APPARATUS AND SYSTEMS FOR TISSUE DISSECTION AND MODIFICATION

Abstract
Apparatus and systems for tissue dissection and modification are disclosed herein. A method for tissue dissection and modification may comprise inserting a tissue dissecting and modifying wand (TDM) through an incision in a patient's body. The TDM may comprise a modular tip having a plurality of protrusions with lysing segments positioned between the protrusions to dissect and/or modify tissue. The TDM may also comprise an energy window positioned on top of the TDM that is configured to deliver energy via thermochromic means to modify tissues. After separating tissue using the lysing segment(s) to define a target region, the energy window may be activated and moved around within the target region to modify tissues. In some implementations, the energy window may be activated prior to and/or during dissection of the tissue such that the tissue is separated while tissue is modified within the target region.
Description
BRIEF DESCRIPTION OF THE DRAWINGS

The written disclosure herein describes illustrative embodiments that are non-limiting and non-exhaustive. Reference is made to certain of such illustrative embodiments that are depicted in the figures, in which:



FIG. 1
a is a perspective view of an embodiment of a tissue dissector and modifier with an energy window on the upper side of the device.



FIG. 1
b is a side elevation view of the embodiment previously depicted in FIG. 1a.



FIG. 1
c is a front elevation view of the embodiment previously depicted in FIG. 1a.



FIG. 1
d is a front elevation view illustrating the protrusions and lysing segment of an alternative embodiment of a tissue dissector and modifier wherein the lysing segment connecting the two protrusions is centered substantially midway between the upper and lower portions of the protrusions.



FIG. 1
e is a front elevation view illustrating the protrusions and lysing segment of an alternative embodiment of a tissue dissector and modifier, wherein the lysing segment connecting the two protrusions is positioned above the midline between the upper and lower portions of the protrusions.



FIG. 1
f is a front elevation view illustrating the protrusions and lysing segment of an alternative embodiment of a tissue dissector and modifier, wherein the lysing segment connecting the two protrusions is positioned below the midline between the upper and lower portions of the protrusions.



FIG. 1
g is a cross-sectional view of an embodiment of a TDM illustrating some examples of some of the canals that may be used with the device.



FIG. 2
a is a perspective view of an embodiment of a tissue dissector and modifier with a thermochromic-based energy window on the upper side of the device.



FIG. 2
b is a side elevation view of the embodiment previously depicted in FIG. 2a.



FIG. 2
c is a front elevation view of some thermochromic-based energy window components of an embodiment previously depicted in FIG. 2a.



FIG. 3
a is a wiring diagram of one embodiment of the TDM employing two switches.



FIG. 3
b is a wiring diagram of another embodiment of the TDM employing one switch.



FIG. 3
c is a wiring diagram of another embodiment of the TDM employing one switch.



FIG. 3
d is a wiring diagram of a circuit in another embodiment of the TDM designed to modulate the energy delivered.



FIG. 4 is a wiring diagram of a bipolar embodiment of the TDM.



FIG. 5
a is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and the non-axial protrusions do not extend beyond the width of the distal shaft.



FIG. 5
b is an upper plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and some of the non-axial protrusions extend beyond the width of the distal shaft.



FIG. 5
c is a lower plan view of the embodiment of FIG. 5a illustrating the protrusions and lysing segments of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and the non-axial protrusions do not extend beyond the width of the distal shaft.



FIG. 5
d is a lower plan view of the embodiment of FIG. 5b illustrating the protrusions and lysing segments of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and some of the non-axial protrusions extend beyond the width of the distal shaft.



FIG. 5
e is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier.



FIG. 5
f is an upper plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tip area of a tissue dissector and modifier.



FIG. 5
g is an upper plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tip area of a tissue dissector and modifier.



FIG. 5
h is a lower plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tip area of a tissue dissector and modifier.



FIG. 6
a is an upper plan view illustrating an embodiment of a tissue dissector and modifier with an asymmetrical tip area, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and the non-axial protrusions do not extend beyond the width of the distal shaft.



FIG. 6
b is an upper plan view illustrating another embodiment of a tissue dissector and modifier with an asymmetrical tip area, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and some the non-axial protrusions extend beyond the width of the distal shaft.



FIG. 6
c is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier, wherein the tip is asymmetrical.



FIG. 6
d is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier, wherein the tip is asymmetrical.



FIG. 7
a is a side view of a robotic surgery system comprising a TDM.



FIG. 7
b depicts an alternative robotic arm that may be used with the system of FIG. 7a.



FIG. 8 is a flow chart illustrating one implementation of a method for energy delivery modulation via temperature measurements.



FIG. 9 is a flow chart illustrating one implementation of a method for accessing an organ using the TDM.



FIG. 10 depicts an embodiment comprising a modular, removable tip and a flexible shaft.



FIG. 11 is a flow chart of an implementation of a method for separating and/or modifying tissue using a TDM.



FIG. 12 depicts an embodiment comprising a modular, removable tip and a rigid shaft.







DETAILED DESCRIPTION

The term dissection may indicate the separation of tissues or of one tissue plane from another (ref: Free Online Medical Dictionary). Some also consider dissection to comprise separation of a single tissue into portions. Much of the bodies of animals and humans are formed from embryonic fusion planes. Many of the organs of the human body are categorized from the embryonic fusion planes from whence they came. The interfaces between organs may often be referred to as ‘tissue planes.’ Such planes may be considered substantially planar depending upon the size of a comparative planar living or inanimate object (such as a surgical instrument). As an example, a lobe of a human liver has a radius of curvature of about 5 cm; however, compared to a surgical instrument of about 1 cm in width capable of separating tissue in a plane, the curvilinear plane comprising the liver lobe may be ‘substantially’ planar and thus amenable to a tool capable of separating tissues in a ‘substantially planar’ fashion. Various vessels or ducts may also traverse within a given organ thus providing for areas of ‘substantially planar’ boundaries even within a given organ. Depending on the forces applied and/or available paths of least resistance, the TDM may divide what may appear to be isodense tissues. An example of separating isodense tissues may be separating one lobe of liver from another lobe within that liver. Depending on the density of a certain tumor, separation from the involved organ may also be an isodense dissection/separation. The TDM may perform the functions of sharp dissection, blunt dissection and electrosurgical cutting and/or coagulation without a surgeon having to switch instruments. Sharp dissection has been referred to by some as separation of tissues by means of the sharp edge of a knife or scalpel or with the inner sharp edge of scissors. Blunt dissection has been defined by Webster as surgical separation of tissue layers by means of an instrument without a cutting edge or by the fingers. The term ‘Loose connective tissue’ has been used to refer to a category of connective tissue which includes areolar tissue, reticular tissue, and adipose tissue. Loose connective tissue is the most common type of connective tissue in vertebrates. Loose connective tissue holds organs in place and attaches epithelial tissue to other underlying tissues; it also surrounds the blood vessels and nerves. Fibroblast cells are widely dispersed in this tissue; they are irregular branching cells that secrete strong fibrous proteins and proteoglycans as an extracellular matrix. The cells of this type of tissue are generally separated by quite some distance by a gel-like gelatinous substance primarily made up of collagenous and elastic fibers. Loose connective tissue is named based on the “weave” and type of its constituent fibers. There are three main types: Collagenous fibers: collagenous fibers are made of collagen and consist of bundles of fibrils that are coils of collagen molecules. Elastic fibers: elastic fibers are made of elastin and are “stretchable.” Reticular fibers: reticular fibers consist of one or more types of very thin collagen fibers; these fibers join connective tissues to other tissues. (Reference: Wikipedia). Areolar tissue (Latin for a little open space) is a common type of connective tissue, and may also be referred to as “loose connective tissue”. It is strong enough to bind different tissue types together, yet soft enough to provide flexibility and cushioning. It exhibits interlacing loosely organized fibers, abundant blood vessels, and significant low density space. Areolar tissue fibers run in random directions and are mostly collagenous, but elastic and reticular fibers are also present. Areolar tissue is highly variable in appearance. In many serous membranes, it appears as a loose arrangement of collagenous and elastic fibers, scattered cells of various types, abundant ground substance, and numerous blood vessels. In the skin and mucous membranes, areolar tissue may be more compact and sometimes difficult to distinguish from dense irregular connective tissue. Areolar tissue is the most widely distributed connective tissue type in vertebrates. It is sometimes equated with “loose connective tissue”. In other cases, “loose connective tissue” is considered a parent category that includes mucous connective tissue, reticular connective tissue and adipose tissue. It may be found in tissue sections from almost every part of the body. It surrounds blood vessels and nerves and penetrates with them even into the small spaces of muscles, tendons, and other tissues. (wiki). Dr. Michael Kendrick, Surgeon at Mayo Clinic, Rochester, says many Mayo surgeons today simply refer to loose connective tissues between or within organs as areolar tissue.


The term ‘minimally invasive surgery’ has been used to describe a procedure (surgical or otherwise) that is less invasive than open surgery used for the same purpose. Some minimally invasive procedures typically involve use of laparoscopic devices and remote-control manipulation of instruments with indirect observation of the surgical field through an endoscope or similar device, and are carried out through the skin or through a body cavity or anatomical opening. This may result in shorter hospital stays, or allow outpatient treatment (reference: Wikipedia).


Various implementations of methods are disclosed herein for dissecting and modifying various living tissues. The term ‘modifying’ in this context may refer to or may encompass application of energy to tissue using one or more lysing segments as discussed herein. The term ‘modifying’ in this context may also refer to application of energy to tissue by way of an energy window as also described herein. Such methods may be performed using a Tissue Dissecting and Modifying Wand (“TDM”). Examples of various embodiments of such wands may be found in U.S. Pat. No. 6,203,540 titled “Ultrasound and Laser Face-Lift and Bulbous Lysing Device,” U.S. Pat. No. 6,391,023 titled “Thermal Radiation Facelift Device,” U.S. Pat. No. 6,432,101 titled “Surgical Device for Performing Face-Lifting Using Electromagnetic Radiation,” U.S. Pat. No. 6,440,121 titled “Surgical Device For Performing Face-Lifting Surgery Using Radiofrequency Energy,” U.S. Pat. No. 6,974,450 titled “Face-Lifting Device,” and U.S. Pat. No. 7,494,488 titled “Facial Tissue Strengthening and Tightening Device and Methods.” The “Detailed Description of the Invention” section of each of these patents is hereby incorporated herein by specific reference. With respect to U.S. Pat. No. 6,203,540 titled “Ultrasound and Laser Face-Lift and Bulbous Lysing Device,” the section titled “Description of the Preferred Embodiments” is hereby incorporated herein by specific reference.


Tissues or organs or tumors treated with the TDM may also undergo post traumatic collagen deposition or scarring. Thermal damage to collagen is likely brought about by hydrolysis of cross-linked collagen molecules and reformation of hydrogen bonds resulting in loss of portions or all of the characteristic collagen triple-helix. New collagen formed as the result of trauma and some diseases is technically scar tissue. The encroachment of post traumatically derived collagen may influence already traumatized dissected tissue.


Some tissues of the body are of varying sensitivity to electrosurgical energy. Modulation and feedback may be helpful for such tissues. For example, some liver tumors or tissues may allow heating to temperature ranges higher than temperatures that typically be involved in facial rejuvenation procedures In some implementations, liver tumors or tissues may be operated upon by heating the tissue to a temperature range of about 72-85° C.


The TDM may dissect tissue planes of dissimilar density as well as isodense tissue planes. The TDM may also dissect different types of tissues from one another as well as dissect within an organ. It is possible that the cutting segments alone may traumatize or lyse portions of tissues sufficiently to carry out a given surgical method or procedure. It is also possible that when electrically energized with electro-cutting current, the TDM may possess a plasma field that may traumatize certain tumor cells in a potentially lethal fashion. The TDM may be “energized” by various forms of energy in its top side energy window, as described in greater detail below. Such energy absorptions may result in the formation of heat which may, in turn, damage tumor or other tissue cells themselves, and/or their surrounding environment in order to achieve a desired effect of a surgical method or procedure.


In some embodiments, energy may be delivered from one or more energy windows so as to heat tissue to a temperature of about 72° C. to about 80° C. Various methods may therefore be implemented in which the amount of energy and/or the delivery time may be adjusted so as to heat the tissue to within a desired temperature range. Temperature sensors may therefore be incorporated on or near the energy windows to allow a surgeon to heat the tissue to a desired temperature or within a desired temperature range. In some embodiments, the sensor may be configured to provide an average temperature over a particular period of time and or over a particular range of distances within the tissue. Systems consistent with the disclosure provided herein may be configured to prevent or to shut down or otherwise limit energy transfer if a particular tissue temperature were beyond a threshold or alternatively if an average temperature threshold is reached.


Temperature sensors that may be useful in connection with embodiments disclosed herein include, but are not limited to, resistance temperature sensors, such as carbon resistors, film thermometers, wire-wound thermometers, or coil elements. Some embodiments may comprise thermocouples, pyrometers, or non-contact temperature sensors, such as total radiation or photoelectric sensors. In some embodiments, one or more temperature sensors may be coupled with a processor and/or a monitor to allow a surgeon to better visualize or otherwise control the delivery of energy to selected areas of target tissue. For example, some embodiments may be configured such that a surgeon can visualize the temperature of tissue positioned adjacent to one or more locations along the TDM to ensure that such temperatures are within a desired temperature range. Some embodiments may alternatively, or additionally, be configured such that one or more temperature sensors are coupled with a processor in a feedback loop such that energy delivery may be automatically adjusted by the system in response to temperature data. For example, when temperatures exceed a particular threshold, such as somewhere between about 65° C. and about 90° C., the system may be configured to shut down or otherwise limit further energy delivery. In some such embodiments, the threshold may be between about 68° C. and about 75° C.


Some embodiments may comprise a feedback means, such as a visual, audible, or tactile feedback means, to provide information to a user to avoid excess energy delivery to tissues. In some embodiments, the feedback means may be configured to notify the surgeon when the temperature has reached a particular threshold. In some embodiments, the feedback means may be configured to notify the surgeon when the TDM has been positioned in a particular location within the target region for a particular time period. Examples of visual feedback means include LED lights, LASERS, visual light source, display screen, etc. Examples of audible feedback means include speakers, alarms, audible vibration, etc., Examples of tactile feedback means include vibration, minimal electrical shock, heat, etc., The feedback means may be configured with multiple thresholds with different feedback at each threshold. For example, at a first threshold, the TDM may be configured to deliver a first noise and at a second threshold the TDM may be configured to deliver a second noise. The second noise may be louder than the first noise to indicate a greater urgency for changing the energy delivery and/or moving the TDM from its current location within a patient's body. In some embodiments, an antenna(s) may be present on the shaft or tip of the TDM. In some embodiments, a camera or fiberoptic may gather optical data to allow the surgeon knowledge of the placement of the TDM.


In some implementations of methods according to the present disclosure, the TDM may be used to induce post-surgical collagen deposition and/or an inflammatory tissue reaction in the target zone. Some procedures intended to increase post-surgical collagen deposition, for example, around a mesh implant, using the TDM are done by delivering energies of about 20 J/cm2. By contrast, in certain preferred implementations of methods for increasing post-surgical collagen deposition using the TDM, a higher energy delivery may be employed than 20 J/cm2. For example, some implementations for increasing post-surgical collagen deposition may be performed by delivering energy at a level 20% or more than 20 J/cm2.


Further details regarding various embodiments will now be provided with reference to the drawings.



FIG. 1
a is a perspective view of an embodiment of a TDM with an electrosurgically energized energy window 107 on the upper side of the device. It should be noted that the term “energy window” is intended to encompass what is referred to as a planar-tissue-altering-window/zone in U.S. Pat. No. 7,494,488 and, as described later, need not be electrosurgically energized in all embodiments. In some embodiments, the “energy window” may comprise a variety of other energy emitting devices, including radiofrequency, thermochromic, intense pulsed light, LASER, thermal, microwave and ultrasonic. It should also be understood that the term “energy window” does not necessarily imply that energy is delivered uniformly throughout the region comprising the energy window. Instead, some energy window implementations may comprise a series of termini or other regions within which energy is delivered with interspersed regions within which no energy, or less energy, is delivered. This configuration may be useful for some implementations to allow for alteration of certain tissue areas with interspersed areas within which tissue is not altered, or at least is less altered. This may have some advantages for certain applications due to the way in which such tissue heals. It is contemplated that in alternative embodiments, electronically energized energy window 107 may be omitted.



FIG. 1
a is a perspective view of an embodiment of a TDM comprising a tip 101, a shaft 102 and a handle 103. Electro-coagulation and electro-cutting energy arrives in electrical conduits 111 and/or 112 and may travel by wiring through the handle and shaft to termini 107a, which are part of energy window 107. Electro-cutting and electro-coagulation currents may be controlled outside the TDM at an electrosurgical generator, such as the Bovie Aaron 1250™ or Bovie Icon GP™. In an embodiment, the tip may measure about 1 cm in width and about 1-2 mm in thickness. Sizes of about one-fifth to about five times these dimensions may also have possible uses. In some veterinary embodiments, tip sizes of about one-tenth to 20 times the aforementioned dimensions may also have possible uses. In some embodiments, the tip can be a separate piece that is secured to shaft by a variety of methods such as a snap mechanism, mating grooves, plastic sonic welding, etc. Alternatively, in some other embodiments, the tip can be integral or a continuation of shaft made of similar metal or materials. In some embodiments, the tip may also be constructed of materials that are both electrically non-conductive and of low thermal conductivity; such materials might comprise, for example, porcelain, ceramics, glass-ceramics, plastics, varieties of polytetrafluorethylene, carbon, graphite, and graphite-fiberglass composites.


In some embodiments, the tip may be constructed of a support matrix of an insulating material (e.g., ceramic or glass material such as alumina, zirconia). External conduits 111 and/or 112 may connect to electrically conductive elements to bring RF electrosurgical energy from an electrosurgical generator down the shaft 102 to electrically conductive lysing elements 105 mounted in the recessions in between the protrusions 104. In some embodiments, the protrusions may comprise bulbous protrusions. The tip shown in this embodiment has four relative protrusions and three relative recessions and provides for a monopolar tip conductive element. All of the axes of the relative protrusions of the tip depicted in this embodiment extend at least substantially parallel to the axis of the shaft of the TDM (as viewed from Top). In embodiments of tips of such axial placement of protrusions and or relative recessions, surgeons may use methods of defining and or dissecting a target area by entering through an incision and then moving the TDM tip in a primarily axial direction forward and backward and reorienting the TDM after the backstroke in a spokewheel pattern the TDM to access tissues adjacent to earlier strokes.


In the depicted embodiment, the tip 101 may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics, cermets or ceramics. Lysing elements 105 may also be made partially or completely of a cermet material. Alternatively, in a further embodiment the tip may be constructed of insulation covered metals or electroconductive materials. In some embodiments, the shaft may be flat, rectangular or geometric in cross-section or substantially flattened. In some embodiments, smoothing of the edges of the shaft may reduce friction on the skin surrounding the entrance wound. In some further embodiments, the shaft may be made of metal or plastic or other material with a completely occupied or hollow interior that can contain insulated wires, electrical conductors, fluid/gas pumping or suctioning conduits, fiber-optics, or insulation. In some embodiments the shaft may have a length of about 10-20 cm. In some embodiments the handle may have a length of about 8-18 cm.


In some embodiments, shaft plastics, such as polytetrafluoroethylene may act as insulation about wire or electrically conductive elements. In some embodiments, the shaft may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics, ceramics carbon, graphite, graphite-fiberglass composites. Depending upon the intended uses for the device, an electrically conductive element internal to shaft may be provided to conduct electrical impulses or RF signals from an external power/control unit (such as a Valleylab™ electrosurgical generator) to another energy window 108. In some embodiments, energy windows 107 and/or 108 may only be substantially planar, or may take on other cross-sectional shapes that may correspond with a portion of the shape of the shaft, such as arced, stair-step, or other geometric shapes/curvatures. In the embodiments depicted in FIGS. 1a & 1b, energy window 107 is adjacent to protrusions 104, however other embodiments are contemplated in which an energy window may be positioned elsewhere on the shaft 102 or tip 101 of the wand, and still be considered adjacent to protrusions 104. For example, in an embodiment lacking energy window 107, but still comprising energy window 108, energy window 108 would still be considered adjacent to protrusion 104. However, if an energy window was placed on handle 103, such an energy window would not be considered adjacent to the protrusions 104.


The conduit may also contain electrical control wires to aid in device operation. Partially hidden from direct view in FIGS. 1a & 1b, and located in the grooves defined by protrusions 104 are electrically conductive tissue lysing elements 105, which, when powered by an electrosurgical generator, effects lysing of tissue planes on forward motion of the device. The lysing segments may be located at the termini of conductive elements. In some embodiments, one or more sensors such as for example sensors 110 and 114 may be positioned on the device. The sensors 110 and 114 may comprise any of the sensors described in the specification herein. Other embodiments may comprise one or more sensors on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Sensors that may be useful include thermal sensors, photoelectric or photo optic sensors, cameras, etc. In some embodiments, one or more sensors may be used to monitor the local post passage electrical impedance or thermal conditions that may exist near the distal tip of the shaft or on the tip. Some embodiments may also comprise one or more sensors incorporating MEMS (Micro Electro-Mechanical Systems) technology, such as MEMS gyroscopes, accelerometers, and the like. Such sensors may be positioned at any number of locations on the TDM, including within the handle in some embodiments. In some embodiments, sensor 114 may comprise fiberoptic elements. In an embodiment, the sensor can be configured to sense a temperature of tissue adjacent to the apparatus. The temperature sensor may alternatively be configured or sense a temperature of one or more fluids adjacent to the apparatus such as for example tissue fluids and/or fluids introduced by the surgeon.


Temperature and impedance values may be tracked on a display screen or directly linked to a microprocessor capable of signaling control electronics to alter the energy delivered to the tip when preset values are approached or exceeded. Typical instrumentation paths are widely known, such as thermal sensing thermistors, and may feed to analog amplifiers which, in turn, feed analog digital converters leading to a microprocessor. In some embodiments, internal or external ultrasound measurements may also provide information which may be incorporated into a feedback circuit. In an embodiment, an optional mid and low frequency ultrasound transducer may also be activated to transmit energy to the tip and provide additional heating and may additionally improve lysing. In some embodiments, a flashing visible light source, for example, an LED, can be mounted on the tip may show through the tissues and/or organs to identify the location of the device.


In some embodiments, one or more electromagnetic delivery elements 115 may be positioned on tip or shaft. Other embodiments may comprise one or more electromagnetic delivery elements on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Electromagnetic delivery elements that may be useful include: LEDs, LASERs, fiberoptics, filaments, photoelectric materials, infrared emitters, etc.


Some embodiments may comprise a low cost, disposable, and one-time-use device. However, in some embodiments intended for multiple uses, the tip's electrically conductive tissue lysing elements be protected or coated with materials that include, but are not limited to, Silverglide™ non-stick surgical coating, platinum, palladium, gold and rhodium. Varying the amount of protective coating allows for embodiments of varying potential for obsolescence capable of either prolonging or shortening instrument life.


In some embodiments, the electrically conductive lysing element portion of the tip may arise from a plane or plate of varying shapes derived from the aforementioned materials by methods known in the manufacturing art, including but not limited to additive manufacturing, cutting, stamping, pouring, molding, filing and sanding. In some embodiments, the electrically conductive lysing element 105 may comprise an insert attached to a conductive element in the shaft or continuous with a formed conductive element coursing all or part of the shaft. In some embodiments, one or more electrically conductive elements or wiring in conduit 111 and/or 112 brings RF electrosurgical energy down the shaft to electrically conductive lysing elements 105 associated in part with the recessions. In an embodiment, the electrosurgical energy via conduit 111 is predominately electro-cutting and/or a blend.


In some embodiments, the electrically conductive element or wiring may be bifurcated to employ hand switching if an optional finger switch is located on handle. The electrically conductive element or wiring leading from the shaft into the handle may be bundled with other electrical conduits or energy delivering cables, wiring and the like and may exit the proximal handle as insulated general wiring to various generators (including electrosurgical), central processing units, lasers and other sources as have been described herein. In some embodiments, the plate making up lysing segments 105 may be sharpened or scalloped or made to slightly extend outwardly from the tip recessions into which the plate will fit.


Alternatively, in some embodiments, since cutting or electrical current may cause an effect at a distance without direct contact, the lysing element may be recessed into the relative recessions or grooves defined by the protrusions 104 or, alternatively, may be flush with protrusions 104. In some further adjustable embodiments, locations of the electrically conductive lysing elements with respect to the protrusions may be adjusted by diminutive screws or ratchets. In some further adjustable embodiments, locations of the electrically conductive lysing elements with respect to the protrusions may be adjusted by MEMS or microelectronics. The plate, which in some embodiments is between 0.01 mm and 1 mm thick, can be sharpened to varying degrees on its forward facing surface. It is possible that plate sharpness may increase the efficiency with which electricity will pass from the edge cutting the target tissue. Sometimes, however, proper function even when variably dull or unsharpened may be unhampered since electrosurgical cutting current may cut beyond the electroconductive edge by a distance of over 1 mm. In some embodiments, the plate thickness may vary from 0.001 mm to 3 mm thick.


In some embodiments, the electrically conductive lysing element may also exist in the shape of a simple wire of 0.1 mm and 1 mm 0.01 mm to 3 mm. In some embodiments, the wire may measure between 0.01 mm to 3 mm. Such a wire may be singly or doubly insulated as was described for the plate and may have the same electrical continuities as was discussed for the planar (plate) version. In some embodiments, an electrosurgical current for the electrically conductive lysing element is of the monopolar “cutting” variety and setting and may be delivered to the tip lysing conductor in a continuous fashion or, alternatively, a pulsed fashion. The surgeon can control the presence of current by a foot pedal control of the electrosurgical generator or by button control on the shaft (forward facing button). The amount of cutting current may be modified by standard interfaces or dials on the electrosurgical generator. In some embodiments, the electrosurgically energized tip current can be further pulsed at varying rates, by interpolating gating circuitry at some point external to the electrosurgical generator by standard mechanisms known in the art that may range from about 1 per second to about 60 per second. In some embodiments, the rate may vary from about 1 per second to about 150 per second. In some embodiments, the electrosurgically energized tip current can be further pulsed at varying rates by gating circuitry within the electrosurgical generator by standard mechanisms known in the art. For some embodiments, the electrically conductive lysing element is a monopolar tip in contact with conductive elements in the shaft leading to external surgical cable leading to an electrosurgical generator from which emanates a grounding or dispersive plate which may be placed elsewhere in contact with the patient's body, such as the thigh. Such circuitry may be controlled and gated/wired from the cutting current delivery system of the electro surgical generator. Acceptable electrosurgical generators may include Valley Lab Force 1 B™ with maximum P-P voltage of 2400 on “cut” with a rated load of 300 Ohms and a maximum power of 200 Watts, 35 maximum P-P voltage of 5000 on “coagulate” with a rated load of 300 Ohms, and a maximum power of 75 Watts ValleyLab Force 4 has a maximum P-P voltage of 2500 on “cut” with a rated load of 300 Ohms and a maximum power of 300 Watts, 750 kHz sinusoidal waveform output, maximum P-P voltage of 9000 on “coagulate” with a rated load of 300 Ohms and a maximum power of 120 Watts using a 750 kHz damped sinusoidal with a repetition frequency of 31 kHz. In an embodiment, the tip may also be manufactured from multilayer wafer substrates comprised of bonded conductive strips and ceramics. Suitable conductive materials include but are not limited to those already described for tip manufacture.


In alternative embodiments, the electrically conductive lysing elements may be bifurcated or divided into even numbers at the relative recessions, insulated and energized by wiring to an even number of electrical conduits in a bipolar fashion and connected to the bipolar outlets of the aforementioned electrosurgical generators. Rings partly or completely encircling the shaft of the hand unit can be linked to a partner bipolar electrode at the tip or on the energy window. Such bipolar versions may decrease the available power necessary to electrically modify certain tissues, especially thicker tissues. In alternative embodiments, the lysing elements may be divided into odd numbers yet still allow for bipolar flow between two or more elements as those of ordinary skill in the art would appreciate.



FIG. 1
b is a side elevation view of the embodiment previously depicted in FIG. 1a. In the depicted embodiment, tip 101 may be made of materials that are both electrically non-conductive and of low thermal conductivity such as porcelain, epoxies, ceramics, glass-ceramics, plastics, or varieties of polytetrafluoroethylene. Alternatively, the tip may be made from metals or electroconductive materials that are completely or partially insulated. Note the relative protrusions and relative recessions are not completely visible from this viewing angle. In some embodiments, the relative recessions of the tip is the electrically conductive tissue lysing element 105 (usually hidden from view at most angles) which may have any geometric shape including a thin cylindrical wire; the electrically conductive lysing element can be in the shape of a plate or plane or wire and made of any metal or alloy that does not melt under operating conditions or give off toxic residua. Optimal materials may include but are not limited to steel, nickel, alloys, palladium, gold, tungsten, silver, copper, and platinum. Metals may become oxidized thus impeding electrical flow and function. In alternative embodiments the geometry of the tip area may comprise protrusions that are not oriented along the axis of the shaft (as seen from a top view); some of these alternative embodiments for tip area geometries are depicted in FIGS. 5a,b,c,d,e,f,g,h and FIGS. 6a,b,c,d. Some embodiments may be configured to be modular and/or comprise disposable tips such that a surgeon can place an appropriate tip for a particular surgery on the shaft. Alternatively or additionally one or more of the tips may be disposable such that a surgeon may dispose of the tip after performing surgery and install a new tip for subsequent surgeries or a continuation of the current surgery with a new tip.


In some embodiments, one or more suction/vacuum ports 117 may be provided on or about the tip or distal shaft. The port(s) may be fluidly coupled with a vacuum; the vacuum may comprise a pump or a negative pressure chamber or a syringe at the end of a fluid conduit. Other embodiments may comprise one or more suction/vacuum ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In some embodiments, a fluid delivery port 116 may be provided. In some embodiments the fluid delivery port may be coupled with a pump or high pressure fluid. In some embodiments the port may be perpetually open such that fluid may be delivered therethrough upon actuation of a pump or fluid pressure system. In other embodiments the port may be closed and selectively opened to deliver fluid therethrough. Other embodiments may comprise one or more fluid ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Fluid ports that may be useful may comprise channels within the TDM, polymer lines, hoses, etc. Fluids that may emanate from the outlet may comprise ionic fluids such as saline, medicines (including but not limited to antibiotics, anesthetics, antineoplastic agents, bacteriostatic agents, etc.), non-ionic fluids, and or gasses (including but not limited to nitrogen, argon, air, etc.). In some embodiments fluids may be under higher pressures or sprayed. It should be understood that although these elements (116 & 117) are not depicted in every one of the other figures, any of the embodiments described herein may include one or more such elements.


In some embodiments, a vibration means 170b may be positioned in the handle. Other embodiments may comprise one or more vibration means on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Examples of suitable vibration means may include piezoelectric materials, ultrasonic motors with stators, piezoelectric actuators, vibration motor such as an off-center weight mounted on a gear, etc. Some vibration means may be configured to emit ultrasound in the 20-40 kHz range. Yet other vibration means may include electromagnet drivers with a frequency of operation in the range of 150-400 Hz. In some embodiments, one or more vibration means may be used to provide additional forces which may facilitate passage of the TDM. In some embodiments, one or more vibration means may be used to reduce debris on the electrosurgical or other components of the TDM. In a further embodiment, a vibration means may be directly or indirectly connected to one or more of the lysing segments. Some vibration means may help to decrease and/or remove debris. In some embodiments use of a vibration means may, also or alternatively, be used to assist in migrating the TDM through tissue during the procedure. In some such embodiments, it is thought that use of a vibration means having a lower frequency may be particularly useful for assisting in such migration. In addition, positioning the vibration means closer to a handle of the TDM may facilitate such migration as well. By contrast, positioning the vibration means on or near the tip, and/or using a higher frequency vibrations means may be particularly useful for preventing buildup of debris on the tip.


In the depicted embodiment, 118 represents an antenna configured to deliver a signal to a receiver unit. In some embodiments, antenna 118 may comprise a radiofrequency identification (RFID) TAG. In some embodiments the RFID tag may comprise an RFID transponder. In other embodiments the RFID tag may comprise a passive tag. It should be understood that antenna 118 is not depicted in every one of the other figures, any of the embodiments described herein may comprise one or more such elements. Other embodiments may comprise one or more antenna on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In embodiments in which antenna 118 comprises an RFID transponder, the RFID transponder may comprise a microchip, such as a microchip having a rewritable memory. In some embodiments, the tag may measure less than a few millimeters. In some embodiments a reader may generate an alternating electromagnetic field which activates the RFID transponder and data may be sent via frequency modulation. In an embodiment, the position of the RFID tag or other antenna may be determined by an alternating electromagnetic field in the ultra-high frequency range. The position may be related to a 3 dimensional mapping of the subject. In an embodiment the reader may generate an alternating electromagnetic field. In some such embodiments, the alternating electromagnetic field may be in the shortwave (13.56 MHz) or UHF (865-869 MHz) frequency. Examples of potentially useful systems and methods for mapping/tracking a surgical instrument in relation to a patient's body may be found in U.S. Patent Application Publication No. 2007/0225550 titled “System and Method for 3-D Tracking of Surgical Instrument in Relation to Patient Body, which is hereby incorporated by reference in its entirety.


In some embodiments, a transmission unit may be provided that may generate a high-frequency electromagnetic field configured to be received by an antenna of the RFID tag or another antenna. The antenna may be configured to create an inductive current from the electromagnetic field. This current may activate a circuit of the tag, which may result in transmission of electromagnetic radiation from the tag. In some embodiments, this may be accomplished by modulation of the field created by the transmission unit. The frequency of the electromagnetic radiation emitted by the tag may be distinct from the radiation emitted from the transmission unit. In this manner, it may be possible to identify and distinguish the two signals. In some embodiments, the frequency of the signal from the tag may lie within a side range of the frequency of the radiation emitted from the transmission unit. Additional details regarding RFID technology that may be useful in connection with one or more embodiments discussed herein may be found in, for example, U.S. Patent Application Publication No. 2009/0281419 titled “System for Determining the Position of a Medical Instrument,” the entire contents of which are incorporated herein by specific reference.


In other embodiments, antenna 118 may comprise a Bluetooth antenna. In such embodiments, multiple corresponding Bluetooth receivers at known locations may be configured to sense signal strengths from the Bluetooth antenna 118 and triangulate such data in order to localize the signal from the Bluetooth antenna 118 and thereby locate the TDM within a patient's body. Other embodiments may be configured to use angle-based, electronic localization techniques and equipment in order to locate the antenna 118. Some such embodiments may comprise use of directional antennas, which may be useful to increase the accuracy of the localization. Still other embodiments may comprise use of other types of hardware and/or signals that may be useful for localization, such as WIFI and cellular signals, for example.


One or more receiver units may be set up to receive the signal from the tag. By evaluating, for example, the strength of the signal at various receiver units, the distances from the various receiver units may be determined. By so determining such distances, a precise location of the TDM relative to a patient and/or a particular organ or other surgical site on the patient may be determined. In some embodiments, a display screen with appropriate software may be coupled with the RFID or other localization technology to allow a surgeon to visualize at least an approximate location of the tag/antenna, and therefore TDM, relative to the patient's body.


Some embodiments may be further configured such that data from the antenna(s) may be used in connection with sensor data from the TDM. For example, some embodiments of TDMs comprising one or more sensors may be further configured with one or more RFID tags. As such, data from the one or more sensors may be paired or otherwise used in connection with data from the one or more RFID tags or other antennas. For example, some embodiments may be configured to provide information to a surgeon regarding one or more locations on the body from which one or more sensor readings were obtained. To further illustrate using another example, information regarding tissue temperature may be combined with a location from which such tissue temperature(s) were taken. In this manner, a surgeon may be provided with specific information regarding which locations within a patient's body have already been treated in an effective manner and thus which locations need not receive further treatment using the TDM.


In some such embodiments, a visual display may be provided comprising an image of the patient's body and/or one or more selected regions of a patient's body. Such a system may be configured so as to provide a visual indication for one or more regions within the image corresponding to regions of the patient's tissue that have been sufficiently treated. For example, a display of a patient's liver may change colors at locations on the display that correspond with regions of the liver that have experienced a sufficient degree of fibrosis or other treatment. Such regions may, in some embodiments, be configured such that pixels corresponding to particular regions only light up after the corresponding tissue in that region reaches a particular threshold temperature.


Such sensors 110 and/or 114, 210 and/or 214, 310 and/or 314, 410 and/or 414, 510a and/or 514a, 510b and/or 514b, 610a and/or 614a, 610b and/or 614b, may be coupled with an antenna, which may send and/or receive one or more signals to/from a processing unit. Alternatively, or additionally, data from such sensors resulting from tissue and/or fluid analysis using such sensors may be stored locally and transmitted later. As yet another alternative, such a signal may be transmitted following surgery. In such implementations, the signals need not necessarily be transmitted wirelessly. In fact, some embodiments may be configured to store data locally, after which a data module, such as a memory stick, may be removed from the TDM and uploaded to a separate computer for analysis.


In some embodiments tip 101 may be attached to a robotic arm. In some embodiments, tip 101 and portion of shaft 102 may be attached to a robotic arm. In some embodiments tip 101 and/or a portion of shaft 102 and/or a portion shaft and/or portion of handle 103 may be attached to a robotic arm. In some embodiments, the robotic arm may comprise one or more motors such as a screw-drive motor, gear motor, hydraulic motors, etc. In some embodiments the robotic arm system may comprise worm gearheads, video cameras, motor control circuits, monitors, remote control devices, illumination sources, tactile interface, etc.



FIG. 1
c is a front elevation view of an embodiment of the embodiment previously depicted in FIG. 1a. In this depicted embodiment, there are 4 protrusions and 3 lysing segment recessions 105c; the vertical height of a protrusion may be about 3 mm and the horizontal width may be about 2 mm. In this depicted embodiment, the relatively oval protrusions 104c may be shaped similarly to a commercial jetliner nose cone in order to reduce drag and lower resistance to facilitate tissue passage. In some embodiments, tip protrusion shapes may take on a wide variety of geometric shapes including, but not limited to, stacked rectangles or tapered thin rectangles as discussed elsewhere. In some further embodiments the relative projection shapes that may include, but should not be limited to: spheroid, sphere, sphere on cylinder, sphere on pyramid, sphere on cone, cone, cylinder, pyramid, and polyhedron.



FIG. 1
d is a front elevation view of an alternative embodiment having two protrusions 104d and one lysing segment (recession) wherein the lysing segment 105d connecting the two protrusions is substantially centered midway between the upper and lower portions of the protrusions. In the depicted embodiment, the vertical height of the protrusions may be about 3 mm and the horizontal width may be about 2 mm. Thus, the lysing segment may be placed about 1.5 mm from the upper portion of the protrusion. FIG. 1e is a front elevation view of another embodiment having two protrusions and one lysing segment 105e wherein the lysing segment connecting the two protrusions 104e is substantially centered in the upper third of the way (on the upper side) between the upper and lower portions of the protrusions. In the depicted embodiment, the vertical height of the protrusions may be about 3 mm and the horizontal width may be about 2 mm. Thus, the lysing segment may be placed about 1 mm from the upper portion of the protrusion.



FIG. 1
f is a front elevation view of another embodiment having two protrusions and one lysing segment wherein the lysing segment 105f connecting the two protrusions 104f is substantially centered in the lower third (on the lower side) between the upper and lower portions of the protrusions. In the depicted embodiment, the vertical height of the protrusions may be about 3 mm and the horizontal width may be about 2 mm. Thus, the lysing segment may be placed about 2 mm from the upper portion of the protrusion. As discussed above, some embodiments may be configured such that the position of the lysing segment(s) relative to the protrusions is adjustable, such as adjustable between the embodiments shown in FIGS. 1d-1f.



FIG. 1
g is a cross-sectional view of an embodiment of a TDM illustrating some examples of some of the canals that may be used with the device. For example, canal 130 may comprise an electrode canal for delivering electrical energy to one or more of the lysing segments and/or the energy window(s). Canal 132 may comprise an optics canal for delivering and/or receiving optical signals or energy, such as a LASER, fiber optics, intense pulse light, or for receiving an optical sensor. Canal 134 may comprise a vacuum tube for sucking fluids away from the surgical site, such as bodily fluids and/or fluids introduced by the TDM during the surgery. One or more of these canals may be configured for delivering one or more fluids using the TDM. For example, canal 136 may comprise a fluid delivery canal for delivering an ionic fluid, such as a saline solution. Canal 136 may be configured to deliver a fluid that is both ionic and an anesthetic, such as a tumescent anesthesia. In some embodiments, canal 136 may be configured to deliver a fluid containing multiple individual fluids, such as a Klein Formula. Canal 138 may serve as a coaxial cable canal, such as for delivering a microwave signal to the energy window, for example. Canals 140 and 142 may comprise duplicates of any one of the foregoing canals 130-138. One or more of the canals 130-142 may be coated with copper or another conductive metal to insulate the signals from those within other canals. It should be understood that although these canals are not depicted in other figures, any of the embodiments described herein may comprise one or more such canals configured for any of the uses described herein. It should also be understood that although the canals shown in FIG. 1g are shown as having rectangular cross sections, any other cross sectional shape, including but not limited to circular cross sections, may be used.



FIG. 2
a is a perspective view of an embodiment of a TDM with an alternative energy window 207 on the upper side of the device configured to hold a thermochromic film. It should be noted that the term “energy window” is intended to encompass what is referred to as a planar-tissue-altering-window/zone in U.S. Pat. No. 7,494,488 and, as described herein, need not contain a thermochromic film in all embodiments. In some embodiments, the “energy window” may comprise a variety of other energy emitting devices, including radiofrequency, thermochromic, intense pulsed light, LASER, thermal, microwave and ultrasonic. It should also be understood that the term “energy window” does not necessarily imply that energy is delivered uniformly throughout the region comprising the energy window. Instead, some energy window implementations may comprise a series of termini or other regions within which energy is delivered with interspersed regions within which no energy, or less energy, is delivered. This configuration may be useful for some implementations to allow for alteration of certain tissue areas with interspersed areas within which tissue is not altered, or at least is less altered. This may have some advantages for certain applications due to the way in which such tissue heals. In some embodiments, certain components of an energy window, such as the electro-conductive components of the energy window, could comprise a cermet. It is contemplated that in alternative embodiments, Thermochromic Containing Energy Window 207 may be omitted.



FIG. 2
a is a perspective view of an embodiment of a TDM comprising a tip 201, a shaft 202 and a handle 203. Electrosurgical energy may be delivered in electrical conduits 211 and/or 212 whereas LASER energy may be delivered by fiberoptic 222 or a waveguide and may travel by fiberoptic or waveguide through the handle and shaft to energy window 207, which may comprise a thermochromic film. A second energy window 208 may also be included in some embodiments, and may comprise yet another thermochromic film or another variety of energy emitting device. Electro-cutting and electro-coagulation currents may be controlled outside the TDM at an electrosurgical generator, such as the Bovie Aaron 1250™ or Bovie Icon GP™. In some embodiments, the tip may measure about 1 cm in width and about 1-2 mm in thickness. Sizes of about one-fifth to about five times these dimensions may also have possible uses. In some veterinary embodiments, tip sizes of about one-tenth to 20 times the aforementioned dimensions may also have possible uses. In some embodiments, the tip can be a separate piece that may be secured to a shaft by a variety of methods, such as a snap mechanism, mating grooves, plastic sonic welding, etc. Alternatively, in some other embodiments, the tip can be integral or a continuation of a shaft made of similar metal(s) or material(s). In some embodiments, the tip may also be constructed of materials that are both electrically non-conductive and of low thermal conductivity; such materials might comprise, for example, porcelain, ceramics, glass-ceramics, plastics, varieties of polytetrafluoroethylene, carbon, graphite, and graphite-fiberglass composites.


In some embodiments, the tip may be constructed of a support matrix of an insulating material (e.g., ceramic or glass material such as alumina, zirconia). Conduits 211 and/or 212 may connect to electrically conductive elements to bring RF electrosurgical energy from an electrosurgical generator down the shaft 202 to electrically conductive lysing elements 205 mounted in the recessions in between protrusions 204. In some embodiments, the protrusions may comprise bulbous protrusions. The tip shown in this embodiment has four relative protrusions and three relative recessions and provides for a monopolar tip conductive element. All of the axes of the relative protrusions of the tip depicted in this embodiment extend at least substantially parallel to the axis of the shaft of the TDM (as viewed from Top). In embodiments of tips of such axial placement of protrusions and or relative recessions, surgeons may use methods of defining and or dissecting a target area by entering through an incision and then moving the TDM tip in a primarily axial direction forward and backward and reorienting the TDM after the backstroke in a spokewheel pattern the TDM to access tissues adjacent to earlier strokes. In the depicted embodiment, the tip 201 may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics or ceramics. Lysing elements 205 may also be made partially or completely of a cermet material. Alternatively, in a further embodiment, the tip may be constructed of insulation covered metals or electroconductive materials. In some embodiments, the shaft may be flat, rectangular, or geometric in cross-section, or may be substantially flattened. In some embodiments, smoothing of the edges of the shaft may reduce friction on the tissues surrounding the entrance wound. In some further embodiments, the shaft may be made of metal or plastic or other material with a completely occupied or hollow interior that can contain insulated wires, electrical conductors, fluid/gas pumping or suctioning conduits, fiber-optics, or insulation.


In some embodiments, shaft plastics, such as polytetrafluoroethylene, may act as insulation about wire or electrically conductive elements. In some embodiments, the shaft may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics, ceramics carbon, graphite, and/or graphite-fiberglass composites. Depending upon the intended uses for the device, an electrically conductive element internal to the shaft may be provided to conduct electrical impulses or RF signals from an external power/control unit (such as a Valleylab™ electrosurgical generator) to another energy window 208. In some embodiments, energy windows 207 and/or 208 may only be substantially planar, or may take on other cross-sectional shapes that may correspond with a portion of the shape of the shaft, such as arced, stair-step, or other geometric shapes/curvatures. In some embodiments, energy window 208 may comprise another thermochromic film. In the embodiments depicted in FIGS. 2a & 2b, energy window 207 is adjacent to protrusions 204, however other embodiments are contemplated in which an energy window may be positioned elsewhere on the shaft 202 or tip 201 of the wand, and still be considered adjacent to protrusions 204. For example, in an embodiment lacking energy window 207, but still comprising energy window 208, energy window 208 would still be considered adjacent to protrusion 204. However, if an energy window was placed on handle 203, such an energy window would not be considered adjacent to protrusions 204.


The conduit(s) may also contain electrical control wires to aid in device operation. Partially hidden from direct view in FIGS. 2a & 2b, and located in the recessions defined by protrusions 204, are electrically conductive tissue lysing elements 205, which, when powered by an electrosurgical generator, effects lysing of tissue planes on forward motion of the device. The lysing segments may be located at the termini of conductive elements. In some embodiments, one or more sensors such as for example sensors 210 and 214 may be positioned on the device. The sensors 210 and 214 may comprise any of the sensors described in the specification herein. Other embodiments may comprise one or more sensors on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Sensors that may be useful include thermal sensors, photoelectric or photo optic sensors, cameras, etc. In some embodiments, one or more sensors may be used to monitor the local post passage electrical impedance or thermal conditions that may exist near the distal tip of the shaft or on the tip. Some embodiments may also comprise one or more sensors incorporating MEMS (Micro Electro-Mechanical Systems) technology, such as MEMS gyroscopes, accelerometers, and the like. Such sensors may be positioned at any number of locations on the TDM, including within the handle in some embodiments. In some embodiments, sensor 214 may comprise fiberoptic elements. In an embodiment, the sensor can be configured to sense a temperature of tissue adjacent to the apparatus. The temperature sensor may alternatively be configured or sense a temperature of one or more fluids adjacent to the apparatus such as for example tissue fluids and/or fluids introduced by the surgeon.


Temperature and impedance values may be tracked on a display screen or directly linked to a microprocessor capable of signaling control electronics to alter the energy delivered to the tip when preset values are approached or exceeded. Typical instrumentation paths are widely known, such as thermal sensing thermistors, and may feed to analog amplifiers which, in turn, feed analog digital converters leading to a microprocessor. In some embodiments, internal or external ultrasound measurements may also provide information which may be incorporated into a feedback circuit. In an embodiment, an optional mid and low frequency ultrasound transducer may also be activated to transmit energy to the tip and provide additional heating and may additionally improve lysing. In some embodiments, a flashing visible light source, for example, an LED, can be mounted on the tip may show through the tissues and/or organs to identify the location of the device.


In some embodiments, one or more electromagnetic delivery elements 215 may be positioned on tip or shaft. Other embodiments may comprise one or more electromagnetic delivery elements on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Electromagnetic delivery elements that may be useful include: LEDs, LASERs, fiberoptics, filaments, photoelectric materials, infrared emitters, etc.



FIG. 2
b is a side elevation view of the embodiment previously depicted in FIG. 2a. In the depicted embodiment, tip 201 which terminates in protrusions 206 may be made of materials that are both electrically non-conductive and of low thermal conductivity such as porcelain, epoxies, ceramics, glass-ceramics, plastics, or varieties of polytetrafluoroethylene. Alternatively, the tip may be made from metals or electroconductive materials that are completely or partially insulated. Note the relative protrusions and relative recessions are not completely visible from this viewing angle. The tip shown in this embodiment has four relative protrusions and three relative recessions and provides for a monopolar tip conductive element. In some embodiments, the electrically conductive tissue lysing element(s) 205 (usually hidden from view at most angles), which may have any geometric shape including a thin cylindrical wire, may be positioned within the relative recessions of the tip. The electrically conductive lysing element can be in the shape of a plate or plane or wire and made of any metal or alloy that does not melt under operating conditions or give off toxic residua. Optimal materials may include but are not limited to steel, nickel, alloys, palladium, gold, tungsten, silver, copper, and platinum. Metals may become oxidized thus impeding electrical flow and function. In some further adjustable embodiments, locations of the electrically conductive lysing elements with respect to the protrusions may be adjusted by MEMS or microelectronics.


Thus far in medicine and surgery, thermochromic films have principally seen use as sensors or detection devices and thus absorb energy and contribute to modifying said energy into quantifiable information or data; for example, applying organic thermochromic indicators to surgical instruments with radiofrequency power “jaws” to visually indicate to a surgeon when a given temperature is reached, however such an “organically sensitive” device has replacement cartridges (e.g., as shown in U.S. Pat. No. 7,041,102 titled “Electrosurgical working end with replaceable cartridges,” which is hereby incorporated by reference).


Herein, the use of thermochromic films is presented for a diametrically opposite purpose: to pump a defined quantity of energy into a living system to alter tissue. As opposed to traditional electrical resistance based thermal emission, thermochromic films may have an extremely well defined capacity for digital regulation and thus may yield a more exact or controllable application of energy to target tissues. Organic and inorganic thermochromic materials tend to have a fast response time over a broad wavelength band and return to the transparent state when the LASER beam subsides. So, thermochromic materials may act more as a safety switch wherein, instead of having a separate sensor for temperature, a “fail-safe” mechanism would be to set the thermochromic to shut down transmission if, using round numbers only, for example, the temperature of the thermochromic film exceeded 100 degrees centigrade depending upon the speed at which the TDM was moving. Other embodiments are contemplated in which the temperature threshold for limiting energy transmission ranges from about 65 to 90° C. In some such embodiments, the threshold may be between 68 to 75° C. Vanadium Dioxide (VO2) as a thermochromic film may see many potential uses, as it has such a rapid transition (in femtoseconds) between the crystalline lattices of the metallic and semiconductor phase transition geometries. Regarding industrial use, for example, at temperatures below 69 centigrade VO2 is a transparent semiconductor, but at just a few degrees higher, VO2 may display its usefulness as a “reflective window coating.” VO2's rapid phase transition may see usefulness in optical switches and even faster computer memory.


In alternative embodiments the geometry of the tip area may comprise protrusions that are not oriented along the axis of the shaft (as seen from a top view); some of these alternative embodiments for tip area geometries are depicted in FIGS. 5a,b,c,d,e,f,g,h and FIGS. 6a,b,c,d. Some embodiments may be configured to be modular and/or comprise disposable tips such that a surgeon can place an appropriate tip for a particular surgery on the shaft. Alternatively or additionally one or more of the tips may be disposable such that a surgeon may dispose of the tip after performing surgery and install a new tip for subsequent surgeries or a continuation of the current surgery with a new tip.


In some embodiments, one or more suction/vacuum ports 217b may be provided on or about the tip or distal shaft. The port(s) may be fluidly coupled with a vacuum; the vacuum may comprise a pump or a negative pressure chamber or a syringe at the end of a fluid conduit. Other embodiments may comprise one or more suction/vacuum ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In some embodiments, a fluid delivery port 216b may be provided. In some embodiments the fluid delivery port may be coupled with a pump or high pressure fluid. In some embodiments the port may be perpetually open such that fluid may be delivered therethrough upon actuation of a pump or fluid pressure system. In other embodiments the port may be closed and selectively opened to deliver fluid therethrough. Other embodiments may comprise one or more fluid ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Fluid ports that may be useful may comprise channels within the TDM, polymer lines, hoses, etc. Fluids that may emanate from the outlet may comprise ionic fluids such as saline, medicines (including but not limited to antibiotics, anesthetics, antineoplastic agents, bacteriostatic agents, etc.), non-ionic fluids, and or gasses (including but not limited to nitrogen, argon, air, etc.). In some embodiments fluids may be under higher pressures or sprayed. It should be understood that although these elements (216b & 217b) are not depicted in every one of the other figures, any of the embodiments described herein may include one or more such elements.


In some embodiments, a vibration means 270b may be positioned in the handle. Other embodiments may comprise one or more vibration means on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Examples of suitable vibration means may include piezoelectric materials, ultrasonic motors with stators, piezoelectric actuators, vibration motor such as an off-center weight mounted on a gear, etc. Some vibration means may be configured to emit ultrasound in the 20-40 kHz range. Yet other vibration means may include electromagnet drivers with a frequency of operation in the range of 150-400 Hz. In some embodiments, one or more vibration means may be used to provide additional forces which may facilitate passage of the TDM. In some embodiments, one or more vibration means may be used to reduce debris on the electrosurgical or other components of the TDM. In a further embodiment, a vibration means may be directly or indirectly connected to one or more of the lysing segments.


In the depicted embodiment, 218b represents an antenna, such as an RFID TAG or Bluetooth antenna. In embodiments in which antenna 218b comprises an RFID tag, the RFID tag may comprise an RFID transponder. In other embodiments the RFID tag may comprise a passive tag. It should be understood that antenna 218b is not depicted in every one of the other figures, any of the embodiments described herein may comprise one or more such elements. Other embodiments may comprise one or more antennas on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In some embodiments an RFID transponder or another antenna may comprise a microchip, such as a microchip having a rewritable memory. In some embodiments, the tag may measure less than a few millimeters. In some embodiments a reader may generate an alternating electromagnetic field which activates the antenna/RFID transponder and data may be sent via frequency modulation. In an embodiment, the position of the RFID tag or other antenna may be determined by an alternating electromagnetic field in the ultra-high frequency range. The position may be related to a 3 dimensional mapping of the subject. In an embodiment the reader may generate an alternating electromagnetic field. In some such embodiments, the alternating electromagnetic field may be in the shortwave (13.56 MHz) or UHF (865-869 MHz) frequency.


In some embodiments tip 201 may be attached to a robotic arm. In some embodiments, tip 201 and portion of shaft 202 may be attached to a robotic arm. In some embodiments tip 201 and/or a portion of shaft 202 and/or a portion shaft and/or portion of handle 203 may be attached to a robotic arm. In some embodiments, the robotic arm may comprise one or more motors such as a screw-drive motor, gear motor, hydraulic motors, etc. In some embodiments the robotic arm system may comprise worm gearheads, video cameras, motor control circuits, monitors, remote control devices, illumination sources, tactile interface, etc.



FIG. 2
c depicts an embodiment of the thermochromic energy window embodiment previously depicted in FIG. 2a. This depicted embodiment includes energy window 207, which is configured to comprise all or a portion of a thermochromic media 220, which is, in turn, substantially covered by a covering layer 221. In some embodiments, fiber optic 222 carries LASER energy derived from a LASER generator, into and through the handle, down the shaft and into the thermochromic media. In some embodiments, a wave guide may carry the LASER energy down the shaft. In some embodiments, Vanadium Dioxide (VO2) may be used as the inorganic thermochromic material and may be covered by a covering layer. In some embodiments, the Vanadium Dioxide layer is about 200-300 microns in thickness. In some embodiments, the Vanadium Dioxide layer ranges from about 10 microns to about 1000 microns. In some embodiments, the covering layer is silica. In some embodiments, the covering layer comprises a transparent dielectric, quartz, alumina, sapphire, diamond, and/or ceramic. In some further embodiments, plastics may serve as a covering layer. In some embodiments, an Nd:YAG (neodymium yttrium, aluminum, garnet) LASER may energize the thermochromic media. In some embodiments, a Candela™ Gentle YAG™ 1064 nm LASER is configured to energize a fiberoptic that thereupon leads into the TDM thermochromic window. In other embodiments, Manganese Strontium Oxide may serve as the thermochromic layer. In some embodiments, diode LASERS may be used to energize the thermochromic material. In some embodiments, metal vapor LASERS and/or semiconductor-based LASERS may be used to energize the thermochromic material. Metal vapor LASERS may include, but are not limited to, copper vapor and gold vapor. The power source may be more helpful if it runs continuously but is not too strongly absorbed to get the thermochromic effect when VO2 changes in reflectivity.


Near-infrared LASERS may have some advantages over visible range LASERS in that contrast may be enhanced. In some embodiments, fiberoptics may carry the LASER energy. In some embodiments, a wave guide carries the LASER energy to the thermochromic film. In some embodiments, the thermochromic film may be configured to measure about 2×1 cm in area. In some embodiments, the thermochromic film may be configured to deliver about 40 J/cm2. In some embodiments, about 1 J/cm2 to about 200 J/cm2 may be delivered.


In one embodiment depicted in FIG. 3A, the electrical wiring for the TDM comprises a connector 3100, a three-conductor cable 3120, a first DPST (Double-pole, Single-throw) switch 3145 that may be used to deliver a coagulation waveform (“COAG DPST switch”), a second DPST switch 3160 that may be used to deliver a cutting waveform (“CUT DPST switch”), a shaft 3175 with two conductors, a first electrode 3185 that may be used for tissue modification and/or coagulation (“COAG electrode”), and a second electrode 3190 that may be used for cutting tissue and/or tissue coagulation (“CUT electrode”). The three-conductor cable 3120 comprises one RF conductor 3130, one CUT switch conductor 3135, and one COAG switch conductor 3125. The RF conductor 3130 extends from the RF pin 3110, positioned in the connector 3100, to the RF pins 3150 & 3152 of the COAG DPST switch 3145 and the RF pins 3165 & 3168 of the CUT DPST switch 3160 which may be positioned in the handle 3140. The CUT switch conductor 3135 extends from the CUT switch pin 3115, positioned in the connector 3100, to the CUT switch pin 3173 of the CUT DPST switch 3160 which may be positioned in the handle 3140. The COAG switch conductor 3125 extends from the COAG switch pin 3105, positioned in the connector 3100, to the COAG switch pin 3155 of the COAG DPST switch 3145 which may be positioned in the handle 3140. The COAG electrode conductor 3176 positioned in the shaft 3175 extends from the COAG electrode 3185 positioned in the tip 3180, to the COAG electrode pin 3157 of the COAG DPST switch 3145. The CUT electrode conductor 3177, positioned in the shaft 3175, extends from the CUT electrode 3190 positioned in the tip 3180, to the CUT electrode pin 3170 of the CUT DPST switch 3160. When the COAG DPST switch 3145 is engaged, the RF pins 3150 & 3152 are electrically short circuited to the COAG switch pin 3155 and the COAG electrode pin 3157 simultaneously. When the CUT DPST switch 3160 is engaged, the RF pins 3165 & 3168 are electrically short circuited to the CUT switch pin 3173 and the CUT electrode pin 3170 simultaneously. When the COAG DPST switch 3145 is not engaged, there is electrical isolation between the short-circuited RF pins 3150 & 3152, the COAG switch pin 3155, and the COAG electrode pin 3157. When the CUT DPST switch 3160 is not engaged, there is electrical isolation between the short-circuited RF pins 3165 & 3168, the CUT switch pin 3173, and the CUT electrode pin 3170. When the connector 3100 is plugged into an electrosurgical generator (for example, a Valley Lab Force FX) and the COAG DPST switch 3145 is engaged, RF energy is passed through the RF conductor 3130 to the COAG electrode 3185. Alternatively, if the CUT DPST switch 3160 is engaged while the connector 3100 is plugged into an electrosurgical generator, RF energy is passed through the RF conductor 3130 to the CUT electrode 3190. In this manner, the RF energy delivery can be turned on and off from the handle 3140. In other embodiments, the conductor cable 3120 comprises two conductors to accommodate electrosurgical generators utilizing two-pronged connectors or may comprise more conductors to accommodate other attributes of the device. In other embodiments, the DPST switches 3145 and 3160 may be positioned on the conductor cabling 3120 between the connector 3100 and the handle 3140; in such embodiments the electrode conductors 3176 and 3177 leading to the electrodes 3185 and 3190 may extend through or around the shaft 3175 and handle 3140 and may comprise at least part of conductor cabling 3120. In other embodiments, the shaft 3175 may contain more than 2 conductors. In alternative embodiments, each conductor within the conductor cable 3120 may be contained in its own cabling. In an alternative embodiment, each switch may have more than 2 positions.


In another embodiment depicted in FIG. 3B, the electrical wiring for the TDM comprises a connector 3200, a conductor cable 3220 that may comprise one or more conductors, a SPDT (Single-Pole, Double-Throw) switch 3245, a shaft 3275 with two conductors, a first electrode 3285 that may be used for tissue modification and/or coagulation (“COAG electrode”), and a second electrode 3290 that may be used for cutting tissue and/or tissue coagulation (“CUT electrode”). The conductor cable 3220 comprises at least one RF conductor 3230 and may comprise one CUT switch conductor 3235, and/or one COAG switch conductor 3225. The RF conductor 3230 may extend from the RF pin 3210, positioned in the connector 3200, to the RF pin 3250 of the SPDT switch 3245 positioned in the handle 3240. The CUT switch conductor 3235 may extend from the CUT switch pin 3215, positioned in the connector 3200, to the handle 3240. The COAG switch conductor 3225 may extend from the COAG switch pin 3205, positioned in the connector 3200, to the handle 3240. Alternatively, the COAG switch conductor 3225, the CUT switch conductor 3235, the COAG switch pin 3205, and the CUT switch pin 3215 may be omitted from this embodiment. The COAG electrode conductor 3276 positioned in the shaft 3275 extends from the COAG electrode 3285 positioned in the tip 3280, to the COAG electrode pin 3255 of the SPDT switch 3245. The CUT electrode conductor 3277, positioned in the shaft 3275, extends from the CUT electrode 3290 positioned in the tip 3280 to the CUT electrode pin 3260 of the SPDT switch 3245. The SPDT switch 3245 may be manipulated between two positions. In one switch position (the “COAG position”) the RF pin 3250 may be electrically short circuited to the COAG electrode pin 3255. In the other switch position (the “CUT position”), the RF pin 3250 may be electrically short circuited to the CUT electrode pin 3260. This embodiment may be used in conjunction with another switch such as a foot switch (for example, the Valley Lab Monopolar Footswitch, E6008) which may be coupled with an electrosurgical generator (ESU) to activate/deactivate the RF energy delivered to the TDM. In some embodiments, if the foot switch is a two-pedal variant, the type of waveform that is delivered to the RF conductor 3325 when the connector 3200 is plugged into an ESU may be determined by which pedal on the footswitch is engaged. In this manner, this embodiment enables both the CUT and COAG waveform from the ESU to be delivered to the CUT electrode 3290 and/or the COAG electrode 3285 depending on the SPDT switch 3245 position. In other embodiments, the conductor cable 3220 comprises 4 or more conductors to accommodate other attributes of the device. In other embodiments, the SPDT switch 3245 may be positioned on the conductor cabling 3220 between connector 3200 and the handle 3240; in such embodiments the electrode conductors 3276 and 3277 leading to the electrodes 3285 and 3290 may extend through or around the shaft 3275 and the handle 3240 and may comprise at least part of the conductor cabling 3220. In other embodiments, the shaft 3275 may contain more than 2 conductors. In alternative embodiments, each conductor within the conductor cable 3220 may be contained in its own cabling. In an alternative embodiment, the switch may have more than 2 positions.


In another embodiment depicted in FIG. 3C, the electrical wiring for the TDM comprises a connector 3300, a three-conductor cable 3320, a DPDT (Double-pole, Double-throw) switch 3345, a shaft 3375 with two conductors, a first electrode 3385 that may be used for tissue modification and/or coagulation (“COAG electrode”), and a second electrode 3390 that may be used for cutting tissue and/or tissue coagulation (“CUT electrode”). The three-conductor cable 3320 comprises one RF conductor 3325, one CUT switch conductor 3330, and one COAG switch conductor 3335. The RF conductor 3325 extends from the RF pin 3305, positioned in the connector 3300, to the RF pins 3346 & 3347 of the DPDT switch 3345 which may be positioned in the handle 3340. The CUT switch conductor 3330 extends from the CUT switch pin 3310, positioned in the connector 3300, to the CUT switch pin 3365 of the DPDT switch 3345. The COAG switch conductor 3335 extends from the COAG switch pin 3315, positioned in the connector 3300, to the COAG switch pin 3360 of the DPDT switch 3345. The COAG electrode conductor 3376, positioned in the shaft, 3375 extends from the COAG electrode 3385 which may be positioned in the tip 3380, to the COAG electrode pin 3350 of the DPDT switch 3345. The CUT electrode conductor 3377, positioned in the shaft 3375, extends from the CUT electrode 3390 which may be positioned in the tip 3380, to the CUT electrode pin 3355 of the DPDT switch 3345. The DPDT switch 3345 may be manipulated between three positions: position one, position two, or position three. In position one, the RF pins 3346 & 3347 may be electrically short circuited to the COAG switch pin 3360 and the COAG electrode pin 3350 simultaneously. In position two, the RF pins 3346 & 3347 may be electrically short circuited to the CUT switch pin 3365 and the CUT electrode pin 3355 simultaneously. In position three, there is electrical isolation between/among the short-circuited RF pins 3346 & 3347, the COAG switch pin 3360, the COAG electrode pin 3350, the CUT switch pin 3365, and the CUT electrode pin 3355. When the connector 3300 is plugged into an electrosurgical generator (for example, a Valley Lab Force FX) and the DPDT switch 3345 is in position one, RF energy of a ‘coag’ waveform passes through the RF conductor 3325 to the COAG electrode 3385. Alternatively, if the DPDT switch 3345 is in position two while the connector 3300 is plugged into an electrosurgical generator, RF energy of a ‘cutting’ or ‘blended’ waveform passes through the RF conductor 3325 to the CUT electrode 3390. If the DPDT switch 3345 is in position three, no RF energy is delivered from the electrosurgical generator to the CUT or COAG electrodes 3385 & 3390. In this manner, RF energy delivery can be turned on and off from the handle 3340 with one switch. In other embodiments, the conductor cable 3320 comprises two conductors to accommodate electrosurgical generators utilizing two-pronged connectors or comprises more conductors to accommodate other attributes of the device. In other embodiments, the DPDT switch 3345 may be positioned on the conductor cabling 3320 between the connector 3300 and the handle 3340; in such embodiments the electrode conductors 3376 and 3377 leading to the electrodes 3385 and 3390 may extend through or around the shaft 3375 and handle 3340 and may comprise at least part of conductor cabling 3320. In other embodiments, the shaft 3375 may contain more than 2 conductors. In alternative embodiments, each conductor within the conductor cable 3220 may be contained in its own cabling. In an alternative embodiment, the switch may have more than 2 positions.


The embodiment depicted in FIG. 3D may be combined with the embodiments shown in FIGS. 3A, 3B, 3C to form the electrical wiring for the TDM. This embodiment comprises a display 3500, a microcontroller 3510, an increment switch 3515, a decrement switch 3520, a filter circuit 3525, a current sense transformer 3545, a pull-up resistor 3555, a power switch 3557, a battery 3560, and a relay 3575. The circuit depicted in FIG. 3D may be positioned in the device handle or as a separate enclosure between the connector and the conductor cable, inline with the RF conductor shown in FIGS. 3A, 3B, 3C. This embodiment utilizes a microcontroller 3510 and relay 3575 to deterministically switch the RF energy on and off in order to modulate the RF waveform delivered by the electrosurgical generator. The frequency modulation may be user selectable by engaging the increment switch 3515 or the decrement switch 3520. The user selectable frequency may range from continuously on (no modulation) to 200 Hz with a duty cycle that may range from 1% to 100%, and a value may be visible on the display 3500 to indicate the selected setting. Once the power switch 3557 is engaged, the microcontroller switches the relay 3575 on and off with a periodicity selected by the user. The battery 3560 may be included to provide power to the microcontroller 3510, the filter circuit 3525, the display 3500, and the relay 3575. The current sense transformer 3545 and the filter circuit 3525 may be included to facilitate feedback to the microcontroller 3510 about the electrical current delivered through the RF conductor 3550. As electrical current passes through the RF conductor, a current is induced on the current sense transformer 3545, which may then be scaled and filtered by the filter circuit 3525 in order to be used by the microcontroller 3510 to determine if electrical current is flowing through the RF conductor 3550.


In another embodiment depicted in FIG. 4A, the electrical wiring for the TDM comprises a connector 4100, a two-conductor cable 4120, a SPDT (Single-Pole, Double-Throw) switch 4145, a shaft 4175 with three conductors, a first electrode 4185 that may be used for tissue modification and/or coagulation (“COAG electrode”), a second electrode 4190 that may be used for cutting tissue and/or tissue coagulation (“CUT electrode”), and a third electrode 4195 (“return electrode”). The two-conductor cable 4120 is comprised of RF conductor one 4130 and RF conductor two 4135. RF conductor one 4130 extends from RF pin one 4110, positioned in the connector 4100, to the Switch RF pin 4150 of the SPDT switch 4145 which may be positioned in the handle 4140. The COAG electrode conductor 4176 positioned in the shaft 4175 extends from the COAG electrode 4185 may be positioned in the tip 4180, to the COAG electrode pin 4155 of the SPDT switch 4145. The CUT electrode conductor 4177, positioned in the shaft 4175, extends from the CUT electrode 4190 positioned in the tip 4180, to the CUT electrode pin 4160 of the SPDT switch 4145. The RF conductor two 4135, starting in the connector 4100, extends from RF pin two 4115 that may be positioned in the connector 4100 or within another connector plugged into the electrosurgical generator, to the return electrode 4195 positioned in the tip 4180 or on the shaft 4175. The SPDT switch 4145 can be manipulated between two positions. In one switch position the switch RF pin 4150 may be electrically short circuited to the COAG electrode pin 4155. In the other switch position, the RF pin 4150 may be electrically short circuited to the CUT electrode pin 4160. This embodiment requires the use of a foot switch (such as the Valley Lab Bipolar Footswitch, E6008) in conjunction with an electrosurgical generator (ESU) to activate/deactivate the RF energy delivered to the TDM. This embodiment allows RF energy from the ESU to be delivered to the CUT electrode 4190 or the COAG electrode 4185 depending on the selected SPDT switch 4145 position. If the footswitch is engaged, electric current is able to flow between the selected electrode (CUT electrode 4190 or COAG electrode 4185) and the return electrode 4195, provided the return electrode 4195 and one of the other electrodes both make physical contact with a contiguous, electrically conductive material (As well, plasma generation may extend the reach of the CUT or COAG electrode to effectively enable contact with the contiguous, electrically conductive material). In this embodiment, the TDM may be utilized as a bipolar device with a selectable electrode configuration. In some embodiments, the surface area that comprises the return electrode 4195 which makes contact with the electrically conductive material is optimally chosen to minimize the current density with the objective of minimizing the heating on the surface of the return electrode 4195. In other embodiments, the conductor cable 4120 comprises more than two conductors to accommodate other attributes of the device. In other embodiments, the SPDT switch 4145 may be positioned on the conductor cabling 4120 between the connector 4100 and the handle 4140; in such embodiments the electrode conductors 4176 and 4177 leading to the electrodes 4185 and 4190 may extend through or around the shaft 4175 and handle 4140 and may comprise at least part of conductor cabling 4120. In other embodiments, the shaft 4175 may contain more than 3 conductors. In alternative embodiments, each conductor within the conductor cable 4120 may be contained in its own cabling. In an alternative embodiment, the switch 4145 may have more than 2 positions.



FIG. 5
a is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and the non-axial protrusions do not extend beyond the width of the distal shaft (and the axis of comparison is that of the shaft as seen from a top view). In some embodiments, the tip may measure about 1 cm in width and about 1-2 mm in thickness. Sizes of about one-fifth to about five times these dimensions may also have possible uses.


In the embodiment depicted in FIG. 5a, the non-axial protrusions 551a of tip 501a do not extend beyond the width of the distal shaft 502a, which leads to handle 503a. In this embodiment, non-axial protrusions 551a extend in a direction that is at least substantially perpendicular to the direction in which axial protrusions 504a extend. More particularly, there are two sets of non-axial protrusions 551a (one depicted on the right side and one on the left side of the embodiment of FIG. 5a). Both sets of non-axial protrusions 551a extend in directions that are at least substantially perpendicular to the direction in which axial protrusions 504a extend (namely, along a longitudinal axis of the TDM shaft). In addition, it can be seen in FIG. 5a that the two sets of non-axial protrusions 551a extend in directions that are at least substantially opposite from one another.


In some embodiments, axial protrusions 504a may extend at least substantially along a longitudinal axis of the shaft, as described above, and non-axial protrusions 551a may extend at an angle of between zero degrees and 30 degrees of a normal to the direction in which the axial protrusions 504a extend. It is contemplated that it may desirable for some implementations and embodiments to provide non-axial tips extending in a direction or directions falling within this range in order to, for example, allow a surgeon to effectively perform both a to and fro, and a side-to-side (“windshield wiper”) motion using the TDM.


In some embodiments, the tip can be a separate piece that is secured to the shaft by a variety of methods such as a snap mechanism, mating grooves, plastic sonic welding, etc. Alternatively, in some other embodiments, the tip can be integral or a continuation of a shaft made of similar metal or materials. In some embodiments, the tip may also be constructed of materials that are both electrically non-conductive and of low thermal conductivity; such materials might comprise, for example, porcelain, ceramics, glass-ceramics, plastics, varieties of polytetrafluoroethylene, carbon, graphite, and graphite-fiberglass composites. In some embodiments, the tip may be constructed of a support matrix of an insulating material (e.g., ceramic or glass material such as alumina, zirconia). External power control bundles as previously described in other embodiments may connect to electrically conductive elements to bring RF electrosurgical energy from an electrosurgical generator down the shaft 502a to electrically conductive lysing elements 552a mounted in the recessions in between the protrusions 551a. In some embodiments, the protrusions may comprise bulbous protrusions. The tip shown in this embodiment has two relative protrusions and three relative recessions pointing along the main axis of the TDM and provides for a monopolar tip conductive element; the tip shown also has fourteen protrusions pointing in non-axial directions as well as fourteen relative recessions pointing in non-axial directions. In other embodiments the tip may have one or more non-axial protrusions and one or more non-axial relative recessions. In some embodiments the tip may have between 3 and 100 non-axial protrusions and relative recessions. In the depicted embodiment, the tip 501a may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics, cermets or ceramics. Lysing elements 552a may also be made partially or completely of a cermet material. Alternatively, in a further embodiment the tip may be constructed of insulation covered metals or electroconductive materials. The lysing segments may be located at the termini of conductive elements.


In the depicted embodiment, tip 501a which terminates in protrusions such as 504a and 551a may be made of materials that are both electrically non-conductive and of low thermal conductivity such as porcelain, epoxies, ceramics, glass-ceramics, plastics, or varieties of polytetrafluoroethylene. Alternatively, the tip may be made from metals or electroconductive materials that are completely or partially insulated. In some embodiments, the electrically conductive tissue lysing element(s) 552a may have any geometric shape including a thin cylindrical wire, and may be positioned within the relative recessions of the tip. The electrically conductive lysing element can be in the shape of a plate or plane or wire and made of any metal or alloy that does not melt under operating conditions or give off toxic residua. Optimal materials may include but are not limited to steel, nickel, alloys, palladium, gold, tungsten, silver, copper, and platinum. Metals may become oxidized thus impeding electrical flow and function.


In some embodiments, the shaft may be flat, rectangular or geometric in cross-section and/or substantially flattened. In some embodiments, smoothing of the edges of the shaft may reduce friction on the tissues surrounding the entrance wound. In some further embodiments, the shaft may be made of metal or plastic or other material with a completely occupied or hollow interior that can contain insulated wires, electrical conductors, fluid/gas pumping or suctioning conduits, fiber-optics, or insulation.


In some embodiments, shaft plastics, such as polytetrafluoroethylene, may act as insulation about wire or electrically conductive elements. In some embodiments, the shaft may alternatively be made partially or completely of concentrically laminated or annealed-in wafer layers of materials that may include plastics, silicon, glass, glass/ceramics, ceramics carbon, graphite, and/or graphite-fiberglass composites.


In FIG. 5a the depicted view of an embodiment of a TDM with an alternative energy window 507a on the upper side of the device may be configured to hold a thermochromic film. It should be noted that the term “energy window” is intended to encompass what is referred to as a planar-tissue-altering-window/zone in U.S. Pat. No. 7,494,488 and, as described herein, need not contain a thermochromic film in all embodiments. Additionally, the “energy window” may comprise a variety of other energy emitting devices, including but not limited to radiofrequency, microwave, light, intense pulsed light, LASER, thermal, and ultrasonic. Certain components of the energy window, such as the electro-conductive components of the energy window, could comprise a cermet. A second energy window 508a may also be included in some embodiments, and may comprise yet another thermochromic film or another variety of energy emitting device. In some embodiments, energy windows 507a and/or 508a may only be substantially planar, or may take on other cross-sectional shapes that may correspond with a portion of the shape of the shaft, such as arced, stair-step, or other geometric shapes/curvatures. In the embodiment depicted in FIG. 5a, energy window 507a is adjacent to protrusions 504a and 551a, however other embodiments are contemplated in which an energy window may be positioned elsewhere on the shaft 502a or tip 501a of the wand, and still be considered adjacent to protrusions 504a or 551a. For example, in an embodiment lacking energy window 507a, but still comprising energy window 508a, energy window 508a would still be considered adjacent to protrusions 504a and 551a. However, if an energy window was placed on handle 503a, such an energy window would not be considered adjacent to protrusions 504a or 551a.


In some embodiments, one or more sensors such as for example sensors 510a and 514a may be positioned on the device. The sensors 510a and 514a may comprise any of the sensors described in the specification herein. Other embodiments may comprise one or more sensors on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Sensors that may be useful include thermal sensors, photoelectric or photo optic sensors, cameras, etc. In some embodiments, one or more sensors may be used to monitor the local post passage electrical impedance or thermal conditions that may exist near the distal tip of the shaft or on the tip. Some embodiments may also comprise one or more sensors incorporating MEMS (Micro Electro-Mechanical Systems) technology, such as MEMS gyroscopes, accelerometers, and the like. Such sensors may be positioned at any number of locations on the TDM, including within the handle in some embodiments. In some embodiments, sensor 514a may comprise fiberoptic elements. In an embodiment, the sensor can be configured to sense a temperature of tissue adjacent to the apparatus during one or methods described herein. The temperature sensor may alternatively be configured or sense a temperature of one or more fluids adjacent to the apparatus such as for example tissue fluids and/or fluids introduced by the surgeon.


Temperature and impedance values may be tracked on a display screen or directly linked to a microprocessor capable of signaling control electronics to alter the energy delivered to the tip when preset values are approached or exceeded. Typical instrumentation paths are widely known, such as thermal sensing thermistors, and may feed to analog amplifiers which, in turn, feed analog digital converters leading to a microprocessor. In some embodiments, internal or external ultrasound measurements may also be taken during a procedure with the TDM. Sensors that may be useful include thermal sensors, photoelectric or photo optic sensors, cameras, etc. Temperature sensors that may be useful in connection with embodiments disclosed herein include, but are not limited to, resistance temperature sensors, such as carbon resistors, film thermometers, wire-wound thermometers, or coil elements. Some embodiments may comprise thermocouples, pyrometers, or non-contact temperature sensors, such as total radiation or photoelectric sensors.


In some embodiments, one or more electromagnetic delivery elements 515a may be positioned on tip or shaft. Other embodiments may comprise one or more electromagnetic delivery elements on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Electromagnetic delivery elements that may be useful include: LEDs, LASERs, fiberoptics, filaments, photoelectric materials, infrared emitters, etc.


In embodiments of tips with at least some non-axial placement of protrusion and or relative recessions, surgeons may implement the use of a fanning motion which may comprise a a ‘windshield wiper’ motion.



FIG. 5
b is an upper plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and some of the non-axial protrusions extend beyond the width of the distal shaft. In the depicted embodiment 501b represents the tip area which lies adjacent to shaft area 502b which is connected to handle area 503b; 504b represents an axially aligned protrusion; 551b represents a non-axially aligned protrusion; 552b represents a non-axially aligned relative recession; 507b represents a first energy window; 508b represents a second energy window; 510b and 514b represent sensor elements; 515b represents an electromagnetic radiation delivery element.



FIG. 5
b is an upper plan view illustrating the protrusions and lysing segments of an alternative embodiment of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and some of the non-axial protrusions extend beyond the width of the distal shaft. In the depicted embodiment 501b represents the tip area which lies adjacent to shaft area 502b which is connected to handle area 503b; 504b represents an axially aligned protrusion; 551b represents a non-axially aligned protrusion; 552b represents a non-axially aligned relative recession; 507b represents a first energy window; 508b represents a second energy window; 510b and 514b represent sensor elements similar to those previously discussed in other embodiments; 515b represents an electromagnetic radiation delivery element similar to those previously discussed in other embodiments.



FIG. 5
c is a lower plan view of the embodiment of FIG. 5a illustrating the protrusions and lysing segments of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in a non-axial direction and the non-axial protrusions do not extend beyond the width of the distal shaft. In the depicted embodiment 501a represents the tip area which lies adjacent to shaft area 502a which is connected to handle area 503a; 516a represents a fluid port; 517a represents a suction and/or vacuum port; 518a represents an antenna, such as an RFID TAG. In embodiments in which antenna 518a comprises an RFID tag, the RFID tag may comprise a RFID transponder. In other embodiments the RFID tag may comprise a passive tag. It should be understood that although antenna 518a is not depicted in every one of the other figures, any of the embodiments described herein may include one or more such locations. Other embodiments may comprise one or more antennas on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In some embodiments an RFID transponder or other antenna may comprise a microchip such as a microchip having a rewritable memory. In an embodiment the tag is millimeter sized. In some embodiments a reader generates an alternating electromagnetic field which activates the antenna/RFID transponder and data is sent via frequency modulation. In an embodiment, the position of the antenna/RFID tag is determined by an alternating electromagnetic field in the ultra-high frequency range. The position may be related to a 3 dimensional mapping of the subject. In an embodiment the reader may generate an alternating electromagnetic field. In a further embodiment the alternating electromagnetic field may be in the shortwave (13.56 MHz) or UHF (865-869 MHz) frequency.


In some embodiments, a suction/vacuum port 517a may be provided on or about the tip or distal shaft. The port may be fluidly coupled with a vacuum; the vacuum may comprise a pump or a negative pressure chamber or a syringe at the end of a fluid conduit. Other embodiments may comprise one or more suction/vacuum ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. In some embodiments, a fluid delivery port 516a may be provided. In some embodiments the fluid delivery port may be coupled with a pump or high pressure fluid. In some embodiments the port may be perpetually open such that fluid may be delivered therethrough upon actuation of a pump or fluid pressure system. In other embodiments the port may be closed and selectively opened to deliver fluid therethrough. Other embodiments may comprise one or more fluid ports on any other suitable location on the TDM, including but not limited to on the protrusions or otherwise on the tip, and on the shaft. Fluid ports that may be useful include channels within the TDM, polymer lines, etc. Fluids that may emanate from the port may include ionic fluids such as saline, medicines (including but not limited to antibiotics, anesthetics, antineoplastic agents, bacteriostatic agents, etc.), non-ionic fluids, and or gasses (including but not limited to nitrogen, argon, air, etc.). In some embodiments fluids and or gasses may be under pressure or sprayed. It should be understood that although elements 516a and/or 517a are not depicted in every one of the other figures, any of the embodiments described herein may include one or more such elements.


In some embodiments tip 501a may be attached to a robotic arm. In some embodiments tip 501a and portion of shaft 502a may be attached to a robotic arm. In some embodiments tip 501a and a portion of shaft 502a and or a portion of handle 503a may be attached to a robotic arm.



FIG. 5
d is a lower plan view of the embodiment of FIG. 5b illustrating the protrusions and lysing segments of a tissue dissector and modifier, wherein some of the protrusions and lysing segments are oriented in one or more non-axial directions and at least some of the non-axial protrusions extend beyond the width of the distal shaft. In the depicted embodiment tip area 501b represents the tip area which lies adjacent to shaft area 502b which is connected to handle area 503b; this particular embodiment also comprises fluid port 516b; suction port 517b; 518b represents an antenna, such as an RFID TAG. In embodiments in which the antenna comprises an RFID tag, the RFID tag may comprise a RFID transponder. In other embodiments the RFID tag may comprise a passive tag. It should be understood that although antenna 518b is not depicted in every one of the other figures, any of the embodiments described herein may include one or more such locations



FIG. 5
e is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier. This embodiment comprises a plurality of axial protrusions 504e (axially meaning at least substantially parallel to an axis of a corresponding TDM shaft). This embodiment further comprises a plurality of non-axial protrusions 551e along the right side of the tip and a plurality of non-axial protrusions positioned along the left side of the tip. The tip further comprises two non-axial corner protrusions 554e. The tip further comprises a plurality of recessions 552e. One or more of the recessions may further comprise a lysing segment 553e. 556e is an edge of the tip not populated with protrusions or relative recessions. 507e is a first energy window located in the base 555e of tip 501a; 557e is a tab that extends from base 555e and may be used to secure the tip within a corresponding shaft of a TDM device. Tab 557e may be made up of a ceramic material in some embodiments. Tab 557e may further comprise cut-out regions 558e to allow for a snap or fixation of the tip inside a corresponding TDM shaft.



FIG. 5
f is an upper plan view illustrating the protrusions and lysing segments of another embodiment of a tip area of a tissue dissector and modifier. This embodiment may comprise a plurality of axial protrusions 504f and a plurality of non-axial protrusions 551f. In addition, this embodiment comprises two transitional or corner protrusions 554f. A plurality of recessions 552f are also depicted, one or more of which may comprise corresponding lysing segments 553f. 556f is an edge of the tip not populated with protrusions or relative recessions. 555f is the base of tip 501f; a first energy window, may be at least partially located in a space 507f of hollow tab 557f of tip 501f. 557f is a tab that, as described above, may be used to secure the tip inside a corresponding shaft of a TDM device. The embodiment of FIG. 5f may further comprise a slot 558f in tab 557f to allow for a snap or fixation of the tip inside the shaft. In other embodiments, the base of the tip may also have a cavity or space to accommodate a portion of the distal shaft; also, the distal shaft may have a cavity or space to accommodate a portion of a tab of a tip.



FIG. 5
g is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier. This embodiment comprises a plurality of axial protrusions; this embodiment further comprises a plurality of non-axial protrusions 551g along the right side of the tip and a plurality of non-axial protrusions positioned along the left side of the tip. The tip further comprises two non-axial corner protrusions. The tip further comprises a plurality of recessions 552g. One or more of the recessions may further comprise a lysing segment 553g. 560g is a space within the base of the tip that may be used to secure a portion of a shaft within this TDM device tip.



FIG. 5
h is a lower plan view illustrating the protrusions and lysing segments of another embodiment of a tip area of a tissue dissector and modifier. This embodiment may comprise a plurality of axial protrusions and a plurality of non-axial protrusions 551h. In addition, this embodiment comprises two transitional or corner protrusions. A plurality of recessions 552h are also depicted, one or more of which may comprise corresponding lysing segments. A first energy window, may be at least partially located within a hollow space 507h which is in turn located between the legs of tab 557h of tip 501h. Tab 557h may be used to secure the tip inside a corresponding shaft of a TDM device. The embodiment of FIG. 5h may further comprise one or more slots in tab 557h to allow for a snap or fixation of the tip inside the shaft. The tip of FIG. 5h further comprises antenna 518h, such as an RFID tag.


The tips depicted in FIGS. 5a,b,c,d,e,f,g,h and FIGS. 6a,b,c,d are contemplated to be able to be used with any of the embodiments discussed herein. Said tips are not intended to be restricted to symmetry and/or pattern and/or dimension. In other embodiments said tips may be asymmetrical or lacking protrusions and/or lysing segments on one side or another.



FIG. 6
a is an upper plan view illustrating an embodiment of a tissue dissector and modifier with an asymmetrical tip area. More particularly, the embodiment of FIG. 6a comprises a plurality of axial protrusions 604a along the distal end of the tip 601a, and a plurality of non-axial protrusions 651a along a left side of the tip 601a. The right side of the tip 601a lacks any protrusions and thus also lacks recessions. Instead, the right side of the tip 601a comprises an at least substantially flat surface 659a. Since the left and right sides of tip 601a differ, the embodiment of FIG. 6a comprises an asymmetrical tip 601a. In addition, the non-axial protrusions 651a do not extend beyond the width of the distal shaft 602a, as shown in the figure. The embodiment of FIG. 6a further comprises a first energy window 607a positioned on tip 601a and a second energy window 608a positioned on shaft 602a. In addition, the embodiment of FIG. 6a comprises an electromagnetic delivery element 615a, a first sensor 610a and a second sensor 614a. Each of these three components is positioned on the shaft 602a. However, as previously described, in alternative embodiments, one or more such components may be located elsewhere on the device, such as on the tip 601a and/or handle 603a.



FIG. 6
b is an upper plan view illustrating another embodiment of a tissue dissector and modifier with an asymmetrical tip area. Like the embodiment of FIG. 6a, this embodiment comprises both axial and non-axial protrusions. However, unlike the embodiment of FIG. 6a, this embodiment comprises non-axial protrusions that extend beyond the width of the distal shaft 602b.


More particularly, the embodiment of FIG. 6b comprises a plurality of axial protrusions 604b positioned along the distal end of the tip 601b, and a plurality of non-axial protrusions 651b positioned along a left side of the tip 601b. The right side of the tip 601b lacks any protrusions and thus also lacks recessions. Like the embodiment of FIG. 6a, the right side of the tip 601b comprises an at least substantially flat surface 659b. Since the left and right sides of tip 601b differ, the embodiment of FIG. 6b also comprises an asymmetrical tip 601b. As previously mentioned, the non-axial protrusions 651b extend beyond the width of the distal shaft 602b.


Like the embodiment of FIG. 6a, the embodiment of FIG. 6b further comprises a first energy window 607b positioned on tip 601b and a second energy window 608b positioned on shaft 602b. In addition, the embodiment of FIG. 6b comprises an electromagnetic delivery element 615b, a first sensor 610b and a second sensor 614b. Each of these three components is positioned on the shaft 602b. However, as previously described, in alternative embodiments, one or more such components may be located elsewhere on the device, such as on the tip 601b and/or handle 603b.



FIG. 6
c is an upper plan view illustrating the protrusions and lysing segments of an embodiment of a tip area of a tissue dissector and modifier. The tip depicted in this figure is asymmetrical since side 659c lacks protrusions and the opposite side comprises non-axial protrusions 651c. This embodiment also comprises a corner protrusion 654c that extends at a transitional angle relative to axial protrusions 604c and non-axial side protrusions 651c. In some embodiments, one or more transitional angle is acute. In some embodiments, one or more transitional angles may be obtuse. As shown in the figure, protrusions 651c extend beyond the profile of the tip, and therefore may extend beyond a width of a corresponding shaft.


In some embodiments, the tip depicted in FIG. 6c may be modular such that the tip may be selectively added to, and removed from, a corresponding shaft of a TDM device. Such a modular system may allow a surgeon to, for example, dispose of the tip after or during a surgery due to debris build-up. Additionally, or alternatively, such a modular tip may allow a surgeon to use a variety of different tips useful for a variety of different types of surgical procedures. Tab 657c, which extends from base 655c of the tip, may be used to secure the tip to a corresponding TDM shaft. For example, some embodiments of TDM shafts may be configured with a slot configured to receive tab 657c. One or more clips, recesses, protrusions, or the like, may be used to secure the tab 657c within its corresponding slot, such as by way of a snap-fit engagement, for example. Alternatively, tab 657c may be configured to fit within a corresponding slot with a friction fit, adhesive, screws, bolts, rivets, or other fasteners.



FIG. 6
d is a lower plan view illustrating the protrusions and lysing segments of another embodiment of a tip area of a tissue dissector and modifier, wherein the tip is asymmetrical. The tip of FIG. 6d also comprises a tab 657d extending from base 655d and therefore, as described above in connection with the embodiment of FIG. 6c, may be modular such that the tip can be removed from and/or selectively coupled with a corresponding TDM shaft.


The tip of FIG. 6d further comprises a plurality of axial protrusions 604d, a plurality of side, non-axial protrusions 651d, and two corner protrusions 654d extending from opposing corners of the distal end of the tip. Unlike the embodiment of FIG. 6c, the side, non-axial protrusions 651d of the embodiment of FIG. 6d do not extend beyond the profile of the tip, and therefore may be configured so as to avoid extending beyond a width of a distal portion of a corresponding shaft of a TDM. The tip of FIG. 6d further comprises an antenna 618d, such as an RFID tag.


An embodiment of a system 700 for performing robotic surgery using a TDM is depicted in FIG. 7a. System 700 may comprise a tissue dissecting and modifying wand (TDM) 701. TDM 701 may comprise a tissue dissecting and modifying wand (TDM) that may, as described elsewhere herein, comprise a plurality of protrusions with one or more recessions positioned therebetween. TDM 701 may be coupled with one or more robotic surgery components, such as a surgical arm.


In some embodiments, TDM 701 may comprise a shaft, a tip, and/or a handle, as described elsewhere in this disclosure. In such embodiments, TDM 701 may be selectively coupled to a robotic arm such that the TDM 701 can either be used by hand, or coupled with one or more robotic surgery components to allow a surgeon to perform a surgical procedure with the TDM 701 remotely and/or indirectly. In other embodiments, the TDM may be configured to be integrally coupled with, or otherwise non-selectively coupled with, one or more robotic surgery components. In such embodiments, it may not be necessary to configure the TDM 701 with a handle and/or shaft. In other words, in some embodiments, the TDM 701 may comprise only a tip.


In some embodiments, the robotic surgery system 700 may comprise one or more motors, such as a screw-drive motor, gear motor, hydraulic motors, etc. In some embodiments, the robotic surgery system 700 may comprise worm gearheads, video cameras, motor control circuits, monitors, remote control devices, illumination sources, tactile interface, etc. In the embodiment depicted in FIG. 7a, TDM 700 comprises a TDM tip 701a that is positioned at the end of a robotic arm. This robotic arm comprises a plurality of arm segments 773 with corresponding joints 776 positioned therebetween. A primary joint 777 may be positioned to support and articulate together each of the arm segments 773 and smaller joints 776. Primary joint has a primary arm segment 774 that extends therefrom. Finer movements of the robotic arm may then be accomplished using one or more of the smaller joints 776.


A stand 781 may also be provided to support the various robotic arms. In some embodiments, stand 781 may also be configured to support a monitor 779 and/or other display, input, or control components, such as a control element 778. In some embodiments, control element 778 may comprise a hand control toggle 778. In other embodiments, control element 778 may comprise a keyboard, mouse, touchscreen display, virtual reality system, control pad, or the like. Monitor 779 and/or control element 778 may be communicatively coupled with a central processing unit 780.


Central processing unit 780 may comprise, for example, one or more microprocessors and/or other electronic components, such as data connectivity elements, memory, non-transitory computer readable media, etc. In some embodiments, central processing unit 780 may comprise a general-purpose computer. Central processing unit 780 may further comprise a machine-readable storage device, such as non-volatile memory, static RAM, dynamic RAM, ROM, CD-ROM, disk, tape, magnetic storage, optical storage, flash memory, or another machine-readable storage medium.



FIG. 7
b illustrates an alternative embodiment of a robotic arm 772 that may be used with system 700. Robotic arm 772 comprises an endoscopic snake-like robotic arm 772 and also comprises a TDM 701b positioned at its distal end. As with the embodiment of FIG. 7a, TDM 701b may be selectively coupled to robotic arm 772 or, alternatively, may be integrally or otherwise non-selectively coupled to robotic arm 772. Further details regarding robotic surgery components that may be useful in connection with the various embodiments disclosed herein may be found in the following U.S. patent Nos., each of which is hereby incorporated by reference in its entirety: U.S. Pat. No. 4,259,876 titled Mechanical Arm, U.S. Pat. No. 4,221,997 titled Articulated Robot Arm and Method Of Moving Same, U.S. Pat. No. 4,462,748 titled Industrial Robot, U.S. Pat. No. 4,494,417 titled Flexible Arm, Particularly a Robot Arm, U.S. Pat. No. 4,631,689 titled Multi-Joint Arm Robot Apparatus, U.S. Pat. No. 4,806,066 titled Robotic Arm, U.S. Pat. No. 5,791,231 titled Surgical Robotic System and Hydraulic Actuator Therefor, U.S. Pat. No. 7,199,545 titled Robot For Surgical Applications, U.S. Pat. No. 7,316,681 titled Articulated Surgical Instrument For Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity, U.S. Pat. No. 8,182,418 titled Systems and Methods for Articulating An Elongate Body, U.S. Pat. No. 8,224,485 titled Snaking Robotic Arm With Movable Shapers.


Any of the embodiments of TDM discussed herein including, but not limited to, the embodiments discussed with FIGS. 1a-g, FIGS. 2a-c, FIGS. 3a-c, FIGS. 4a-b, FIGS. 5a,b,c,d,e,f,g,h and FIGS. 6a,b,c,d, etc. may be used in conjunction with one or more of the robotic surgery elements disclosed in connection with FIGS. 7a-b.



FIG. 8 depicts a flow chart of an implementation of an energy emission-sensor feedback loop 800 according to this disclosure: Step 805 may comprise: setting one or more temperatures (a desired maximal temperature threshold, or a range). In other implementations one or more such temperatures may be preset by the manufacturer. Step 810 may comprise setting one or more energy levels to lysing area and/or energy windows (a desired maximal energy threshold, or a range). In other implementations energy levels may be preset by the manufacturer. Step 815 may comprise passing the TDM through or by the target tissue area. Step 820 may comprise applying electrosurgical energy at lysing areas. Step 825 may comprise applying energy at the energy window(s). In some implementations energy may be only applied at the lysing segments. In other implementations, energy may only be applied to the energy window(s). Step 830 may comprise gathering sensor data, such as temperature data. Step 835 may comprise comparing sensor data to one or more set temperature levels. Step 840 may comprise, if the sensed temperature exceeds the threshold, reducing the amount of energy delivered through the lysing segments and/or the energy window(s).


One implementation of a method 900 according to this disclosure for accessing an organ with the assistance of a TDM is shown in FIG. 9. In some implementations, surgeon(s) may need to access tissue and/or an organ to repair or treat it. In some implementations, the skin surrounding the anticipated entrance wound for the surgical area may be cleansed by, for example, with isopropyl alcohol (degreaser) followed by germicidal chlorhexidine scrub. Then, a local anesthetic may be applied (such as by injecting) 1% lidocaine+1:10,000 adrenaline to the skin.


Step 905 may comprise, for minimally invasive procedures or minimally invasive entrance wounds, performing a limited incision to allow passage of the maximal width of the tip or shaft of the TDM. Step 905 may be performed with, for example, a #15 Bard-Parker™Scalpel. This incision may be deepened by scalpel, scissors or other surgical instrument to enter the desired body structure or cavity. For larger approaches, such as open abdominal surgery or trauma surgery step 905 may comprise the initial skin opening or body cavity opening steps of such a procedure. In some implementations, step 905 may comprise making the skin incision using the lysing segments of the TDM. Step 910 may comprise: applying one or more fluids to the tissues. In some implementations, step 910 may comprise applying fluids to the target tissue(s). In some implementations, step 910 may comprise applying fluids to the tissues to be traversed en route to the target tissue, in addition to, or as an alternative to applying fluids directly to the target tissue(s). In some implementations, the fluid(s) may comprise water. In some implementations, the fluid(s) may comprise an ionic fluid, such as a saline solution. The fluid(s) may be applied to the tissue via, for example, injection, or TDM fluid port or via a separate cannula or catheter or via pouring or via spray. In some implementations, the fluid(s) may comprise an ionic fluid and an anesthetic, such as a tumescent anesthesia. Non-ionic fluids may be used in other implementations; such fluids may become more ionic by diffusion of some of the patients' ions present in the surgical field. In some implementations step 910 may comprise applying one or more fluids that serve as an ionic fluid, and/or an anesthetic, and/or adrenaline. In some such implementations, the fluid(s) may comprise a Klein Formula. In some implementations, the Klein formula and amount used may be about 100 cc of Klein Formula with saline, 0.1% lidocaine, epinephrine 1:1,000,000, and NaHCO3 @5 meq/L of saline).


Step 915 may comprise: passing the TDM through the various layers of tissue to create a path to a target organ. In some implementations, creating a path to a target organ or other target tissue may comprise creating a path from the incision to the target organ or other target tissue and/or creating a path around the target organ or other target tissue to allow for access to other regions of the target organ or other target tissue. In some implementations step 915 may further comprise activating the lysing segments and/or energy window to reduce bleeding or tissues traversed on the way to the target organ. In some implementations, the lysing segments and/or energy window may be used to induce fibrosis along the path, including along a path that may traverse the perimeter of the target organ/tissue. In some implementations, the TDM and/or the anticipated path may be visualized using for example an endoscope, a fiberoptic or camera, an RFID tag or other antenna. In some implementations, such a device or devices may be positioned on the TDM. In other implementations such a device or devices may be separate from the TDM. In some implementations, heat may be produced or energy may otherwise be released in the tissues through which the TDM is passed. In some implementations, heating portions of the tissues the TDM passes by may be undesirable. As such, in some implementations, undesirable heating of such layers may be mitigated by applying a cooling step antecedent and or concurrent with energy delivery with the TDM. Such steps may comprise use of one or more cooling fluids delivered via the TDM or one or more separate catheters or cannulas or endoscopes. Such cooling mechanism(s) may comprise for example, a closed water bag. Such a bag may be at a temperature of less than 37° C. In some implementations, cooling objects such as fluid or gel filled bags may be used that may range in temperature between about 1° C. to about 20° C. In some such implementations, the fluid or gel may be about 15° C. Other cooling mechanisms may comprise a dynamic cooling system wherein a cool liquid or gel is actively pumped into or through a contact cooling object. Step 920 may comprise identifying important blood vessels, nerves, ducts, organs or other anatomy in the area surrounding the target tissue. Step 925 may comprise: adding additional fluids of the types previously described to the target and/or surrounding tissues via the TDM port(s) or via one or more separate catheters or cannulas or endoscopes. Step 930 may comprise: expanding one or more regions of the path to the target tissue. In some implementations, step 930 may comprise expanding one or more path(s) from the incision to the target tissue. In some implementations, step 930 may comprise expanding a region around the target tissue such as for example, via a fanning motion. In some implementations, one or more of the other steps described herein using the TDM may also be performed with a fanning motion. In implementations using TDMs with axially oriented protrusions, such a fanning motion may comprise a to and fro spokewheel pattern. In implementations using TDMs with nonaxially oriented protrusions, such a fanning motion may comprise a side-to-side fanning motion; one example of a fanning motion using a TDM having at least one nonaxially oriented protrusion may comprise a ‘windshield wiper’ motion. In some implementations, step 930 may further comprise activating the energy to the TDM for example the energy to the lysing segments and/or one or more energy windows. Step 935 may comprise: observing for bleeding from larger vessels and achieving hemostasis as needed. In some implementations achieving hemostasis may be accomplished by cautery, electrifying, ligating, or chemical methods. In some implementations, the lysing segment and/or the energy window can be used to achieve the hemostasis. In some implementations, one or more other devices and/or suture and/or surgeon's hands may be used to achieve hemostasis for larger vessels. Step 940 may comprise: removing the TDM with power off and suturing the wound in the standard fashion. In some implementations, the tissues traversed may require closure by suturing and/or stapling. In some implementations, organs and/or organ systems that the TDM may be useful to access may include but not limited to muscle, and/or parotid, and/or salivary gland, and/or thyroid, and/or lung, and/or heart, and/or gastrointestinal, and/or liver, and/or pancreas, and/or spleen, and/or gallbladder, and/or kidney, and/or adrenal, and/or prostate, and/or ovary, and/or uterus, and/or bladder, and/or vascular, and/or lymph nodes and/or skeleton, and/or lung.



FIG. 10 depicts an embodiment of a modular TD 1000 comprising a tip 1001, a flexible shaft 1002, and an endoscope handle 1003. Tip 1001 is modular in that it is removable from flexible shaft 1002. More particularly, tip 1001 comprises a means for removably coupling the tip with a shaft at 1068. In the depicted embodiment, this coupling means comprises a tip plug 1068. In some embodiments, tip plug 1068 may be threaded to facilitate a secure coupling between modular tip 1001 and shaft 1002. However, in other embodiments, the coupling means may comprise a recess configured to receive a plug formed on the shaft. In still other embodiments, the coupling means may comprise a snap-fit coupling, a friction fit coupling, a bayonet clip, etc.


In the depicted embodiment, tip plug 1068 is configured to be received within a corresponding recess 1069 formed within shaft 1002. In some embodiments, tip plug 1068 may be configured to electrically couple tip 1001 with shaft 1002. In this manner, in embodiments comprising, for example, lysing segments, electricity from a power source may be transmitted through the coupling between plug 1068 and recess 1069 to allow for energizing the lysing segments. Other embodiments may be configured to transfer additional electricity, data, or materials through such coupling. For example, in embodiments comprising one or more sensors on tip 1001, a signal from such sensor(s) may be transmitted through shaft 1002 by way of the coupling means 1068.


In some embodiments, tip 1001 may be disposable as well, such that a surgeon can place an appropriate tip on the shaft and remove and dispose of the tip after surgery. Alternatively or additionally, a plurality of different tips may be provided, each of which may be disposable, or may be configured for sterilization and re-use, and an appropriate tip may be selected as needed for a particular surgery.


In the depicted embodiment, tip 1001 comprises a plurality of protrusions 1004, some of which are non-axial, and a plurality of recessions 1005 positioned therebetween, as described above. In some embodiments a tip comprising only axial protrusions may be swapped for tip 1001 as desired to suit a particular surgical procedure.



FIG. 11 depicts a flow chart of an implementation of a method for separating and/or modifying tissue using a TDM. In this particular implementation, the use of combined data from the tissue dissecting and modifying wand generated from at least the temperature sensor and the antenna(s) may be used to provide suitable feedback to a user during treatment. In some implementations, the TDM Wand may comprise a tip comprising a plurality of protrusions. One or more lysing segments may be positioned between at least two adjacent protrusions among the plurality of protrusions. A temperature sensor may be positioned on the TDM. The temperature sensor may be configured to sense a temperature of at least one of tissue and fluid adjacent to the tissue dissecting and modifying wand during an operation. The fluid of which a temperature reading is taken may comprise, for example, fluid from adjacent tissue(s) and/or fluid introduced during the procedure by way of the TDM and/or another device or procedure. The TDM may also comprise an antenna(s) such as an RFID tag positioned on the TDM. In some implementations, the antenna(s) may be positioned on the tip and/or distal end of the shaft, such as on a bottom surface of the tip and/or distal end of the shaft. The antenna(s) may be configured to provide location data regarding a location of the TDM, such as a particular portion or region of the TDM for example, during an operation or procedure. Although method 1100 is shown in the figure beginning with step 1105, it should be understood that any of the preliminary steps described above in connection with other implementations may be performed in method 1100 as well. For example, one or more of steps (905-930) from method 900 may be performed in method 1100 if desired. Similarly, one or more other steps of any of the other implementations described herein may also be included in the method depicted in FIG. 11. In some implementations, step 1105 may comprise: receiving data from the tissue dissecting and modifying wand temperature sensor. Step 1110 may comprise receiving data from the antenna(s) such as RFID tag data. Step 1115 may comprise combining the data generated from at least the temperature sensor and the antenna(s). In some implementations, the data from the temperature sensor and the antenna(s) may be combined before it is received. In other words, a step of “receiving combined data from the tissue dissecting and modifying wand generated from at least the temperature sensor and the antenna(s)” may comprise receiving precombined data (data from the temperature sensor and the antenna(s) that was combined before it was received) or, alternatively, may comprise separately receiving temperature data and antenna(s) data that may be combined to allow for one or more particular features or functionalities. The combined data may be used to allow a surgeon or other user to determine one or more regions within a patient's body that have been adequately treated using the TDM wand. For example, in some implementations, the combined data may allow a user to visualize one or more regions within a patient's body, such as one or more regions that have been sufficiently treated. This may be accomplished, for example, by creating an image corresponding with one or more regions of a patient's body. Such image or images may be highlighted, receive color changes, or otherwise modified on a display to indicate to the user which regions have been adequately treated. In some implementations, such regions may correspond with regions comprising tissue that has reached a predetermined threshold temperature.


In a more general implementation of a method according to this disclosure for dissection and modification of tissues, a first step may comprise creating an incision into a patient's skin.


A second step may comprise inserting a Tissue Dissecting and Modifying Wand into the incision and positioning the Tissue Dissecting and Modifying Wand within the body. The Tissue Dissecting and Modifying Wand may comprise a tip having a plurality of protrusions with lysing segments positioned between the protrusions. The Tissue Dissecting and Modifying Wand may also comprise an energy window positioned on top of the Tissue Dissecting and Modifying Wand that is configured to deliver energy to modify tissues.


A third step may comprise fanning out the Tissue Dissecting and Modifying Wand to define a target region within which to dissect and modify tissues. This step may comprise separating tissue using the lysing segment(s) to define the target region. During this step, in some implementations, the patient's target tissue may be placed under tension by stretching/tightening the skin at the target region during the fanning/tissue separation.


A fourth step may comprise activating the energy window and moving the energy window around within the target region for hemostasis and/or to induce postoperative fibrosis. Alternatively, the energy window may be activated prior to the third step such that the step of fanning out the Tissue Dissecting and Modifying Wand to define the target region also comprises heating tissues to induce fibrosis and/or hemostasis within the target region.


In another embodiment of a method for separating and modifying tissue using a tissue dissecting and modifying wand, the method may comprise creating an incision into a patient's skin. A tissue dissecting and modifying wand may be inserted into the incision. The tissue dissecting and modifying wand may comprise a tip comprising a plurality of protrusions; at least one lysing segment positioned between at least two adjacent protrusions among the plurality of protrusions; and an energy window configured to deliver energy to tissue adjacent to the tissue dissecting and modifying wand during a procedure. The energy window may comprise a thermochromic media, wherein the thermochromic media is configured to absorb electromagnetic radiation energy and emit heat energy from the energy window, and wherein the energy window is positioned and configured to deliver the heat energy from the tissue dissecting and modifying wand to tissue adjacent to the tissue dissecting and modifying wand during a procedure.


The tissue dissecting and modifying wand may further comprise a radiofrequency identification tag positioned on the tissue dissecting and modifying wand and configured to provide location data regarding a location of the tissue dissecting and modifying wand during a procedure. In such implementations, data may be received from the tissue dissecting and modifying wand generated from the radiofrequency identification tag, wherein the data allows a user to determine one or more regions within a patient's body that have been treated using energy from the thermochromic energy window.


In another implementation of a method for separating and modifying tissue using a tissue dissecting and modifying wand, the tissue dissecting and modifying wand may comprise a tip comprising a first plurality of protrusions and a second plurality of protrusions, wherein the first plurality of protrusions is positioned to at least substantially extend in a first direction, and wherein the second plurality of protrusions is positioned to at least substantially extend in a second direction distinct from the first direction; at least one lysing segment positioned between at least two adjacent protrusions in the first plurality of protrusions; at least one lysing segment positioned between at least two adjacent protrusions in the second plurality of protrusions; and a radiofrequency identification tag positioned on the tissue dissecting and modifying wand and configured to provide location data regarding a location of the tissue dissecting and modifying wand during a procedure. In such implementations, the method may comprise a step of receiving data from the tissue dissecting and modifying wand generated from the radiofrequency identification tag, wherein the data allows a user to locate the tissue dissecting and modifying wand during a procedure. In this manner, the RFID tag data may allow a user to, for example, visualize a current location of the TDM, view information sufficient to guide a user toward a target area within a patient, and/or view information sufficient to determine one or more locations within a patient that have been sufficiently treated using the TDM (such as the energy window, for example).



FIG. 12 depicts an embodiment of a modular TD 1200 comprising a tip 1201, a electrosurgical ‘pencil’ shaft 1202, and an electrosurgical ‘pencil’ handle 1203. Rocker switch 1203.2 located on or about handle 1203 and/or shaft 1202 may control the electrosurgical energy/energies derived from an electrosurgical generator (not seen in this view) brought into the handle via conduit 1211.2. Tip 1201 is modular in that it is removable from shaft 1202. More particularly, tip 1201 comprises a means for removably coupling the tip with a shaft at 1268. In the depicted embodiment, this coupling means comprises a tip plug 1268. In some embodiments, tip plug 1268 may be threaded to facilitate a secure coupling between modular tip 1201 and shaft 1202. However, in other embodiments, the coupling means may comprise a recess configured to receive a plug formed on the shaft. In still other embodiments, the coupling means may comprise a snap-fit coupling, a friction fit coupling, a bayonet clip, etc.


In the depicted embodiment, tip plug 1268 is configured to be received within a corresponding recess 1269 formed within shaft 1202. In some embodiments, elements within tip plug 1268 and/or recess 1269 may be electrically connected with electrical elements within shaft 1202 and/or handle 1203 which are in turn connected with switch 1203.2 and/or conduit 1211.2. In some embodiments, tip plug 1268 may be configured to electrically couple tip 1201 with shaft 1202. In this manner, in embodiments comprising, for example, lysing segments, electricity from a power source may be transmitted through the coupling between plug 1268 and recess 1269 to allow for energizing the lysing segments.


In some embodiments, tip 1201 may be disposable as well, such that a surgeon can place an appropriate tip on the shaft and remove and dispose of the tip after surgery. Alternatively or additionally, a plurality of different tips may be provided, each of which may be disposable, or may be configured for sterilization and re-use, and an appropriate tip may be selected as needed for a particular surgery.


In the depicted embodiment, tip 1201 comprises a plurality of protrusions 1204, some of which are non-axial, and a plurality of recessions 1205 positioned therebetween, as described above. In some embodiments a tip comprising only axial protrusions may be swapped for tip 1201 as desired to suit a particular surgical procedure.


In some embodiments, the plug connection may be made tighter by things such as putting screw threads and/or a hole for a twisted wire and/or a jacket and/or a form-fit and/or a spear prong, etc., in one or more portions of the receiving or the giving portions of the plug; such things may prevent rotation of the tip in/on certain devices.


An example of an embodiment of an apparatus according to this disclosure for tissue dissection and modification may comprise:


a handle;


a tip comprising a plurality of protrusions having one or more lysing segments positioned between the protrusions; and


an energy window positioned on an upper side of the apparatus, wherein the energy window comprises a thermochromic media, and wherein the thermochromic media is configured to absorb electromagnetic radiation energy and emit heat energy from the energy window.


In some embodiments as described above, the energy window may comprise a LASER that is configured to deliver energy to the thermochromic media such that the thermochromic media can then emit heat energy from the energy window.


An example of an embodiment of an apparatus according to this disclosure for tissue dissection and modification may comprise:


a handle;


a tip comprising a plurality of protrusions having one or more lysing segments positioned between the protrusions; and


an energy window positioned on an upper side of the apparatus, wherein the energy window comprises a thermochromic media, and wherein the thermochromic media is configured to absorb electromagnetic radiation energy and emit heat energy from the energy window.


In some embodiments as described above, the energy window may comprise a LASER that is configured to deliver energy to the thermochromic media such that the thermochromic media can then emit heat energy from the energy window.


It will be understood by those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles presented herein. For example, any suitable combination of various embodiments, or the features thereof, is contemplated.


Any methods disclosed herein comprise one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified.


Throughout this specification, any reference to “one embodiment,” “an embodiment,” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.


Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles set forth herein.


Furthermore, the described features, components, structures, steps, or characteristics may be combined in any suitable manner in one or more alternative embodiments and/or implementations. In other words, any of the features, components, structures, steps, or characteristics disclosed in any one disclosed embodiment may be combined with features, components, structures, steps, or characteristics of other disclosed embodiments.

Claims
  • 1. A removable tip for a surgical tool, comprising: a plurality of protrusions;at least one recessed region positioned between at least a subset of the adjacent protrusions;at least one lysing segment positioned in at least one of the recessed regions; anda means for removably coupling the tip with a shaft of a surgical tool.
  • 2. The removable tip of claim 1, wherein the means for removably coupling the tip with a shaft of a surgical tool comprises a plug configured to be received within a recess of the surgical tool.
  • 3. The removable tip of claim 2, wherein the means for removably coupling the tip with a shaft of a surgical tool comprises a recess formed in the removable tip.
  • 4. The removable tip of claim 3, wherein the recess is configured to receive a pin of the surgical tool.
  • 5. The removable tip of claim 1, wherein the means for removably coupling the tip with a shaft of a surgical tool further comprises an electrically conductive portion configured to electrically couple with a corresponding electrically conductive portion of the surgical tool.
  • 6. The removable tip of claim 5, wherein the electrically conductive portion is electrically coupled with the at least one lysing segment.
  • 7. The removable tip of claim 6, wherein the electrically conductive portion is configured to deliver electrosurgical current from the surgical tool to the at least one lysing segment.
  • 8. The removable tip of claim 1, wherein the surgical tool comprises an endoscope.
  • 9. The removable tip of claim 1, wherein the shaft comprises a rigid shaft.
  • 10. The removable tip of claim 1, wherein the tip is disposable.
  • 11. A surgical system, comprising: a surgical tool comprising a shaft; anda plurality of modular tips, wherein at least a subset of the plurality of modular tips is distinct from at least a subset of the other modular tips in the plurality of modular tips to provide for distinct functions for particular surgical procedures, and wherein each of the plurality of modular tips comprises: a plurality of protrusions;at least one recessed region positioned between at least a subset of the adjacent protrusions; anda means for removably coupling the modular tip with the shaft of the surgical tool.
  • 12. The surgical system of claim 11, wherein at least a subset of the plurality of modular tips comprises: a first plurality of protrusions; anda second plurality of protrusions, wherein the first plurality of protrusions is positioned to at least substantially extend in a first direction when the modular tip is coupled with the shaft, and wherein the second plurality of protrusions is positioned to at least substantially extend in a second direction distinct from the first direction when the modular tip is coupled with the shaft.
  • 13. The surgical system of claim 12, wherein the first direction extends at least substantially along a longitudinal axis of the shaft when the modular tip is coupled with the shaft.
  • 14. The surgical system of claim 13, wherein the second direction extends at least substantially perpendicular to the second direction when the modular tip is coupled with the shaft.
  • 15. The surgical system of claim 13, wherein the second direction extends at an angle between zero degrees and thirty degrees of a normal to the first direction when the modular tip is coupled with the shaft.
  • 16. The surgical system of claim 11, wherein at least a subset of the plurality of modular tips is disposable.
  • 17. The surgical system of claim 11, wherein each of the plurality of modular tips further comprises at least one lysing segment positioned in at least one of the recessed regions.
  • 18. An apparatus for tissue separation and modification, comprising: a handle;a shaft positioned at a distal end of the handle; anda tip positioned at a distal end of the shaft, wherein the tip comprises a plurality of protrusions and at least one lysing segment positioned between at least two adjacent protrusions in the plurality of protrusions; andan energy window comprising a thermochromic media, wherein the thermochromic media is configured to absorb electromagnetic radiation energy and emit heat energy from the energy window, and wherein the energy window is positioned and configured to deliver the heat energy from the apparatus to tissue adjacent to the apparatus during an operation.
  • 19. The apparatus of claim 18, wherein the thermochromic media is configured such that the temperature of the energy window cannot exceed a threshold temperature.
  • 20. The apparatus of claim 18, further comprising a fiber optic cable configured to deliver LASER energy to the thermochromic media.
Provisional Applications (3)
Number Date Country
61748037 Dec 2012 US
61751239 Jan 2013 US
61760628 Feb 2013 US
Continuation in Parts (1)
Number Date Country
Parent 13759969 Feb 2013 US
Child 13802731 US