The present invention relates to a method and apparatus for producing a substrate whose surface includes a metallic wire, by polishing the substrate surface.
JP-A-2-278822 discloses a polishing method using a polishing liquid including an etching liquid and abrasive power to polish a substrate chemically and mechanically. JP-A-8-83780 discloses a polishing method using a polishing liquid including an etching liquid to polish a substrate chemically and mechanically. JP-A-9-306881 discloses a polishing method using a polishing liquid including an etching liquid without abrasive powder to polish a substrate chemically and mechanically. JP-A-10-125880 discloses a polishing method using a polishing liquid including an alkaline etching liquid without abrasive powder to polish a substrate chemically and mechanically. JP-A-8-64562 and A new Slurry-free CMP Technique for Cu Interconnects published on Semi-Technology Symposium 1998 disclose a polishing method using a polishing pad including abrasive powder and a polishing liquid without abrasive powder to polish a substrate. The publication of U.S. Pat. No. 5,597,341 discloses a structure for detecting a frictional force between a polishing pad and a substrate during polishing by measuring a polishing pad rotational driving force and a substrate rotational driving force.
An object of the present invention is to provide a method and apparatus for producing a substrate whose surface includes a metallic wire by polishing the substrate surface, in which method and apparatus a decrease of a frictional coefficient between a substrate surface and a polishing pad surface or a polishing depth increasing velocity in accordance with an increase of a relative movement velocity between the polishing pad surface and the substrate surface to be polished by the polishing pad surface is restrained. The frictional coefficient between the substrate surface and the polishing pad surface is determined in the present invention as (a measured frictional force therebetween/a pressing force applied therebetween).
In the present invention for producing a substrate whose surface includes a metallic wire by polishing the substrate surface,
a polishing liquid is supplied into a clearance between the substrate surface and a polishing pad surface of a polishing pad, which polishing liquid includes an acid for dissolving an oxidized part of the substrate surface and is prevented substantially from including solid abrasive powder, and
a relative movement is generated between the substrate surface and the polishing pad surface while pressing the substrate surface against the polishing pad surface with the polishing liquid between the substrate surface and the polishing pad surface so that the dissolved oxidized part of the substrate surface is removed from the substrate.
Since the polishing liquid which includes the acid for dissolving the oxidized part of the substrate surface and is prevented substantially from including solid abrasive powder is used to polish the substrate surface, a viscosity of the polishing liquid is kept small while preventing an increase in number of defects on the substrate surface by the abrasive powder so that the decrease of the frictional coefficient between the substrate surface and the polishing pad surface or a polishing depth increasing velocity in accordance with an increase of a relative movement velocity between a polishing pad surface and the substrate surface to be polished by the polishing pad surface is restrained. The polishing liquid may further include an oxidizing agent (including, for example, hydrogen peroxide, phosphoric acid, nitric acid, or the like) for oxidizing a part of the substrate surface so that the part of the substrate surface becomes brittle, a protective film forming agent (including, for example, benzotriazole (BTA), a derivative of benzotriazole or the like) for forming a protective film on the substrate surface so that an oxidizing proceeding on a bottom part of a substrate surface micro-shape of roughness by the oxidizing agent is restrained, and a surfactant for chemical stability of the polishing liquid. A main component of the polishing pad is, for example, foamed polyurethane polymer, foamed fluoro-carbon polymer or the like.
If the oxidized part of the substrate surface is dissolved in the polishing liquid, and the polishing liquid in which a concentration of the dissolved oxidized part of the substrate surface is smaller than a concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface so that a concentration of the dissolved oxidized part of the substrate surface in the polishing liquid to be supplied to the clearance between the substrate surface and the polishing pad surface is decreased, a dissolution, diffusion or removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is accelerated so that a decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity is restrained although a floating force between the substrate surface and the polishing pad surface increases in accordance with the increase of relative movement velocity between the polishing pad surface and the substrate surface.
If the relative movement between the substrate surface and the polishing pad surface is being generated when the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface, both of the supply of the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface into the polishing liquid on the polishing pad surface and the removal of the oxidized part of the substrate surface from the substrate surface and/or polishing pad surface are simultaneously performed with the relative movement so that the dissolution, diffusion or removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is accelerated to restrain the decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity.
If the substrate surface is prevented from contacting the polishing pad surface when the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface, the concentration of the dissolved oxidized part of the substrate surface is effectively decreased over a large area of the polishing pad surface without being obstructed by the substrate surface.
It is effective for decreasing the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface that the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is prevented substantially from including the dissolved oxidized part of the substrate surface.
If the polishing liquid is stirred in a direction perpendicular to a direction of the relative movement so that the concentration of dissolved oxidized part of the substrate surface in the polishing liquid is made uniform in the direction perpendicular to the direction of the relative movement, the removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is uniformly performed in the direction perpendicular to the direction of the relative movement so that the decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity is restrained. When the polishing pad rotates on a rotational axis, and a stirring member slides radially inward on the polishing pad surface, a discharge of the polishing liquid from the polishing pad surface by a centrifugal force is restrained. When the polishing pad rotates on the rotational axis, and the stirring member slides radially outward on the polishing pad surface, a discharge of the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is large from the polishing pad surface is accelerated. The polishing liquid may be stirred while the substrate surface contacts the polishing pad surface to polish the substrate surface or while the substrate surface is prevented from contacting the polishing pad surface.
If the polishing liquid whose acidity is larger than an acidity of the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface so that the acidity of the polishing liquid to be supplied to the clearance between the substrate surface and the polishing pad surface is increased, the dissolution, diffusion or removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is accelerated so that the decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity is restrained although the floating force between the substrate surface and the polishing pad surface increases in accordance with the increase of relative movement velocity between the polishing pad surface and the substrate surface.
As shown in
If the relative movement between the substrate surface and the polishing pad surface is being generated when the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface, both of the supply of the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface into the polishing liquid on the polishing pad surface and the removal of the oxidized part of the substrate surface from the substrate surface and/or polishing pad surface are simultaneously performed with the relative movement so that the dissolution, diffusion or removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is accelerated to restrain the decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity.
If the substrate surface is prevented from contacting the polishing pad surface when the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface is added and supplied into the polishing liquid on the polishing pad surface, the acidity in the polishing liquid is effectively increased over the large area of the polishing pad surface without being obstructed by the substrate surface.
It is preferable that the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface is prevented substantially from including the dissolved oxidized part of the substrate surface. If the polishing liquid is stirred in a direction perpendicular to a direction of the relative movement so that the acidity of the polishing liquid is made uniform in the direction perpendicular to the direction of the relative movement, the removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate is uniformly performed in the direction perpendicular to the direction of the relative movement so that the decrease of frictional coefficient between the polishing pad surface and the substrate surface or of polishing depth increasing velocity is restrained.
A stirring member may grind the polishing pad surface when the stirring member slides on the polishing pad surface to stir the polishing liquid. The stirring member may be prevented substantially from grinding the polishing pad surface when the stirring member slides on the polishing pad surface to stir the polishing liquid.
If the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is supplied into the clearance between the substrate surface and the polishing pad surface after being stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface, the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is small and constant is supplied into the clearance between the substrate surface and the polishing pad surface. If the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is smaller than the concentration of the dissolved oxidized part of the substrate surface in the polishing liquid on the polishing pad surface is supplied into the clearance between the substrate surface and the polishing pad surface before being stirred by the stirring member and subsequently is stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface after passing through the clearance between the substrate surface and the polishing pad surface, the polishing liquid in which the concentration of the dissolved oxidized part of the substrate surface is small is effectively supplied into the clearance between the substrate surface and the polishing pad surface.
If the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface is supplied into the clearance between the substrate surface and the polishing pad surface after being stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface, the polishing liquid whose acidity is large and constant therein is supplied into the clearance between the substrate surface and the polishing pad surface. If the polishing liquid whose acidity is larger than the acidity of the polishing liquid on the polishing pad surface is supplied into the clearance between the substrate surface and the polishing pad surface before being stirred by the stirring member and subsequently is stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface after passing through the clearance between the substrate surface and the polishing pad surface, the polishing liquid whose acidity is large is effectively supplied into the clearance between the substrate surface and the polishing pad surface.
It is preferable for finely finishing a roughness of the substrate surface that, during the relative movement, a pressing force between the polishing pad surface and the substrate surface is limited to such a degree that the polishing pad surface is prevented from removing from the substrate the oxidized part of solid state which is undissolved by the acid and the oxidized part is dissolved by the acid in the polishing liquid on the polishing pad surface after being removed from the substrate so that the oxidized part of the substrate surface is prevented from being included by the polishing liquid on the polishing pad surface in a solid state. The degree of the pressing force between the polishing pad surface and the substrate surface for preventing the polishing pad surface from removing from the substrate the oxidized part of solid state which is undissolved by the acid is determined experimentally and/or experientially.
If a frictional force between the substrate surface and the polishing pad surface is measured to detect a decrease of the frictional force (for example, decrease from a desired frictional force by 10%) and the pressing force of the substrate surface against the polishing pad surface and/or a pressing force of the stirring member or a dressing member for cutting the polishing pad surface to roughen the polishing pad surface against the polishing pad surface is increased in response to the detected decrease of the frictional force so that the decrease of the frictional force is restrained, the decrease of polishing depth increasing velocity is restrained. If the velocity of the relative movement between the substrate surface and the polishing pad surface is decreased in response to the detected decrease of the frictional force so that the decrease of the frictional force is restrained, the decrease of polishing depth increasing velocity is restrained. The oxidized part of the substrate surface includes an oxidized metallic component. The polishing liquid may include the abrasive powder of not more than 0.5 weight percent, preferably not more than 0.1 weight percent.
If a surfactant (sulfonate type or polyacrylate type, for example, poly-ammonium-acrylate, poly-ammonium-methacrylate, benzene-ammonium-sulfonate, benzene-potassium-sulfonate or the like) is added and supplied into the polishing liquid on the polishing pad surface so that a volume of the surfactant on the polishing pad surface is increased and bubbles of the polishing liquid are generated or the generation of the bubbles of the polishing liquid is accelerated on the polishing pad surface, the dissolution or removal of the oxidized part of the substrate surface from the polishing pad surface and/or the substrate and/or the diffusion of the dissolved oxidized part of the substrate surface in the polishing liquid is accelerated so that the frictional force or polishing depth increasing velocity is prevented from changing abruptly and critically at the critical relative movement velocity range. If the relative movement between the substrate surface and the polishing pad surface is being generated when the surfactant is added and supplied into the polishing liquid on the polishing pad surface, the removal of the dissolved oxidized part of the substrate surface from the polishing pad surface and/or the substrate is accelerated by the surfactant. If the substrate surface is prevented from contacting the polishing pad surface when the surfactant is added and supplied into the polishing liquid on the polishing pad surface, the diffusion of the dissolved oxidized part of the substrate surface in the polishing liquid is accelerated on most of the polishing pad surface. If the surfactant is supplied into the clearance between the substrate surface and the polishing pad surface after being stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface, the polishing liquid in which the surfactant is uniformly distributed is supplied into the clearance between the substrate surface and the polishing pad surface so that the oxidized part of the substrate surface is removed uniformly between the substrate surface and the polishing pad surface. If the surfactant is supplied into the clearance between the substrate surface and the polishing pad surface before being stirred by the stirring member and subsequently is stirred by the stirring member to be mixed with the polishing liquid on the polishing pad surface after passing through the clearance between the substrate surface and the polishing pad surface, the removal of the dissolved oxidized part of the substrate surface from the substrate surface and/or the polishing pad surface is surface is accelerated.
If a frictional force between the stirring member or the dressing member and the polishing pad surface is measured to detect a decrease of the frictional force (for example, decrease from a desired frictional force by 20%) and the pressing force of the stirring member or dressing member against the polishing pad surface and/or the pressing force of the substrate surface against the polishing pad surface is increased in response to the detected decrease of the frictional force so that the decrease of the frictional force is restrained, the decrease of polishing depth increasing velocity is restrained. If the velocity of the relative movement between the substrate surface and the polishing pad surface is decreased in response to the detected decrease of the frictional force so that the decrease of the frictional force is restrained, the decrease of polishing depth increasing velocity is restrained.
a is a cross-sectional view showing a polishing apparatus usable for carrying out the present invention.
b is a front view showing the polishing apparatus usable for carrying out the present invention.
a is a diagram showing a relationship between a rotational speed of a polishing pad relative to a surface to be polished and a frictional force between the polishing pad and the surface to be polished, obtained experimentally in each of in-situ dressing (polishing pad surface dressing during polishing operation) and ex-situ dressing (polishing pad surface dressing performed between the polishing operations).
b is a diagram between a relationship between an elapsed time of the polishing operation after start of conditioning or dressing of the polishing pad surface and the frictional force between the polishing pad and the surface to be polished, obtained experimentally in each of the rotational speed of the polishing pad lower than a critical relative movement velocity range and the rotational speed of the polishing pad higher than a critical relative movement velocity range.
As shown in
When the substrate surface is polished under a pressure of 200 gf/cm2 between the polishing pad surface and the substrate surface and a pressure of 110 gf/cm2 between the dressing tool 16 and the polishing pad surface during in-situ (simultaneous with polishing) dressing while the platen is rotated at each of 30 rpm and 90 rpm, the frictional force is 68 gf/cm2 at 30 rpm and 58 gf/cm2 at 90 rpm, and a polishing depth increasing rate or velocity is about 160 nm/minute at each of 30 rpm and 90 rpm. They does not change significantly when the elapsed time after start of polishing increases from 1 minute to 5 minutes.
When the polishing is performed without the dressing by the dressing tool 16 after ex-situ (non-simultaneous with polishing operation) dressing with dressing by the dressing tool 16 and water under the pressure of 110 gf/cm2 between the dressing tool 16 and the polishing pad surface under the same conditions as the above conditions, the polishing depth increasing rate at 30 rpm is kept about 160 nm/minute irrespective of the elapsed time, but the polishing depth increasing rate at 90 rpm decreases from about 150 nm/minute to about 50 nm/minute in accordance with an increase of the elapsed time from 1 minute to 5 minutes.
A substrate of 6-inches silicon wafer is polished as shown in
When the first metallic upper coating layer 224 is removed substantially completely on the area other than the grooves, a completion of the polishing is detected in response to an abrupt decrease of the frictional force decreases from 65 gf/cm2 to 30 gf/cm2. Additional or excessive polishing for 4 minutes corresponding to 20% of a measured time period for the complete removal by polishing of the first metallic upper coating layer 224 on the area other than the grooves is performed.
Thereafter, on another polishing apparatus, the first metallic lower coating layer 223 is removed by the polishing. A polishing agent is made by forming a mixture of alumina-abrasive-powder type polishing agent of QCTT1010 (product of Rodel Co., ) and an aqueous solution of 7.3% hydrogen peroxide with a volume ratio 1:3, and adding thereto an aqueous solution of BTA of 2 wt % to make a solution of 0.1 wt % alumina-abrasive-powder type polishing agent. The made polishing agent is supplied onto the polishing pad surface by 0.1 liter/minute. Although the QCTT1010 alumina-abrasive-powder type polishing agent is suitable for polishing Cu, the polishing depth increasing rate through Cu is prevented because of BTA from decreasing to not more than 20 nm/minute, while preventing etching of Cu. On the other hand, the polishing depth increasing rate through titan nitride is kept about 50 nm/minute although BTA is added. Therefore, the first metallic lower coating layer 223 on the area other than the grooves is removed completely while the first metallic upper coating layer 224 in the grooves is prevented substantially from being removed. Since a ratio between the polishing depth increasing rate through the first metallic lower coating layer 223 and the polishing depth increasing rate through the first isolating layer 222 is 10:1, a termination of the polishing can be determined in response to the predetermined elapsed time of polishing without measuring the frictional force.
In another polishing apparatus shown in
By polishing the substrate surface on the platen 10 while supplying the abrasive-powder-free polishing liquid from the polishing liquid supplier 15 under the pressure of 200 gf/cm2 between the substrate surface and the polishing pad surface at 60 rpm of the platen rotation, the first metallic upper coating layer 224 on the area other than the grooves is removed substantially completely at the polishing depth increasing rate of about 150-155 nm/minute, but the first metallic lower coating layer 223 remains on the substrate.
When the first metallic upper coating layer 224 is removed substantially completely on the area other than the grooves, the completion of the polishing is detected in response to an abrupt decrease of the frictional force decreases from 60 gf/cm2 to 30 gf/cm2. Additional or excessive polishing for 4 minutes corresponding to 20% of a measured time period for the complete removal by polishing of the first metallic upper coating layer 224 on the area other than the grooves is performed.
Thereafter, on another polishing apparatus, the first metallic lower coating layer 223 is removed by the polishing. A polishing agent is made by forming a mixture of alumina-abrasive-powder type polishing agent of QCTT1010 (product of Rodel Co.,) and an aqueous solution of 7.3% hydrogen peroxide with a volume ratio 1:3, and adding thereto an aqueous solution of BTA of 2 wt % to make a solution of 0.1 wt % alumina-abrasive-powder type polishing agent. The made polishing agent is supplied onto the polishing pad surface by 0.1 liter/minute. During this polishing, the same dressing tool 16 as the first embodiment is pressed against the polishing pad surface under 110 gf/cm2 for in-situ dressing. Although the QCTT1010 alumina-abrasive-powder type polishing agent is suitable for polishing Cu, the polishing depth increasing rate through Cu is prevented because of BTA from decreasing to not more than 20 nm/minute, while preventing etching of Cu. On the other hand, the polishing depth increasing rate through titan nitride is kept about 50 nm/minute although BTA is added. Therefore, the first metallic lower coating layer 223 on the area other than the grooves is removed completely while the first metallic upper coating layer 224 in the grooves is prevented substantially from being removed. Since a ratio between the polishing depth increasing rate through the first metallic lower coating layer 223 and the polishing depth increasing rate through the first isolating layer 222 is 10:1, a termination of the polishing can be determined in response to the predetermined elapsed time of polishing without measuring the frictional force.
In this embodiment, a semiconductor integrated circuit (IC) substrate is polished to form an exposed wire thereon as shown in FIG. 3. The substrate may further include a capacitor for a dynamic random access memory. The rotational speed of the platen of 18 inches outer diameter is 60 rpm, the pressure between the substrate surface and the polishing pad surface is 200 gf/cm2, the flow rate of abrasive-grain-free polishing liquid is 0.1 liter/minute, the polishing pad (IC1000, product of Rodel inc.,) is made of the foamed polyurethane polymer, and a temperature of the polishing pad is 22° C.
In a substrate to be polished, an isolation layer 311 is embedded in a substrate base 310 of 6 inches silicon wafer including P-type dopant to divide electric circuits on the substrate into a plurality of electric devices, and a surface of the substrate is flattened by polishing with an alkaline polishing agent including silica and ammonia. A diffusion layer 312 of N-type dopant is formed thereon by thermal treatment or ion-implantation, and a gate isolation layer 313 is formed thereon by thermal oxidizing process. A gate 314-made of polycrystal silicon or a stack of a high-melting-temperature-metal-or-alloy layer and a polycrystal silicon layer is formed thereon. The gate 314 is covered by a device protecting layer 315 including a silicon oxide or a phosphorated silicon oxide and by a contamination protecting layer 316 including a silicon nitride. A flattening layer 317 of silicon oxide (p-TEOS) of about 1.5 μm thickness is formed thereon through a plasma chemical vapor phase epitaxy deposition (plasma CVD) process using tetraethoxysilane (TEOS), and is polished by about 0.8 μm thickness to be flattened by a publicly known polishing. The flattened surface is covered by a second protective layer 318 made of silicon nitride to prevent CU from diffusing from the flattened surface. A contact hole 319 for connection to the device is opened at a predetermined position. Thereafter, a stack 320 of a titan layer and a titan nitride layer for adhesiveness and preventing contamination and a tungsten layer 321 are formed on the substrate, and a part thereof on an area other than the contact hole 319 is polished to be removed so that a so-called plug structure is formed.
The stack 320 and the tungsten layer 321 may be formed by a reactive sputtering process or plasma CVD process. A diameter of the contact hole 319 is not more than 0.25 μm, and a depth thereof is 0.8-0.9 μm. The contact hole 319 for the dynamic random access memory may have a depth not less than 1 μm. A thickness of the stack 320 is about 50 nm at a flattened area, and a thickness of the tungsten layer 321 is about 0.6 μm to sufficiently fill the contact hole 319 so that a flatness thereof is improved to make the polishing of tungsten. A polishing agent including a polishing component of SSW-2000 (product of Cabot Co.,) including silica grains and an oxidizing agent of hydrogen peroxide is used to polish the tungsten layer 321 and the titan nitride layer. The tungsten layer 321 may be polished by the abrasive powder free polishing liquid of the present invention, and the stack 320 may be polished by the conventional polishing agent including the abrasive solid powder.
Thereafter, as shown in a part (b) of
Thereafter, as shown in a part (c) of
When various and many active circuit elements are formed in the substrate so that a large and complex surface shape irregularity is formed, the first layer isolation layer 322 is not sufficiently flattened although the flattening layer 317 is polished, so that a shallow and wide recess of, for example, about 5 nm thickness and about 5 μm width, remains thereon. If a characteristic of the abrasive grain free polishing liquid is excellent and prevents a generation of dishing, the first upper metallic layer 324 remains in the shallow and wide recess. In order to remove the first upper metallic layer 324 in the shallow and wide recess with the polishing of the first lower metallic layer 323, the mixture of the polishing agent SSW-2000, hydrogen peroxide and BTA in which the concentration of BTA is adjusted to remove the first upper metallic layer 324 in a certain degree is usable.
Thereafter, a second isolation layer 326 of 0.7 μm thickness p-TEOS is formed on the polished surface, and a surface of the second isolation layer 326 is polished by 0.2 μm thickness to be flattened by the above described alkaline polishing agent, so that an irregularity formed by the polishing on the first upper metallic layer 324 is flattened. A contamination protecting layer 327 of 0.2 μm thickness silicon nitride is formed thereon through the plasma CVD process, and subsequently a third isolation layer 328 of 0.7 μm thickness p-TEOS is formed. A connection hole 329 and a second groove 330 are formed through a publicly known photolithography technique and reactive dry etching to expose a part of the first upper metallic layer 324. The layer 327 of silicon nitride is effective as a stopper of etching when these stacked grooves are formed. A second lower metallic layer 331 of 50 nm thickness titan nitride is formed in the groove through the plasma CVD process.
Thereafter, a second upper metallic layer 332 of 1.2 μm thickness Cu is formed on the substrate through a sputtering process, and is heated to 450° C. so that the second upper metallic layer 332 flows into the groove. An upper surface of the second upper metallic layer 332 is polished by the abrasive powder free polishing liquid from the polishing liquid supplier 15 for 5 minutes corresponding to an about −20% excessive polishing, and an exposed upper surface of the second lower metallic layer 331 is polished by the above described polishing agent including SSW-2000 and hydrogen peroxide at a polishing depth increasing rate of about 200 nm/minute so that a stack of double Cu wires by a damascene or dual damascene process is formed as shown in apart (d) of FIG. 3. The polishing conditions other than the polishing time period for the second upper and lower metallic layers are equal to those for the first upper and lower metallic layers.
In the polishing apparatus as shown in
When a number of the substrates 100 polished under the same polishing conditions as the embodiment 2 reaches 300, the detected circumferential component of the frictional force applied to the dressing tool 16 decreases from an original value of about 30 gf/cm2 at a start of the polishing to about 20 gf/cm2, and a polishing depth increasing rate through CU layer on the substrate decreases by 20% in comparison with an original value thereof at the start of the polishing. By increasing the pressing force or pressure F2 of the rotational dressing tool 16 against the polishing pad 11 to 80 gf/cm2, the detected circumferential component of the frictional force applied to the dressing tool 16 returns to 35 gf/cm2, and the polishing depth increasing rate through CU layer on the substrate returns to the original value thereof at the start of the polishing. When the pressing force or pressure F2 of the rotational dressing tool 16 against the polishing pad 11 necessary for returning the frictional force applied to the dressing tool 16 to the original value thereof at the start of the polishing reaches a predetermined degree, the polishing pad 11 is replaced by new one.
The pressing force or pressure F2 of the rotational dressing tool 16 against the polishing pad 11 may be increased so that the detected frictional force applied to the carrier 12 is kept within a predetermined range, and pressing force or pressure F2 of the rotational dressing tool 16 against the polishing pad 11 may be increased so that the detected frictional force applied to the dressing tool 16 is kept within a predetermined range. The predetermined range is obtained by experimentally and/or experientially.
As disclosed in the specification of Japanese Patent Application No. Hei 9-299937, abrasive grain-free abrasive materials contain acids for etching oxide layer on the metal surface (hereinafter referred to as “oxide etchant”), protective layer-forming agents for forming a protective layer on the surface of metal film, oxidizing agents, etc. As the oxide etchants, suitable are DL-malic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycollic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid and citric acid, and salts thereof, sulfuric acid, nitric acid, phosphoric acid, ammonia, ammonium salts, or mixtures thereof. The present invention is not limited to these examples. Especially preferred are benzoic acid, oxalic acid, malonic acid, succinic acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid and citric acid, and salts thereof, or mixtures thereof. As the protective layer-forming agents, mention may be made of one or more agents selected from benzotriazole (hereinafter referred to as “BTA”), BTA derivatives, for example, those which are obtained by substituting a methyl group for one hydrogen atom in benzene ring of BTA (tolyltriazole) or those which are obtained by substituting a carboxyl group or the like for the hydrogen atom (benzotriazole-4-carboxylic acid, and methyl, ethyl, propyl, butyl and octyl esters thereof), or naphthotriazole, naphthotriazole derivatives (those which are obtained by substituting a methyl group, a carboxyl group or the like for one hydrogen atom of naphthalene ring), and mixtures thereof, and polymers containing a monomer having carboxylic acid, such as polyacrylic acid, polymethacrylic acid, ammonium polymethacrylate, sodium polymethacrylate, polyamic acid, ammonium salt of polyamic acid and sodium salt of polyamic acid. As the oxidizing agents, hydrogen peroxide, nitric acid, ferric nitrate, potassium periodate, etc. are suitable.
In another polishing apparatus of the present invention as shown in
Number | Date | Country | Kind |
---|---|---|---|
11-119189 | Apr 1999 | JP | national |
This is a divisional application of U.S. Ser. No. 09/558,593, filed Apr. 26, 2000 now U.S. Pat No. 6,561,875.
Number | Name | Date | Kind |
---|---|---|---|
5049221 | Wada et al. | Sep 1991 | A |
5597341 | Kodera et al. | Jan 1997 | A |
5902173 | Tanaka | May 1999 | A |
6117775 | Kondo et al. | Sep 2000 | A |
6126511 | Hayakawa et al. | Oct 2000 | A |
6171180 | Koutny, Jr. et al. | Jan 2001 | B1 |
6213852 | Fujii et al. | Apr 2001 | B1 |
6326299 | Homma et al. | Dec 2001 | B1 |
6387190 | Aoki et al. | May 2002 | B1 |
6475909 | Uozumi | Nov 2002 | B2 |
6561875 | Homma et al. | May 2003 | B1 |
20010041446 | Takahashi | Nov 2001 | A1 |
20030003713 | Homma et al. | Jan 2003 | A1 |
20030159644 | Yonehara et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
2-278822 | Nov 1990 | JP |
8-64562 | Mar 1996 | JP |
8-83780 | Mar 1996 | JP |
9-306881 | Nov 1997 | JP |
10-125880 | May 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20020193051 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09558593 | Apr 2000 | US |
Child | 10214369 | US |