This application is a national entry of International Application No. PCT/KR2019/003328, filed on Mar. 21, 2019, which claims under 35 U.S.C. §§ 119(a) and 365(b) priority to and benefits of Korean Patent Application No. 10-2018-0114425, filed on Sep. 21, 2018 in the Korean Intellectual Property Office (KIPO), the entire contents of all of which are incorporated herein by reference.
Various embodiments of the disclosure relate to an apparatus and method for manufacturing a light emitting display device.
Recently, research on the technology of manufacturing a subminiature light emitting element using material having a high-reliability inorganic crystalline structure, and then disposing the subminiature light emitting diode on a panel (hereinafter, referred to as a “light emitting display panel”) of a light emitting display device to use it as a next generation pixel light source is being made. As a part of such research, technology for forming a light source by manufacturing a subminiature light emitting element in a small size corresponding to the micro or nano scale and then disposing the element in an emission area of each pixel is being developed.
The disclosure is directed to an apparatus and method for manufacturing a light emitting display device that are capable of stably aligning light emitting elements in each emission area.
According to an aspect of the disclosure, an apparatus for manufacturing a light emitting display device may include a substrate transfer stage including a plurality of support plates arranged at an interval in a first direction, each of the plurality of support plates extending in a second direction; and at least one electric-field application module disposed on at least a first side of the substrate transfer stage. The at least one electric-field application module may include a probe head including at least one probe pin; and a driver connected to the probe head to move the probe head at least up and down.
In an embodiment, the at least one electric-field application module may include a first electric-field application module disposed on the first side of the substrate transfer stage; and a second electric-field application module disposed on a second side of the substrate transfer stage to face the first electric-field application module.
In an embodiment, the first and second electric-field application modules may be driven independently of each other.
In an embodiment, the first and second electric-field application modules may be driven simultaneously.
In an embodiment, the plurality of support plates may include a first support plate disposed on a first edge of the substrate transfer stage; a second support plate disposed on a second edge of the substrate transfer stage; and at least one third support plate disposed between the first support plate and the second support plate.
In an embodiment, the at least one electric-field application module may include a first electric-field application module connected to the first support plate; and a second electric-field application module connected to the second support plate.
In an embodiment, the driver may include at least one of a first driver that horizontally moves the probe head forwards and backwards or leftwards and rightwards; and a second driver that vertically moves the probe head up and down.
In an embodiment, the at least one electric-field application module may include at least one sensor unit that senses a position of the probe head.
In an embodiment, the at least one electric-field application module may include a body connected to the probe head and the driver; and at least one linear motion guide connected to the body.
In an embodiment, the probe head may include at least one first probe pin electrically connected to a first power line; and at least one second probe pin electrically connected to a second power line.
In an embodiment, the apparatus may further include a power supply component electrically connected to the first and second probe pins through the first and second power lines.
In an embodiment, the first electric-field application module may be driven to apply a first voltage through the at least one probe pins.
In an embodiment, the second electric-field application module may be driven to apply a second voltage through the at least one probe pins.
In an embodiment, the first driver may include a first motor and a first ball screw connected to the first motor.
In an embodiment, the second driver may include a second motor and a second ball screw connected to the second motor.
In an embodiment, each of the first and second motors may be a servomotor.
According to an aspect of the disclosure, a method for manufacturing a light emitting display device may include preparing a substrate including first and second electrodes in each emission area, disposing the substrate on a first stage; supplying a light-emitting-element solution including a plurality of light emitting elements to the emission area while applying an alignment voltage to the first and second electrodes; inserting a plurality of support plates of a substrate transfer stage into a lower portion of the substrate, separating the substrate from the first stage by using the plurality of support plates; disposing the substrate on a second stage by using the plurality of substrate transfer stage while applying the alignment voltage to the first and second electrodes; and removing a solvent of the light-emitting-element solution.
In an embodiment, the disposing of the substrate on the second stage by using the substrate transfer stage may include driving an electric-field application module disposed on a first side of at least one of the plurality of support plates to apply the alignment voltage to the first and second electrodes.
In an embodiment, the supplying of the light-emitting-element solution may include applying the alignment voltage to the first and second electrodes by driving the electric-field application module disposed on at least a side of the first stage; and supplying the light-emitting-element solution to the emission area by a printing method during a period in which the alignment voltage is applied.
In an embodiment, the removing of the solvent of the light-emitting-element solution may include applying the alignment voltage to the first and second electrodes by driving the electric-field application module disposed on at least a side of the second stage; and supplying heat to the substrate by driving a heating element disposed around the substrate during a period in which the alignment voltage is applied.
According to an embodiment of the disclosure, an apparatus and method for manufacturing a light emitting display device can stably align light emitting elements in each emission area, thus improving the quality of alignment.
Reference will now be made in detail to various embodiments of the disclosure, specific examples of which are illustrated in the accompanying drawings and described below, and the embodiments of the disclosure can be variously modified in many different forms. However, the disclosure is not limited to the following embodiments and may be modified into various forms.
Some elements which are not directly related to the features of the disclosure in the drawings may be omitted to clearly explain the disclosure. Furthermore, the sizes, ratios, etc. of some elements in the drawings may be exaggerated. It should be noted that the same reference numerals are used to designate the same or similar elements throughout the drawings, and repetitive explanation may be omitted.
It will be understood that although the terms “first,” “second,” or the like may be used herein to describe various elements, these elements should not be limited by these terms. It will be further understood that the terms “comprise,” “include,” “have,” or the like when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components, and/or combinations of them but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or combinations thereof. Furthermore, when a first component or part is disposed on a second component or part, the first component or part may be not only directly on the second component or part but a third component or part may intervene between them. Furthermore, the term “position,” “direction,” or the like used in the following description are defined in relative terms, and it should be noted that they may be changed into a reverse position or direction depending on a view angle or direction.
Embodiments and required details of the disclosure are described with reference to the accompanying drawings in order to describe the disclosure in detail so that those having ordinary knowledge in the technical field to which the disclosure pertains can easily practice the disclosure. Furthermore, a singular form may include a plural from as long as it is not specifically mentioned in a sentence.
In the specification and the claims, the phrase “at least one of” is intended to include the meaning of “at least one selected from the group of” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.”
Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the disclosure, and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.
Referring to
In an embodiment, the light emitting element LD may be provided in the form of a rod extending in a direction. If the direction in which the light emitting element LD extends is defined as a longitudinal direction, the light emitting element LD may include a first end and a second end in the longitudinal direction.
In an embodiment, one of the first and second conductivity type semiconductor layers 11 and 13 may be disposed on the first end of the light emitting element LD, and the other may be disposed on the second end of the light emitting element LD.
In an embodiment, the light emitting element LD may be manufactured in the form of a rod. Here, meanings of the term “rod-like shape” may include a rod- or bar-like shape such as a cylindrical shape and a prismatic shape extending in a longitudinal direction (i.e., having an aspect ratio greater than 1), and the cross-sectional shape thereof is not limited to a particular shape. For example, a length of the light emitting element LD may be greater than a diameter thereof (or a width of the cross-section thereof).
In an embodiment, the light emitting element LD may have a small diameter and/or length to a degree of, for example, a micro or nano scale. However, the size of the light emitting element LD is not limited thereto. For instance, the size of the light emitting element LD may be changed in various ways depending on design conditions of a light emitting display device to which the light emitting element LD is applied.
The first conductivity type semiconductor layer 11 may include, for example, at least one n-type semiconductor layer. For instance, the first conductivity type semiconductor layer 11 may include an n-type semiconductor layer which includes any one semiconductor material of InAlGaN, GaN, AlGaN, InGaN, AlN, and InN and may be doped with a first conductive dopant such as Si, Ge, or Sn. However, the material forming the first conductivity type semiconductor layer 11 is not limited thereto, and the first conductivity type semiconductor layer 11 may be formed of various other materials.
The active layer 12 may be disposed on the first conductivity type semiconductor layer 11 and have a single or multiple quantum well structure. In an embodiment, a cladding layer (not shown) doped with a conductive dopant may be formed above and/or under (or on and/or below) the active layer 12. For example, the cladding layer may be formed of an AlGaN layer or an InAlGaN layer. In an embodiment, a material such as AlGaN or AlInGaN may be used to form the active layer 12, and various other materials may be used to form the active layer 12.
If an electric field having a predetermined voltage or greater is applied to ends (or the opposite ends) of the light emitting element LD, the light emitting element LD emits light by the combination of electron-hole pairs in the active layer 12. Since light emission of the light emitting element LD is controlled based on the foregoing principle, the light emitting element LD may be used as a light source of a pixel.
The second conductivity type semiconductor layer 13 may be disposed on the active layer 12 and include a semiconductor layer of a type different from that of the first conductivity type semiconductor layer 11. For example, the second conductivity type semiconductor layer 13 may include at least one p-type semiconductor layer. For instance, the second conductivity type semiconductor layer 13 may include a p-type semiconductor layer which includes at least one semiconductor material of InAlGaN, GaN, AlGaN, InGaN, AlN, and InN and is doped with a second conductive dopant such as Mg. However, the material forming the second conductivity type semiconductor layer 13 is not limited thereto, and the second conductivity type semiconductor layer 13 may be formed of various other materials.
In an embodiment, the light emitting element LD may further include additional components in addition to the above-described first conductivity type semiconductor layer 11, active layer 12, and second conductivity type semiconductor layer 13. For example, the light emitting element LD may further include at least one fluorescent layer, active layer, semiconductor layer and/or electrode layer disposed above and/or under the first conductivity type semiconductor layer 11, the active layer 12, and/or the second conductivity type semiconductor layer 13.
Furthermore, in an embodiment, the light emitting element LD may further include an insulating film 14. In an embodiment, the insulating film 14 may enclose an outer circumferential surface of at least the active layer 12. The insulating film 14 may further enclose at least portions of the first and second conductivity type semiconductor layers 11 and 13.
Although
In an embodiment, the insulating film 14 may include a transparent insulating material. For example, the insulating film 14 may include at least one insulating material selected from the group consisting of SiO2, Si3N4, Al2O3, and TiO2, but it is not limited thereto. The insulating film 14 may be formed of various insulating materials.
If the insulating film 14 is provided on the light emitting element LD, the insulating film 14 may prevent the active layer 12 of the light emitting element LD from short-circuiting with a first and/or second electrode (not shown), etc. Thus, the electrical stability of the light emitting element LD may be secured.
Furthermore, thanks to the insulating film 14 formed on the surface of the light emitting element LD, occurrence of a defect on the surface of the light emitting element LD may be reduced, whereby the lifetime and efficiency of the light emitting element LD may be improved. If the insulating film 14 is formed on each light emitting element LD, in case that the light emitting elements LD are disposed adjacent to each other, the insulating film 14 may prevent the light emitting elements LD from undesirably short-circuiting with each other.
In an embodiment, the light emitting element LD may be manufactured through a surface treatment process. For example, the light emitting element LD may be surface-treated (e.g., by a coating process) so that, in case that the light emitting elements LD are mixed with a fluidic solution and then supplied to each emission area (e.g., emission area of each pixel), the light emitting elements LD can be evenly distributed rather than unevenly aggregating in solution.
The light emitting element LD may be used as a light source for various types of display devices including a light emitting display panel. For example, at least one light emitting element LD may be disposed in each pixel area of the light emitting display panel, thereby forming an emission unit of each pixel. Furthermore, the field of application of the light emitting element LD according to the disclosure is not limited to the display device. For example, the light emitting element LD may also be used for different types of light emitting devices such as a lighting device, which requires a light source.
Referring to
In an embodiment, the display area DA may be disposed in a central portion of the light emitting display panel 110, and the non-display area NDA may be disposed in a perimeter portion of the light emitting display panel 110 to enclose the display area DA. The locations of the display area DA and the non-display area NDA are not limited thereto, and the locations thereof may be changed.
The substrate 111 may be a rigid or flexible substrate, and the material or properties thereof are not particularly limited. For example, the substrate 111 may be a rigid substrate made of glass or reinforced glass, or a flexible substrate formed of a thin film made of plastic or metal.
An area of the substrate 111 may be defined as the display area DA in which the pixels PXL are disposed, and the other area thereof may be defined as the non-display area NDA. Various lines and/or internal circuit units may be disposed in the non-display area NDA to be electrically connected to the pixels PXL of the display area DA.
Each of the pixels PXL may include at least one light emitting element LD (e.g., at least one light emitting element LD shown in
In an embodiment, each pixel PXL may be formed of an active pixel illustrated in
Referring to
In an embodiment, the emission unit EMU may include light emitting elements LD electrically connected to each other in series and/or in parallel between first and second pixel power supplies VDD and VSS. The emission unit EMU may be a light-source unit including the light emitting elements LD.
In an embodiment, the first and second pixel power supplies VDD and VSS may have different potentials such that the light emitting elements LD may emit light. For example, the first pixel power supply VDD may be set as a high-potential pixel power supply, and the second pixel power supply VSS may be set as a low-potential pixel power supply. In this case, a potential difference between the first and second pixel power supplies VDD and VSS may be equal to or greater than the threshold voltage of the light emitting elements LD.
Although
In an embodiment, first ends of the light emitting elements LD forming each emission unit EMU may be electrically connected in common to a corresponding pixel circuit PXC through a first electrode of the corresponding emission unit EMU and may be electrically connected to the first pixel power supply VDD through the pixel circuit PXC. Furthermore, second ends of the light emitting elements LD may be electrically connected in common to the second pixel power supply VSS through a second electrode of the corresponding emission unit EMU. Hereinafter, the first electrode and the second electrode disposed in each emission unit EMU will be respectively referred to as a “first pixel electrode” and a “second pixel electrode.”
Each emission unit EMU may emit light having luminance corresponding to driving current supplied thereto through the corresponding pixel circuit PXC. Thus, a predetermined image may be displayed in the display area DA.
The pixel circuit PXC may be electrically connected to a scan line Si and a data line Dj of the corresponding pixel PXL. For example, if the pixel PXL is disposed on an i-th row and a j-th column of the display area DA, the pixel circuit PXC of the pixel PXL may be electrically connected to an i-th scan line Si and a j-th data line Dj of the display area DA. In an embodiment, the pixel circuit PXC may include a first transistor M1, a second transistor M2, and a storage capacitor Cst.
A first electrode of the first transistor M1 (switching transistor) may be electrically connected to the data line Dj, and a second electrode thereof may be electrically connected to a first node N1. Here, the first electrode and the second electrode may be different electrodes. For example, if the first electrode is a source electrode, the second electrode may be a drain electrode. A gate electrode of the first transistor M1 may be electrically connected to the scan line Si.
In case that a scan signal of a gate-on voltage (e.g., a low voltage) is supplied from the scan line Si, the first transistor M1 may be turned on to electrically connect the first node N1 to the data line Dj. Here, a data signal of a corresponding frame may be supplied to the data line Dj. The data signal may be transmitted to the first node N1 via the first transistor M1. Thus, the storage capacitor Cst may be charged with a voltage corresponding to the data signal.
A first electrode of the second transistor M2 (driving transistor) may be electrically connected to the first pixel power supply VDD, and a second electrode thereof may be electrically connected to the emission unit EMU through the first pixel electrode (e.g., the first electrode of the corresponding emission unit EMU). Furthermore, agate electrode of the second transistor M2 may be electrically connected to the first node N1. The second transistor M2 may control the driving current to be supplied to each emission unit EMU in response to a voltage of the first node N1.
A first electrode of the storage capacitor Cst may be electrically connected to the first pixel power supply VDD, and a second electrode thereof may be electrically connected to the first node N1. The storage capacitor Cst may be charged with a voltage corresponding to a data signal supplied to the first node N1 during a corresponding frame period and may maintain the charged voltage until a data signal of a subsequent frame is supplied.
The structure of the pixel circuit PXC is not limited to the embodiment illustrated in
Although
For example, as shown in
The emission unit EMU of
Referring to
In an embodiment, the first pixel electrode ELT1 may be electrically connected to a pixel circuit of a corresponding pixel, e.g. the pixel circuit PXC illustrated, e.g., in
However, the disclosure is not limited thereto. For example, in another embodiment, the first pixel electrode ELT1 may be electrically connected through the first contact hole CH1 to a first pixel power supply VDD, and the second pixel electrode ELT2 may be electrically connected through the second contact hole CH2 to the second transistor M2 of
At least one area of the first pixel electrode ELT1 may be disposed opposite to at least one area of the second pixel electrode ELT2, and light emitting elements LD may be electrically connected between the first and second pixel electrodes ELT1 and ELT2. In an embodiment, a direction in which the light emitting elements LD are arranged is not particularly limited. Furthermore, the light emitting elements LD may be electrically connected in series and/or in parallel between the first and second pixel electrodes ELT1 and ELT2.
In an embodiment, each of the light emitting elements LD may be a rod-type light emitting diode which is made of material having an inorganic crystal structure and has a subminiature size to a degree of, e.g., a micro or nano scale. For example, each light emitting element LD may be the light emitting element LD of
In an embodiment, at least one contact electrode may be electrically connected to both ends of the light emitting elements LD, respectively. For example, each emission unit EU may include a first contact electrode CNE1 configured to stably connect the first end of each light emitting element LD to the first pixel electrode ELT1, and a second contact electrode CNE2 configured to stably connect the second end of each light emitting element LD to the second pixel electrode ELT2.
Each of the first and second contact electrodes CNE1 and CNE2 may contact and/or may be electrically connected to any one of the first and second pixel electrodes ELT1 and ELT2 and the first end of at least one of the light emitting elements LD. For example, the first and second contact electrodes CNE1 and CNE2 may cover or overlap both ends of the light emitting elements LD and at least one area of the first and second pixel electrodes ELT1 and ELT2.
The light emitting elements LD disposed in the emission unit EMU may form the light source of the corresponding pixel PXL. For example, if driving current flows through the emission unit EMU of at least one pixel PXL during each frame period, the light emitting elements LD electrically connected in the forward direction between the first and second pixel electrodes ELT1 and ELT2 of the pixel PXL may emit light having a luminance corresponding to the driving current.
Referring to
Conductive pads 102 may be disposed in an area of the base substrate 100, for example, a perimeter of at least one side of the base substrate 100. In an embodiment, the conductive pads 102 may include at least one pair of pads composed of first and second pads 102a and 102b that are supplied with different voltages. For instance, multiple pairs of first and second pads 102a and 102b may be disposed on perimeters of sides of the base substrate 100 that face each other. In an embodiment, each pair of first and second pads 102a and 102b may be electrically connected to at least one cell 110A.
The base substrate 100 may include alignment lines AL to electrically connect the cells 110A to the conductive pads 102. In an embodiment, the alignment lines AL may include at least one pair of first and second alignment lines AL1 and AL2 connecting at least one of the cells 110A formed on the base substrate 100 to any pair of first and second pads 102a and 102b. For instance, multiple pairs of first and second alignment lines AL1 and AL2 corresponding to the multiple pairs of first and second pads 102a and 102b may be disposed on the base substrate 100.
Each first alignment line AL1 may be electrically connected to an electrode formed in at least one cell 110A, and each second alignment line AL2 may be electrically connected to another electrode formed in the at least one cell 110A. For instance, each first alignment line AL1 may be electrically connected in common to first pixel electrodes ELT1 of pixels PXL formed in at least one cell 110A, and each second alignment line AL2 may be electrically connected in common to second pixel electrodes ELT2 of the pixels PXL formed in the at least one cell 110A. Thus, a voltage applied to the first pads 102a may be transmitted through the first alignment lines AL1 to the first pixel electrodes ELT1 in each cell 110A, and a voltage applied to the second pads 102b may be transmitted through the second alignment lines AL2 to the second pixel electrodes ELT2 in each cell 110A.
In an embodiment, among the cells 110A formed on the base substrate 100, at least one cell 110A disposed on any side of the base substrate 100, e.g. a left side, may be electrically connected to a pair of the first and second pads 102a and 102b disposed on another side of the base substrate 100, e.g. a right side. Furthermore, among the cells 110A, at least one cell 110A disposed on the another side of the base substrate 100, e.g. the right side, may be electrically connected to a pair of the first and second pads 102a and 102b disposed on an opposite side of the base substrate 100, e.g. the left side.
The light emitting elements LD may be supplied to at least one cell 110A disposed on any one side of the base substrate 100, and simultaneously a voltage may be applied to at least one cell 110A through the pair of the first and second pads 102a and 102b disposed on the other side of the base substrate 100. Thus, the light emitting elements LD may be supplied to at least one cell 110A, and simultaneously a predetermined alignment signal may be supplied to align the light emitting elements LD, thereby applying an electric field to the light emitting elements LD.
In
Referring to
In an embodiment, the electric-field application module 240 and/or the printing head 260 may be configured to move horizontally and vertically. For instance, the electric-field application module 240 and/or the printing head 260 may be configured to move horizontally in the X-axis direction and vertically (e.g. up-and-down movement) in the Z-axis direction. Furthermore, in an embodiment, the stage 230 may be configured to be movable in at least one direction. For instance, the stage 230 may be designed to move horizontally in the Y-axis direction.
According to the above-described embodiment, the operation of the stage 230, the electric-field application module 240 and/or the printing head 260 may be more easily controlled. Thus, the process of disposing the base substrate 100 on the stage 230 to supply the light emitting elements LD may be performed. Simultaneously, the electric field may be smoothly applied to the cell 110A to which the light emitting elements LD are supplied.
In an embodiment, the electric-field application module 240 may be adjacent to each of at least two perimeter areas of the stage 230. For example, the electric-field application module 240 may include a first electric-field application module 241 disposed on a first side of the stage 230, and a second electric-field application module 242 disposed on a second side of the stage 230.
In an embodiment, the first and second sides of the stage 230 may be opposite ends that face each other. For instance, the first side and the second side may be the left side and the right side of the stage 230, respectively. In other words, the first and second electric-field application modules 241 and 242 may be adjacent to sides of the stage 230 facing each other, respectively.
Furthermore, in an embodiment, the first and second electric-field application modules 241 and 242 may be connected to and/or provided at a structure provided on a lower end of the stage 230. For instance, the first and second electric-field application modules 241 and 242 may be connected to a lower plate 230a of the stage 230. However, in the disclosure, the position and/or installation structure of the first and second electric-field application modules 241 and 242 are not limited particularly and may be changed in various ways.
In an embodiment, the first and second electric-field application modules 241 and 242 may be driven independently of each other or in conjunction with each other. For instance, the first and second electric-field application modules 241 and 242 may be driven simultaneously, sequentially, or alternately.
Thus, if the first manufacturing apparatus 200 is provide with the first and second electric-field application modules 241 and 242 disposed on different sides of the stage 230, the electric field may be smoothly applied to the base substrate 100 seated on the stage 230 while avoiding a collision between the electric-field application module 240 and the printing head 260. For instance, by optionally driving at least one of the first and second electric-field application modules 241 and 242 depending on the position of the printing head 260, a desired electric field may be applied to each cell 110A on the base substrate 100 while preventing a mutual interference and/or collision between the electric-field application module 240 and the printing head 260.
In an embodiment, the printing head 260 may include printing heads, e.g. first, second, and third printing heads 261, 262, and 263 to spray, onto the stage 230, different types of solutions, e.g. solutions in which the light emitting elements LD of predetermined colors are dispersed. For example, the first, second, and third printing heads 261, 262, and 263 may drop solution in which red, green, and blue light emitting elements LD are dispersed to a top (e.g. an interior of each cell 110A of the base substrate 100 seated on the stage 230) of the stage 230 in the form of a droplet. To this end, the first, second, and third printing heads 261, 262, and 263 may be provided with injection nozzles 261a, 262a, and 263a, respectively, and may supply red, green and blue light emitting elements LD to each cell 110A by the inkjet method. For instance, the first, second, and third printing heads 261, 262, and 263 may be inkjet heads (or injection heads).
As described above, the first manufacturing apparatus 200 according to this embodiment may be provided with the electric-field application module 240 and the printing head 260. Thus, the light emitting elements LD may be supplied to the substrate of the light emitting display device placed on the stage 230, e.g. the base substrate 100, and simultaneously a predetermined electric field may be applied to the light emitting elements LD to induce the self-alignment of the light emitting elements LD. Thus, the light emitting display panel 110 using the light emitting elements LD as the light source may be easily manufactured.
The remaining components constituting the first manufacturing apparatus 200, for example, the main plate 210, the auxiliary plate 220, and the gantry 250 may have various shapes and/or structures known in the art. Therefore, detailed descriptions pertaining thereto will be omitted.
Referring to
Furthermore, in an embodiment, each electric-field application module 240 may further include at least one linear motion guide LM1, LM2 connected (or electrically connected) to the body BD to assist in the stable movement of the electric-field application module 240, and at least one sensor unit SEU1, SEU2 for sensing the moving position of the probe head PHD in real time. For instance, each electric-field application module 240 may further include a first linear motion guide LM1 and the first sensor unit SEU1 disposed around the first driver LA1, and a second linear motion guide LM2 and the second sensor unit SEU2 disposed around the second driver LA2.
The probe head PHD may be provided with at least one probe pin PPI (or also referred to as an “electrode pad”) disposed on a surface thereof. For instance, the probe head PHD may include probe pins PPI that are arranged in a pad component PAU located in a perimeter of a lower surface of the probe head PHD. In an embodiment, each probe pin PPI may be electrically connected to a power supply component (not illustrated) to be supplied with a predetermined power or voltage from the power supply component.
In an embodiment, the probe head PHD may be implemented as a probe bar having a bar shape but is not limited thereto. For example, the shape, structure, and/or material of the probe head PHD may be changed in various ways.
The first driver LA1 may be connected (or electrically connected) to the probe head PHD through the body BD to move the probe head PHD in the horizontal direction. For instance, the first driver LA1 may be a linear actuator that moves the probe head PHD forwards and backwards or leftwards and rightwards in the X-axis direction.
In an embodiment, the first driver LA1 may include a first motor MT1, and a first ball screw BS1 connected to the first motor MT1 in the horizontal direction. Thus, the first driver LA1 may adjust the horizontal position of the probe head PHD so that the probe head PHD may reach a desired position.
In an embodiment, the first motor MT1 may be a servomotor but is not limited thereto. For example, the first motor MT1 may be formed as power sources of various types as well as the servomotor. Furthermore, in an embodiment, the first motor MT1 may include a motor guide or the like.
In an embodiment, the first ball screw BS1 may be a rolled ball screw but is not limited thereto. For example, the first ball screw BS1 may be formed as various mechanical devices (e.g. various components converting rotary motion into linear motion) that linearly move the probe head PHD by using power generated by the first motor MT1, in addition to the rolled ball screw.
The second driver LA2 may be connected (or electrically connected) to the probe head PHD through the body BD to move the probe head PHD in the vertical direction. For instance, the second driver LA2 may be a linear actuator that moves the probe head PHD up and down in the Z-axis direction.
In an embodiment, the second driver LA2 may include a second motor MT2, and a second ball screw BS2 connected to the second motor MT2 in the vertical direction. Thus, the second driver LA2 may adjust the height of the probe head PHD so that the probe head PHD may reach a desired position.
In an embodiment, the second motor MT2 may be a servomotor but is not limited thereto and may be various types of power sources. Furthermore, in an embodiment, the second motor MT2 may include a motor guide or the like.
In an embodiment, the second ball screw BS2 may be a rolled ball screw, but is not limited thereto, and may be formed as with various mechanical devices that linearly move the probe head PHD by using power generated by the second motor MT2.
The first linear motion guide LM1 may be disposed around the first driver LA1 to assist in the horizontal movement of the probe head PHD. Furthermore, the second linear motion guide LM2 may be disposed around the second driver LA2 to assist in the vertical movement of the probe head PHD.
The first sensor unit SEU1 may be disposed around the first driver LA1 to sense the horizontal position of the probe head PHD. The first sensor unit SEU1 may determine whether the corresponding electric-field application module 240, particularly, the probe head PHD reaches a desired horizontal position.
In an embodiment, the first sensor unit SEU1 may include at least one of a first position sensor SEN11 for sensing the front limit of the probe head PHD, a second position sensor SEN12 for sensing the rear limit of the probe head PHD, and a third position sensor SEN13 located between the first and second position sensors SEN11 and SEN12 to sense that the probe head PHD reaches a predetermined target point (e.g. horizontal position for making contact with the conductive pads 102 of the base substrate 100). If the first and second position sensors SEN11 and SEN12 sense the front and rear limits, the excessive movement of the probe head PHD may be prevented. Thus, mechanical damage to the electric-field application module 240 may be prevented. Furthermore, if the third position sensor SEN13 senses that the probe head PHD reaches the target point, the ease and reliability of a process may be secured.
The second sensor unit SEU2 may be disposed around the second driver LA2 to sense the vertical position (e.g. height) of the probe head PHD. The second sensor unit SEU2 may determine whether the corresponding electric-field application module 240, particularly, the probe head PHD reaches a desired vertical position.
In an embodiment, the second sensor unit SEU2 may include at least one of a first position sensor SEN21 for sensing the rising limit of the probe head PHD, a second position sensor SEN22 for sensing the dropping limit of the probe head PHD, and a third position sensor SEN23 located between the first and second position sensors SEN21 and SEN22 to sense that the probe head PHD reaches a predetermined target height (e.g. predetermined height for contacting the conductive pads 102 of the base substrate 100). If the first and second position sensors SEN21 and SEN22 sense the rising limit and the dropping limit, the excessive movement of the probe head PHD may be prevented. Thus, mechanical damage to the electric-field application module 240 may be prevented. Furthermore, if the third position sensor SEN23 senses that the probe head PHD reaches the target height, the ease and reliability of a process may be secured.
Referring to
Referring to
Referring to
For instance, the pad component PAU may be disposed on a surface of the probe head PHD, e.g. a lower surface thereof. The pad component PAU may include at least one first probe pin PPI1 electrically connected via the first power line PL1 to the power supply component 270, and at least one second probe pin PPI2 electrically connected via the second power line PL2 to the power supply component 270. For instance, the pad component PAU may include first probe pins PPI1 that are electrically connected in common to the first power line PL1, and second probe pins PPI2 that are paired with the first probe pins PPI1, respectively, and electrically connected in common to the second power line PL2.
In an embodiment, the first and second probe pins PPI1 and PPI2 may correspond to the conductive pads 102 formed on the base substrate 100. For instance, in case that the first electric-field application module 241 is driven, the first and second probe pins PPI1 and PPI2 provided on the first electric-field application module 241 may contact the conductive pads 102 disposed on the left side of the base substrate 100 to apply a predetermined voltage thereto. Furthermore, in case that the second electric-field application module 242 is driven, the first and second probe pins PPI1 and PPI2 provided on the second electric-field application module 242 may contact the conductive pads 102 disposed on the right side of the base substrate 100 to apply a predetermined voltage thereto.
In an embodiment, the power supply component 270 may supply a predetermined voltage (or signal) having a predetermined waveform and/or potential through a first output terminal OUT1 to the first power line PL1 and may supply a reference voltage having a predetermined reference potential through a second output terminal OUT2 to the second power line PL2. For instance, the power supply component 270 may supply an AC voltage having a sine waveform to the first power line PL1 and supply a ground voltage to the second power line PL2. In an embodiment, a predetermined voltage supplied to the first and second power lines PL1 and PL2 may be a predetermined alignment signal for aligning the light emitting elements LD between the first and second pixel electrodes ELT1 and ELT2.
In an embodiment, the first manufacturing apparatus 200 may further include at least one additional component. For instance, the first manufacturing apparatus 200 may further include at least one horizontal guide HGD disposed in or around the first and/or second electric-field application module 241 and 242, and at least one fixing component FXP provided on the stage 230.
In an embodiment, after the base substrate 100 is seated on the stage 230, if a process for disposing the light emitting elements LD on the base substrate 100 is started, the first and second electric-field application modules 241 and 242 may be driven to supply a predetermined voltage to at least some of the conductive pads 102 of the base substrate 100. Thus, the electric field may be formed between the first and second pixel electrodes ELT1 and ELT2 formed in at least one cell 110A located in or on the base substrate 100, particularly in each pixel area of at least one cell 110A. Furthermore, if the process is started, at least one printing head 260 may move to the top of the base substrate 100 to supply the light emitting elements LD to the at least one cell 110A. Thus, the light emitting elements LD may be supplied to the at least one cell 110A, and simultaneously the light emitting elements LD may be aligned between the first and second pixel electrodes ELT1 and ELT2. In other words, in an embodiment, each of the first and second electric-field application modules 241 and 242 may be an alignment-signal applying device that supplies a predetermined alignment signal for aligning the light emitting elements LD.
In an embodiment, the first and second electric-field application modules 241 and 242 may be driven sequentially or alternately. For instance, the first and second electric-field application modules 241 and 242 may be sequentially driven in response to the position and/or moving direction of the printing head 260 that is being operated. For instance, the first and second electric-field application modules 241 and 242 may be operated sequentially or alternately to avoid a collision with the printing head 260.
For example, as illustrated in
In an embodiment, in case that the printing head 260 approaches the right side of the stage 230, the first electric-field application module 241 located on the left side of the stage 230, particularly, the probe head PHD of the first electric-field application module 241, may move to the left side of the stage 230 above the stage 230. For example, as illustrated in
In case that the printing head 260 approaches the left side of the stage 230, the second electric-field application module 242 located on the right side of the stage 230, particularly, the probe head PHD of the second electric-field application module 242, may move to the right side of the stage 230 above the stage 230. For example, as illustrated in
According to the above-described embodiment, the light emitting elements LD may be supplied onto the base substrate 100 by driving at least one printing head 260, and at the same time, an electric field for inducing the alignment of the light emitting elements LD may be applied onto the base substrate 100 by driving at least one electric-field application module 240. Particularly, in the above-described embodiment, an interference and/or collision between the printing head 260 and the electric-field application module 240 may be prevented by optionally driving the first and/or second electric-field application modules 241 and 242 depending on the position of the printing head 260 that is being operated. Thus, the moving distance of the printing head 260 may be increased, and an effective area (e.g. area in which individual cells 110A may be disposed) capable of supplying the light emitting elements LD on the base substrate 100 may be secured.
Referring to
For instance, if the first and second alignment lines AL1 and AL2 are simultaneously connected to the conductive pads 102 disposed on the left and right sides of the base substrate 100, the first and second electric-field application modules 241 and 242 may be simultaneously driven to apply a predetermined electric field through ends of the base substrate 100. By reducing or minimizing a voltage drop occurring in the first and second alignment lines AL1 and AL2, the light emitting elements LD may be smoothly aligned in each cell 110A.
As another example, in another embodiment, each cell 110A may be electrically connected to at least one pair of closest conductive pads 102 among the conductive pads 102 disposed on the sides of the base substrate 100 and may receive a predetermined voltage from at least one pair of conductive pads 102 during the period in case that the light emitting elements LD are supplied to the interior of the cell 110A. For example, the cells 110A disposed on the left side of the base substrate 100 may receive a predetermined voltage from the conductive pads 102 disposed on a left edge of the base substrate 100, and the cells 110A disposed on the right side of the base substrate 100 may receive a predetermined voltage from the conductive pads 102 disposed on a right edge of the base substrate 100. Even in this case, by reducing or minimizing a voltage drop occurring in the first and second alignment lines AL1 and AL2, the light emitting elements LD may be smoothly aligned in each cell 110A.
Referring to
Referring to
Referring to
In an embodiment of
According to the above-described embodiments, the light emitting elements LD may be supplied to the effective area of the stage 230, and the electric field for aligning the light emitting elements LD may be simultaneously applied thereto while preventing a mutual interference and/or collision between the stage 230, the electric-field application module 240, and/or the printing head 260.
An apparatus for manufacturing the light emitting display device according to the embodiments of
Furthermore, the electric-field application module 240 may include a first driver LA1 for horizontally moving the probe head PHD, and a second driver LA2 for vertically moving the probe head PHD. Thus, the movement of the electric-field application module 240 may be readily controlled.
Furthermore, in an embodiment, the first manufacturing apparatus 200 may include electric-field application modules 240 that may be sequentially and/or simultaneously driven. In the embodiment, the electric field may be applied to the base substrate 100 (or the substrate 111 of the light emitting display panel 110) while preventing a mutual interference and/or collision between the electric-field application module 240 and the printing head 260.
In
Referring to
In an embodiment, the second manufacturing apparatus 300 may include at least one of first electric-field application modules 341 and 341′ disposed on a first side of the stage 330, and second electric-field application modules 342 and 342′ disposed on a second side of the stage 330. In an embodiment, the first and second sides of the stage 330 may be opposite ends that face each other. For instance, the first side and the second side may be the left side and the right side of the stage 330, respectively. In other words, the first and second electric-field application modules 341, 341′, 342, and 342′ may be adjacent to sides of the stage 330 facing each other, respectively. However, the disclosure is not limited thereto, and the positions of the first and second electric-field application modules 341, 341′, 342, and 342′ may be changed. Furthermore, in another embodiment, a single electric-field application module 340 or 340′ may be disposed only on a side of the stage 330.
In an embodiment, the first and second electric-field application modules 341, 341′, 342, and 342′ may be driven independently and/or individually. Thus, the first and second electric-field application modules 341, 341′, 342, and 342′ may be readily selectively driven.
Furthermore, in an embodiment, the first and second electric-field application modules 341, 341′, 342, and 342′ may be driven simultaneously. Thus, a desired electric field can be smoothly supplied to the substrate 111 of the light emitting display panel 110 or the base substrate 100.
In an embodiment, each of the electric-field application modules 340 and 340′ may be configured to be substantially identical or similar to each of the electric-field application modules 240 provided in the above-described first manufacturing apparatus 200. Hereinafter, with reference to
In an embodiment, the electric-field application module 340 of the second manufacturing apparatus 300 may be configured to be substantially identical or similar to the electric-field application module provided in the first manufacturing apparatus 200, e.g. the electric-field application module 240 according to the embodiment of
In the second manufacturing apparatus 300 according to the embodiment of
Furthermore, the second manufacturing apparatus 300 may further include a device for supplying a predetermined voltage to each of the electric-field application modules 340 and 340′, for instance, the power supply component 270 illustrated in
In an embodiment, the heating element 350 may be disposed above the stage 330 to be spaced apart from the stage 330. For instance, the heating element 350 may be disposed on a ceiling of the chamber 360 to emit heat towards the stage 330. In an embodiment, the shape, size, structure, and/or material of the heating element 350 are not limited particularly. The heating element 350 may include various heating materials known in the art.
Furthermore, in an embodiment, the position of the heating element 350 may be changed. For example, in another embodiment, at least one heating element 350 may be disposed on at least one corner and/or at least one sidewall of the chamber 360.
Referring to
In an embodiment, the solvent SOL may be removed using the second manufacturing apparatus 300 according to the embodiment of
For example, the first and second electric-field application modules 341, 341′, 342, and 342′ of the second manufacturing apparatus 300 may move up and down to cause the probe pins PPI to contact the conductive pads 102 on the base substrate 100 and may apply a predetermined alignment voltage to the conductive pads 102. Thus, in a state in which the alignment voltage is applied to the first and second pixel electrodes ELT1 and ELT2 of each pixel PXL, the heating element 350 may be driven to supply heat to the base substrate 100, thereby removing the solvent SOL.
If the solvent SOL is removed in a state in which the alignment voltage is applied to the first and second pixel electrodes ELT1 and ELT2 of each pixel PXL, the misalignment of the light emitting elements LD may be prevented in the process of removing the solvent SOL. For example, even if the solvent SOL flows or its vapour is generated in case that the solvent SOL is dried, the movement and/or removal of the light emitting elements LD may be prevented by the electric field formed between the first and second pixel electrodes ELT1 and ELT2 by the alignment voltage. Thus, the light emitting elements LD may be stably aligned in the emission area EA of each pixel PXL, and the quality of the alignment may be improved.
Referring to
First, referring to
Referring to
The manufacturing apparatus of the light emitting display device in accordance with the embodiments of
In
Referring to
In an embodiment, the substrate transfer stage 410 may be a robot arm, but the disclosure is not limited thereto. The substrate transfer stage 410 may include support plates SPL disposed at a predetermined interval in the first direction (e.g. X-axis direction), and a body that is integrally or not integrally connected to (or integral or not integral with) the support plates SPL, e.g. an arm body ABD. For example, the support plates SPL may include a first support plate SPL1 disposed on a first edge (e.g. left edge) of the substrate transfer stage 410, a second support plate SPL2 disposed on a second edge (e.g. right edge) of the substrate transfer stage 410, and at least one third support plate SPL3 disposed between the first and second support plates SPL1 and SPL2. The support plates SPL may be spaced apart from each other in the first direction. Each of the support plates SPL may extend in the second direction (e.g. Y-axis direction) intersecting the first direction. These support plates SPL may be connected to the arm body ABD. For instance, at least one area of the arm body ABD may extend in the first direction to be connected to the support plates SPL in common.
In an embodiment, at least one electric-field application module 440 may be provided on at least one side of the substrate transfer stage 410. For example, the first electric-field application module 441 may be mounted on a first side of the substrate transfer stage 410, and the second electric-field application module 442 may be mounted on a second side of the substrate transfer stage 410. In an embodiment, the first and second electric-field application modules 441 and 442 may face each other. For instance, the first electric-field application module 441 may be disposed around the first support plate SPL1, and the second electric-field application module 442 may be disposed around the second support plate SPL2 to face the first electric-field application module 441.
In an embodiment, the first and second electric-field application modules 441 and 442 may be integrally or not integrally connected to (or be integral or not integral with) the first and second support plates SPL1 and SPL2, respectively. However, the disclosure is not limited thereto. For example, in another embodiment, the first and second electric-field application modules 441 and 442 may be disposed around the first and second support plates SPL1 and SPL2, respectively, and may be separated from the first and second support plates SPL1 and SPL2.
In an embodiment, the first and second electric-field application modules 441 and 442 may be driven independently and/or individually. Thus, the first and second electric-field application modules 441 and 442 may be readily and selectively driven.
Furthermore, in an embodiment, the first and second electric-field application modules 441 and 442 may be driven simultaneously. Thus, during the transfer of the substrate 111 of the light emitting display panel 110 or the base substrate 100, a desired voltage (e.g. a predetermined alignment voltage) may be smoothly supplied to the substrate 111 or the base substrate 100.
In an embodiment, each electric-field application module 440 may be configured to move horizontally and/or vertically. For example, each electric-field application module 440 may be configured to move horizontally forwards and backwards or leftwards and rightwards in the X-axis direction and to move vertically upwards and downwards in the Z-axis direction. As another example, in another embodiment, each electric-field application module 440 may be configured to move vertically (e.g. up-and-down movement) in the Z-axis direction.
In an embodiment, the power supply component 470 may be electrically connected to at least one probe pin PPI to supply a predetermined voltage or signal to the probe pin PPI. For instance, the power supply component 470 may be electrically connected via the first and second power lines PL1 and PL2 to different probe pins PPI. In an embodiment, the power supply component 470 may supply a predetermined voltage (or signal) having a predetermined waveform and/or potential through a first output terminal OUT1 to the first power line PL1 and may supply a reference voltage having a predetermined reference potential through a second output terminal OUT2 to the second power line PL2.
In the third manufacturing apparatus 400 according to the above-described embodiment, a predetermined alignment voltage may be applied to the substrate 111 or the base substrate 100 even during the transfer of the substrate 111 of the light emitting display panel 110 or the base substrate 100 by using the substrate transfer stage 410. Thus, the light emitting elements LD may be prevented from being dislodged or removed from the aligned position during the transfer of the substrate 111 or the base substrate 100.
Referring to
In an embodiment, the first driver LA1 may horizontally move the probe head PHD forwards and backwards or leftwards and rightwards, and the second driver LA2 may vertically move the probe head PHD upwards and downwards. Thus, the movement of the electric-field application module 440 provided in the third manufacturing apparatus 400 may be readily controlled.
In an embodiment, the probe head PHD may include probe pins PPI. For example, as illustrated in
According to an embodiment, each electric-field application module 440 may be disposed on any side of the substrate transfer stage 410. For example, each electric-field application module 440 may be disposed around any support plate disposed on any edge of the substrate transfer stage 410, e.g. the first or second support plate SPL1 or SPL2 of
In an embodiment, each electric-field application module 440 may be disposed around any support plate SPL as illustrated in
In another embodiment, each electric-field application module 440 may be disposed around any one support plate SPL, as illustrated in
Referring to
In an embodiment, each electric-field application module 440′ may be disposed around any support plate SPL as illustrated in
In another embodiment, each electric-field application module 440′ may be disposed around any support plate SPL as illustrated in
The manufacturing apparatus of the light emitting display device in accordance with the embodiments of
Referring to
Referring to
In an embodiment, a step of supplying the light-emitting-element solution may include a step of applying a predetermined alignment voltage (or an electric field generated by the alignment voltage) to the first and second pixel electrodes ELT1 and ELT2 by driving at least one electric-field application module 240 provided on at least one side of the first stage 230, and a step of supplying the light-emitting-element solution to each emission area EA using the printing head 260 during a period in which the alignment voltage is applied. In other words, in an embodiment, the supply process and the aligning process of the light emitting elements LD may be simultaneously performed by supplying the light emitting elements LD in the form of a solution while forming a predetermined electric field in each emission area EA by using the first manufacturing apparatus 200 (e.g. the inkjet printer) including at least one electric-field application module 240.
Referring to
Referring to
Referring to
Referring to
Referring to
If the solvent SOL is removed in a state in which the alignment voltage is applied to the first and second pixel electrodes ELT1 and ELT2, the misalignment of the light emitting elements LD may be prevented in the process of removing the solvent SOL. Thus, the light emitting elements LD may be stably aligned in each emission area EA, and the quality of the alignment may be improved.
In the embodiments of
According to the above-described embodiments, a predetermined alignment voltage (e.g. an alignment signal of an AC waveform) may be applied to the first and second pixel electrodes ELT1 and ELT2 by using each of the electric-field application modules 240, 340, 340′, 440, and 440′, in a step for supplying the light emitting elements LD to each emission area EA and stably disposing the light emitting elements LD between the first and second pixel electrodes ELT1 and ELT2, for example, in all of multiple steps including a printing step for supplying and aligning the light emitting elements LD, a transfer step for transferring the base substrate 100 (or the substrate 111 of the light emitting display device), and a drying step for removing the solvent SOL of the light-emitting-element solution. Thus, the misalignment of the light emitting elements LD that may occur after the light emitting elements LD are supplied and aligned may be effectively prevented or reduced. Therefore, according to the above-described embodiments, the light emitting elements LD may be stably aligned in each emission area EA, and the quality of the alignment may be improved.
While the scope of the disclosure are described by detailed embodiments, it should be noted that the above-described embodiments are merely descriptive and should not be considered limiting. It should be understood by those skilled in the art that various changes, substitutions, and alternations may be made herein without departing from the scope of the disclosure as defined by the following claims.
The scope of the disclosure is not limited by detailed descriptions of the disclosure and should be defined by the accompanying claims. Furthermore, all changes or modifications of the disclosure derived from the meanings and scope of the claims, and equivalents thereof should be construed as being included in the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0114425 | Sep 2018 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2019/003328 | 3/21/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/059988 | 3/26/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7008811 | Park et al. | Mar 2006 | B2 |
7111755 | Koyama et al. | Sep 2006 | B2 |
8877636 | Hunter et al. | Nov 2014 | B1 |
9181630 | Shibata et al. | Nov 2015 | B2 |
9525030 | Hwang et al. | Dec 2016 | B2 |
10249603 | Cho et al. | Apr 2019 | B2 |
10340419 | Kim et al. | Jul 2019 | B2 |
10438834 | Matsuura | Oct 2019 | B2 |
10453695 | Eto | Oct 2019 | B2 |
10910251 | Matsuura | Feb 2021 | B2 |
11005009 | Kim | May 2021 | B2 |
11600472 | Isomura | Mar 2023 | B2 |
11685154 | Lee | Jun 2023 | B2 |
11728196 | Lee | Aug 2023 | B2 |
20030108804 | Cheng et al. | Jun 2003 | A1 |
20060263705 | Kim et al. | Nov 2006 | A1 |
20070184363 | Kim et al. | Aug 2007 | A1 |
20130168708 | Shibata et al. | Jul 2013 | A1 |
20150276639 | Spath et al. | Oct 2015 | A1 |
20170136700 | Li et al. | May 2017 | A1 |
20180138157 | Im et al. | May 2018 | A1 |
20210090929 | Yang | Mar 2021 | A1 |
20210126158 | Kang | Apr 2021 | A1 |
20210265529 | Kim | Aug 2021 | A1 |
20210320089 | Kang | Oct 2021 | A1 |
20220165911 | Kang | May 2022 | A1 |
20220165928 | Baek | May 2022 | A1 |
20220254657 | Choi | Aug 2022 | A1 |
20220254753 | Lee | Aug 2022 | A1 |
20220320365 | Ryu | Oct 2022 | A1 |
20220352042 | Lee et al. | Nov 2022 | A1 |
20220388303 | Cho | Dec 2022 | A1 |
20220396073 | Park | Dec 2022 | A1 |
20230025604 | Im | Jan 2023 | A1 |
20230047796 | Ryu | Feb 2023 | A1 |
20230145433 | Kang | May 2023 | A1 |
20230150277 | Lee | May 2023 | A1 |
20230256735 | Hong | Aug 2023 | A1 |
20230268454 | Han | Aug 2023 | A1 |
20230286292 | Lee | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
1653620 | Aug 2005 | CN |
107584885 | Jan 2018 | CN |
108389965 | Aug 2018 | CN |
3 270 413 | Jan 2018 | EP |
3 270 424 | Jan 2018 | EP |
2004-90621 | Mar 2004 | JP |
2006-162290 | Jun 2006 | JP |
2010-114161 | May 2010 | JP |
2017-41290 | Feb 2017 | JP |
10-2001-0054915 | Jul 2001 | KR |
10-2006-0100600 | Sep 2006 | KR |
10-2007-0073458 | Jul 2007 | KR |
10-2007-0079879 | Aug 2007 | KR |
10-2009-0117023 | Nov 2009 | KR |
10-2011-0075082 | Jul 2011 | KR |
10-2011-0078081 | Jul 2011 | KR |
10-2011-0079024 | Jul 2011 | KR |
10-2013-0020475 | Feb 2013 | KR |
10-2013-0033450 | Apr 2013 | KR |
10-2013-0044790 | May 2013 | KR |
10-1328096 | Nov 2013 | KR |
10-2014-0063331 | May 2014 | KR |
10-1627365 | Jun 2016 | KR |
10-1628345 | Jun 2016 | KR |
10-2018-0007376 | Jan 2018 | KR |
10-2018-0009014 | Jan 2018 | KR |
10-2018-0055021 | May 2018 | KR |
10-1987196 | Jun 2019 | KR |
10-2020-0001656 | Jan 2020 | KR |
10-2020-0006208 | Jan 2020 | KR |
10-2020-0006209 | Jan 2020 | KR |
10-2020-0031743 | Mar 2020 | KR |
20200031743 | Mar 2020 | KR |
Entry |
---|
International Search Report, with English translation, corresponding to International Application No. PCT/ KR2019/003328 dated Jul. 3, 2019. |
Written Opinion, with English translation, corresponding to International Application No. PCT/KR2019/003328, dated Jul. 3, 2019. |
International Search Report, with English translation, corresponding to International Application No. PCT/KR2019/001545 dated May 17, 2019. |
Written Opinion, with English translation, corresponding to International Application No. PCT/KR2019/001545, dated May 17, 2019. |
Korean Notice of Allowance for Korean Patent Application No. 10-2018-0114425, dated Nov. 20, 2023. |
Chinese Office Action for Chinese Patent Application or Patent No. 201980058988.8, dated Jan. 31, 2024. |
Korean Notice of Allowance for Korean Application 10-2018-0110420, dated Oct. 18, 2023. |
Chinese Office Action for Chinese Application No. 201980040773.3, dated Nov. 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20210320089 A1 | Oct 2021 | US |