This application claims priority from German Patent Application No. 102006060080.0, which was filed on Dec. 19, 2006, and is incorporated herein in its entirety by reference.
The present invention relates to an apparatus for contactless data transmission from a memory, e.g. from a single-chip controller card or a memory card, such as may be found in the field of RFID applications and SIM card applications.
In the area of smartcards or memory cards, a plurality of NFC-suitable devices (NFC=near field communication) may be found in the conventional technique. Contactless subsystems which are capable of emulating contactless chip card applications may be frequently found especially in mobile devices such as mobile phones, PDAs (PDA=personal digital assistant) etc. In principle, these subsystems may comprise an NFC modem and one or more secure elements, such as a SIM card (SIM=subscriber identity module), connected via a data interface.
Mifare is one widespread contactless-card system available in different embodiments such as Mifare Classic, Mifare Ultralight etc. in the field of the conventional technique. Mifare specifies a very special protocol which enables transactions such as authentication, reading and writing etc. of memory regions on a contactless card. Mifare is a proprietary protocol outside the conventional standards ISO 14443-3 or ISO 14443-4, which specify the communication for so-called RFID cards. Mifare mechanisms, such as the Mifare authentication method, are not defined within the framework of the ISO 1443 specifications.
According to one embodiment, an embodiment of the present invention includes an apparatus for a contactless data transmission according to a predetermined transmission protocol providing control information and payload for a data transmission, with a near field communication means and an interface connected to the near field communication means, the interface being operative to provide, using a first protocol, data to the near field communication means for the contactless transmission or to obtain, using the first protocol, data received contactlessly from the near field communication means. In this process, the first protocol provides a transmission of control information and payload, with the payload of the first protocol including the control information and the payload of the predetermined protocol. The apparatus further includes a means connected to the interface and being operative to obtain, from the payload of the first protocol, the control information and payload of the predetermined transmission protocol for the data received contactlessly from the near field communication means or to introduce, into the first protocol, the control information and the payload of the predetermined transmission protocol for the data to be transmitted contactlessly from the near field communication means.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
An architecture as illustrated in
In this process, the first protocol provides a transmission of control information and payload, with the payload of the first protocol including the control information and the payload of the predetermined protocol. The apparatus 100 further includes the means 130 connected to the interface 120 and being operative to obtain, from the payload of the first protocol, the control information and the payload of the predetermined transmission protocol for the data received contactlessly from the near field communication means 110 or to introduce, into the first protocol, the control information and the payload of the predetermined transmission protocol for the data to be transmitted contactlessly from the near field communication means 110.
In one embodiment, the near field communication means 110 is formed to communicate according to the specifications of ISO 14443-3 or ISO 14443-4. The first protocol may further contain information identifying the payload as control information and payload of the predetermined transmission protocol. For example, the information may be contained in a part of the header of a frame of the first protocol, in a part of the payload or in a prior frame as only payload. In one embodiment, the first protocol is realized by the SWP (single wire protocol) and the predetermined protocol by the Mifare protocol. In this context, the predetermined protocol may include Mifare Classic, Mifare Light or Mifare Ultralight.
In a further embodiment, the near field communication means 110 may include an NFC modem. Further, the apparatus 100 may include a UICC (universal integrated circuit card) in turn comprising the interface 120 and the means 130. In one embodiment, the apparatus 100 may include a UICC receiving data according to the first protocol, and a chip receiving data according to the predetermined protocol, with the UICC and the chip being connected to the near field communication means 110 via the interface 120 and the chip including the means 130. In further embodiments, the UICC may not react upon receipt of data according to the predetermined protocol at the near field communication means 110, which, for example, realizes the case above in which the means 130 is disposed on a chip in parallel to a UICC and the means 130 reacts to the predetermined protocol and the UICC reacts to the first protocol. Further, the UICC may be a SIM card with a memory.
In one embodiment of a data transmission circuit 300, the air interface 314 may be formed to function in accordance with ISO 14443-3 or ISO 14443-4. Further, the first protocol may be realized by the SWP (single wire protocol), and the predetermined protocol may be realized by a Mifare protocol. The transceiver module 310 may, in some embodiments, include a NFC modem 330 according to
In one embodiment according to
In one embodiment, the NFC modem 330 is formed to communicate according to ISO-14443-3 or ISO-14443-4. The Mifare FSM 350 may, via a further interface 322, be connected to a SWP peripheral 360 coordinating the communication via the interface 312 according to the SWP. In this embodiment, the NFC modem 330 and the UICC 340 use SWP as the first protocol. The Mifare FSM 350 may, in some embodiments, support Mifare Classic, Mifare Light or Mifare Ultralight, with similar protocols being conceivable, in principle, in other embodiments, too. Further, the UICC 340 may also be realized by a SIM card.
In a further embodiment, the UICC 340 and the Mifare FSM 350 may be arranged in parallel to thus transmit Mifare data to the UICC 340 and a Mifare FSM 350, for example. In other embodiments, data may also be provided to yet further instances connected in parallel, with only those instances respectively becoming active which are designed for the corresponding communication, i.e. which are compatible with Mifare, for example. In this embodiment, all other instances would not actively participate in the communication.
According to one embodiment, a Mifare protocol frame is transparently tunneled via the SWP protocol, that is, a Mifare frame is packed in the SWP frame as payload or useful information and is transported from a UICC to a NFC modem, or the other way round. Such a Mifare protocol frame 400 is illustrated in
In some embodiments, it could be coded in the SWP header, or in the SWP control information, too, that the SWP payload or the SWP useful information contains a Mifare frame. In this way, the Mifare frame may be quickly submitted to a Mifare emulation. A Mifare emulation could be realized out of a state machine, for example, which could be realized in software, hardware or in a combination of both. Further, the state machine could be realized with a memory, as it is designated in
In another embodiment, the Mifare frame might not be indicated in the header of the SWP frame, but since Mifare frames are encoded, they would not be recognized as a valid command for a SWP instance in the usual processing, at least the possibility for this to happen would be extraordinary small. On the other hand, the frame could then be thus decoded in the Mifare FSM 350 and be recognized as a valid Mifare frame if no transmission errors are present. Thus, an identification of the Mifare frames is almost unique due to the coding. Alternatively, the recognition of Mifare frames could also be indicated by an additional information in the useful data field of the SWP, for example. In a further embodiment, a prior SWP frame might also contain an information indicating that the following SWP frames contain Mifare frames as payload, and a further SWP frame could indicate if following SWP frames no longer contain any further Mifare frames.
Thus, embodiments allow to transmit Mifare frames via a SWP and thus, to realize a broader spectrum of card emulations or card applications, for example.
In particular, it should be understood that depending on the circumstances, embodiments may also be implemented in software. The implementation may occur on a digital storage medium, in particular a disc, a CD or a DVD with electronically readable control signals which interact with a programmable computer system such that the corresponding method is executed. In general, embodiments may thus be also realized as a computer program product with a program code stored on a machine-readable carrier for performing the method, when the computer program product runs on a computer. In other words, embodiments may thus be realized as a computer program having a program code for performing the method, when the computer program product runs on a computer.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 060 080.0 | Dec 2006 | DE | national |