP
2604211 Oct 2016 EP
3130285 Feb 2017 EP
3141185 Mar 2017 EP
2689722 Jun 2017 EP
2613723 Oct 2017 EP
3225161 Oct 2017 EP
2892454 Jan 2018 EP
3318211 May 2018 EP
3321890 May 2018 EP
3139997 Sep 2018 EP
3375365 Sep 2018 EP
9520349 Aug 1995 WO
9717892 May 1997 WO
9510320 Apr 1998 WO
0108575 Feb 2001 WO
02087437 Nov 2002 WO
03015611 Feb 2003 WO
03077800 Sep 2003 WO
2004012629 Feb 2004 WO
2004047679 Jun 2004 WO
2004084746 Oct 2004 WO
2004100803 Nov 2004 WO
2005070330 Aug 2005 WO
2005102181 Nov 2005 WO
2006017809 Feb 2006 WO
2006105121 Oct 2006 WO
2006135747 Dec 2006 WO
2006135749 Dec 2006 WO
2007021647 Feb 2007 WO
2007115390 Oct 2007 WO
2008002606 Jan 2008 WO
2009011721 Jan 2009 WO
2009065042 May 2009 WO
2012050877 Apr 2012 WO
2012100184 Jul 2012 WO
2012100185 Jul 2012 WO
2013064576 May 2013 WO
2013173917 Nov 2013 WO
2016181317 Nov 2016 WO
2016181318 Nov 2016 WO
2016183468 Nov 2016 WO
2017009165 Jan 2017 WO
2017024123 Feb 2017 WO
2017087740 May 2017 WO
2017120169 Jul 2017 WO
2017192480 Nov 2017 WO
2017192495 Nov 2017 WO
2017192510 Nov 2017 WO
2017192542 Nov 2017 WO
2018023132 Feb 2018 WO
2018165425 Sep 2018 WO
Non-Patent Literature Citations (225)
Entry
Buchninder,Maurice MD, “Dynamic Mitral Valve Annuloplasty: A Reshapable Ring for Residual and Recurring MR,” from the Foundation for Cardiovascular Medicine, La Jolla, CA. May 24, 2007.
Gabriel et al., “The Dielectric Properties of Biological Tissues: I. Literature Survey,” Phys. Med. Biol. 41:2231-2249, 1996.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, 16(4):439-446, 199.
Mack, “New Techniques for Percutaneous Repair of the Mitral Valve,” Heart Failure Review, 11:259-268, 2006.
Otasevic et al., “First-in-Man Implantation of Left Ventricular Partitioning Device in a Patient With Chronic Heart Failure: Twelve-Month Follow-up,” Journal of Cardiac Failure 13(7):517-520, 2007.
Sharkey et al., “Left Ventricular Apex Occluder. Description of a Ventricular Partitioning Device,” EuroIntervention 2:125-127,2006.
Stiles, et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” Transactions on Biomedical Engineering, 50(7):916-921,2003.
Tanaka et al., “Artificial SMA Valve for Treatment of Urinary Incontinence: Upgrading of Valve and Introduction of Transcutaneous Transformer,” Bio-Medical Materials and Engineering 9:97-112, 1999.
Timek et al.., “Septal-Lateral Annular Cinching (‘SLAC’) Reduces Mitral Annular Size Without Perturbing Normal Annular Dynamics,” Journal of Heart Valve Disease 11 (1):2-10, 2002.
Timek et al., “Septal-Lateral Annular Cinching Abolishes Acute Ischemic Mitral Regurgitation,” Journal of Thoracic and Cardiovascular Surgery, 123(5):881-888, 2002.
Valvano et al., “Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-Heated Thermistors,” International Journal of Thermodynamics, 6(3):301-311, 1985.
Gelbart et al., “Automatic Atherectomy System,” Office Action dated Mar. 4, 2009 for U.S. Appl. No. 11/436,584, 7 pages.
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Aug. 4, 2009 for U.S. Appl. No. 11/436,584, 35 pages.
Gelbart et al., “Automatic Atherectomy System,” Office Action dated Dec. 1, 2009 for U.S. Appl. No. 11/436,584, 10 pages.
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Mar. 30, 2010 for U.S. Appl. No. 11/436,584, 20 pages.
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Oct. 25, 2010 for U.S. Appl. No. 11/436,584, 9 pages.
Gelbart et al., “Automatic Atherectomy System,” Office Action dated Dec. 14, 2010 for U.S. Appl. No. 11/436,584, 12 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Preliminary Amendment filed Aug. 29, 2007 for U.S. Appl. No. 11/475,950,42 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Mar. 5, 2008 for U.S. Appl. No. 11/475,950, 11 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Office Action dated Jun. 23, 2010 for U.S. Appl. No. 11/475,950, 18 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Aug. 16, 2010 for U.S. Appl. No. 11/475,950, 22 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Office Action dated Nov. 23, 2010 for U.S. Appl. No. 11/475,950, 25 pages.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method,” Amendment filed Feb. 23, 2011 for U.S. Appl. No. 11/475,950, 28 pages.
Gelbart et al., “Automatic Atherectomy System,” Office Action dated Jun. 15, 2011, for U.S. Appl. No. 12/950,871, 16 pages.
Gelbart et al., “Liposuction System,” Office Action dated Mar. 16, 2011 for U.S. Appl. No. 12/010,458, 12 pages.
Gelbart et al., “Liposuction System,” Amendment filed Jun. 10, 2011 for U.S. Appl. No. 12/010,458, 10 pages.
Lichtenstein “Method and Apparatus for Percutaneous Reduction of Anterior-Posterior Diameter of Mitral Valve,” U.S. Appl. No. 10/690,131, filed Oct. 20, 2003, 31 pages.
International Search Report, dated Dec. 5, 2007, for PCT/US2007/014902, 5 pages.
International Preliminary Report on Patentability, dated Jan. 6, 2009, for PCT/US2007/014902, 8 pages.
International Search Report, dated Dec. 2, 2009, for PCT/US2008/083644, 5 pages.
Written Opinion, dated Dec. 5, 2007, for PCT/US2007/014902, 7 pages.
Written Opinion, dated Dec. 2, 2009, for PCT/US2008/083644, 9 pages.
Gelbart et al., “Automatic Atherectomy System,” Amendment filed Sep. 15, 2011 for U.S. Appl. No. 12/950,871, 21 pages.
Gelbart et al., “Liposuction System,” Amendment filed Dec. 7, 2011 for U.S. Appl. No. 12/010,458, 15 pages.
Gelbart et al., “Liposuction System,” Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/010,458, 9 pages.
Notice of Allowance issued in U.S. Appl. No. 13/782,889, dated Aug. 25, 2016.
Extended European Search Report issued in European Appln. No. 19172980.5 dated Aug. 21, 2019.
Notice of Allowance issued in copending U.S. Appl. No. 15/254,130 dated Sep. 12, 2019.
Notice of Allowance issued in copending U.S. Appl. No. 15/663,077 dated Sep. 24, 2019.
Office Action issued in German Patent Appln. No. 112008003108.8 dated Oct. 28, 2019. English machine translation provided.
Copending U.S. Appl. No. 16/655,775, filed Oct. 17, 2019.
Copending U.S. Appl. No. 16/658,820, filed Oct. 21, 2019.
Copending U.S. Appl. No. 16/662,537, filed Oct. 24, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/655,775 dated Nov. 1, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/658,820 dated Nov. 7, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/662,537 dated Nov. 19, 2019.
Lopes et al., “Intra-Cardiac Procedure Device”, Amendment filed in co-pending U.S. Appl. No. 29/509,636, filed Jul. 22, 2016, 5 pgs.
Lopes et al., “Intra-Cardiac Procedure Device”, Amendment filed in co-pending U.S. Appl. No. 29/509,636 dated Nov. 17, 2016, 3 pgs.
Lopes et al., “High-Density Electrode-Based Medical Device System”, Preliminary Amendment filed in co-pending U.S. Appl. No. 15/287,988 dated Nov. 23, 2016, 9 pgs.
Lopes et al., “Intra-Cardiac Procedure Device”, Amendment filed in co-pending U.S. Appl. No. 29/509,621 dated Jul. 22, 2016, 5 pgs.
Lopes et al., “Intra-Cardiac Procedure Device”, Amendment filed in co-pending U.S. Appl. No. 29/509,621 dated Nov. 17, 2016, 3 pgs.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed in co-pending U.S. Appl. No. 13/782,889 dated May 17, 2016, 51 pgs.
Lopes et al., “High-Density Electrode-Based Medical Device System” Amendment filed in co-pending U.S. Appl. No. 13/793,213 dated May 26, 2016, 39 pgs.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed in co-pending U.S. Appl. No. 13/782,867 dated May 17, 2016, 39 pgs.
Gelbart et al., “Intra-Cardiac Mapping and Ablation Method”, Amendment filed in co-pending US. Appl. No. 11/475,950 dated Feb. 12, 2013, 4 pgs.
Moisa et al., “Catheter System”, Preliminary Amendment filed in co-pending U.S. Appl. No. 15/254,130 dated Sep. 19, 2016, 22 pgs.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Preliminary Amendment filed in co-pending U.S. Appl. No. 14/804,924 dated Jul. 30, 2015, 5 pgs.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Preliminary Amendment filed in co-pending U.S. Appl. No. 14/804,810 dated Jul. 30, 2015, 10 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Preliminary Amendment filed in co-pending U.S. Appl. No. 14/713,190 dated May 15, 2015, 3 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Preliminary Amendment filed in co-pending U.S. Appl. No. 14/713,190 dated Jun. 16, 2015, 7 pgs.
Selbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Preliminary Amendment filed in co-pending U.S. Appl. No. 14/713,114 dated Jun. 16, 2015, 8 pgs.
Office Action issued in co-pending U.S. Appl. No. 14/521,692 dated Jan. 10, 2017.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Amendment Filed in co-pending U.S. Appl. No. 14/229,305 dated Sep. 27, 2016, 15 pgs.
Notice of Allowance issued in co-pending U.S. Appl. No. 14/229,305 dated Nov. 8, 2016.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Amendment Filed in co-pending U.S. Appl. No. 14/229,250 dated Sep. 27, 2016, 13 pgs.
Notice of Allowance issued in co-pending U.S. Appl. No. 14/229,250 dated Dec. 7, 2016.
Moisa et al., “Catheter Systesm”, Amendment filed in co-pending U.S. Appl. No. 14/136,946 dated Apr. 18, 2016, 19 pgs.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed in co-pending U.S. Appl. No. 13/942,354 dated Jan. 4, 2017, 23 pgs.
Lopes et al., “High-Density Electrode-Based Medical Device System”, Preliminary Amendment filed in co-pending U.S. Appl. No. 13/793,076 dated May 26, 2016, 15 pgs.
Lopes et al., “High-Density Electrode-Based Medical Device System”, Amendment filed in co-pending U.S. Appl. No. 13/793,076 dated May 9, 2016, 15 pgs.
Gelbart et al., “Apparatus and Method for Intracardiac Mapping and Ablation”, Preliminary Amendment filed in co-pending U.S. Appl. No. 13/785,931 dated Mar. 5, 2013, 2 pgs.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Amendment filed in co-pending U.S. Appl. No. 13/785,910 dated Feb. 9, 2016, 11 pgs.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Amendment filed in co-pending U.S. Appl. No. 13/785,910 dated Jan. 5, 2016, 15 pgs.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Amendment filed in co-pending U.S. Appl. No. 13/785,910 dated Aug. 8, 2016, 18 pgs.
Office Action issued in co-pending U.S. Appl. No. 13/785,910 dated Nov. 2, 2016.
Extended European Search Report issued in European Application No. 19189222.3 dated Nov. 29, 2019.
Office Action issued in copending U.S. Appl. No. 14/564,463 dated Feb. 28, 2017.
Notice of Allowance issued in copending U.S. Appl. No. 13/942,354 dated Feb. 10, 2017.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Amendment filed in co-pending U.S. Appl. No. 13/785,910 dated Mar. 24, 2017, 30 pgs.
Gilbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Amendment filed in co-pending U.S. Appl. No. 14/521,692 dated Mar. 31, 2017, 9 pgs.
Office Action issued in Chinese Patent Application No. 201510432392.3 dated Mar. 8, 2017. English concise Explanation of Relevance provided.
Decision to Refuse a European Patent Application issued in European Patent Application No. 13172848.7 dated Feb. 22, 2017.
Notice of Allowance issued in copending U.S. Appl. No. 14/521,692 dated May 19, 2017.
Office Action issued in copending U.S. Appl. No. 14/713,114 dated Jun. 1, 2017.
Quayle Action issued in copending U.S. Appl. No. 14/713,190 dated May 30, 2017.
Office Action issued in German Application No. 112008003108.8 dated May 8, 2017. English translation provided.
Amendment filed in copending U.S. Appl. No. 14/564,463, filed May 25, 2017.
Office Action issued in copending U.S. Appl. No. 14/564,463 dated Jul. 17, 2017.
European Search Report issued in European Appln. No. 14871405.8 dated Jul. 5, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/299,640 pp. 4 filed Oct. 21, 2016.
Preliminary Amendment filed in copending U.S. Appl. No. 15/299,640 pp. 11 filed Dec. 9, 2016.
Response to Quayle Office Action filed in copending U.S. Appl. No. 14/713,190 filed Jul. 24, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 14/521,692, filed Oct. 23, 2014.
Copending U.S. Appl. No. 15/663,077, filed Jul. 28, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/663,077 dated Aug. 8, 2017.
Amendment filed in copending U.S. Appl. No. 14/713,114, filed Aug. 23, 2017.
Notice of Allowance issued in copending U.S. Appl. No. 14/713,190 dated Aug. 28, 2017.
Office Action issued in copending U.S. Appl. No. 13/785,910 dated Aug. 30, 2017.
Copending U.S. Appl. No. 16/161,319, filed Oct. 16, 2018.
Office Action issued in U.S. Appl. No. 13/785,910 dated Jun. 15, 2018.
Examination Report issued in European Appln. No. 14871405.8 dated Jul. 6, 2018.
Notice of Intention to Grant issued in EP Appln. No. 14871405.8 dated Jan. 22, 2019.
Notice of Intention to Grant issued in EP Appln. No. 15188407.9 dated Mar. 20, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/369,528 dated Apr. 24, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/381,317 dated Apr. 24, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/381,344 dated Apr. 24, 2019.
Copending U.S. Appl. No. 16/407,379, filed May 9, 2019.
Office Action issued in copending U.S. Appl. No. 15/254,130 dated May 28, 2019.
Bard, “Mesh Ablator Catheter”, Brochure, 2008, 4 pgs, Bard Electrophysiology Division, C.R. Bard Inc., 55 Technology Drive Lowell, MA 07851 USA.
Biotronik's “AlCath Flutter Gold Cath for Atrial Flutter Available in EU”, Sep. 19, 2013, medGadget, 3 pgs, http://www.medgadget.com/2013/09/biotroniks-alcath-flutter-gold-cath-for-atrial-flutter-unveiled-in-europe.html [Jun. 24, 2014 2:37:09 PM].
“Constellation Mapping Catheters”, Brochure, Boston Scientific Corp., 2 pgs © 2007 Boston Scientific Corporation.
“Waveforms and Segments”, Ensite System Instructions for use, 54-06154-001 Rev02, Chapter 7 pp. 85-90 © 2007 St. Jude Medical.
Extended European Search Report and EP search opinion for EP 12736677.1, dated Mar. 28, 2014, corresponding to PCT/US2012/022061.
Extended European Search Report and EP search opinion for EP 12736677.1, dated Mar. 28, 2014, corresponding to PCT/US2012/022062.
Extended European Search Report dated Aug. 20, 2013 issued in EP Patent Application No. 13172848.7.
Written Opinion dated Aug. 22, 2012 for PCT/US2012/022061, 6 pgs.
International Search Report and Written Opinion dated Aug. 2, 2013 issued in PCT/CA2013/050350.
International Search Report and Written Opinion dated Sep. 17, 2013 issued in PCT/US2013/039982.
International Search Report and Written Opinion dated Sep. 27, 2013 issued in PCT/US2013/039977.
International Search Report dated Jul. 30, 2012 for PCT/US2012/022062, 5 pgs.
Written Opinion dated Jul. 30, 2012 for PCT/US2012/022062, 5 pgs.
International Search Report dated Aug. 22, 2012 for PCT/US2012/022061, 5 pgs.
“Phased RF Catheter Ablation System”, 2014 Medtronic Inc., 2 pgs, http://www.medtronic.eu/your-health/atrial-fibrillation/about-the-therapy/our-phased-rf-ablation-system/[Jun. 24, 2014 2:38:05 PM].
“ThermoCool® Irrigated Tip Catheter”, Brochure, Biosense Webster, 4 pgs , Biosense Webster, Inc. 3333 Diamond Canyon Road Diamond Bar, CA 91765, USA, © Biosense Webster, Inc. 2009 All rights reserved. 1109003.0.
Gelbart “Medical Device for Use in Bodily Lumens, for Example an Atrium”, OA dated Jul. 25, 2011 for U.S. Appl. No. 11/941,819, now published as US 2009-0131930 A1.
Gelbart et al, “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Notice of Allowance dated Oct. 23, 2014 for U.S. Appl. No. 11/475,950, 10 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Notice of Allowance dated Nov. 13, 2014 for U.S. Appl. No. 13/070,215, 54 pages.
International Search Report dated Mar. 10, 2015, for International Application PCT/CA2014/051144; 10 pages.
Written Opinion dated Mar. 10, 2015, for International Application PCT/CA2014/051144; 4 pages.
Official Action issued in CN201280004400.9, dated Dec. 3, 2014.
Non-final Office Action issued in U.S. Appl. No. 13/782,867, dated Apr. 15, 2015.
Non-final Office Action issued in U.S. Appl. No. 13/782,903, dated Apr. 28, 2015.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Office Action dated May 22, 2015 for U.S. Appl. No. 13/782,889, 86 pages.
Lopes et al., “High-Density Electrode-Based Medical Device System”, Office Action dated Jul. 10, 2015 for U.S. Appl. No. 13/793,076, 98 pages.
Lopes et al., “High-Density Electrode-Based Medical Device System”, Office Action dated Jul. 9, 2015 for U.S. Appl. No. 13/793,213, 99 pages.
Gelbart et al., “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Office Action dated Aug. 5, 2015 for U.S. Appl. No. 13/785,910, 79 pages.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed Aug. 24, 2015 for U.S. Appl. No. 13/782,889, 21 pages.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed Aug. 28, 2015 for U.S. Appl. No. 13/782,903, 19 pages.
Lopes et al., “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Amendment filed Sep. 14, 2015 for U.S. Appl. No. 13/782,867, 25 pages.
Lopes et al., “High-Density Electrode-Based Medical Device System ”, Amendment filed Oct. 9, 2015 for U.S. Appl. No. 13/793,213, 26 pages.
Lopes et al., “High-Density Electrode-Based Medical Device System ”, Amendment filed Oct. 9, 2015 for U.S. Appl. No. 13/793,076, 14 pages.
Examination Report issued in EP13172848.7, dated Sep. 21, 2015.
Extended European Search Report issued in EP13793216.6, dated Oct. 30, 2015.
Moisa et al., “Catheter System ”, Office Action dated Nov. 16, 2015 for U.S. Appl. No. 14/136,946, 92 pages.
Office Action issued in U.S. Appl. No. 13/782,889, dated Dec. 18, 2015.
Office Action issued in U.S. Appl. No. 13/782,903, dated Dec. 18, 2015.
Extended European Search Report issued in EP15188407.9, dated Jan. 21, 2016.
Lopes et al. “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Office Action dated Jan. 25, 2016 for U.S. Appl. No. 13/782,867, 49 pages.
Notice of Allowance issued in U.S. Appl. No. 13/793,076, dated Feb. 10, 2016.
Final Office Action issued in U.S. Appl. No. 13/793,213, dated Feb. 26, 2016.
Non-Final Office Action issued in U.S. Appl. No. 29/509,719, dated Feb. 25, 2016.
Quayle issued in U.S. Appl. No. 29/509,621, dated Feb. 26, 2016.
Quayle issued in U.S. Appl. No. 29/509,636, dated Feb. 26, 2016.
Non-Final Office Action issued in U.S. Appl. No. 13/785,910 dated Apr. 8, 2016.
Non-Final Office Action issued in U.S. Appl. No. 14/229,250 dated Apr. 28, 2016.
Notice of Allowance issued in U.S. Appl. No. 13/793,076 dated Jul. 7, 2016.
Summons to Attend Oral Proceedings issued in European Appln. No. 13172848.7, dated Sep. 1, 2016.
Preliminary Amendment filed in copending U.S. Appl. No. 16/407,379 on Jun. 12, 2019.
Notice of Intention to Grant issued in EP Appln. No. 13793216.6 dated Jul. 15, 2019.
Copending U.S. Appl. No. 16/521,712, filed Jul. 25, 2019.
Copending U.S. Appl. No. 16/521,732, filed Jul. 25, 2019.
Copending U.S. Appl. No. 16/521,745, filed Jul. 25, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/521,712 dated Jul. 25, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/521,732, dated Jul. 25, 2019.
Preliminary Amendment filed in copending U.S. Appl. No. 16/521,745 dated Jul. 25, 2019.
Amendment filed in copending U.S. Appl. No. 15/254,130 dated Aug. 13, 2019.
Second Preliminary Amendment filed in copending U.S. Appl. No. 16/521,712 dated Aug. 15, 2019.
Second Preliminary Amendment filed in copending U.S. Appl. No. 16/521,732 dated Aug. 15, 2019.
Second Preliminary Amendment filed in copending U.S. Appl. No. 16/521,745 dated Aug. 15, 2019.
Office Action issued in Chinese Application No. 201510432392.3 dated May 18, 2018. Concise Explanation of Relevance provided.
Amendment filed in copending U.S. Appl. No. 14/564,463 dated Oct. 17, 2017.
Notice of Allowance issued in copending U.S. Appl. No. 14/713,114 dated Nov. 1, 2017.
Notice of Allowance issued in copending U.S. Appl. No. 14/564,463 dated Nov. 9, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/784,555 dated Nov. 7, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/784,775 dated Nov. 7, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/784,722 dated Nov. 7, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/725,731 dated Oct. 24, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/784,647 dated Nov. 7, 2017.
Preliminary Amendment filed in copending U.S. Appl. No. 15/725,662 dated Oct. 24, 2017.
Office Action issued in copending U.S. Appl. No. 14/804,924 dated Nov. 17, 2017.
Response to Office Action filed in copending U.S. Appl. No. 13/785,910 dated Nov. 30, 2017.
Amendment filed in copending U.S. Appl. No. 13/785,910 on Feb. 27, 2018.
Examination Report issued in European Application No. 13793216.6 dated Nov. 24, 2017.
Office Action issued in Chinese Application No. 201510432392.3 dated Nov. 17, 2017. Concise Explanation of Relevance and English translation provided.
Examination Report issued in European Application No. 15188407.9 dated Dec. 11, 2017.
Office Action issued in copending U.S. Appl. No. 13/785,910 dated Jan. 12, 2018.
Amendment filed in copending U.S. Appl. No. 14/804,924 dated Feb. 27, 2018.
Office Action issued in copending U.S. Appl. No. 14/804,810 dated Nov. 30, 2017.
Amendment filed in copending U.S. Appl. No. 14/804,810 dated Feb. 27, 2018.
Notice of Allowance issued in copending U.S. Appl. No. 14/804,924 dated Mar. 27, 2018.
Notice of Allowance issued in copending U.S. Appl. No. 14/804,810 dated Mar. 30, 2018.
Becker R. et al, “Ablation of Atrial Fibrillation: Energy Sources and Navigation Tools: A Review”, Journal of Electrocardiology, 37 (Supplement 2004): 55-62, 2004.
Calkins, Hugh, “Radiofrequency Catheter Ablation of Supraventricular Arrhythmias”, Heart, 85:594-600, 2001.
De Ponti et al., “Non-Fluoroscopic Mapping Systems for Electrophysiology: The ‘Tool or Toy’ Dilemma After 10 Years”,European Heart Journal 27:1134-1136, 2006.
Gelbart et al, “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Office Action dated Dec. 13, 2013; Notice of Allowance dated Jul. 25, 2014 for U.S. Appl. No. 11/475,950, 19 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Office Action dated Jan. 3, 2012; Office Action dated Apr. 3, 2014; Notice of Allowance dated Aug. 26, 2014 for U.S. Appl. No. 11/941,819, 35 pgs.
Gelbart et al, “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Amendment filed Apr. 10, 2014; Supplemental Amendment filed Feb. 12, 2013 for U.S. Appl. No. 11/475,950, 21 pgs.
Gelbart et al, “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Preliminary Amendment filed Aug. 22, 2014; Preliminary Amendment filed Mar. 5, 2013 for U.S. Appl. No. 13/785,910, 10 pgs.
Gelbart et al, “Apparatus and Method for Intra-Cardiac Mapping and Ablation”, Preliminary Amendment filed Aug. 22, 2014; Preliminary Amendment filed Mar. 5, 2013 for U.S. Appl. No. 13/785,931, 10 pgs.
Lopes et al, “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Preliminary Amendment filed Oct. 22, 2013 for U.S. Appl. No. 13/942,354, 13 pgs.
Lopes et al, “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Preliminary Amendment filed Aug. 20, 2014 for U.S. Appl. No. 13/782,889, 11 pgs.
Lopes et al, “Enhanced Medical Device for Use in Bodily Cavities, for Example an Atrium”, Preliminary Amendment filed Mar. 14, 2013 for U.S. Appl. No. 13/782,867, 8 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Amendment filed Jul. 3, 2014; Amendment filed Apr. 2, 2012; Amendment filed Mar. 1, 2012; Amendment filed Nov. 23, 2011; Replacement drawings filed Feb. 13, 2008 for U.S. Appl. No. 11/941,819, 78 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Preliminary Amendment filed May 12, 2014; Preliminary Amendment filed May 2, 2014 for U.S. Appl. No. 14/229,305, 12 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Preliminary Amendment filed May 12, 2014; Preliminary Amendment filed May 2, 2014 for U.S. Appl. No. 14/229,250, 10 pgs.
Gelbart et al., Medical Device for Use in Bodily Lumens, for Example an Atrium, Amendment filed Sep. 22, 2014, for U.S. Appl. No. 13/070,215, 18 pgs.
Gelbart et al., Medical Device for Use in Bodily Lumens, for Example an Atrium, Office Action dated Jun. 20, 2014, for U.S. Appl. No. 13/070,215, 8 pgs.
Gelbart et al., “Medical Device for Use in Bodily Lumens, for Example an Atrium”, Supplemental Notice of Allowance dated Oct. 6, 2014 for U.S. Appl. No. 11/941,819, 4 pgs.
Notice of Allowance issued in U.S. Appl. No. 13/793,213 dated Aug. 10, 2016.
Non-Final Office Action issued in U.S. Appl. No. 13/942,354 dated Aug. 4, 2016.
Notice of Allowance issued in U.S. Appl. No. 14/136,946 dated May 12, 2016.
Notice of Allowance issued in U.S. Appl. No. 13/782,867 dated Aug. 12, 2016.
Notice of Allowance issued in U.S. Appl. No. 13/782,903 dated Jul. 6, 2016.
Corrected Notice of Allowance issued in U.S. Appl. No. 13/782,903 dated Jul. 19, 2016.
Non-Final Office Action issued in U.S. Appl. No. 14/229,305, dated Apr. 29, 2016.
Notice of Allowance issued in U.S. Appl. No. 29/509,621, dated Sep. 27, 2016.
Notice of Allowance issued in U.S. Appl. No. 29/509,636, dated Sep. 27, 2016.
Extended European Search Report issued in European Application No. 19215957.2 dated Mar. 26, 2020.
Office Action issued in copending U.S. Appl. No. 15/784,722 dated Mar. 23, 2020.
Office Action issued in copending U.S. Appl. No. 15/784,775 dated Mar. 23, 2020.
Office Action issued in copending U.S. Appl. No. 15/725,662 dated May 13, 2020.
Office Action issued in copending U.S. Appl. No. 15/725,731 dated May 15, 2020.
Amendment filed in copending U.S. Appl. No. 15/784,647 dated May 27, 2020.
Office Action issued in copending U.S. Appl. No. 15/784,555 dated Mar. 9, 2020.
Office Action issued in copending U.S. Appl. No. 15/784,647 dated Feb. 28, 2020.
Related Publications (1)
Number Date Country
20180008343 A1 Jan 2018 US
Continuations (2)
Number Date Country
Parent 14804810 Jul 2015 US
Child 15697744 US
Parent 13785931 Mar 2013 US
Child 14804810 US
Continuation in Parts (1)
Number Date Country
Parent 11475950 Jun 2006 US
Child 13785931 US