The field of the present disclosure relates generally to wireless identification systems and methods, and more specifically, but not exclusively, to an apparatus and methods for saving power in radio frequency identification (RFID) readers.
Electromagnetic tag readers have been developed to electronically sense the identification of an electromagnetically coupled tag over varying distances. RFID transponders are examples of such tags, which are operated in conjunction with RFID readers (or “interrogators”) for a variety of purposes, including inventory control and data collection. An item having a tag associated with it is brought into a read zone established by the RFID reader, or the RFID reader (if portable) is brought near enough to the tag so that the tag is in the RFID reader's read zone.
RFID tags may be either active or passive. Active tags have a self-contained power supply, although the response ability of an active tag may be enhanced with an RFID reader's transmitted RF (radio frequency) power. Passive tags require external excitation when they are to be read within the detection volume of an RFID reader. The RFID reader transmits a continuous-wave interrogating RF signal to the tag (the “downlink”), which is re-modulated by a receiving tag in order to impart information stored within the tag to the signal. The receiving tag then transmits the re-modulated answering RF signal to the reader using modulated backscattering (the “uplink”). The uplink, or return RF signal, is therefore where the tag's antenna is electrically switched, by the modulating signal, from functioning as an absorber of RF radiation to functioning as a generator or reflector of RF radiation. RFID readers are often, but not always, portable to facilitate the mobility of the reader, for instance, in taking inventory in cluttered warehouses.
An antenna connected to a tag's front-end produces an output voltage above some threshold to power the circuit in the tag. This output voltage is obtained within the tag's antenna, together with the tag's front-end circuitry, via electromagnetic induction with the reader's transmitted electromagnetic signal. When sufficient current is induced in the tag, then the output voltage is large enough to operate the RFID circuit, allowing the re-modulation and transmission of the identification signal. In contrast, when the voltage and/or power requirements of the RFID circuit are not fulfilled, the RFID circuit will not resonate. If the received signal strength is not optimal, the distance between the tag reader and the tag must be reduced, or the power of the interrogating signal increased.
In space free of any obstructions or absorption mechanisms, the strength of the electromagnetic field is reduced in inverse proportion to the square of the distance. For a wave propagating through a region in which reflections can arise from the ground and from obstacles or in which materials absorb RF radiation, the reduction in strength can vary quite considerably, in some cases as an inverse fourth power of the distance. Thus, the distance between a tag reader and a tag and the environment in which a tag is interrogated may both have a significant effect on the success of receiving a response from the tag. In some environments, the power of the RFID reader's interrogating signal must be increased and/or the RFID reader's location must be adjusted to successfully read tags present in a geographical area.
Most handheld or portable RFID readers are operated using battery power. As the number of tags to be identified increases, the consumption of power can increase. Continual changing of the battery interrupts workflow, and when the battery is low on power, the reader may provide incorrect reads. Additionally, some RFID readers are multi-technology readers, which include the capability of reading bar codes in addition to other identification codes. As the number of modes of interrogation increase, to include a growing list of RFID protocols, as well as bar code scanning capability, the amount of power drain on an RFID reader continues to increase.
Various embodiments are described herein directed to systems and methods for saving power in RFID readers. According to one embodiment, a portable RFID reader is capable of operating in a plurality of interrogation modes. The RFID reader comprises a processor configured to select a subset of one or more of the plurality of interrogation modes according to which the RFID reader will operate when interrogating a set of one or more RFID tags. Alternately, the processor may be configured to select a sequence in which at least some of the plurality of interrogation modes are employed when the RFID reader interrogates a set of one or more RFID tags.
Other embodiment are directed to methods for conserving power in a portable RFID reader capable of operating according to a plurality of interrogation modes during an operation to interrogate a set of one or more RFID tags. One method comprises automatically selecting a subset of the plurality of interrogation modes and operating the RFID reader according to the subset of the plurality of interrogation modes to perform the operation. Another method comprises automatically selecting a sequence of at least some of the plurality of interrogation modes and operating the RFID reader according to the sequence to perform the operation.
According to another embodiment, a portable RFID reader capable of operating in a plurality of interrogation modes comprises memory to store data related to interrogation efficacy of one or more of the interrogation modes and a processor configured to cause the RFID reader to adapt its usage of the interrogation modes so as to conserve power, based on the stored data.
According to yet another embodiment, a method conserves power in an RFID reader capable of operating according to a plurality of interrogation modes when interrogating a set of one or more RFID tags. The method collects data related to interrogation efficacy of one or more of the interrogation modes and adapts usage of the interrogation modes so as to conserve power, based on the stored data.
The present embodiments will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments and are therefore not to be considered to limit the scope of the disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings, herein described.
The embodiments described herein will be best understood by reference to the above-listed drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of various embodiments, each of which may differ in a variety of ways. While various aspects of the embodiments are presented in the drawings, the drawings are not necessarily drawn to scale unless specifically indicated. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified.
The phrases “connected to,” “coupled to,” and “in communication with” refer to any form of interaction directly or indirectly between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluidic, and thermal interaction. “In electrical communication with” further refers to any form of electrical sending or receiving of any type of electrical signal, for instance, to the extent two structures may communicate electronically. For example, two components may be coupled to each other even though they are not in direct contact with each other.
Certain embodiments may be capable of achieving certain advantages, including some or all of the following: (1) increased efficiency in reading one or more RFID tags; (2) reduced (or conserved) power consumption of a portable RFID reader when interrogating one or more RFID tags; and therefore (3) increased time an RFID reader will operate from a fully charged battery (“charge life”) or reduced battery capacity required to achieve a given charge life, thus reducing weight and cost of the RFID reader. These and other advantages of various embodiments will be apparent upon reading the following.
During a read operation, in response to a pull of the trigger 30 or equivalent triggering action, the reader 10 transmits an interrogation signal. Upon receipt of the interrogation signal, an RFID tag may respond by modulating its return or backscatter signal to convey information from the tag. The reader 10 then senses the modulated return signal and processes that signal to obtain the identification data, at which point the reader 10 has successfully “detected” the RFID tag. Although all or part of the processing may occur within the portable terminal 12, which may contain processing functionality (see
Typically, an RFID interrogation operation in a handheld device, such as the reader 10, is initiated by a trigger pull, which causes a single read command to be sent to read all tags within its RF field. The reader 10 may read multiple tags within a single read operation or tag inventory operation. During an operation known as “painting,” the reader 10 may continuously sweep for RFID tags in its read field while the trigger 30 is held down. While painting, the RFID reader 10 detects and de-conflicts multiple tags, giving some sort of user feedback when each tag is detected and eliminating multiple reads of the same tag. Painting allows the user, during the same trigger pull (or actuation), to move the reader 10 and therefore its read field by moving around, for instance, a pallet, or throughout a room of tags, to detect all tags of interest. Without such movement, there may be certain blind spots out of read range or occluded by interfering objects or electromagnetic fields that prevent reading some tags. Painting is described in the assignee's copending U.S. patent application Ser. No. 11/084,072, entitled “System and Method for RFID Reader Operation”, filed Mar. 16, 2005, which is incorporated herein by reference.
While painting, or otherwise interrogating, one or more RFID tags, the reader 10 may, in general, seek to accomplish one or both of two things: singulate or conduct inventory. A singulation algorithm seeks to detect (or distinguish) a single tag (or specific number of tags) from among many tags. In contrast, an inventory algorithm may be employed to read each tag from among many tags, to thereby record an inventory of items.
The tags detected in a given interrogation operation may be read sequentially according to a suitable protocol such as a query response protocol (QRP) or an air interface protocol (AIP). Such protocols include: (1) Class 0 (zero), which is designed for use with a read-only tag that is programmed at the time the tag is made; and (2) Class 1, which is designed for use with a passive, read-only backscatter tag with a one-time, field-programmable non-volatile memory. Classes 1 and 0 are not interoperable, and are incompatible with ISO (International Organization for Standardization) standards. Additionally, generation 2 (or “Gen 2”) is another protocol that maintains the capabilities of Classes 1 and 0, but attempts to address the deficiencies of those protocols. Finally, the ISO 18000 AIP standards, which cover major frequencies used in RFID systems around the world, are those likely to be used to track goods in a supply chain. At present, different protocols are not designed to operate simultaneously because they would mutually interfere; therefore, in a multi-protocol RFID reader, such as the reader 10, protocols are employed sequentially.
The processor 38 may be any form of processor and is preferably a digital processor, such as a general-purpose microprocessor or a digital signal processor (DSP), for example. The processor 38 may be readily programmable by software written in a high-level programming language; hard-wired, such as an application specific integrated circuit (ASIC); or programmable under special circumstances, such as a programmable logic array (PLA) or field programmable gate array (FPGA), for example. Program memory for the processor 38 may be integrated within the processor 38, may be part of a separate memory 40, or may be external to the reader 10.
The processor 38 may execute one or more programs to control the operation of the other components, to transfer data between the other components, to associate data from the various components together (preferably in a suitable data structure), to perform calculations using the data, and to otherwise manipulate the data. For instance, attached to the processor 38 is the user input interface 50, which is an interface to the keypad 24, the trigger 30, and the display 22 if it is a touch screen display. Also attached to the processor 38 is the display driver 48, which is a driver for the display 22. Within the control of the processor 38 may be a number of possible devices, such as a speaker 42 and an indicator light 44, which may be in the form of an LED (light emitting diode) or other suitable visible light device. The speaker 42 and/or the indicator 44 may provide audible and/or visual feedback to a user that an RFID tag or a set of RFID tags has been detected. The keypad 24 or the display 22 provides a versatile and convenient control interface for the reader 10. In one embodiment, a user may select which of the reading mechanisms or interrogation modes to be used, or alternately configure an automatic inventory command for excluding certain interrogation modes.
The memory 40 may store RFID tag data, programs executed on the processor 38, setup or configuration data, data for display, historical performance data, and other data (e.g., protocols, antennas, and orders of search of the protocols and antennas, singulation and inventory algorithms, and adaptation algorithms). The memory 40 may be permanent or removable, and some or all of the memory 40 may be remotely located.
As the reader 10 is portable, it advantageously includes means to communicate remotely with a base (or host) computer 5 or another data reader. A wireless interface 46 is illustrated in
The RFID circuitry 52 of the reader 10 comprises at least one RFID antenna 54 with which the reader 10 communicates with one or more RFID tags. Multiple antennas, as shown, can be connected through an antenna switch 56 to a transceiver 58, which includes both a transmitter and a receiver and may include a modulator, demodulator, frequency synthesizers, amplifiers, filters, and the like. Depending on the frequency bands supported by the reader 10, additional transceivers may be included in the RFID circuitry 52. The RFID circuitry 52 also includes a decoder 60, which decodes the received tag information. A controller 62 controls the operation of the transceiver 58 and the decoder 60 and interfaces with the processor 38. For example, the controller 62 may command the transceiver 58 and/or decoder 60 to operate according to certain interrogation modes, or may relay such commands generated from the processor 38.
Finally, the reader 10 includes a battery 66, which provides power to all of the components of the reader 10 through power connections not shown. The battery 66 is preferably replaceable or rechargeable.
The reader 10 is a multi-mode reader capable of performing interrogation operations according to a plurality of different modes. A mode may be defined in terms of a protocol, antenna, frequency band, frequency hopping pattern or profile, transmission power level, transmission duty cycle during continuous painting operations, etc., or a combination of the foregoing. The reader 10 may be configured to exclude certain interrogation modes. Considerable power can be saved from such exclusions because consumed power is the product of the power per inventory sequence times the number of interrogation modes. Power may also be conserved by intelligently ordering the sequence used by which different modes are employed in attempting interrogation of the tag(s), as will be further discussed below. These power savings may directly influence the charge life of the battery 66 or allow the battery 66 to be smaller while providing similar charge life.
When the RFID reader 10 interrogates a read volume, not all RFID tags in the read volume are always successfully detected. At times, backscattered collisions, power deficiencies, interferences, incompatible RFID protocols, and/or polarization mismatch, etc., may lead to failure to obtain a clear modulated return signal from one or more RFID tags. Therefore, the RFID reader, in one embodiment, may extend a read operation beyond a single read attempt by continuing a sequence of multiple interrogation attempts using a plurality of interrogation modes that are undertaken until meeting a termination criterion. Multiple read attempts may consume significant amounts of power, unless carefully tailored to prevent inefficiently and needlessly continuing interrogation when it would be futile or unlikely to succeed.
The RFID reader 10 may initiate power saving methods via software mechanisms that initiate various algorithms, or manual mechanisms, e.g., manually pulling the trigger 30 on the multi-mode reader 10 with various pulls to initiate the various methods, or using the keypad 24 or the display screen 22 to initiate such methods. These various power saving methods may include, but are not limited to: (1) excluding certain interrogation modes, such as protocols and antennas 54, or combinations thereof, by configuration or adaptation; (2) adjusting a search order of the plurality of interrogation modes, by configuration or adaptation; (3) reducing the reader's transmission duty cycle below 100% when painting; (4) interrogating the RFID tags at a first frequency band, and changing to another frequency band when no RFID tags (or no additional RFID tags) are located; (5) adapting a frequency hopping profile to favor frequencies that yield better read results or to disfavor frequencies that do not work well; (6) terminating frequency hopping and/or painting after an interval when there are no new tags or tag collisions detected, without deactivating the trigger 30; (7) transmitting at successively increasing power levels; and (8) combinations of the above methods.
The inventory command referred to in method (1) above may employ an automated search algorithm, executed by the processor 38, and which may maintain a count of the number of RFID tags found per RFID interrogation at each protocol, antenna, or other interrogation mode of interest. In addition, the automated search algorithm, or another such algorithm, may automatically exclude certain interrogation modes based on historical data gathered from the performance results of such interrogation modes. This historical data may be saved in a data structure, such as a histogram, in the memory 40 to be able to continuously keep the data updated, and thereby keep exclusions or re-sequencing of certain interrogation modes current. Similar types of data may be gathered when executing a “singulation algorithm,” which may have as its focus the period of time that each interrogation mode is unsuccessful.
There are likewise various mechanisms or methods for use at the time of activating the trigger 30, before activating the trigger 30, and/or when terminating a read operation of the RFID reader 10 that help to conserve power. For example, software algorithms may be employed to, in advance, convey to the reader 100 that a user has indicated that a predetermined number of RFID tags are expected in a particular read operation (i.e., that 50 items should be found on a particular pallet or on each of a set of pallets). Once all 50 items are read, the operation is terminated. In addition, the pallet itself may have an RFID tag that contains information as to how many items are on the pallet. Alternately, the information may be stored in a look-up table accessible to the processor 38.
Furthermore, activation criteria may include reducing the transmitter duty cycle below 100% when painting. Reducing the duty cycle can reduce power consumption without reduction in the responsiveness of the RFID reader 10 or in the number of RFID tags found in a sense volume. Responsiveness is not reduced, in part, because the reader 10 may detect tags much quicker than a user may observe the tags being detected; therefore, the tags may be detected in a short period, and then presented to the user on display 22 for perusal. Termination criteria may further include automatically terminating painting after a specific time interval or after a certain number of read attempts (or “polls”) with no new RFID tags detected. This termination scheme reduces power by discontinuing interrogation when a given task is complete, rather than waiting for a user to recognize that the task is complete.
The blocked exclusions X may be pre-programmed subsets of interrogation modes, selected by a user, or adapted by either a user or the RFID reader 10 automatically according to historical performance of certain of the modes. Automatic adaptations within the reader 10 of exclusions in the matrix 300 may occur according to an adaptation algorithm. For instance, such an algorithm may require that if the reader 10 attempts to read a tag with protocol Class 1 using Antenna A, and fails to do so within a certain number of attempts (e.g., 32), then that square of the matrix 300 would be marked with an X as excluded. The counting and tracking of failed attempts may be saved in a histogram file or data structure in the memory 40, and updated as new interrogation results are made available. The matrix 300 may also be saved with its new exclusion(s) in memory 40 for further reference during future RFID interrogation operation. Thus, new results of using a varying number of interrogation modes may be used to decide whether to exclude such interrogation modes from the subset being used by the reader 10 to interrogate one or more RFID tags.
In the matrix 300, using protocols 74 and antennas 54 to define the interrogation modes, is just one example. Other interrogations modes may be substituted for one or both of protocol and antenna selection. Moreover, the possible interrogation modes may differ in only one parameter (e.g., different protocols 74 in a single-antenna RFID reader). In other words, an interrogation mode may be defined in terms of a single interrogation parameter. Conversely, an interrogation mode may be defined by three or more parameters, effectively resulting in a higher dimensional matrix or array of possibilities. The matrix 300 is just one example of a two-parameter universe wherein those two parameters happen to be protocol and antenna.
The above-referenced interrogation modes used for power saving adaptation may be affected by, or include, such factors as the identity of the user, spatial or geographic location, pointing direction of the reader 10, movement, time/day/date, etc. The reader 10 can be equipped with sensors to measure these variables, and the histograms in memory can include fields for these variables. For example, if users undergo a login procedure before using the reader 10, then the identity of the user can be determined and person-specific performance data can be tracked. As another example, the reader 10 can be equipped with a GPS (global positioning system) receiver or other position-determining sensor; angle, tilt or direction sensors; a clock; a calendar; or an inertial sensor, for example.
For instance, multi-mode RFID reader 10 may include adaptation algorithms that are user-specific, tracking the specific user(s) who may use the reader 10. The reader 10 may also use the clock and calendar to track when different individuals are using the reader 10 and what kinds of RFID tags are typically detected when such an individual is working, e.g. during the user's work shift. With an additional matrix configured to track histograms of user-specific data, the RFID reader 10 may adapt itself to use protocols and/or antennas (in addition to other interrogation modes) that most closely match the tags typically detected while a specific user is using the reader 10 and/or during a specific period of time the reader 10 is being used.
As a further example, a user's moving the spatial location or pointing direction of the reader 10 during interrogation, or during painting, may cause new tags to enter the reader's 10 read field and may therefore be a reason to use different interrogation modes (e.g., to change the duty cycle at which a painting signal is transmitted—increased duty cycle when painting a previously unpainted area, or decreased or zero duty cycle when oriented to paint a previously painted area), to alter the order in which interrogation modes are used, or to make other adaptations. When interrogating with certain interrogation modes, spatial location and/or pointing direction may have an effect on an adaptation algorithm employed by processor 38. One example of the latter may include use of different frequency bands that may be more useful in some locations than others because of the environment around and through which an RFID reader 10 is navigated during interrogation. That is, the beam of the RF transmissive power from an antenna 54 will vary as the line of sight of the read field changes to pass through or near various objects, such as metal beams (reflective), electric lines (interfering), or liquid-containing vessels (absorptive).
Therefore, another exclusion matrix may include location along one direction and frequency band along another, which may be adapted for a given period of interrogation, or for interrogation that continues within the same general geographic vicinity. To the extent that frequency bands affect which protocol may be employed (protocols are generally constrained to specific frequency bands), another matrix may be linked to matrix 300, as controlled by the adaptation algorithm. Thus, having various frequency bands triggering exclusionary rules may translate into exclusion of one or more specific protocols.
Another example of adapting the matrix 300 as affected by location or the like includes the transmission power level used in interrogating. For instance, where some locations (despite adapting to a different frequency band) result in large power attenuations, power transmission levels may have to be increased. Otherwise, power can be saved by starting with lower transmission levels first, and increasing them incrementally as required, i.e., through “ramping.” Power ramping is described in the assignee's copending U.S. patent application Ser. No. 11/351,405, entitled “RFID Tag Singulation,” filed Feb. 10, 2006, which is incorporated herein by reference.
Like the matrix 300, matrices 400 and 500 may also be adapted by either a user or automatically by the RFID reader 10. Through use of the display 22 or the keypad 24, the user may adjust the search order of the protocols 74, antennas 54, other interrogation parameters, and/or combinations thereof. Alternately, the adjusting of the search order of the antennas 54 and protocols 74 may be performed automatically by the multi-mode reader 10 through employing adaptation algorithms as discussed above. The adaptation algorithm may likewise have the ability to count the number of failed read attempts or otherwise track the tag(s) successfully read, or the period of time that passes without a successful tag read. Here, the adaptation may include cutting short of employing all (thirty) possible interrogation modes where a specific tag or group of tags have been successfully detected, or where no new tag is detected after a period of time or after a certain number of tries. The adaptation may also include re-ordering the sequence of the interrogation modes as depicted in each square, or by deciding to exclude a square for similar reasons as discussed with reference to
The matrix 500 in
Matrices such as 300, 400, 500, and variations thereto, may continually be updated according to adaptation algorithms, which access histograms stored in memory. Histograms may be updated by the same (or different) adaptation algorithms to continue to provide the algorithms the “intelligence” with which to make decisions to exclude and/or re-sequence available interrogation modes. Because such adaptations are sometimes tied to a particular user's business or typical inventory, as well as to a typical geographic area in which inventory or singulation takes place, these matrices and histograms may often continue to be relevant and useful over long periods of time. However, if a user changes drastically its business in geography or types of RFID tags being read, it may be useful to reset the RFID reader 10 so that the adaptation process begins from scratch. A user may also be able to provide a “jump start” to the adaptation process by excluding certain protocols, frequencies, antennas, etc., that the user knows will not yield successful tag detections. This user-inputted data may be treated equivalently (or unequally) to adaptation data gathered as part of the continual operation of the RFID reader 10 thereafter, according to user preference.
Finally, the multi-mode RFID reader 10 may be integrated into a multiple technology reader, for instance, in which a bar code scanner or other electronic identification system is also employed. Such a multiple-technology reader may have additional interrogation modes due to the nature of having additional identification means integrated with reader 10; therefore, such a multiple-technology reader falls within the scope and spirit of this disclosure. One example of a multiple-technology data reader is disclosed in U.S. Pat. No. 6,415,978, issued to McAllister, entitled “Multiple Technology Data Reader For Bar Code Labels And RFID Tags.”
Before taking further adaptation action, however, the reader 10 will determine at step 628 if there is enough time before the next read attempt to adjust one or more matrices (or tables, or databases, or the like) affected by the updated histogram. If the answer is yes, then the reader 10 selects at step 632 the next interrogation modes from the histogram with which to update the matrices, which in turn dictate the subset and/or sequence of the interrogation modes employed. If the answer is no, then the reader 10 determines at step 636 if the read operation is complete, and ends at step 640 the read operation if it is. If it is not complete, for instance while painting where read attempts are consecutive, the reader 10 goes directly back to step 612, in which the reader 10 decides whether to use or exclude selected modes available for employment in interrogation.
Finally, if the interrogation mode is not disabled or excluded, it is available, and method 700 continues by using at step 716 the selected interrogation mode during interrogation. The reader 10 may then, at step 720, repeat the method 700 by selecting at step 708 the interrogation mode with the next highest success rate, thereby allowing the adaptation process to continue throughout interrogation. The success rate may be tracked in parallel with method 700, as is described in
The methods 600, 700, 800, and other methods for interrogating a tag illustrated and described herein may exist in a variety of forms, both active and inactive. For example, they may exist as one or more software or firmware programs comprised of program instructions in source code, object code, executable code or other formats. Any of the above may be embodied on a computer-readable medium, which include storage devices and signals, in compressed or uncompressed form. Exemplary computer-readable storage devices include conventional computer system RAM (random access memory), ROM (read only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), flash memory and magnetic or optical disks or tapes. Exemplary computer-readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running a computer program may be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of software on a CD ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer-readable medium. The same is true of computer networks in general.
The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. Those skilled in the art will recognize that many variations can be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the invention should therefore be determined only by the following claims (and their equivalents) in which all terms are to be understood in their broadest reasonable sense.
This application is a continuation-in-part of U.S. application Ser. No. 11/139,234, entitled “Apparatus and Method for Saving Power in RFID Readers,” filed May 27, 2005, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11139234 | May 2005 | US |
Child | 11442650 | May 2006 | US |