This application is related to co-pending U.S. patent application Ser. No. 11/242,705, filed on Oct. 3, 2005, and entitled “Method and Apparatus for cleaning a wafer bevel edge and notch using a pin and an abrasive film cassette,” which is incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to semiconductor wafer processing, and more particularly, to a method and apparatus for cleaning substrate edges before, during and after fabrication operations.
2. Description of the Related Art
In the semiconductor chip fabrication process, it is well known that there is a need to clean the surface of the substrate (e.g., wafer) of unwanted residues to maximize the yield of defect-free chips. Unwanted residues are sometimes left behind during fabrication operations. Examples of fabrication operations include plasma etching, material depositions, and chemical mechanical planarization (CMP). CMP is a typical polishing technology and is performed on both dielectric and conductive materials.
During the plasma etching process, the surface of the wafer exposed to the plasma is etched. The etching produces byproducts due to the physical and chemical reactions of the etch gases and the materials being etched. The byproducts can adhere to the wafer edge, bevel and underside where the ion bombardment is minimal. In the deposition process, metals are commonly deposited over previously formed dielectric features such as interconnect trenches and vias. During this deposition, it is possible that excess metal material is inadvertently deposited on the edge of the wafer. During the CMP process, chemical slurries such as silica-based slurry, dispersed silica, fumed or dispersed alumina are used to facilitate the removal of oxides and metals. Residues from the CMP process are also likely to adhere to the edges of the wafer, even after some later cleaning steps. The residue materials and particles noted above will tend to orient themselves on unprotected portions of the wafer and condense along the edge, notch, edge exclusion regions and the underside of the wafer. These residues tend to harden over the fabrication cycles and will result in what is referred to as “bevel polymer”, due to their structure and chemical composition. Bevel polymers have unique properties, in that they adhere to each other and to the wafer surface with a strong bond, and the bond is relatively hard to break. If the bevel polymer is not removed during wafer processing, the bevel polymer may flake off and can deposit on surfaces of other wafers during wafer transport and storage. Further, the flakes can cause defects, such as scratches on the wafer surfaces, inappropriate interactions between metallization features, etc. These defects have the downside of causing yield loss.
Several well-known techniques have been suggested and implemented to address the issue of cleaning the wafer edges with varying degrees of success. Brush scrubbing and edge scrubbing techniques have been used. However, these techniques use soft materials (e.g., polyvinyl alcohol ‘PVA’) that are designed to prevent scratching of the wafer surface. Thus, these soft materials are not capable of breaking the strong bond of the bevel polymers deposited on the wafer edges.
In view of the foregoing, there is a need for an apparatus and method for enhancing wafer edge cleaning.
The present invention fills the need by providing an improved apparatus, system and method for cleaning bevel polymer deposited on a wafer edge. It should be appreciated that the present invention can be implemented in numerous ways, such as a process, an apparatus, a system, a device or a method.
The present invention provides a composite applicator that cleans bevel polymers deposited on wafer edges using frictional contact. The composite applicator includes a support material and a plurality of abrasive particles distributed throughout and within the support material. The composite applicator cleans the edge of the wafer by allowing frictional contact of the plurality of abrasive particles with the edge of the wafer in the presence of liquid chemicals to cut, rip, and tear the bevel polymer from the wafer edge.
One embodiment includes a system for cleaning bevel polymers deposited on wafer edges. In this system, a substrate supporting device is used to receive and support the wafer in a selected plane. A composite applicator, having a support material and a plurality of abrasive particles, is brought in frictional contact with the edge of the wafer to scrub the bevel polymer build-up on the edge of the wafer. The abrasive particles have a hardness level greater than a hardness level of the bevel polymer. The frictional contact of the abrasive particles and a fluid, such as liquid chemicals, introduced into or on to the support material help in breaking up the bevel polymer build-up on the wafer edge during cleaning process.
Another embodiment includes a method to clean an edge of a substrate. The method includes applying an edge of a substrate, with bevel polymer build-up, to a composite material defined by a support material in which a plurality of abrasive particles is distributed. The abrasive particles have a hardness level greater than a hardness level of the bevel polymer. A fluid, such as liquid chemicals, is applied to the support material within the composite material to assist in breaking up the bevel polymer build-up on the wafer edge and to provide lubrication to the wafer surface during the cleaning process. Exposing the wafer edge to liquid chemicals while simultaneously having the abrasive particles in frictional contact with the edge of the wafer helps in cutting and tearing the bevel polymer from the edge of the wafer.
Other advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating the principles of the present invention.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings should not be taken to limit the invention to the preferred embodiments, but are for explanation and understanding only.
a, 1b and 1c illustrate edge of a wafer before, during and after cleaning process.
a illustrates the top view of the composite applicator of the present invention.
b illustrates the side view of the composite applicator in
a and 3b illustrate the top view and side view of the composite applicator with optional back brush, in one embodiment of the present invention.
a illustrates the side cross-sectional view of a composite applicator receiving an edge of a wafer, in accordance with one embodiment of the present invention.
b illustrates the side cross-sectional view of a composite applicator, embedded in a solid material, receiving an edge of a wafer, in accordance with another embodiment of the present invention.
Several embodiments for an improved and more effective wafer edge cleaning apparatus, system and method will now be described. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
Wafer edge cleaning apparatus, systems and methods are very important to the ultimate quality of the resulting semiconductor products, e.g., microchips. In the present invention, the bevel polymers deposited on the wafer edges are treated with mechanical and chemical scrubbing that cuts, tears and removes the bevel polymers from the wafer edge.
In this document, the term wafer and substrate are used inter-changeably to refer to a thin slice of a semi-conductor material (usually silicon), from which microchips are made. The substrate can also be a flat panel substrate, which typically takes on a rectangular or square shape. In this document, the term composite material and composite applicator are used inter-changeably to refer to a compliant and porous support material in which a plurality of abrasive particles is distributed.
a shows an edge of a wafer 102 with a bevel polymer 104 before the cleaning process. As shown, the bevel polymer 104 is formed on the outer curvature and back underside curvature of the edge of the wafer 102 with more concentration on the back underside curvature of the edge of the wafer 102. This concentration of the bevel polymer 104 is common due to the nature of the fabrication operations and the placement of the wafer 102 in various tools during different stages of the fabrication process.
a shows a top view of a substrate cleaning apparatus, in accordance with one embodiment of the present invention. The substrate cleaning apparatus includes a composite applicator 106 that is placed in frictional contact with an edge of a wafer 102. The composite applicator 106 is made of a support material that makes up the body of the composite applicator 106. The body of the support material is compliant so that when the edge of a wafer 102 is applied to the support material, the support material compresses allowing the wafer edge to be at least partially pressed into the support material. The support material also acts as a conduit for fluids, such as liquid chemicals, that aid in wafer edge cleaning. This is possible by having the support material made up of a porous material such as polyvinyl alcohol (PVA), polyurethane, polymer resin or foam.
Liquid chemicals are introduced and distributed within or on to the support material to provide lubrication to the wafer surface and to assist in the breakdown of bevel polymer 104. Continuous exposure to these liquid chemicals breaks down the bevel polymer 104 deposited on the wafer 102 surface. Some examples of liquid chemicals used and their composition that has shown promising results in the wafer edge cleaning process of the present embodiment are: a) about 1% to about 29% by weight of Ammonium hydroxide to de-ionized water; or b) about 1 part/1000 parts dilution of 49% by weight of hydrogen fluoride to de-ionized water. Hydrogen fluoride in aqueous solution of de-ionized water has proved effective for more aggressive cleaning of bevel polymer 104.
In addition to the support material, the composite applicator 106 includes a plurality of abrasive particles 105 distributed within and throughout the support material. The distribution of the plurality of abrasive particles 105 can be random or can be uniform. In this embodiment, the distribution of the plurality of abrasive particles 105 is considered random. The ratio of the plurality of abrasive particles 105 to the support material can depend on the bevel polymer 104 deposit and the level of frictional contact that is needed to scrape the bevel polymer 104 deposit from the edge of the wafer 102.
The plurality of abrasive particles 105 are chosen such that they are capable of removing the bevel polymer 104 from the edge of wafer 102 without scratching or damaging the surface of the wafer 102. One preferred method of achieving the goal is to include in the plurality of abrasive particles one that has a hardness level that is greater than hardness level of the bevel polymer 104 but less than hardness level of wafer 102 surface. The hardness level of at least one of the plurality of abrasive particles 105 is greater than the hardness level of the bevel polymer 104 to facilitate scrubbing and removal of the bevel polymer 104 from wafer edge. By keeping the hardness level of the abrasive particles 105 lower than the hardness level of the wafer 102 surface, the wafer 102 surface is protected from scratches and other damage. The hardness level of at least one of plurality of abrasive particles 105, that is known to work in this embodiment of the invention, is between about 3 Mohs and about 7 Mohs. Examples of abrasive particles 105 include titanium oxide, zirconium oxide, or amorphous silicon oxide.
Continuing reference to
In addition, the velocity v1 and v2 can be varied, so long as enough frictional contact is made between the abrasive particles 105 of the composite applicator 106 and the edge of the wafer 102. Further, it is desirable that hydroplaning between the composite applicator 106 and the wafer edge be reduced or controlled, so that the desired level of friction between the abrasive particles 105 of the composite applicator 106 and any bevel polymer 104 on wafer 102 edge is maintained. In this manner, a controlled amount of frictional force is imparted by the abrasive particles 105 of the composite applicator 106 on the bevel polymer 104, yet the abrasive particles 105 do not scratch the wafer 102. As noted above, the abrasive particles 105 are chosen such that at least one of the plurality of abrasive particles 105 has a hardness level that is greater than hardness level of the bevel polymer 104 but less than hardness level of wafer 102.
b shows a side view of the composite applicator 106 in another embodiment of the invention. A wafer edge is received into the composite applicator 106. The depth of the wafer edge that is received is at least equal to the depth to which the bevel polymer 104 has built up on the wafer edge. In this embodiment, a channel 112 to introduce liquid chemicals into the support material is provided. Liquid chemicals are conducted through the channel 112 and introduced into the porous support material of the composite applicator 106. The channel 112 can be positioned anywhere so long as the function of introducing liquid chemicals to support material is met. The liquid chemicals are distributed throughout the porous support material and provide lubrication to the surface of the wafer 102 during cleaning and facilitate breakdown of bevel polymer 104 from the wafer edge.
In one embodiment, a nozzle 118 is provided to spray the front side of the wafer 102 and wash away or dilute any liquid chemicals that may make their way on to the front side of wafer 102 during treatment with the composite applicator 106. As the wafer 102 is rotating, centrifugal force will assist in the removal of liquid chemicals from the front side of the wafer. The nozzle 118 can be used to spray fluids, such as de-ionized water, or gases, such as gaseous nitrogen, onto the front side of the wafer 102 under variable pressure. Other fluids or gases may also be used to clean the surface of the wafer 102 as long as these fluids or gases are capable of efficiently removing liquid chemicals from the front side of the wafer 102. The nozzle 118 can be placed anywhere in the apparatus so long as it is able to efficiently spray and remove any unwanted chemicals that may make their way onto the front side of the wafer 102. The liquid chemicals in the support material may make their way onto the front side of wafer and chemically react with materials on the wafer 102 surface, such as exposed metal lines. As an example, liquid chemicals, such as ammonium hydroxide, distributed within the support material (used to chemically assist in the cleaning of the edge) may chemically react with the exposed metals on the front side of the wafer, and thus, nozzle 118 will assist in reducing the possibility of such chemical reactions.
a and 3b show the top view and side view of a substrate cleaning apparatus, in accordance with an alternate embodiment of the present invention. In this embodiment, a back brush 108 is positioned on a back side of wafer 102 to facilitate cleaning of the back side of wafer 102. The back brush 108 material is made of material similar to that of the support material and allows distribution of liquid chemicals to the under side of wafer 102. A channel 112 similar to the one shown in
As shown in
a illustrates the cross-sectional side view of a substrate cleaning apparatus, in accordance with one embodiment of the invention. In this embodiment, the edge of wafer 102 is received in a composite applicator 106. The depth of the wafer edge that is received is at least equal to the depth to which the bevel polymer 104 build up has occurred on the wafer edge. A channel 112, to introduce liquid chemicals into the support material of the composite applicator 106, is provided. A fluid distributor 116 is embedded within the support material of the composite applicator 106 to assist in the distribution of liquid chemicals introduced through channel 112 within the support material. The fluid distributor 116 has one or more apertures 114 to provide a flow path for the liquid chemicals into the support material of the composite applicator 106. The fluid distributor 116 is connected to the channel 112 at least at one end where it enters the support material. Channel 112 and fluid distributor 116 can be positioned anywhere within the substrate cleaning apparatus so long as they are able to introduce and conduct liquid chemicals into the supporting material of the composite applicator 106.
Continuing to reference
b represents another embodiment of the invention detailed in
A method to clean the edge of wafer 102 is explained in great detail with reference to the system embodiment illustrated in
During the cleaning process, the edge of the wafer 102 rotating at velocity v2 is in tangential contact with the composite applicator 106 rotating at velocity v1 with force F, while the stabilizer wheels 134 keep the wafer 102 steady along the selected plane of rotation and drive rollers 132 provide the force for the wafer 102 to rotate along the selected plane. The rotation of wafer 102, composite applicator 106, drive rollers 132 can be achieved by use of one or more motors 124 or by any other mechanical means.
The chemical fluid such as liquid chemicals in the support material of the composite applicator 106 interfaces with the edge of wafer 102 providing the lubrication to the surface of wafer 102 while chemically acting on the bevel polymer 104 on the edge of wafer 102 to cut the bond binding the bevel polymer 104 to the edge of wafer 102. The plurality of abrasive particles 105 distributed in the support material of the composite applicator 106 exposed to the edge of the wafer 102 and in frictional contact with the edge of wafer 102 simultaneously works to cut and tear the bevel polymer 104 from the edge of wafer 102. Continuous exposure of liquid chemicals weaken the bond binding the bevel polymer 104 to the edge of wafer 102 and the continuous frictional contact of the plurality of abrasive particles 105 exposed to the edge of the wafer 102 rips and tears the bevel polymer 104 from the edge of wafer 102 resulting in a substantially or completely bevel-polymer-free wafer edge.
The support material of the composite applicator 106 that is known to work in this embodiment illustrated in
For more information on techniques used for cleaning edges of wafers, reference may be made to one or more of U.S. Pat. No. 6,910,240, U.S. Pat. No. 6,334,229, and U.S. Pat. No. 6,550,091, each of which is assigned to the assignee of the present invention and hereby incorporated by reference.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6267649 | Lai et al. | Jul 2001 | B1 |
6334229 | Moinpour et al. | Jan 2002 | B1 |
6422930 | Hakomori | Jul 2002 | B2 |
6454644 | Miyazaki et al. | Sep 2002 | B1 |
6550091 | Radman et al. | Apr 2003 | B1 |
6910240 | Boyd et al. | Jun 2005 | B1 |
7367873 | Ishii et al. | May 2008 | B2 |
20050150172 | Sato | Jul 2005 | A1 |
20070148914 | Morita et al. | Jun 2007 | A1 |