The present invention is related to apparatus and methods for controlling gas pulsing in thin film deposition processes used in the manufacturing of micro-devices.
Thin film deposition techniques are widely used in the manufacturing of micro-devices to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the devices is constantly decreasing, and the number of layers in the devices is increasing. As a result, the density of components and the aspect ratios of depressions (e.g., the ratio of the depth to the size of the opening) is increasing. The size of workpieces is also increasing to provide more real estate for forming more dies (i.e., chips) on a single workpiece. Many fabricators, for example, are transitioning from 200 mm to 300 mm workpieces, and even larger workpieces will likely be used in the future. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms and corners in deep depressions that have very small openings.
One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed in a gas or vapor state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a thin solid film at the workpiece surface. The most common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.
Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials that are already formed on the workpiece. Implanted or doped materials, for example, can migrate in the silicon substrate at higher temperatures. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is not desirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used. Thus, CVD techniques may not be appropriate for many thin film applications.
Atomic Layer Deposition (ALD) is another thin film deposition technique that addresses several of the drawbacks associated with CVD techniques.
One drawback of ALD processing is that it has a relatively low throughput compared to CVD techniques. For example, ALD processing typically takes about eight to eleven seconds to perform each Ax-purge-By-purge cycle. This results in a total process time of approximately eight to eleven minutes to form a single thin layer of only 60 Å. In contrast to ALD processing, CVD techniques only require about one minute to form a 60 Å thick layer. The low throughput of existing ALD techniques limits the utility of the technology in its current state because ALD may be a bottleneck in the overall manufacturing process. Thus, it would be useful to increase the throughput of ALD techniques so that they can be used in a wider range of applications.
Another drawback of ALD processing is that it is difficult to control the uniformity of the deposited films over a long period of time. One reason that it is difficult to consistently deposit uniform films is that the first precursor Ax and/or the second precursor By may ad sorb onto the surfaces of the reaction chamber 20. This may cause a build up of the first and second precursors that produces a layer of the deposited material on the components of the reaction chamber 20. Additionally, when the adsorption of the first precursor and/or the second precursor on the components of the reaction chamber 20 reaches a saturation point, the precursors will then begin to desorp into the gas flows in the reaction chamber 20. Such adsorption and desorption of the precursors affects the quality of the layers of material deposited onto the workpieces. Therefore, there is also a need to provide better control of ALD processing to achieve more consistent results throughout a run of workpieces.
The present invention is directed toward reactors for depositing materials onto micro-device workpieces, systems that include such reactors, and methods for depositing materials onto micro-device workpieces. In one embodiment, an apparatus for depositing materials onto a micro-device workpiece includes a gas source system configured to provide a first precursor, a second precursor, and a purge gas. The apparatus can also include a valve assembly coupled to the gas source system. The valve assembly is configured to control a flow of the first precursor, a flow the second precursor, and a flow of the purge gas. Another component of the apparatus is a reaction chamber including an inlet coupled to the valve assembly, a workpiece holder in the reaction chamber, and an outlet downstream from the workpiece holder. The apparatus also includes a monitoring system and a controller. The monitoring system comprises a radiation source that directs a selected radiation through the gas flow and a detector that senses a parameter of the radiation. The controller is operatively coupled to the monitoring system and the valve assembly. The controller contains computer operable instructions to terminate the flow of the first precursor, the flow of the second precursor and/or the flow of the purge gas based on the parameter sensed by the monitoring system in real-time during a deposition cycle of a workpiece.
The monitoring system can have several different embodiments. In one embodiment, the monitoring system comprises a radiation source that directs the selected radiation through the reaction chamber between the inlet of the reaction chamber and the workpiece holder. In another embodiment, the monitoring system comprises a radiation source that directs the selected radiation through the reaction chamber downstream from the workpiece holder. For example, the monitoring system can include a radiation source that directs radiation to a reflector within the reaction chamber that is immediately downstream from the workpiece, and the detector can be positioned to receive the radiation returning from the reflector. In another example, the radiation source can direct the radiation through the outlet flow, and the detector can be positioned to receive the radiation passing through the outlet flow.
The monitoring system can be a spectroscope that measures the radiation absorbed by the first precursor, the second precursor, and/or the purge gas. It will be appreciated that several different wavelengths of radiation can be directed through the reaction chamber to determine the concentration of each of the first precursor, the second precursor and the purge gas at different times throughout the Ax-purge-By-purge cycle. The monitoring system, therefore, can generally comprise a radiation source that directs a selected radiation through the reaction chamber and detector that senses a parameter of the radiation correlated to a quantity of the precursor and/or the purge gas in the reaction chamber.
The apparatus can be used to perform several methods for depositing materials onto the micro-device workpieces. In one embodiment, a method includes providing a flow of a first precursor through the reaction chamber to deposit the first precursor onto a micro-device workpiece, and subsequently providing a flow of a purge gas through the reaction chamber to purse excess amounts of the first precursor. This embodiment can further include monitoring a parameter correlated to a quantity of the first precursor and/or the purge gas in the reaction chamber as the first precursor and/or the purge gas flow through the reaction chamber. The flow of the first precursor and/or the flow of the purge gas is then terminated based upon the quantity of the first precursor and/or the purge gas in real-time. Different embodiments of this method can be used to determine when a sufficient amount of one of the precursors is in the reaction chamber to reach a desired saturation point. This is expected to provide a more accurate dosing of the precursors in the reaction chamber to compensate for adsorption/desorption of the precursors. Additional embodiments of this method include terminating the purge cycle according to the increased level of the purge gas and/or the decreased level of the antecedent precursor. This is expected to more accurately define the length of the purge pulses in a manner that enhances the consistency of ALD processing and reduces the length of the purge pulses.
The following disclosure is directed toward reactors for depositing a material onto a micro-device workpiece, systems including such reactors, and methods for depositing a material onto a micro-device workpiece. Many specific details of the invention are described below with reference to depositing materials onto micro-device workpieces. The term “micro-device workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, and other features are fabricated. For example, micro-device workpieces can be semi-conductor wafers, glass substrates, insulative substrates, or many other types of substrates. The term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquefied or solidified by compression at a constant temperature). Additionally, several aspects of the invention are described with respect to Atomic Layer Deposition (“ALD”), but certain aspect may be applicable to other types of deposition processes. Several embodiments in accordance with the invention are set forth in
A. Deposition Systems
The gas supply 130 includes a plurality of gas sources 132 (identified individually as 132a-c), a valve assembly 133, and a plurality of gas lines 136 coupling the gas sources 132 to the valve assembly 133. The gas sources 132 can include a first gas source 132a for providing a first precursor gas “A,” a second gas source 132b for providing a second precursor gas “B,” and a third gas source 132c for providing a purge gas “P.” The first and second precursors A and B can be the constituents that react to form the thin, solid layer on the workpiece W. The purge gas P can be a type of gas that is compatible with the reaction chamber 120 and the workpiece W. The valve assembly 133 is coupled to a controller 142 that generates signals for pulsing the individual gases through the reaction chamber 120 in a number of cycles. Each cycle can include a first pulse of the first precursor A, a second pulse of the purge gas P, a third pulse of the second precursor B, and a fourth pulse of the purge gas P. As explained in more detail below, several embodiments of the system 100 monitor and control the pulses of the first precursor A, the second precursor B, and/or the purge gas P to provide consistent results and a high throughput.
The reactor 110 in the embodiment illustrated in
B. Monitoring Systems
The system 100 shown in
One embodiment of a monitoring system for the system 100 includes a radiation source 182 that directs radiation through at least a portion of the gas flow F. As shown in
The radiation source 182 and the primary detector 184 can be configured to monitor a particular wavelength of radiation that is affected by the presence of a particular gas. For example, the radiation source 182 can emit a radiation that is absorbed by one of the first precursor A, the second precursor B, or the purge gas P. In one embodiment, the radiation source 182 emits a bandwidth of radiation having a spectrum of wavelengths and the primary detector 184 can include a filter that detects the presence of one or more wavelengths that are affected by the presence of the gases. The radiation source 182, for example, can generate a sufficiently wide spectrum of radiation to include wavelengths that are affected by each of the first precursor A, the second precursor B, and the purge gas P, the primary detector 184 can accordingly include separate filters that monitor the intensity of the individual wavelengths affected by each of the first precursor A, the second precursor B, and the purge gas P. In another embodiment, the radiation source 182 includes individual emitters that emit specific wavelengths or narrow bandwidths of radiation including a first radiation having a first wavelength affected by the first precursor A, and second radiation having a second wavelength affected by the second precursor B, and a third radiation having a third wavelength affected by the third precursor P. It will be appreciated that several other types of radiation sources and detectors can be used. Suitable radiation sources and detectors are manufactured by INUSA or Online Technologies.
The monitoring system provides real-time data that is correlated to the quantity of the particular constituents in the reaction chamber 120. For example, as the individual gases flow in the gas flow F, the primary detector 184 measures the change in intensity of the measurement beam 183a as it changes in correlation to the quantity of the individual gases in the gas flow F. As explained above, the comparator 188 uses the first signal from the primary detector 184 to generate a measurement signal that provides an indication of the quantity of the first precursor A, the second precursor B, and/or the purge gas P in the reaction chamber or another portion of the gas flow F.
The controller 142 receives the signals from the comparator 188 and sends control signals to the valve assembly 133. The control signals from the controller 142 cause the valve assembly 133 to adjust the pulse length of the purge pulses and/or the precursor pulses. The controller 142 accordingly contains computer operable instructions, such as software and/or hardware, that carry out embodiments of methods in accordance with the invention for controlling the pulse width of the various gases. In general, the computer operable instructions adjust the pulse width of the purge pulses and/or the precursor pulses based on the measurement signals correlated to the quantity of the first precursor A, the second precursor B, and/or the purge gas P in the gas flow F in real-time during the deposition cycle of a workpiece W. The controller 142 can accordingly adjust the pulse width for one or more the gases during the deposition cycle to compensate for variances in the processing of an individual workpiece and to increase the throughput of an ALD process.
C. Deposition Methods
The quantity of the precursors A and B fluctuates from zero to a saturation level throughout the cycles. Referring to
One aspect of certain embodiments of methods in accordance with the invention is controlling the duration of the precursor pulses for at least one of the first precursor A or the second precursor B. Referring to
The system 100 can accordingly control the duration of the precursor pulses in real-time during a processing cycle for a workpiece. This is expected to provide more uniform layers on workpieces because it inherently compensates for adsorption and desorption of the precursors. For example, if the precursors are adsorbing to the surfaces of the reaction chamber, the ramp time to bring the concentration of the precursors to a desired level will increase because some molecules of the precursors will be extracted from the gas flow F before reaching the workpiece W. The controller 142 compensates for adsorption of the precursors by increasing the pulse width in real time according to the measured ramp time. Conversely, if the precursors are desorping from surfaces of the reaction chamber 120, then the controller 142 will indicate a shorter ramp time and a corresponding shorter pulse width. Therefore, the system 100 and methods for controlling the duration of the precursor pulses are expected to provide real-time control of individual pulses of one or more of the precursors in a manner that is expected to produce more uniform layers on the workpieces.
Another aspect of other embodiments of methods for depositing a layer of material onto a workpiece are directed toward controlling the duration of the purge pulses. In one embodiment, the radiation source 182 and primary detector 184 are configured to detect the presence of the purge gas P. In this embodiment, the comparator 188 sends measurement signals to the controller 142 corresponding to the increase in the purge gas P shown by line 514 of
The controller 142 can accordingly adjust the length of the purge cycles to purge enough of the precursors from the reaction chamber without unnecessarily continuing the duration of the purge pulses. This is expected to provide better control over the deposition process in a manner that is likely to increase throughput and enhance the uniformity of the deposited layers. For example, conventional technology for setting the endpoint of purge pulses involves determining a pulse width using empirical studies. This is typically accomplished in conventional systems by starting with long purge times, and then reducing the length of the purge times until an adequate amount of each of the precursors is purged from the reaction chamber. This is a time consuming process, and it may not produce accurate results because of the adsorption and desorption of the gases during a run of workpieces may change the necessary duration of the purge pulses. The system 100 is expected to resolve these problems because the pulse width of the purge pulses are controlled in real-time to reduce the duration of the purge pulses in a manner that compensates for both adsorption and desorption during a run of workpieces. Therefore, several embodiments of methods for operating the system 100 are useful for enhancing the throughput of workpieces and the uniformity of deposited layers.
D. Additional Embodiments of Deposition Systems
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although the foregoing description describes several embodiments as having two precursors, it will be appreciated that the invention includes embodiments having more than two precursors. Additionally, it will be appreciated that the same purge gas can be used between precursor pulses, or that pulses of different purge gases can be used for purging different types of precursors. For example, an embodiment can use a pulse of a first purge gas after a pulse of the first precursor and then a pulse of a second purge gas after a pulse of the second precursor; the first and second purge gases can be different gases. Accordingly, the invention is not limited except as by the appended claims.
This application is a divisional of U.S. application Ser. No. 10/155,547, entitled “METHODS FOR CONTROLLING GAS PULSING IN PROCESSES FOR DEPOSITING MATERIALS ONTO MICRO-DEVICE WORKPIECES” filed May 24, 2002, now U.S. Pat. No. 6,838,114, issued Jan. 4, 2005, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
579269 | Hent | Mar 1897 | A |
2508500 | de Lange | May 1950 | A |
3522836 | King | Aug 1970 | A |
3618919 | Beck | Nov 1971 | A |
3620934 | Endle | Nov 1971 | A |
3630769 | Hart et al. | Dec 1971 | A |
3630881 | Lester | Dec 1971 | A |
3634212 | Valayll et al. | Jan 1972 | A |
4018949 | Donakowski et al. | Apr 1977 | A |
4098923 | Alberti et al. | Jul 1978 | A |
4242182 | Popescu et al. | Dec 1980 | A |
4242370 | Abdalla et al. | Dec 1980 | A |
4269625 | Molenaar et al. | May 1981 | A |
4289061 | Emmett | Sep 1981 | A |
4313783 | Davies et al. | Feb 1982 | A |
4388342 | Suzuki et al. | Jun 1983 | A |
4397753 | Czaja | Aug 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4438724 | Doehler et al. | Mar 1984 | A |
4469801 | Hirai et al. | Sep 1984 | A |
4509456 | Kleinert et al. | Apr 1985 | A |
4545136 | Izu et al. | Oct 1985 | A |
4590042 | Drage | May 1986 | A |
4593644 | Hanak | Jun 1986 | A |
4681777 | Engelken et al. | Jul 1987 | A |
4738295 | Genser et al. | Apr 1988 | A |
4780178 | Yoshida et al. | Oct 1988 | A |
4826579 | Westfall | May 1989 | A |
4832115 | Albers et al. | May 1989 | A |
4871417 | Nishizawa et al. | Oct 1989 | A |
4894132 | Tanaka | Jan 1990 | A |
4911638 | Bayne et al. | Mar 1990 | A |
4923715 | Matsuda et al. | May 1990 | A |
4948979 | Munakata et al. | Aug 1990 | A |
4949669 | Ishii et al. | Aug 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4977106 | Smith | Dec 1990 | A |
5015330 | Okumura et al. | May 1991 | A |
5017404 | Paquet et al. | May 1991 | A |
5020476 | Bay et al. | Jun 1991 | A |
5043614 | Yockey | Aug 1991 | A |
5062446 | Anderson | Nov 1991 | A |
5076205 | Vowles et al. | Dec 1991 | A |
5090985 | Soubeyrand | Feb 1992 | A |
5091207 | Tanaka et al. | Feb 1992 | A |
5131752 | Yu et al. | Jul 1992 | A |
5136975 | Bartholomew et al. | Aug 1992 | A |
5172849 | Barten et al. | Dec 1992 | A |
5200023 | Gifford et al. | Apr 1993 | A |
5223113 | Kaneko et al. | Jun 1993 | A |
5232749 | Gilton | Aug 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5286296 | Sato et al. | Feb 1994 | A |
5325020 | Campbell et al. | Jun 1994 | A |
5364219 | Takahashi et al. | Nov 1994 | A |
5366557 | Yu | Nov 1994 | A |
5372837 | Shimoyama et al. | Dec 1994 | A |
5377429 | Sandhu et al. | Jan 1995 | A |
5380396 | Shikida et al. | Jan 1995 | A |
5409129 | Tsukada et al. | Apr 1995 | A |
5418180 | Brown | May 1995 | A |
5427666 | Mueller et al. | Jun 1995 | A |
5432015 | Wu et al. | Jul 1995 | A |
5433787 | Suzuki et al. | Jul 1995 | A |
5433835 | Demaray et al. | Jul 1995 | A |
5445491 | Nakagawa et al. | Aug 1995 | A |
5453124 | Moslehi et al. | Sep 1995 | A |
5474612 | Sato et al. | Dec 1995 | A |
5477623 | Tomizawa et al. | Dec 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5496410 | Fukuda et al. | Mar 1996 | A |
5498292 | Ozaki et al. | Mar 1996 | A |
5500256 | Watabe et al. | Mar 1996 | A |
5505986 | Velthaus et al. | Apr 1996 | A |
5522934 | Suzuki et al. | Jun 1996 | A |
5532190 | Goodyear et al. | Jul 1996 | A |
5536317 | Crain et al. | Jul 1996 | A |
5562800 | Kawamura et al. | Oct 1996 | A |
5575883 | Nishikawa et al. | Nov 1996 | A |
5589002 | Su | Dec 1996 | A |
5589110 | Motoda et al. | Dec 1996 | A |
5592581 | Okase et al. | Jan 1997 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5599513 | Masaki et al. | Feb 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
5626936 | Alderman | May 1997 | A |
5640751 | Faria | Jun 1997 | A |
5643394 | Maydan et al. | Jul 1997 | A |
5654589 | Huang et al. | Aug 1997 | A |
5683538 | O'Neill et al. | Nov 1997 | A |
5693288 | Nakamura et al. | Dec 1997 | A |
5716796 | Bull et al. | Feb 1998 | A |
5729896 | Dalal et al. | Mar 1998 | A |
5733375 | Fukuda et al. | Mar 1998 | A |
5746434 | Boyd et al. | May 1998 | A |
5754297 | Nulman | May 1998 | A |
5766364 | Ishida et al. | Jun 1998 | A |
5769950 | Takasu et al. | Jun 1998 | A |
5769952 | Komino et al. | Jun 1998 | A |
5772771 | Li et al. | Jun 1998 | A |
5773085 | Inoue et al. | Jun 1998 | A |
5788778 | Shang et al. | Aug 1998 | A |
5792269 | Deacon et al. | Aug 1998 | A |
5792700 | Turner et al. | Aug 1998 | A |
5803938 | Yamaguchi et al. | Sep 1998 | A |
5819683 | Ikeda et al. | Oct 1998 | A |
5820641 | Gu et al. | Oct 1998 | A |
5820686 | Moore | Oct 1998 | A |
5827370 | Gu | Oct 1998 | A |
5833888 | Arya et al. | Nov 1998 | A |
5846275 | Lane et al. | Dec 1998 | A |
5846330 | Quirk et al. | Dec 1998 | A |
5851294 | Young et al. | Dec 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5865417 | Harris et al. | Feb 1999 | A |
5865887 | Wijaranakula et al. | Feb 1999 | A |
5866986 | Pennington | Feb 1999 | A |
5868159 | Loan et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5879516 | Kasman | Mar 1999 | A |
5885425 | Hsieh et al. | Mar 1999 | A |
5895530 | Shrotriya et al. | Apr 1999 | A |
5902403 | Aitani et al. | May 1999 | A |
5908947 | Vaartstra | Jun 1999 | A |
5911238 | Bump et al. | Jun 1999 | A |
5932286 | Beinglass et al. | Aug 1999 | A |
5936829 | Moslehi | Aug 1999 | A |
5940684 | Shakuda et al. | Aug 1999 | A |
5953634 | Kajita et al. | Sep 1999 | A |
5956613 | Zhao et al. | Sep 1999 | A |
5958140 | Arami et al. | Sep 1999 | A |
5961775 | Fujimura et al. | Oct 1999 | A |
5963336 | McAndrew et al. | Oct 1999 | A |
5968587 | Frankel | Oct 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
5994181 | Hsieh et al. | Nov 1999 | A |
5997588 | Goodwin et al. | Dec 1999 | A |
5998932 | Lenz | Dec 1999 | A |
6006694 | DeOrnellas et al. | Dec 1999 | A |
6008086 | Schuegraf et al. | Dec 1999 | A |
6016611 | White et al. | Jan 2000 | A |
6022483 | Aral | Feb 2000 | A |
6032923 | Biegelsen et al. | Mar 2000 | A |
6039557 | Unger et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6045620 | Tepman et al. | Apr 2000 | A |
6059885 | Ohashi et al. | May 2000 | A |
6062256 | Miller et al. | May 2000 | A |
6070551 | Li et al. | Jun 2000 | A |
6079426 | Subrahmanyam et al. | Jun 2000 | A |
6080446 | Tobe et al. | Jun 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6089543 | Freerks | Jul 2000 | A |
6090210 | Ballance et al. | Jul 2000 | A |
6109206 | Maydan et al. | Aug 2000 | A |
6113698 | Raaijmakers et al. | Sep 2000 | A |
6123107 | Selser et al. | Sep 2000 | A |
6129331 | Henning et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6142163 | McMillin et al. | Nov 2000 | A |
6143077 | Ikeda et al. | Nov 2000 | A |
6143078 | Ishikawa et al. | Nov 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6149123 | Harris et al. | Nov 2000 | A |
6159297 | Herchen et al. | Dec 2000 | A |
6159298 | Saito et al. | Dec 2000 | A |
6160243 | Cozad | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6173673 | Golovato et al. | Jan 2001 | B1 |
6174366 | Ihantola | Jan 2001 | B1 |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6178660 | Emmi et al. | Jan 2001 | B1 |
6179923 | Yamamoto et al. | Jan 2001 | B1 |
6182603 | Shang et al. | Feb 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6190459 | Takeshita et al. | Feb 2001 | B1 |
6192827 | Welch et al. | Feb 2001 | B1 |
6193802 | Pang et al. | Feb 2001 | B1 |
6194628 | Pang et al. | Feb 2001 | B1 |
6197119 | Dozoretz et al. | Mar 2001 | B1 |
6200415 | Maraschin | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206967 | Mak et al. | Mar 2001 | B1 |
6206972 | Dunham | Mar 2001 | B1 |
6207937 | Stoddard et al. | Mar 2001 | B1 |
6210754 | Lu et al. | Apr 2001 | B1 |
6211033 | Sandhu et al. | Apr 2001 | B1 |
6211078 | Mathews | Apr 2001 | B1 |
6214714 | Wang et al. | Apr 2001 | B1 |
6237394 | Harris et al. | May 2001 | B1 |
6237529 | Spahn | May 2001 | B1 |
6245192 | Dhindsa et al. | Jun 2001 | B1 |
6251190 | Mak et al. | Jun 2001 | B1 |
6255222 | Xia et al. | Jul 2001 | B1 |
6263829 | Schneider et al. | Jul 2001 | B1 |
6264788 | Tomoyasu et al. | Jul 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6273954 | Nishikawa et al. | Aug 2001 | B2 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6280584 | Kumar et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6287980 | Hanazaki et al. | Sep 2001 | B1 |
6290491 | Shahvandi et al. | Sep 2001 | B1 |
6291337 | Sidhwa | Sep 2001 | B1 |
6294394 | Erickson et al. | Sep 2001 | B1 |
6297539 | Ma et al. | Oct 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6302965 | Umotoy et al. | Oct 2001 | B1 |
6303953 | Doan et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6309161 | Hofmeister | Oct 2001 | B1 |
6315859 | Donohoe | Nov 2001 | B1 |
6321680 | Cook et al. | Nov 2001 | B2 |
6328803 | Rolfson et al. | Dec 2001 | B2 |
6329297 | Balish et al. | Dec 2001 | B1 |
6333272 | McMillin et al. | Dec 2001 | B1 |
6334928 | Sekine et al. | Jan 2002 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6346477 | Kaloyeros et al. | Feb 2002 | B1 |
6347602 | Goto et al. | Feb 2002 | B2 |
6347918 | Blahnik | Feb 2002 | B1 |
6355561 | Sandhu et al. | Mar 2002 | B1 |
6358323 | Schmitt et al. | Mar 2002 | B1 |
6364219 | Zimmerman et al. | Apr 2002 | B1 |
6374831 | Chandran et al. | Apr 2002 | B1 |
6383300 | Saito et al. | May 2002 | B1 |
6387185 | Doering et al. | May 2002 | B2 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6402806 | Schmitt et al. | Jun 2002 | B1 |
6402849 | Kwag et al. | Jun 2002 | B2 |
6415736 | Hao et al. | Jul 2002 | B1 |
6419462 | Horie et al. | Jul 2002 | B1 |
6420230 | Derderian et al. | Jul 2002 | B1 |
6420742 | Ahn et al. | Jul 2002 | B1 |
6425168 | Takaku | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6432256 | Raoux | Aug 2002 | B1 |
6432259 | Noorbakhsh et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6435865 | Tseng et al. | Aug 2002 | B1 |
6444039 | Nguyen | Sep 2002 | B1 |
6450117 | Murugesh et al. | Sep 2002 | B1 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6458416 | Derderian et al. | Oct 2002 | B1 |
6461436 | Campbell et al. | Oct 2002 | B1 |
6461931 | Eldridge | Oct 2002 | B1 |
6474700 | Redemann et al. | Nov 2002 | B2 |
6486081 | Ishikawa et al. | Nov 2002 | B1 |
6503330 | Sneh et al. | Jan 2003 | B1 |
6506254 | Bosch et al. | Jan 2003 | B1 |
6507007 | Van Bilsen | Jan 2003 | B2 |
6508268 | Kouketsu et al. | Jan 2003 | B1 |
6509280 | Choi | Jan 2003 | B2 |
6534007 | Blonigan et al. | Mar 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6540838 | Sneh et al. | Apr 2003 | B2 |
6541353 | Sandhu et al. | Apr 2003 | B1 |
6551929 | Kori et al. | Apr 2003 | B1 |
6562140 | Bondestam et al. | May 2003 | B1 |
6562141 | Clarke | May 2003 | B2 |
6573184 | Park | Jun 2003 | B2 |
6579372 | Park | Jun 2003 | B2 |
6579374 | Bondestam et al. | Jun 2003 | B2 |
6585823 | Van Wijck | Jul 2003 | B1 |
6589868 | Rossman | Jul 2003 | B2 |
6596085 | Schmitt et al. | Jul 2003 | B1 |
6602346 | Gochberg et al. | Aug 2003 | B1 |
6610352 | Cheong et al. | Aug 2003 | B2 |
6613656 | Li | Sep 2003 | B2 |
6622104 | Wang et al. | Sep 2003 | B2 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6635965 | Lee et al. | Oct 2003 | B1 |
6638672 | Deguchi et al. | Oct 2003 | B2 |
6638879 | Hsieh et al. | Oct 2003 | B2 |
6641673 | Yang | Nov 2003 | B2 |
6656282 | Kim et al. | Dec 2003 | B2 |
6663713 | Robles et al. | Dec 2003 | B1 |
6666982 | Brcka | Dec 2003 | B2 |
6673196 | Oyabu et al. | Jan 2004 | B1 |
6686594 | Ji et al. | Feb 2004 | B2 |
6689220 | Nguyen | Feb 2004 | B1 |
6704913 | Rossman | Mar 2004 | B2 |
6705345 | Bifano | Mar 2004 | B1 |
6706334 | Kobayashi et al. | Mar 2004 | B1 |
6716284 | Campbell et al. | Apr 2004 | B2 |
6734020 | Lu et al. | May 2004 | B2 |
6758911 | Campbell et al. | Jul 2004 | B2 |
6770145 | Saito et al. | Aug 2004 | B2 |
6787185 | Derderian et al. | Sep 2004 | B2 |
6787463 | Mardian et al. | Sep 2004 | B2 |
6796316 | Park | Sep 2004 | B2 |
6800139 | Shinriki et al. | Oct 2004 | B1 |
6800173 | Chiang et al. | Oct 2004 | B2 |
6807971 | Saito et al. | Oct 2004 | B2 |
6814813 | Dando et al. | Nov 2004 | B2 |
6818067 | Doering et al. | Nov 2004 | B2 |
6818249 | Derderian | Nov 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821347 | Carpenter et al. | Nov 2004 | B2 |
6828218 | Kim et al. | Dec 2004 | B2 |
6830652 | Ohmi et al. | Dec 2004 | B1 |
6831315 | Raaijmakers et al. | Dec 2004 | B2 |
6838114 | Carpenter et al. | Jan 2005 | B2 |
6845734 | Carpenter et al. | Jan 2005 | B2 |
6849131 | Chen et al. | Feb 2005 | B2 |
6858264 | Dando et al. | Feb 2005 | B2 |
6861094 | Derderian et al. | Mar 2005 | B2 |
6861356 | Matsuse et al. | Mar 2005 | B2 |
6869500 | Lee et al. | Mar 2005 | B2 |
6881295 | Nagakura | Apr 2005 | B2 |
6884296 | Basceri et al. | Apr 2005 | B2 |
6887521 | Basceri | May 2005 | B2 |
6890386 | DeDontney et al. | May 2005 | B2 |
6905547 | Londergan et al. | Jun 2005 | B1 |
6905549 | Okuda et al. | Jun 2005 | B2 |
6926775 | Carpenter et al. | Aug 2005 | B2 |
6955725 | Dando | Oct 2005 | B2 |
6966936 | Yamasaki et al. | Nov 2005 | B2 |
6991684 | Kannan et al. | Jan 2006 | B2 |
7022184 | Van Wijck et al. | Apr 2006 | B2 |
7056806 | Basceri et al. | Jun 2006 | B2 |
7086410 | Chouno et al. | Aug 2006 | B2 |
7153396 | Genser et al. | Dec 2006 | B2 |
20010001952 | Nishizawa et al. | May 2001 | A1 |
20010012697 | Mikata | Aug 2001 | A1 |
20010020447 | Murugesh et al. | Sep 2001 | A1 |
20010045187 | Uhlenbrock | Nov 2001 | A1 |
20010050267 | Hwang et al. | Dec 2001 | A1 |
20010054484 | Komino | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020016044 | Dreybrodt et al. | Feb 2002 | A1 |
20020042205 | McMillin et al. | Apr 2002 | A1 |
20020043216 | Hwang et al. | Apr 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020088547 | Tomoyasu et al. | Jul 2002 | A1 |
20020100418 | Sandhu et al. | Aug 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020129768 | Carpenter et al. | Sep 2002 | A1 |
20020132374 | Basceri et al. | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020185067 | Upham | Dec 2002 | A1 |
20020195056 | Sandhu et al. | Dec 2002 | A1 |
20020195145 | Lowery et al. | Dec 2002 | A1 |
20020195201 | Beer et al. | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20030000473 | Chae et al. | Jan 2003 | A1 |
20030003697 | Agarwal et al. | Jan 2003 | A1 |
20030003730 | Li | Jan 2003 | A1 |
20030023338 | Chin et al. | Jan 2003 | A1 |
20030024477 | Okuda et al. | Feb 2003 | A1 |
20030027428 | Ng et al. | Feb 2003 | A1 |
20030027431 | Sneh et al. | Feb 2003 | A1 |
20030031794 | Tada et al. | Feb 2003 | A1 |
20030049372 | Cook et al. | Mar 2003 | A1 |
20030066483 | Lee et al. | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030094903 | Tao et al. | May 2003 | A1 |
20030098372 | Kim | May 2003 | A1 |
20030106490 | Jallepally et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030185979 | Nelson | Oct 2003 | A1 |
20030192645 | Liu et al. | Oct 2003 | A1 |
20030213435 | Okuda et al. | Nov 2003 | A1 |
20030232892 | Guerra-Santos et al. | Dec 2003 | A1 |
20040000270 | Carpenter et al. | Jan 2004 | A1 |
20040003777 | Carpenter et al. | Jan 2004 | A1 |
20040007188 | Burkhart et al. | Jan 2004 | A1 |
20040025786 | Kontani et al. | Feb 2004 | A1 |
20040040502 | Basceri et al. | Mar 2004 | A1 |
20040040503 | Basceri et al. | Mar 2004 | A1 |
20040083959 | Carpenter et al. | May 2004 | A1 |
20040083961 | Basceri | May 2004 | A1 |
20040089240 | Dando et al. | May 2004 | A1 |
20040094095 | Huang et al. | May 2004 | A1 |
20040099377 | Newton et al. | May 2004 | A1 |
20040124131 | Aitchison et al. | Jul 2004 | A1 |
20040226507 | Carpenter et al. | Nov 2004 | A1 |
20040226516 | Daniel et al. | Nov 2004 | A1 |
20040238123 | Becknell et al. | Dec 2004 | A1 |
20050016956 | Liu et al. | Jan 2005 | A1 |
20050016984 | Dando | Jan 2005 | A1 |
20050022739 | Carpenter et al. | Feb 2005 | A1 |
20050028734 | Carpenter et al. | Feb 2005 | A1 |
20050039680 | Beaman et al. | Feb 2005 | A1 |
20050039686 | Zheng et al. | Feb 2005 | A1 |
20050045100 | Derderian | Mar 2005 | A1 |
20050045102 | Zheng et al. | Mar 2005 | A1 |
20050048742 | Dip et al. | Mar 2005 | A1 |
20050059261 | Basceri et al. | Mar 2005 | A1 |
20050061243 | Sarigiannis et al. | Mar 2005 | A1 |
20050081786 | Kubista et al. | Apr 2005 | A1 |
20050087130 | Derderian | Apr 2005 | A1 |
20050087132 | Dickey et al. | Apr 2005 | A1 |
20050087302 | Mardian et al. | Apr 2005 | A1 |
20050120954 | Carpenter et al. | Jun 2005 | A1 |
20050126489 | Beaman et al. | Jun 2005 | A1 |
20050133161 | Carpenter et al. | Jun 2005 | A1 |
20050145337 | Derderian et al. | Jul 2005 | A1 |
20050164466 | Zheng et al. | Jul 2005 | A1 |
20050217575 | Gealy et al. | Oct 2005 | A1 |
20050217582 | Kim et al. | Oct 2005 | A1 |
20050249873 | Sarigiannis et al. | Nov 2005 | A1 |
20050249887 | Dando et al. | Nov 2005 | A1 |
20050268856 | Miller et al. | Dec 2005 | A1 |
20060134345 | Rueger et al. | Jun 2006 | A1 |
20060165873 | Rueger et al. | Jul 2006 | A1 |
20060237138 | Qin | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
19851824 | May 2000 | DE |
140246 | May 1985 | EP |
740490 | Oct 1996 | EP |
1167569 | Jan 2002 | EP |
1065762 | Apr 1967 | GB |
1469230 | Apr 1977 | GB |
61292894 | Dec 1986 | JP |
62235728 | Oct 1987 | JP |
62263629 | Nov 1987 | JP |
63020490 | Jan 1988 | JP |
63111177 | May 1988 | JP |
63234198 | Sep 1988 | JP |
63256460 | Oct 1988 | JP |
65259067 | Oct 1988 | JP |
6481311 | Mar 1989 | JP |
01273991 | Nov 1989 | JP |
2306591 | Dec 1990 | JP |
03174717 | Jul 1991 | JP |
04100533 | Apr 1992 | JP |
4-213818 | Aug 1992 | JP |
6054443 | Feb 1994 | JP |
06151558 | May 1994 | JP |
06201539 | Jul 1994 | JP |
06202372 | Jul 1994 | JP |
06342785 | Dec 1994 | JP |
7263144 | Oct 1995 | JP |
08034678 | Feb 1996 | JP |
09082650 | Mar 1997 | JP |
10008255 | Jan 1998 | JP |
10223719 | Aug 1998 | JP |
11172438 | Jun 1999 | JP |
2001082682 | Mar 2001 | JP |
2001254181 | Sep 2001 | JP |
2001261375 | Sep 2001 | JP |
2002164336 | Jun 2002 | JP |
2005112371 | Nov 2005 | KR |
598630 | Feb 1978 | SU |
9837258 | Aug 1998 | WO |
WO-9906610 | Feb 1999 | WO |
WO-0040772 | Jul 2000 | WO |
0063952 | Oct 2000 | WO |
0065649 | Nov 2000 | WO |
WO-0079019 | Dec 2000 | WO |
0132966 | May 2001 | WO |
0146490 | Jun 2001 | WO |
0248427 | Jun 2002 | WO |
WO-0245871 | Jun 2002 | WO |
02073660 | Sep 2002 | WO |
WO-02073329 | Sep 2002 | WO |
02081771 | Oct 2002 | WO |
02095807 | Nov 2002 | WO |
WO-03008662 | Jan 2003 | WO |
WO-03008662 | Jan 2003 | WO |
WO-03016587 | Feb 2003 | WO |
03028069 | Apr 2003 | WO |
WO-03033762 | Apr 2003 | WO |
WO-03035927 | May 2003 | WO |
03052807 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050120954 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10155547 | May 2002 | US |
Child | 11027809 | US |