Embodiments of the invention generally relate to an apparatus and a method for moving wafers. More specifically, embodiments of the invention relate to a swapping robot to simultaneously move two wafers into alternate positions.
A carousel is a mini batch chamber, typically consist of four to six wafers which can be processed sequentially. The process of loading and unloading wafers from the carousel consumes extra time since the robot needs to perform two motions per wafer (one at the carousel and one at the Load lock).
One common approach to minimize this down-time is to use dual blade robot to minimize each swap time. However, using dual blade robots still leaves a large amount of down-time which decreases the overall efficiency of the processing system.
Therefore, there is a need in the art for an apparatus capable of unloading a processed wafer and loading an unprocessed wafer into a processing chamber with a minimal amount of down-time.
Embodiments of the invention are directed to apparatus for transferring wafers. The apparatus comprises a transfer robot and a controller in communication with the transfer robot. The transfer robot includes a rotatable stage, a first blade assembly and a second blade assembly. The first blade assembly is connected to the rotatable stage and comprises a first arm with a first wafer support at an end of the first arm. The first arm is extendable from the rotatable stage in a first direction. The second blade assembly is connected to the rotatable stage and comprises a second arm with a second wafer support at an end of the second arm. The second arm is extendable from the rotatable stage in a second direction opposite the first direction. The controller is in communication with the transfer robot to cause the transfer robot to substantially simultaneously extend the first arm and the second arm in opposite directions.
In some embodiments, the first arm extends a first distance from the rotatable stage in the first direction and the second arm extends a second distance from the rotatable stage in the second direction, the first distance and the second distance being substantially the same distance. In one or more embodiments, the first arm extends a first distance from the rotatable stage in the first direction and the second arm extends a second distance from the rotatable stage in the second direction, the first distance and the second distance being different distances.
In some embodiments, the first blade assembly and the second blade assembly are at substantially same vertical positions and retract to a point where a wafer supported on the first arm will not contact a wafer supported on the second arm.
In some embodiments, the first blade assembly and the second blade assembly are at different vertical positions. In one or more embodiments, one or more of the first blade assembly and the second blade assembly can move vertically.
In some embodiments, the transfer robot is enclosed in a housing to maintain a controlled environment. In one or more embodiments, the housing comprises at least one slit valve that allows one or more of the first arm and second arm to extend from within the housing through the slit valve so that a wafer support is positioned outside the housing.
Additional embodiments of the invention are directed to processing apparatuses. The apparatuses comprise a load lock chamber, a processing chamber and a transfer station between and in communication with both the load lock chamber and the processing chamber. The transfer station comprising a transfer robot including a rotatable stage, a first blade assembly connected to the rotatable stage and a second blade assembly connected to the rotatable stage. The first blade assembly includes a first arm with a first wafer support at an end of the first arm. The first arm is extendable from the rotatable stage in a first direction. The second blade assembly includes a second arm with a second wafer support at an end of the second arm. The second arm is extendable from the rotatable stage in a second direction opposite the first direction. A controller is in communication with the transfer robot to cause the transfer robot to substantially simultaneously extend the first arm and the second arm in opposite directions so that one of the first arm and the second arm extends into the load lock chamber and the other of the first arm and second arm extends into the processing chamber.
In some embodiments, the transfer robot is enclosed within a housing to maintain a controlled environment. The housing comprises at least one slit valve separating the transfer station from one or more of the load lock chamber and the processing chamber.
In one or more embodiments, the controller instructs the first arm to extend a first distance from the rotatable stage in the first direction and the second arm to extend a second distance from the rotatable stage in the second direction. In some embodiments, the first distance and the second distance are substantially the same. In one or more embodiments, the first distance and the second distance are different.
In some embodiments, the first blade assembly and the second blade assembly are at substantially same vertical positions and retract to a point where a wafer supported on the first arm will not contact a wafer supported on the second arm.
In one or more embodiments, the first blade assembly and the second blade assembly are at different vertical positions. In some embodiments, one or more of the first blade assembly and the second blade assembly can move vertically.
Further embodiments of the invention are directed to methods of processing wafers. A first arm is extended from a rotatable stage a first distance in a first direction. A second arm is extended the rotatable stage a second distance in a second direction opposite the first direction. The first arm and the second arm are retracted. The rotatable stage is rotated. The first arm is extended from the rotatable stage the second distance in the second direction and the second arm is extended from the rotatable stage the first distance in the first direction. The first arm and the second arm are extended from the rotatable stage substantially simultaneously.
In some embodiments, the first distance and the second distance are substantially the same. In one or more embodiments, the first distance and the second distance are different.
Some embodiments further comprise moving one or more of the first arm and the second arm in a vertical direction.
So that the manner in which the above recited features of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the invention are directed to apparatus and methods for handling and transferring wafers. One or more embodiments are useful for wafer handling. Some embodiments of the invention can be used with a batch load lock with the number of slots equal to the number of carousel wafer positions. The batch load lock can be mounted to a single robot using a vertical slit valve. The single robot can be attached to a carousel using a vertical slit valve and the carousel systems are connected to the factory interface. Some embodiments of the invention provide more efficient wafer handling (e.g., >50% improvement) over existing dual blade robot. Some embodiments may be used to enable any other process chamber to be directly integrated with a factory interface.
The apparatus 100 includes a transfer robot 110 with a rotatable stage 112, a first blade assembly 120 and a second blade assembly 130. Both, the first blade assembly 120 and the second blade assembly are connected to the rotatable stage 112. As shown in
The first blade assembly 120 comprises a first arm 122 with a first wafer support 124 at an end of the first arm 122. The first arm 122 is extendable from the rotatable stage 112 in a first direction 126. The second blade assembly 130 comprises a second arm 132 with a second wafer support 134 at an end of the second arm 132. The second arm 122 is extendable from the rotatable stage 112 in a second direction 136 which is different from the first direction 126. In some embodiments, the first direction is opposite the second direction. As used in this specification and the appended claims, the term “opposite” means that the arms move in a direction that is in the range of about 160° to about 200° apart. In one ore more embodiments, the arms move in a direction that is in the range of about 165° to about 195° apart, or in the range of about 170° to about 190° apart, or in the range of about 175° to about 185° apart.
In some embodiments, the arms move in a direction that is substantially perpendicular to each other. As used in this specification and the appended claims, the term “substantially perpendicular” means that the arms move in a direction that is in the range of about 30° to about 60°, or in the range of about 35° to about 55° apart, or in the range of about 40° to about 50° apart.
The embodiment shown in
The manner in which the first blade assembly 120 and the second blade assembly 130 extend from the rotatable stage 112 can vary depending on the particular design of the robot. The extensions shown and described in the Figures are merely one possible type of robot and should not be taken as limiting the scope of the invention. Referring to
The first distance D1 and the second distance D2 can be the same distance, substantially the same distance, or different distances. As used in this specification and the appended claims, the term “substantially the same distance” means that the first distance D1 and second distance D2 are the same within tolerance of the equipment being used. The arms shown in the embodiment of
As shown in the embodiment of
The height of the blade assemblies, meaning the vertical position relative to the same reference point (e.g., the rotatable stage), can be the same, substantially the same or different. Referring to
In use, the first blade assembly 120 and second blade assembly 130 may be extended horizontally to position the first wafer support 124 and/or the second wafer support 134 beneath a wafer 160. The stage shaft 118 extended from the rotatable stage 112 can move in the vertical direction so that both blade assemblies are moved in the vertical direction at the same time. The stage shaft 118 then lifts both assemblies so that the first wafer support 124 lifts the first wafer 160a and the second wafer support 134 lifts the second wafer 160b. The first blade assembly 120 and the second blade assembly 130 are then retracted to a point, as shown in
The first blade assembly and the second blade assembly can be extended and/or retracted at the same time, substantially the same time or at different times. In some embodiments, both the first blade assembly and the second blade assembly extend at substantially the same time in different directions. By extending at the same time, the blade assemblies can be coordinated so that they pick up wafers at the same time, retract the wafers together and extend the wafers after rotation of the rotatable stage at the same time.
The rate of extension of the first blade assembly and the second blade assembly can be the same, substantially the same or different. If both blade assemblies need to extend the same distance, the rate of extension may be the same so that both wafer supports are positioned under the respective wafer at the same time and retract at the same time. If, for example, if the first wafer is further from the robot than the second wafer, the first blade assembly 120 may extend at a faster rate than the second blade assembly 130 so that both the first wafer support 124 and the second wafer support 134 are positioned beneath their respective wafers at substantially the same time. Both blade assemblies might then retract at different rates so that both wafers are held in a position suitable for rotating the rotatable stage. After rotation, the first wafer would need to be moved a shorter distance than the second wafer, so the first blade assembly and second blade assembly might switch extension/retraction rates to again allow both wafers to reach their destinations at the same time.
In use, the first blade assembly 120 is extended horizontally so that the first wafer support 124 is at a first vertical position and the second blade assembly 130 is extended horizontally so that the second wafer support 134 is at a second vertical position which is different from the first vertical position. At these positions, the wafer supports are beneath the respective wafer, and lifting of the robot (e.g., raising the stage shaft 118) results in both wafers being lifted onto the wafer supports. Both arms would then retract to a position suitable for rotation (e.g., where the wafers would not touch each other or a wall, etc.). The rotatable stage 112 is then rotated to switch the positions of the first blade assembly and the second blade assembly. Both blade assemblies are then extended and the vertical positions adjusted (either at the same time or sequentially) so that the first wafer support is at the second vertical position and the second wafer support is at the first vertical position. The blade assemblies can then be extended, lowered and retracted to reverse the positions of the wafers.
Referring to
Referring back to
The housing 170 of
The embodiments shown in
The movements of the blade assemblies can be coordinated either manually or driven by a controller 195. The controller 195, shown in
When loading the processing chambers initially, the robot can load all of the wafers into one chamber and then load all wafers into the second chamber. In some embodiments, the robot alternately loads wafers into the first processing chamber and the second processing chamber. This gives the processing chamber time to rotate a new wafer support into position, while minimizing the amount of time required to load both chambers. The same can occur in reverse when swapping wafers or unloading the processing chambers upon completion.
Referring to
The first arm 122 and second arm 132 engage the wafers to swap the wafers. The first arm 122 engages wafer 1 and the second arm 132 engages wafer 6. Engaging the wafer means that the arm, or wafer support at the end of the arm, interacts with the wafer in such a manner as to be able to securely move the wafer. This can mean that the wafer is picked-up from the bottom or held from above, depending on the specific hardware. The first arm 122 and second arm 132 retract into the housing and the rotatable stage 112 is rotated 180°.
As shown in
According to one or more embodiments, the robot moves the wafer to one or more different processing chambers instead of a load lock. Accordingly, an apparatus may comprise multiple chambers in communication with a transfer station with one or more swapping robots described. An apparatus of this sort may be referred to as a “cluster tool” or “clustered system”, and the like.
Generally, a cluster tool is a modular system comprising multiple chambers which perform various functions including substrate center-finding and orientation, degassing, annealing, deposition and/or etching. According to one or more embodiments, a cluster tool includes at least a first chamber and a central transfer chamber. The central transfer chamber may house a robot that can shuttle substrates between and among processing chambers and load lock chambers. The transfer chamber is typically maintained at a vacuum condition and provides an intermediate stage for shuttling substrates from one chamber to another and/or to a load lock chamber positioned at a front end of the cluster tool. Two well-known cluster tools which may be adapted for the present invention are the Centura® and the Endura®, both available from Applied Materials, Inc., of Santa Clara, Calif. The details of one such staged-vacuum substrate processing apparatus is disclosed in U.S. Pat. No. 5,186,718, entitled “Staged-Vacuum Wafer Processing Apparatus and Method,” Tepman et al., issued on Feb. 16, 1993. However, the exact arrangement and combination of chambers may be altered for purposes of performing specific steps of a process as described herein. Other processing chambers which may be used include, but are not limited to, cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, chemical clean, thermal treatment such as RTP, plasma nitridation, degas, orientation, hydroxylation and other substrate processes. By carrying out processes in a chamber on a cluster tool, surface contamination of the substrate with atmospheric impurities can be avoided without oxidation prior to depositing a subsequent film.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.
This application claims priority to U.S. Provisional Application No. 61/765,345, filed Feb. 15, 2013.
Number | Date | Country | |
---|---|---|---|
61765345 | Feb 2013 | US |