The present invention relates generally to an apparatus for depositing multilayer coatings onto sheet substrates and devices mounted thereon, and more particularly to an encapsulation tool that performs multilayer coating processing while simultaneously reducing the likelihood of individual layer contamination.
Multilayer coatings have been included in the packaging for environmentally sensitive products and devices to protect them from permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere, or chemicals used in product or device processing, handling, storage, or use. In one form, these coatings may be made from layers of an inorganic metal or metal oxide separated by layers of an organic polymer. Such coatings have been described in, for example, U.S. Pat. Nos. 5,880,246, 6,268,695, 6,413,645 and 6,522,067, all incorporated herein by reference. One method commonly used to apply thin multilayer coatings to various web substrates is the “roll-to-roll” method, which involves mounting the continuous web substrate on a reel. A series of rotating drums are used to convey the substrate past one or more deposition stations. As the web passes around the drums in the system, polymer layers are deposited and cured at one or more polymer deposition and curing stations, while inorganic layers are deposited at one or more inorganic layer deposition stations. The deposition and curing stations are not separate chambers coupled together, but rather are adjacently spaced relative to one another within a single vacuum chamber. With such an open architecture, efforts must typically be made to minimize migration of the organic vapor which could otherwise lead to layer or substrate contamination. In addition, since vapor deposition imparts a significant heat load to the receiving substrate, one or more of the drums can be configured to provide a needed heat sink to control substrate temperature. While the roll-to-roll method is capable of high production rates, its practical use is limited to substrates that are continuous lengths (rolls). In addition, the flexure inherent in the roll-to-roll approach makes it difficult to deposit coatings onto rigid substrates or to substrates supporting inflexible devices mounted thereto.
When the substrate to be coated is in the form of discrete sheets, rather than a continuous web, another method, called the “cluster tool” method, is commonly used to apply the multilayer coatings to the sheet substrate. The cluster tool method, which is commonly used in the manufacture of semiconductor devices, involves the use of two or more independent vacuum chambers connected together via common interface, such as a “hub-and-spoke” configuration, where a central (or substantially central) hub including a robotic transport device can sequentially move a substrate into numerous individual processing chambers, often peripherally mounted around the central hub. One or more of the processing chambers are vacuum chambers that contain one or more deposition sources. In the cluster tool approach, discrete sheet substrates are moved from one vacuum chamber to another to accept the different layers thereon, with the process being repeated as many times as necessary to produce the desired built-up coating. One of the strong motivators for developing the cluster tool approach was the need to isolate potential contamination sources between adjacent yet disparate layers, where typically isolation valves are placed between adjacent chambers. In fact, the use of cluster tool-based machinery for the barrier coating industry was based in part on the perception that organic and inorganic deposition could not take place within a common vacuum chamber if contamination was to be avoided. Another attribute of the cluster tool approach is that the potential for precise temperature control of the substrate is greater within each discrete vacuum chamber than it is for the open chambers of the roll-to-roll configuration. While the cluster tool approach has the benefit of producing relatively contaminant-free finished products, the constant exchange of the sheet substrate from one isolated vacuum chamber to another while maintaining a vacuum adds considerable complexity to design and control systems.
Accordingly, there is a need for a tool that can apply multilayer coatings to a sheet substrate and devices or products mounted on a sheet substrate that combines the speed and efficiency of roll-to-roll devices with the ability to prevent cross contamination inherent in cluster tool-based machines.
This need is met by the apparatus of the present invention, where the individual layers making up the multilayer coating can be deposited in a modified cluster tool architecture that embodies some of the linearity inherent in roll-to-roll and related in-line configurations. The present invention is especially well-suited to coating discrete substrates through batch processing, as compared to the continuous processing associated with web-based substrates. In the present context, the modified cluster tool architecture includes both cluster and in-line attributes to define a hybrid design for deposition of multilayer coatings on a discrete sheet substrate. In the present context, a hybrid tool is to be distinguished from a roll-to-roll (or related continuous) tool in that first, a hybrid tool is configured to handle discrete sheets while the roll-to-roll tool handles continuous webs, and second, the deposition stations along a hybrid tool generally follow a linear, planar path (which may encompass either unidirectional/one pass movement or a shuttling/multi-pass movement) so that during coating processing the tool does not subject the substrate (and any devices mounted thereto) to overly curvaceous paths that might otherwise be harmful to either the coating or the device encapsulated by the coating. In this context, the deposition path is considered to be substantially linear. A hybrid tool is also distinguished from a cluster tool in that in the hybrid tool includes in-line attributes, where the deposition of at least some of the various layers of the multilayer coating occur in a sequential path while in a common environment, whereas in a cluster tool, the various layers are deposited in autonomous chambers isolated from both the ambient environment and neighboring chambers.
According to an aspect of the invention, a device for depositing organic material onto a discrete substrate is disclosed. The device includes an organic material deposition station, an organic material curing station cooperative with the organic material deposition station, a substrate-transport configured to convey the substrate between at least the organic material deposition station and the organic material curing station, a reduced-pressure source placed in vacuum communication with the organic material deposition station and a thermal control mechanism cooperative with at least one of the organic material deposition station and organic material curing station such that temperature inside can be controlled during deposition of the organic material on the substrate. The reduced-pressure source (such as a vacuum pump) can be used during at least a portion of deposition of the organic layer onto the discrete substrate, and operates to create an at least partially evacuated environment immediately around the substrate.
Optionally, the device may include additional components, including a control system configured to adjust at least one of the temperature and pressure conditions in the organic material deposition station. In a more particular option, the control system is configured to adjust both of the temperature and pressure conditions in the organic material deposition station. Other devices, such as an organic mask placement device (discussed in more detail below) configured to place an appropriately shaped and sized mask onto the substrate prior to entering the organic material deposition station, may also be incorporated. The device may also include a cleaning system coupled to the organic material deposition station. In one form, the cleaning system can create reactive plasmas that degrade or remove the material to be cleaned out of the organic material deposition station. For example, the apparatus may include a radio frequency (RF) electrode for generating the cleaning plasma.
This can be used to minimize down-time associated with the removal and related cleaning of uncured, partially cured or fully polymerized organic materials within the organic material deposition station without having to rely on the use of chemical solvents or abrasive mechanical wiping. Such a cleaning system may, for example, use a plasma source to enable in-situ cleaning and a concomitant minimization in the amount of time where the system has to be under non-vacuum conditions. The organic material deposition station may also include an adjustable substrate transport path. For example, by allowing up and down movement of a portion of a substrate transport path relative to a deposition nozzle, various operating modes can be facilitated, including a relatively closed position for process stabilization, an intermediate position for normal organic material deposition and a full open position for evacuation of a chamber surrounding the nozzle. A masking station configured to apply a mask to the substrate prior to deposition of at least one of the organic layers may also be included. Furthermore, this masking station may include mask alignment features to promote more accurate placement of a mask relative to the substrate. A magnetic clamp may also be used to keep the mask and the substrate properly aligned once they are connected to each other.
According to another aspect of the invention, a device for depositing material onto a discrete substrate is disclosed. The device includes a cluster tool configured to deposit at least one inorganic layer onto the substrate, an in-line tool operatively coupled to the cluster tool and configured to deposit at least one organic layer onto the substrate, and a reduced-pressure source placed in vacuum communication with the in-line tool.
Optionally, the device further includes a thermal control mechanism. In one form, the thermal control mechanism can include a cooling jacket situated around deposition chambers in the in-line tool. The in-line tool is made up of an organic material deposition station, an organic material curing station cooperative with the organic material deposition station and a substrate-transport configured to convey the substrate between at least the organic material deposition station and the organic material curing station. The organic material deposition station further includes an organic material evaporator, an organic material deposition nozzle in fluid communication with the evaporator and an organic material confinement system disposed about the nozzle. In a particular form, the organic material deposition station defines an isolatable interior chamber that defines a first region comprising the organic material confinement system, and a second region selectively isolatable from the first region through a moveable shutter. A cooling device in thermal communication with the second region may also be included. With such a device, a distributed approach based on cooling various surfaces adjacent to or part of the monomer deposition station could be used. In another form, the distributed approach is used to support the substrate as it is either transported or temporarily stored between process stations within the tool. The cooling device can be used to reduce the effect on the second region of a thermal load generated in the first region. Additional temperature control devices may also be employed. For example, at least one cold trap may be disposed in the isolatable interior chamber (such as adjacent an aperture separating the first and second regions). In a particular form, the cold trap is disposed in the second region to cooperate with the substrate-receiving path. One or more pumps For example, a rough pump operating in conjunction with a localized turbomolecular pump) can be fluidly coupled to at least one of the first and second regions to raise and lower local ambient pressure as needed.
The cluster tool section of the device may further comprise an inorganic deposition station, such as a station configured for planar cathode sputtering. This station can be used to deposit a first layer of inorganic material onto the substrate. In addition to the reduced-pressure source discussed above, one may also be placed in vacuum communication with the cluster tool such that during at least a portion of deposition of the inorganic layer onto the discrete substrate, the reduced-pressure source operates to create an at least partially evacuated environment about the substrate. This may be the same reduced-pressure source as used in conjunction with the in-line section of the device, or it may be a separate unit either autonomously or commonly controlled.
The inorganic layer deposition station is configured to deposit at least one inorganic layer of the multilayer coating into the substrate, while the organic layer deposition station and the curing station are configured to form at least one organic layer of the multilayer coating onto the substrate. In the present context, deposition of a layer “onto” the substrate encompasses both application in direct contact with the underlying substrate as well as application onto one or more layers previously deposited on the substrate as part of a contiguous stack. In this way, either the organic layer or the inorganic layer may be deposited first, yet both layers, even in a multilayer configuration, are considered to be deposited onto the substrate. The device can be configured such that either layer may be deposited first. For example, the inorganic layer may be placed onto the substrate prior to the placement of the first organic layer.
The device may further comprise at least one surface treatment mechanism configured to enhance the ability of individual layers of the multilayer coating to adhere to the substrate or an adjacent layer. For example, while the use of sputtering (discussed above in conjunction with the deposition of an inorganic layer onto a substrate) is beneficial, its use coincides with increases in temperature and plasma energy. Special measures may be undertaken to avoid damage to the environmentally sensitive device (such as an organic light emitting diode (OLED)) that can otherwise arise from being exposed to the plasmas and/or temperatures of the sputter coating process. Other deposition techniques, such as thermal evaporation, promote the deposition of inorganic layers without subjecting the environmentally sensitive device being encapsulated to harsh environments, e.g., high temperatures and/or plasmas. By way of example, since thermal evaporation is a currently-used approach for forming the metallic top electrode of an OLED, such an inorganic layer deposition approach could also be used as an encapsulation-enhancement approach, such as to deposit a protective layer. Unlike commonly-used oxides, such as aluminum oxide (Al2O3), that are applied by reactive sputtering, inorganics such as lithium fluoride (LiF) and magnesium fluoride (MgF2) (both of which are optically transparent) can also be applied via thermal evaporation to create a protective layer without having to expose the environmentally sensitive device to the plasma. Similarly, the approach could utilize an inorganic transparent metal halide via thermal evaporation, a sputtered transparent inorganic or first deposited organic, or a simpler approach in which thermal evaporation is used for the first deposited inorganic. The latter would require a first deposited inorganic that can be applied by thermal evaporation and provide a combination of adhesion and transparency.
The device can be configured to have the substrate shuttle back and forth as many times as required to deposit the multilayer coating on the substrate. To effect the shuttling movement, one or more conveyors or related transport mechanisms may extend through the in-line section of the device to transport the substrate therethrough. As will be discussed in more detail below, features of such transport mechanisms can similarly be used in at least one of the portions of the inorganic layer deposition station. To assist in shuttling, the conveyor can be configured to move bidirectionally. A robotic mechanism may be placed in a central hub region of the cluster tool section of the device to not only coordinate substrate movement between various stations formed around the central hub, but also to cooperate with the conveyor or other transport device of the in-line tool. A control system may be included to determine operability of the various components and process conditions, as well as be responsive to process parameters, such as pressure, temperature, scanning speed, presence of contaminants or the like. The vacuum source may provide a different vacuum level during deposition of the inorganic layer than during deposition of the organic layer. By way of example, the vacuum level during deposition of the inorganic layer can be approximately 3 millitorr, while that during deposition of the organic layer can be approximately 10 millitorr.
As stated above, the inorganic layer may be deposited onto the substrate prior to the placement of the organic layer. The inventors have discovered that placing an inorganic (such as an oxide) layer before placing an organic layer results in improved adhesion between the substrate and between layers, as well as improved barrier properties. The inventors have further discovered that in situations involving encapsulation of an object (such as an OLED) placed on the substrate, superior adhesion and barrier properties are achieved using such “inorganic first” approaches. Thus, while the inclusion of an organic layer continues to make valuable contributions to the overall performance of the multilayer coating, the inventors' research suggests that attainment of a suitable base (or foundation) for effectively isolating the barrier from undesirable contributions from the underlying substrate (or device) may be best achieved with one or more inorganic layer/organic layer pairs led by an inorganic layer (possibly on top of the aforementioned protective layer). By placing an inorganic layer onto a substrate (such as glass or a plastic) prior to the organic layer, the inventors have achieved adhesion to substrates, to devices placed on substrates, and between layers of multilayer environmental barriers, all of which withstand the physical and thermal rigors of the environment in which they have to perform. Furthermore, when these layers form the surface upon which a device is placed, they survive all of the processing associated with fabrication of the device. The inventors believe that at least one explanation may be that migration of organic species from a plastic or related substrate to this first-applied layer is reduced compared to if the first layer is the organic layer, and that such migration reduction promotes and maintains enhanced adhesion between the substrate and the first-applied layer. In addition, in cases involving deposition onto a device mounted on the substrate, the inventors believe that with a first deposited organic layer, the layer does not adequately wet, or uniformly coat, the device surface. This could be due to species originating in the organic layers of the device being coated, not having a suitable formulation for the first deposited organic layer relative to the device, or a combination of both. On the other hand, an “organic first” approach (at least in encapsulation situations) would reduce or even eliminate the potential for damage to the device from the plasma used in depositing inorganic layers. As such, the choice of an “organic first” or an “inorganic first” deposition strategy can be made based on the particular needs of the substrate or device being coated.
As previously discussed, masks may be used to form particular deposition patterns on the substrate. To reduce the incidence of seepage and related capillary phenomena (which is especially prevalent when dealing with deposited organic layers), masks may be stacked to make an undercut mask, or the organic mask may be removed prior to the curing step. Removal of the mask prior to cure may also improve cure speed by eliminating mask shadowing of the edge of the organic material.
According to yet another aspect of the invention, a tool for depositing a multilayer coating on a discrete substrate is disclosed. The tool includes a plurality of peripheral stations disposed about a substantially central hub and coupled thereto such that the substantially central hub can transport the substrate between the peripheral stations. It will be appreciated that while a hub-and-spoke arrangement is shown in the accompanying figures as being representative of a central hub configuration, other comparable arrangements that facilitate the sequential or parallel feeding between the various peripheral stations are also envisioned as falling within the scope of the present invention. The peripheral stations include a barrier layer forming station, one or more organic (or related polymer precursor) layer forming stations, a reduced-pressure source placed in vacuum communication with at least one of the barrier layer and organic layer forming stations, and a temperature control device placed in thermal communication with at least one of the barrier layer and organic layer forming stations. The barrier layer forming station can be used to deposit at least one inorganic layer onto the substrate, while the one or more organic layer forming stations can be configured as an in-line tool to deposit at least one organic layer onto the substrate. By accommodating more than one organic later forming station, the present invention can handle higher throughput operations when required. The reduced pressure source (such as a vacuum) operates to create an at least partially evacuated environment about the substrate. Likewise, the temperature control device operates to adjust the temperature of the substrate. Optionally, the temperature control device is configured to reduce the temperature of the substrate. In addition, the tool further includes at least one masking station disposed in the tool, the masking station configured to place at least one mask on the substrate. The organic layer forming station includes monomer deposition, monomer curing and transport features to move substrates with the monomer coating between the deposition and curing portions of the tool.
According to still another aspect of the invention, a tool for depositing a multilayer coating on a discrete substrate is disclosed. The tool includes a monomer layer deposition station, a barrier layer deposition station cooperative with the monomer layer deposition station and a reduced-pressure source cooperative with one or both of the monomer and barrier layer deposition stations to create an at least partially evacuated environment about the substrate. As before, the monomer layer deposition station can be set up as an in-line tool to deposit at least one organic layer onto the substrate. The barrier layer deposition station is configured as a cluster tool to deposit one at least one inorganic layer onto the substrate.
Optionally, the tool further includes at least one curing station configured to cure an organic layer deposited by the monomer layer deposition station. The tool may also include one or more contamination reduction devices to control the migration of material making up the organic layer. The tool may also include a masking station configured to place at least one mask on the substrate. The monomer layer deposition station and the barrier layer deposition station may be configured to reverse the substrate along respective transport paths to promote the deposition of multiple layers of the multilayer coating. An environmental isolation valve may be disposed between the monomer layer deposition station and the barrier layer deposition station to avoid unnecessary contamination between adjacent compartments within the tool. In addition, one or more surface treatment chambers may be incorporated to enhance the ability of individual layers of the multilayer coating to adhere to the substrate or an adjacent layer of the multilayer coating. This surface treatment chamber, which may be made up of a plasma energy source or a thermal evaporation device, can be disposed in the monomer layer deposition station. In configurations where the surface treatment chamber includes a thermal evaporation device, one form would be configured to deposit a non-oxide material on the substrate or presently-exposed layer. In a particular version of this case, the non-oxide material can be lithium fluoride or magnesium fluoride. In a particular tool configuration, the inorganic layer deposition station places an inorganic layer onto the substrate prior to the placement of an organic layer from the organic layer deposition station. In addition, the vacuum source may be operated to provide a different vacuum level during deposition of the inorganic layer than during deposition of the organic layer.
According to yet another aspect of the invention, an encapsulating tool configured to deposit a multilayer coating onto an OLED is disclosed. The encapsulating tool includes a cluster tool configured to deposit one at least one inorganic layer onto the OLED, an in-line tool configured to deposit one at least one organic layer onto the OLED, and a vacuum source coupled to at least the in-line tool such that during at least a portion of deposition of the organic layer onto the OLED, the vacuum source operates to create an at least partially evacuated environment about the OLED. The in-line tool is operatively coupled to the cluster tool. Optionally, a thermal control mechanism is coupled to at least one of the cluster tool and the in-line tool. Furthermore, the encapsulation tool can be configured such that either the inorganic or organic layer can be first applied to the OLED.
According to still another aspect of the invention, a method of depositing a multilayer coating onto a substrate is disclosed. The method includes using an encapsulation tool that can be configured according to one or more of the previously-described aspects. In addition, the method includes loading the substrate into the tool, depositing at least a portion of the inorganic material onto the substrate as a component of the multilayer coating, operating the reduced-pressure source to create an at least partially evacuated environment about the substrate during at least a portion of deposition of the organic layer onto the substrate, depositing at least a portion of the organic layer onto the substrate as a component of the multilayer coating, and curing the deposited organic layer.
Optionally, the method further comprises treating at least one surface of the substrate prior to forming a first layer of the multilayer coating. This enhances adhesion between the substrate and the first formed layer. The method may further include placing an inorganic mask over the substrate prior to depositing the inorganic layer, and placing an organic mask over the substrate prior to depositing the organic layer. A plurality of masks may be stacked to make an undercut mask. In another approach, the undercut mask may be formed from a single layer with sufficient thickness. In one form, it is desirable to avoid contact between a portion of the deposited organic layer that is likely spread into a shadow region defined by the undercut mask and a portion of the undercut mask that is in substantial contact with the substrate, thereby minimizing the likelihood of wicking or related phenomena. Additionally, the organic mask can be removed prior to curing. In yet another option, at least a portion of the tool can be cooled to effect control over deposition of the organic layer. The method may also include depositing at least a portion of the inorganic layer prior to depositing at least a portion of the organic layer onto the substrate such that the first deposited layer on the substrate is an inorganic layer. In another form, the reverse may also be performed such that the first deposited layer on the substrate is an organic layer. The method may also include operating a thermal control mechanism such that a temperature in at least one of the cluster tool and the in-line tool can be controlled during the deposition.
According to another aspect of the invention, a method of encapsulating an OLED placed on a discrete substrate with a multilayer coating is disclosed. The method includes loading the OLED into an encapsulation tool, depositing at least a portion of an inorganic layer onto the OLED while it is in an inorganic layer deposition station portion of the tool, depositing at least a portion of an organic layer onto the OLED while it is in the organic layer deposition station portion of the tool, operating a vacuum source to create an at least partially evacuated environment about the OLED during at least a portion of deposition of the organic layer thereon; and curing the deposited organic layer.
Optionally, deposition of the organic and inorganic layers is repeated at least once, where the steps of depositing the organic and inorganic layers can be performed in an any order. Preferably, organic material used for the organic layer is introduced into the organic layer deposition station in vapor form, and more particularly, the organic material is a polymer precursor or a monomer. In addition, the inorganic material used for the inorganic layer is preferably a ceramic. It will be appreciated that these material choices are similarly applicable to any of the previously-described aspects for their corresponding cluster and in-line tool sections. In one form, the curing of the deposited organic layer comprises ultraviolet (UV) curing, although it will be appreciated that other known forms of curing may also be used. As with the previously-described aspects, a first applied layer may be an inorganic layer. Furthermore, a final applied layer may be an inorganic layer. The method may further comprise treating at least one of the deposited inorganic layers prior to deposition of an organic layer. Such treatment may be performed by a plasma source.
According to still another aspect of the invention, a tool includes an encapsulation device, a load lock for selective vacuum isolation between the encapsulation device and a remainder of the tool, and an exchange mechanism to help transport one or more encapsulated members formed on a substrate between the encapsulation device and the remainder of the tool. The encapsulation device includes an organic layer forming station and a barrier layer forming station, where the organic layer forming station may include an organic material deposition station, an organic material curing station cooperative with the organic material deposition station, a substrate-transport and a reduced-pressure source, the last placed in vacuum communication with the organic material deposition station such that during at least a portion of deposition of an organic layer onto the substrate, the reduced-pressure source operates to create an at least partially evacuated environment about the substrate. In addition, the organic layer forming station may include a thermal control mechanism cooperative with one or both of the deposition and curing stations such that a temperature therein can be controlled during formation of the organic material on the substrate.
Optionally, in one embodiment, the tool may be used to not only encapsulate a device on a substrate, but to also integrate the encapsulated device into a larger component, such as integrated circuitry or the like. The encapsulation device may be an OLED encapsulation device. Similarly, the exchange mechanism may be the accumulator discussed previously. Also as discussed in conjunction with previous aspects, the barrier layer forming station may be configured as a cluster tool, while the organic layer forming station may be configured as an in-line tool. The tool may also include a cleaning system placed in the organic layer forming station or elsewhere. The cleaning system may include the previously-discussed glow discharge device.
Referring first to
Referring next to
Referring next to
The Organic Layer
In addition to performing the aforementioned crack-blunting function, organic layer 9A may (as shown in the figure) be made thicker to provide, among other things, planarization. Moreover, the layer 9A can provide thermal isolation of the underlying substrate or device, which is beneficial in reducing thermal inputs associated with subsequent depositions of inorganic layers 9B. The benefit in coating performance from alternating discrete layers over fewer thicker layers may be explained by simple redundancy, but could also be the result of nucleation of a subsequently deposited inorganic layer 9B on organic layer 9A initially deposited on first inorganic 9B layer with improved barrier properties that are not inherent in the bulk structure.
There are numerous approaches to initiating polymerizations, cross-linking and cure of an organic layer 9A based on plasma-based or evaporation techniques. One approach is based on passing a flash evaporated organic material through a charged cathode/anode assembly to form a glow discharge plasma. In glow discharge plasma, a partially ionized gas is used to bombard a substrate 6. The glow discharge is well established in the art, and as such conveys an understanding of required equipment configurations, process conditions, working gases and the like that can be used, and what results can be achieved. Reactive species in the gas are chemically deposited onto a substrate 6 or a layer of coating 9 thereon. After this, the organic material condenses to form an organic layer 9A that self-cures by polymerization reactions initiated by charged species resulting from plasma formation. The approach is taught by U.S. Pat. Nos. 5,902,641 and 6,224,948, both hereby incorporated by reference. A variation of this approach is based on plasma generation within a working gas that is then directed at an organic layer deposited using flash evaporation; this variation is taught by U.S. Pat. Nos. 6,203,898 and 6,348,237, and US Patent Application Publication 2002/0102361 A1, all three hereby incorporated by reference. Organic precursors suitable for forming organic layer 9A contain at least one species bearing an active functional group to enable reactions resulting in polymerization and/or cross-linking. Because it is desirable to control the onset of these reactions, and the reactions will take place in a vacuum environment, addition reactions are generally preferred. Exemplary addition reactions include the polymerization of the acrylate group (—O—CO—CR═CH2, where R is typically H, CH3 or CN), polymerization of the vinyl group (R1R2C═CH2, where typically R1 is H and R2 is —O (oxygen linkage) or where R1 is an aromatic or substituted aromatic and R2 is H or CH3), ring opening polymerization of the cycloaliphatic epoxy groups and the reactions of isocyante (—NCO) functional species with hydroxyl (—OH) or amine (—NH2) functional species. Ease of reaction and availability favor acrylate and vinyl functional materials, but other materials may also be used.
The reactive species incorporated into suitable organic precursors can be monomers (simple structure/single unit) bearing at least one functional group, oligomers (composed of two to several repeating units) bearing at least one functional group, or polymers bearing at least one functional group. As used herein, monomer is meant to include species referred to as monomeric, and the terms oligomers and/or polymers are meant to include species referred to as oligomeric, polymeric, prepolymers, novalacs, adducts, and resins, when the last mentioned bears functional groups. The reactive species (i.e., monomer, oligomer or polymer) can bear two or more similar or dissimilar functional groups, while suitable organic precursors can include two or more of these reactive species. By way of example, these could be made up of two or more monomeric species, one or more monomeric species combined with an oligomeric species or one or more monomeric species combined with a polymeric species. It will be appreciated by those skilled in the art that the numbers and natures of the reactive species that can be used in combination are not subject to set limitations. In addition, the organic precursors may include one or more species that are not polymerizable and/or cross-linkable and are liquids or solids. Examples include the aforementioned photoinitiators, which are species that fragment to produce free radicals that induce free radical-based reactions (including polymerizations) in response to UV exposure. When solid, these species may be present as dispersions, colloidal dispersions, or in solution, and may be ionic in nature, such as salts of inorganic or organic species. When liquid, the non-reactive species may be present as emulsions, as colloids, or as miscible components.
The liquid multilayer (LML) process, disclosed by U.S. Pat. Nos. 5,260,095, 5,395,644 and 5,547,508 (incorporated herein by reference), bears some resemblance to the PML process previously described by employing many of the same organic materials used in the PML's flash evaporation-based approach, but can further work with a range of higher molecular weight materials that can not be used via flash evaporation. In essence, the LML process involves applying a liquid material to a surface and then inducing a cure (polymerization) in contrast to the PML approach of condensing a flash evaporated organic and then inducing the cure.
The Inorganic Layer
The inorganic layer 9B depicted in the figure can be a ceramic layer that can be vacuum deposited onto the top surface of device 90, onto the surface of sheet substrate 6, or onto the organic layer 9A already on sheet substrate 6. Vacuum deposition methods for the inorganic layer 9B include, but are not limited to, sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition, and combinations thereof. Sputtering typically involves the bombardment of a cathode material by gas ions in a low pressure environment, thereby ejecting atoms of the cathode material from the cathode surface. The ejected atoms then impinge upon a substrate placed in their path, thereby resulting in a deposit of the cathode material atoms onto the substrate surface. Sputtering devices have used both electric and magnetic fields to accelerate the gas ions toward the cathode surface. By passing a magnetic field through the cathode material, enhanced deposition rates can be achieved. Moreover, to avoid burn-through of the cathode material created by the fixed presence of the adjacent magnets, the magnets were moved (such as being rotated) relative to the target cathode. Specific refinements of this idea include cylindrical tube cathodes that rotate about fixed magnets, thus promoting relatively even consumption of the cathode material. Rotary sputtering is taught by U.S. Pat. No. 6,488,824, the entire disclosure of which is incorporated herein by reference.
Sputtering can be reactive (in the case of depositing of ceramic or dielectric materials, such as the oxides and nitrides of metals) or non-reactive (where metals are deposited). By adding reactive capability, sputtering devices (including rotatable cylindrical devices) can be used to deposit ceramic and related non-metal materials formed for example by combining the liberated cathode material atoms with a reactive species gas, while the control of the buildup of electrically nonconductive layers of sputtered material avoids a drift in process parameters that would otherwise occur during deposition. In reactive sputtering, metal ions are generated from a sputter source (cathode) and subsequently converted in a reactive atmosphere to a metal compound that then is deposited on the substrate. For example, use of oxygen as the reactive gas will result in the deposition of a layer of metal oxide, while the use of nitrogen or a carbon source such as methane as reactive gases will result in the deposition of layers of metal nitride or metal carbide respectively. Reactive gas mixtures can be used to produce more complex layers. Alternatively, a ceramic target can be RF sputtered onto the substrate 6. In either case, the inert working gas is usually argon. In one form, the sputtered ceramic layer 9B can be Al2O3 because of its ready availability and known deposition parameters. It will be appreciated, however, that other suitable deposition processes and other inorganic layer materials 9C (such as the aforementioned non-oxides MgF2 and LiF produced by the aforementioned thermal evaporation) could also be used. As with the organic layer 9A, in situations involving device encapsulation, either first deposited layer 9B or 9C can be applied relatively thickly (such as over a 1,000 Å) to obtain a higher quality encapsulation, while subsequently deposited barrier stacks can provide the required environmental protection for the encapsulated device. While either reactive or non-reactive sputtering can be used to facilitate deposition of inorganic layer 9B on either sheet substrate 6 or environmentally sensitive device 90, the reactive approach is preferred, as this technique provides higher deposition rate and denser film for a better barrier. As previously mentioned, non-reactive processes can be advantageous for deposition of a protective layer 9C where concerns about damage to the object being encapsulated are important.
The closeness of the deposition source to the surface being deposited on is determined in part by which of the aforementioned deposition approaches are used. By way of example, the inventors have discovered that an approximately six inch sputter spacing between the two produces good results. Generally, the closer the surface is to the source, the higher the deposition rate, the trade-off being that if the surface and source are too close, high heat build-up can occur on the surface. In one example, if the environmentally sensitive device 90 is the aforementioned OLED, it might be necessary to protect it its upper cathode layer from the effects of a reactive gas. In addition to closeness, the orientation of the surface relative to the source (whether above or below, for example) is dependent on the type of device being encapsulated. Upward deposition has been used more extensively in the past, because thermal evaporation is typically an upwardly-directed phenomenon. If the substrate is large, downward or sideways deposition may instead be preferred. The energy input for the various deposition processes can also come in many forms, and can interact with other deposition considerations, such as whether reactive or non-reactive methods are used. For example, a direct current (DC) input with a reverse bias pulse is currently compatible with an Al2O3 layer, and is relatively simple and provides a high deposition rate. This is also beneficial in arc suppression and control, as well as related particle generation. There are other possible energy sources for depositing ceramic and related dielectric materials, such as alternating current (AC) or RF, especially for situations where arcing is to be avoided, and where the relatively high speed deposition rates of pure metals is not required.
Referring next to
The configuration of the encapsulation tool 2 shown involves a shuttling of the sheet substrate 6 back and forth through the organic layer deposition station 10, curing station 20, inorganic layer deposition station 30 and masking station 60 over multiple bi-directional trips to achieve the desired number of deposited layers. As will be discussed in more detail below, the encapsulation tool 2 can also be configured as a unidirectional device such that the requisite number of layers can be deposited in a single pass through the system. The inorganic layer deposition station 30 comprises a deposition chamber 32 for depositing inorganic layer 9B, the details of which are discussed above. The organic layer deposition station 10 includes a first migration control chamber 12, a deposition chamber 11 for depositing organic layer 9A, and a second migration control chamber 14. Temperature control of the substrate is one way in which migration control of the material making up the organic layer 9A can be achieved. Since the organic layer deposition step is very sensitive to substrate temperature (particularly elevated substrate temperatures), where cooler substrates will condense more organic precursor uniformly and rapidly, particular emphasis has been placed on cooling the substrate. To that end, cooling (for example, in the form of chillers or thermal masses placed in migration control chambers 12, 14 can be introduced along the deposition path to keep the substrate 6 and the coating 9 or environmentally sensitive device 90 thereon from overheating. This cooling minimizes the dispersion of any organic precursor vapor to adjacent stations to avoid encapsulation tool hardware fouling. In addition, by reducing the quantity of excess organic precursor vapor before the sheet substrate 6 moves to the next station, the encapsulation tool 2 effects a concomitant reduction in the likelihood that subsequent coating layers will become contaminated. Coolant (cryogenic or other) feed tubes (not shown) connect the chiller (not shown) to the first migration control chamber 12 so that the feed tubes can disperse a chilling fluid (such as liquid nitrogen) over the top and bottom of the sheet substrate 6. The feed tubes have a supply and a return. The coolant is isolated from the vacuum.
In addition, cycle purge can be employed to reduce contamination in the feed interface section. Baffles 15 situated on the proximal and distal sides of organic layer deposition station 10 further contain the vaporous organic precursor within the localized space in which it is deposited. The baffles 15 could also be added to other stations to partially shield the open flowpath defined by the contiguous entrances and exits of the various stations from stray vapor dispersion. The flowpath is open enough to ensure that common vacuum between the stations is not compromised. Once the deposition process is complete, the sheet substrate 6 goes into a second migration control chamber 14 similar to that described in conjunction with the first migration control chamber 12 above.
Curing station 20 is configured to cure organic layer 9A that was deposited in organic layer deposition station 10. Upon curing of the organic layer 9A, additional layers may be deposited. Cure or cross-linking results from free radical polymerizations that can be initiated by exposure to an electron beam (EB) source or by exposure to a UV source when the aforementioned photoinitiators are incorporated into the organic precursor. In certain deposition scenarios, such as where a device 90 is placed on the substrate 6, the use of UV is preferred to that of EB, as relying on UV exposure to cure the condensed layer rather than an EB source helps to avoid concerns over the impact of the more harsh EB exposure. By way of example, EB exposure can be up to several kilo-electron volts (keV) on the underlying device 90. It will be appreciated by those skilled in the art that polymerization (cross-linking) based on UV exposure is not limited to free radical mechanisms. There are photoinitiators that liberate cationic initiators (so-called Lewis-acids, Bronstead-acids, onium salts, etc.) enabling the use of cationic polymerization mechanisms. Use of these curing mechanisms in combination with flash evaporation is taught by U.S. Pat. No. 6,468,595, hereby incorporated by reference. Cationic polymerization facilitates use of a large family of vinyl functional and cycloaliphatic epoxy function organic materials that are not ideally used in free radical polymerizations, but are still considered addition polymerizations.
Masking station 60 can include inorganic mask placement device 65 and organic mask placement device 67, each to overlay the environmentally sensitive objects 90 deposited on sheet substrate 6 with thin, card-like masks. The masks prevent deposition of organic layer 9A onto selected regions of substrate 90, such as electrical contacts, and can be used to define (control) the overlap relationship between inorganic layers 9B and organic layers 9A, where such relationship is beneficial in edge seal design. In the case of the organic mask placement device 67, the overlaid masks can further be used to allow selective exposure and subsequent cure of portions of the deposited organic layer 9A. In the deposition of inorganic layer 9B, portions of the mask may effect protection of the environmentally sensitive objects 90 (such as an OLED cathode) from heat or particulate matter by acting as shields, as they are placed between the source cathode and the substrate to be coated and act as a mask to limit (define) the area of the substrate exposed to the source.
The proximal end 2A of the encapsulation tool 2 can be configured as an accumulator 40 to allow an interface of the deposition stations of housing 3 to upstream or downstream equipment, or to the ambient external environment, such as for loading and unloading substrate 6. The accumulator 40 (or a related exchange mechanism) acts as a wait station for one or more of the substrates 6 that are about to be processed, providing a stable, relatively isolated environment where, for example, temperature and atmospheric agitation reduction can be effected, thereby improving the overall quality of the deposition process. The accumulator 40 includes an inlet 40A and an outlet 40B spaced apart from inlet 40A. The accumulator may include isolation chambers 4 defined by isolation valves 17 such that once the substrate 6 is loaded in the accumulator 40, at least partial isolation from the ambient environment may commence. As previously mentioned, vacuum and thermal control can be produced in the accumulator 40. The thermal reduction can be achieved by thermal mass heat sinks that are placed in contact with or adjacent the substrate 6 at one or more discrete locations, or by a chilled fluid (such as liquid nitrogen) system. These heat sinks can be used to reduce the temperature of the substrate 6 prior to the substrate 6 entering the various deposition stations, as well as cool the substrate during the deposition process.
In addition to supporting at least partial environmental isolation for the substrate 6, the accumulator 40 may also include one or more surface treatment chambers 19 to improve the adhesion of one of the organic layer 9A or inorganic layer 9B to substrate 6. The surface treatment chamber 19 may be a plasma energy (glow discharge) source and may use an inert working gas, a reactive working gas or a combination thereof. The energy source to generate the plasma can come from RF, AC and DC, and may include a downstream plasma source, where the plasma is generated remotely and delivered to remove organic contaminants that may have coated various components therein. The treating, which causes increased surface energies accompanied by increased hydrophilic behavior, enhances adhesion between the substrate and the first formed layer, thereby enabling formation of a better bond therebetween. In situations involving a flexible substrate, such as the aforementioned PET film, additional improvements in film compliance and contaminant reduction is also enabled by surface treating. This is important, as these contaminants (typically in the form of low-molecular-weight species) are migratory, thus capable of spreading to other layers. In addition, the inorganic layers can be treated to effect enhanced adhesion with subsequently deposited organic layers. For encapsulation, it is probably sufficient to treat only the surfaces of the inorganic layers of the multilayer coating. This is based on the inventors' belief that the improvements to adhesion occur by treating the inorganic layer surfaces rather than the surfaces of the organic layers. A second accumulator 50 can define the distal end 2B of encapsulation tool 2. This accumulator, while capable of possessing all of the features of accumulator 40, is preferably simpler, providing optional temperature control and turnaround and wait-state containment of one or more substrates 6.
Once the proper environmental conditions have been established for the substrate 6 in accumulator 40, the substrate 6 is transported along conveyor 7 to housing 3, where, depending on the deposition strategy, the layers 9A, 9B of multilayer coating 9 will be deposited. For example, an eleven layer coating 9 could be formed from five organic layers 9A interspersed among six inorganic layers 9B. Furthermore, it may be preferable to deposit the inorganic layer 9B as the first layer on the substrate 6, onto which alternating layers of organic and inorganic layers 9A, 9B may subsequently be placed. Contrarily, it may be preferable to reverse the order, having the organic layer 9A as the first layer on the substrate 6. Although shown in a one-sided configuration, the inorganic layer deposition station 30 can be configured to provide two-sided treatment of the substrate.
Next, the sheet substrate 6 travels to the deposition chamber 11 within organic layer deposition station 10, to receive an organic layer 9A of multilayer coating 9. The organic layer 9A is preferably deposited via an evaporative process such as PML, where the precursor material can be in the form of a liquid solution, liquid with solid dispersion or liquid with liquid-immiscible mixture. Evaporation may be performed by supplying a continuous liquid flow of the organic layer precursor material into the vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the precursor, continuously atomizing the precursor into a continuous flow of droplets, and continuously vaporizing the droplets in a heated chamber having a temperature at or above a boiling point of the precursor, but below a pyrolysis temperature.
Once the sheet substrate 6 reaches the accumulator 50 at the distal end 2B of encapsulation tool 2, it may subsequently be sent in a reverse direction in order to pass through curing station 20 to harden the organic layer 9A that was just deposited in the organic layer deposition station 10. Similarly, such a configuration establishes a compact system for the deposition of additional layers 9A, 9B of multilayer coating 9 as the sheet substrate 6 can simply be turned around to pass through the existing components defined by the organic layer deposition station 10, curing station 20 and inorganic layer deposition station 30 in reverse order. The sheet substrate 6 can travel through the encapsulation tool 2 as many times as desired to receive the appropriate number and type of layers 9A, 9B of multilayer coating 9. The encapsulation tool 2 may also include other deposition stations (not shown) to deposit additional coatings on the sheet substrate 6 including, but not limited to, scratch resistant coatings, antireflective coatings, anti-fingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and other functional layers. Additional equipment can be connected to encapsulation tool 2, including a testing (or measurement) chamber 8 (shown later) that can be used for quality-control purposes, such as to provide indicia of the adequacy of the multilayer coverage. For example, a calcium-based referee sample can be created to support oxygen and water permeability tests of the multilayer coating that is being applied via the apparatus of this invention. Such additional deposition stations (if present) could be included either upstream or downstream of the accumulator 50.
Control system 70, made up of individual controllers 70A through 70N, is used to dictate process parameters, including the order of deposition of the inorganic and organic layers, as well as thermal, motion and utilities control. For example, thermal control 70D can include hardware and software that is coupled to the thermal control devices in the accumulator 40 to chill the substrate 6, while thermal control 70F and 70H can be used to operate the contaminant reduction devices of the migration control chamber 12. Motion control 70M includes hardware and software that tracks the position of the substrate 6 while being transported by conveyor 7 along the encapsulation tool 2. Utilities control 70N includes hardware and software to provide electrical power, process gas, vacuum, compressed air and chilled water to the individual stations. Similarly, the factory control interfaces external systems for material management and process status. The human machine interface (HMI) is the control panel, computer, software, screen, keyboard, mouse and related equipment that allows an operator to run the system. The control system 70 can shuttle the sheet substrate 6 (and any environmentally sensitive device 90 thereon to be encapsulated, if present) in any order to accommodate particular encapsulation or barrier deposition configurations.
Referring next to
In step 1 of the operation, the first batch 6A of sheet substrates 6 is loaded into accumulator 40 at proximal end 2A. After stable environmental conditions are established in the accumulator 40 (such as temperature reduction, establishment of a predetermined vacuum level or the enhancement of surface properties in surface treatment chamber 19), the sheet substrates 6 are moved sequentially past the organic layer deposition station 10 and curing station 20 by a conveyor 7 to the masking station 60. A pallet (not shown) to carry the sheet substrate 6 may contain holes therethrough to facilitate deposition of the layers of multilayer coating to the bottom of the sheet substrate 6, if desired, such as for two-sided coating deposition. Furthermore, an open palette may allow the substrate to better “see” a chill plate or related thermal management device, thereby increasing the contribution of the chill plate to substrate thermal management.
Upon arrival at the masking station 60, the substrate 6 first receives a mask from inorganic mask placement device 65, after which it moves (as shown in step 2) to inorganic layer deposition station 30 to receive inorganic layer 9B. The energy applied (which may come from, by example, a 2 kilowatt pulsed DC source applying a reactive coating in an exothermic reaction) to the substrate 6 from the inorganic layer deposition station 30 may raise the temperature of the substrate significantly.
To counteract this increase in temperature (which could otherwise adversely impact the ability of the substrate to accept organic layer 9A in subsequent deposition steps), the substrate is temporarily placed in accumulator 50, as shown in step 3, where the thermal control features of accumulator 50 can be activated to both effect temperature reduction, as well as position the substrates 6 of batch 6A for a return trip through housing 3. At this time, as shown in step 4, a second batch 6B can be introduced into the inlet 40A of accumulator 40 at the proximal end of encapsulation tool 2, while the substrates 6 from batch 6A traverse the reverse direction, receiving an organic layer coating from organic layer deposition station 10 with subsequent curing (not presently shown). In step 5, the individual substrates 6 of second batch 6B receive the same layer deposition as the first batch 6A did in step 2. In step 6, the first batch 6A repeats that of step 2, being routed after deposition to separate wait space in accumulator 50 so as not to mix with second batch 6B. After this step, the first batch 6A has an inorganic-led first organic/inorganic layer pair 9A/9B of coating 9. As such, a first inorganic layer 9B is part of the foundation pair (composed of first inorganic layer 9B and first organic layer 9A) that decouples or isolates the barrier coating 9 from the underlying substrate 6 or device 90. In step 7, both batches 6A and 6B are contained in accumulator 50, while in step 8, the first batch 6A receives a second organic layer 9A and cure. In step 9, each substrate 6 of the second batch 6B receives its first deposition of organic layer 9A until both batches 6A and 6B are stored in the accumulator 40, as shown in step 10. After step 11, the first batch 6A has two organic/inorganic layer pairs 9A/9B of coating 9 disposed on the substrates 6. Step 12, once completed, leaves second batch substrates 6B with a first inorganic layer 9B and a first organic/inorganic layer pair 9A/9B of coating 9. Step 13 is a wait state similar to that of step 7. Step 14 depicts the substrates 6 from first batch 6A exiting the encapsulation tool 2 through outlet 40B in accumulator 40. In step 15 (which repeats the process of step 4), second batch 6B receives an organic layer 9A and curing, while a new batch 6C is loaded into the inlet 40A of accumulator 40. Step 16 shows the second and third batches 6B, 6C in a wait state in accumulator 40. It will be appreciated that modifications to the above steps are possible; for example, if greater or fewer numbers of layers are required, the number of passes through the encapsulation tool 2 can be varied accordingly. It will be appreciated by those skilled in the art that while the order (i.e., inorganic-led) of the foundation pair is currently preferred based on the substrates currently in use, the present system can be configured to provide an organic-first deposition strategy for other substrate compositions that would require such an approach.
Referring next to
Referring next to
Referring next to
Referring next to
The Cluster Tool Section
In cluster tool section 310, a central robot 312 is disposed in a central hub region 313 to transport one or more workpieces (such as the aforementioned discrete substrates 6) in between various peripherally-coupled process stations in a programmed sequence. Examples of such peripheral stations include a thin film coating deposition station 314 (particularly, a plasma-enhanced chemical vapor deposition (PECVD) station), a thermal evaporation station 316, a mask stocker station 318, a load lock 320, an etching station 322, a sputtering station 324 and a mask aligner station 326. Each of the peripheral stations, as well as the central hub region 313, are coupled to a vacuum means 350 (which can be, for example, a vacuum pump) to establish and maintain internal vacuum as required. Door or related isolation valves (not shown) are placed between central hub region 313 and each of the peripheral stations to facilitate a selective between them. Because the robot 312 transfers substrates and related workpieces between discrete, isolatable stations, the need for continuous shuttling equipment (such as a conveyor-based transport device) is eliminated. Advantageously, once the robot 312 transfers a discrete substrate into a particular station, isolation devices (such as the aforementioned door valves) coupled thereto can be deployed to effect contamination reduction due to process byproducts or excess reactants. With the exception of the thermal evaporation station 316, the various stations can perform the same functions as their previously-described linear tool counterparts. It will be appreciated by those skilled in the art that the various stations in the cluster tool section 310 are interchangeable such that they can be configured in numerous ways as required.
The thermal evaporation station 316 can be used for immediate deposition of the previously-mentioned protective layer 9C onto a device 90 (shown, for example, in
Regarding the use of masking throughout hybrid tool 300, many of the same features discussed above in conjunction with the embodiment of
The present mask configuration facilitates the forming of an uncoated edge in the border area 700 surrounding the monomer layer 9A. This uncoated edge can then receive additional inorganic layers 9B without intervening monomer layers 9A. The build-up of successive inorganic layers 9B builds a substantially impermeable edge seal structure. Not having undercut mask 600 contacting the exposed surface of the inorganic layer 9B avoids a potential for inadvertent contamination. In situations where the substrate 6 to be coated is made from a rigid material (such as glass), simplified mask configurations (such as those discussed next) may be beneficial.
Referring with particularity to
Referring with particularity to
Referring with particularity to
Referring again to
Due to the extensive amounts of byproducts extant in some stations (for example, etching station 322), it is advantageous to keep such stations separable from the load lock station 320. The etch process of etching station 322 involves bulk removal, and therefore involves liberating a lot of material into an evacuated environment. The cluster approach employing robot 312 is simpler than a comparable linear tool design for achieving a combination of ease of conveying and environmental isolation in such a potentially contaminant-rich environment. Also, separation of the two allows for easier replacement or outright elimination of the etch station 322 if it turns out not to be needed. This also allows for easier customization of the tool for particular customer needs. Another option for separation is replacement of etching station 322 with a station to perform a different operation to meet a particular customer need.
Referring next to
Transport 324T can be used within individual sections in the cluster tool section 310 as well as across one or more portions of the in-line section 330. Referring with particularity to
Controller 324H (which in one embodiment, may be a microprocessor-based system) is used to regulate operations within sputtering station 324, including control of pallet shuttling, gas supplies (such as reactive supply 324I and inert supply 324J), main power 324G and feedback based on residual gas analysis 324K. The control of the vacuum level is also included in the functions assigned to the controller 324H. The deposition of an inorganic layer by reactive sputtering, particularly as it relates to substrate 6 heating or exposure of an environmentally sensitive device 90 (not presently shown), needs to be controlled to avoid damage to device 90. While prior efforts have used screens to reduce the impact of sputtering on a substrate, they do not disclose shielding an OLED from a sputtering plasma. For example, as previously mentioned, reactive sputtering is a preferred approach to the deposition of dielectric, transparent barriers; however, such barriers can damage OLEDs, sometimes despite the presence of a previously applied polymeric layer. While the mechanism for the damage is not clear, it is possible in situations involving an intervening polymeric layer that the damage occurs through implantation into and subsequent migration through the layer by a species.
Referring with particularity to
The first sputter cathode 324E that is covered by screen 324F enables the deposition of an oxide film onto an OLED without damage. While blockage due to the screen 324F does result in slower deposition rate (i.e., low target utilization), and does involve the slow change in process parameters as the screen openings constrict with the deposition of sputtering materials onto the screen 324F, this approach is a simple way to control reactive sputtering. DC sputter power can be applied, and can involve a fixed process gas flow as seen by the controller 324H. Feedback, if required, can be done manually or through controller 324H. The second sputter cathode 324E that is not covered by screen 324F is appropriate to use after the OLED is encapsulated with a thin layer of oxide. In this case, the magnetron is optimized for deposition rate and target utilization. Advanced reactive sputter control, such as pulsed DC sputter power or active reactive gas control, may be required.
Placement of screen 324F relative to the target cathode 324E and substrate 6 for the deposition of inorganic barrier layers is shown looking across the travel path (
Sputtering of such a reacted surface is referred to as poison mode sputtering, which is characterized by slower deposition rates that are preferably minimized or avoided. To reduce poison mode sputtering, the screen 324F can be introduced to beneficially reduce the concentration of reactive oxygen adjacent to the target cathode 324E. Oxygen required for oxide formation is introduced between the screen 324F and the substrate 6. By having the reaction between oxygen and the liberated material from cathode 324E take place nearer the receiving substrate 6 and away from the source cathode 324E (as shown by the upward arrows of oxygen coming from oxygen supply 3241 in
The use of screen 324F is especially useful to formation of barrier assemblies on plastic and related organic-based films that can be substrates for OLED and other environmentally sensitive devices. This approach is also applicable to deposition of encapsulating assemblies on OLEDs. Also specific to OLED encapsulation, use of the screen 324F has been demonstrated to reduce the aforementioned plasma damage of a first deposited organic decoupling layer when such an “organic first” approach is adopted. The screen 324F is applicable to both discrete substrate and conventional roll substrate coating apparatus. Specific to encapsulation, the screen 324F provides one of two approaches to reduction in plasma damage of the OLED when a barrier layer is the first deposited layer of a multilayer coating. The other approach to avoid plasma damage involves the deposition of an inorganic protective layer prior to sputtering, as previously discussed.
The use of Al2O3 is well-suited to sputtering onto a substrate. Of course, since Al2O3 is an electrical insulator, it is not viable for non-RF magnetron sputtering, while RF sputtering has drawbacks, including slow deposition rates, complex implementation, and excessive substrate heating relative to other methods. The previously-discussed reactive sputtering is used as a way to achieve a thoroughly oxidized film on the substrate (leading to clear, stable, fully reacted film). The use of a screened cathode as discussed above with an inert sputter gas (such as argon) injected close to the sputter target and a reactive gas (such as oxygen) injected close to the substrate with a screen barrier between the two gas injection points helps to minimize the deleterious effects of reactive gas coming in contact with the sputter target. Target material that gets deposited on the target side of the screen acts as a getter pump to remove reactive gas that finds its way through the screen. This is beneficial in that it has the effect of leaving an oxygen rich environment near the substrate, and an argon rich environment near the sputter target. Thus, it is possible to create a clear coating on a substrate without poisoning the target in the same environment.
While the separate screen 324F placed over one of the cathodes 324E allows for manufacturing process flexibility, it will be appreciated by those skilled in the art that the system need not include the screen 324F. Various considerations, such as those discussed above, may effect the precise configuration, including what type of material is being deposited, as well as potential for damage to the substrate and quality of the deposited layer.
The In-Line Tool Section
Referring next to
The monomer mask alignment chamber 332 can further function in a manner similar to that of previously-discussed masking station 60, where magnetic masks are placed to control where monomer deposition occurs on the substrate 6. This could also be made to cooperate with chamber cleaning functions. While cleaning is especially appropriate in organic material deposition station 334 (where the greatest level of unwanted deposition of organic material will occur), there could also exist situations where masking at the close of a deposition step is necessary.
As with the cluster tool section 310, a vacuum source 350 can be used to control the internal pressure of the organic material deposition station 334. While vacuum source 350 is shown as a single unit configured to supply vacuum to both the cluster tool section 310 and in-line tool section 330, it will be appreciated by those skilled in the art that the present system can also be configured to have separate, autonomous vacuum sources for each tool section. Examples of pumps used as separate vacuum sources are discussed in more detail below. Additional provisions may be present in mask alignment chamber 332, including a heating and cooling plate (not shown).
The organic material deposition station 334 is made up of an organic material supply 334A, evaporator 334B, deposition nozzle 334C, confinement 334D, thermal barrier 334E, pumping port 334F and shutter 334G. The pumping port 334F is used to create the vacuum in the organic material deposition station 334, and can be vacuum connected to vacuum source 350 or to a dedicated pumping assembly. The addition of monomer confinement 334D helps reduce contamination. In essence, confinement 334D uses a “chamber within a chamber” approach that allows introduction of the monomer into a sub-section of the organic material deposition chamber 334. The intent is to have the higher monomer vapor concentrations within the smaller region adjacent the substrate be coated. The openings that allow the substrate to move into the smaller interior chamber can be adjacent cold traps to minimize organic vapors escaping through these openings and into the remainder of chamber 334.
The rate of organic layer 9A condensation is a function of gaseous monomer partial pressure and surface temperature, where high partial pressure and low temperature promote condensation. One parameter variation that has a dramatic impact on organic layer deposition quality is substrate temperature. Regarding temperature, the gaseous monomer tends to condense on most surfaces, especially those with surface temperatures less than approximately 160° Celsius. While process parameters may be adjusted to meliorate monomer build-up on components such as a quartz window of the organic material curing station 336, such adjustment is undesirable, especially in situations where real time feedback is not available. Examples of such adjustments include changing the transit speed of the substrate and changing the intensity of the source. Unfortunately, attenuation of infrared (IR) radiation from the source is not equal, so any such process adjustments may increase the substrate temperature, leading to a reduction in the monomer deposition rate unless methods are included to the control substrate temperature. Instead of making process adjustments, a shutter 334G is disposed between the organic material deposition station 334 and the organic material curing station 336 to act as a contamination barrier between the two. By isolating stray organic material from the organic material curing station 336 at all times except for initial evacuation of organic material deposition station 334 and during transport of the pallet 340 and substrate 6, it minimizes the chance of organic material settling on the quartz window of the organic material curing station 336 and interfering with the amount of UV curing energy emanating therefrom.
Referring next to
Measurements of substrate temperature and evaporator pressure are valuable indicators to (in a manual operating mode) an operator or a controller (in an automated operating mode) to control the deposition process. As previously mentioned, temperature (especially substrate temperature) provides valuable information as to deposition efficacy. In one form, the substrate temperature is measured prior to the start of movement of the substrate and pallet on the transport system. The evaporator pressure is measured directly in the evaporator but does not provide an absolute measure of the flux impinging on the substrate. The precise values of both of these parameters, temperature and flux, during the deposition process will depend on the details of the particular tool. However, data collected by the inventors has indicated that the sensitivity of measured temperatures, pressures and film thicknesses to these details is not great. Referring with particularity to
During an encapsulation process, the substrate is exposed to thermal loads from both the monomer curing and oxide deposition. For example, if the monomer deposition starts at a substrate 6 temperature of 25° Celsius and reaches 35° Celsius to 40° Celsius for the last layers, the monomer layer thickness at these higher temperatures will have decreased to 50% of the initial layer, based on the chart shown in
To avoid these two problems, the inventors have made use of the inherent process heating of the substrate 6 during the initial deposition of inorganic layer 9B (which may be a thick oxide). An example of the substrate 6 temperature measured just prior to the start of each organic layer 9A deposition is shown in
When considering a general purpose tool (including such tools used for research and development of a process), it is valuable to have the capability to maintain the required process control of the organic layer 9A thickness for a more general encapsulation process. As discussed above, without substrate temperature control, the substrate 6 temperature would remain close to ambient at the start of the process, leading to uncertainty in the initial organic layer 9A thickness and a significant reduction in organic layer 9A thickness as the encapsulation process proceeds. The present inventors have found that there are several possible approaches to maintaining control of the monomer process for an arbitrary encapsulation layer structure. By way of non-limiting examples, it is possible to implement some form of active control of the substrate temperature prior to each organic layer 9A deposition. Another approach would be to measure the substrate temperature for each layer and adjust the monomer flow rate accordingly. Furthermore, it is also possible to establish a repeatable starting substrate temperature and accommodate the temperature change.
Ideally, a first approach would allow for a consistent organic layer 9A thickness. Increased deposition efficiency would be attained if a controlled lower substrate 6 temperature could be maintained. In addition, this method would also provide the greatest capability to accommodate different monomer and encapsulation processes. Use of an active control would entail additional control, while additional processing time may be required for temperature control and accounting for variations in emissivity across the substrate or OLED surface may be necessary.
A second approach requires a repeatable capability to measure the substrate 6 temperature. Non-contact measurement of the substrate 6 during the process poses the challenge of the changing emissivity of the substrate 6 during the encapsulation process. The relationship between substrate 6 temperature and deposition efficiency would need to be well characterized and stored as part of the control system program.
A third technique requires a temperature stabilization station that would bring the substrate to a specific moderate temperature. Chosen properly, this temperature involve an optimized trade-off between deposition efficiency and temperature sensitivity. The temperature stabilization station would function much as the thick oxide in adjusting the substrate temperature to a region of reduced sensitivity. A stocker type chamber would allow for longer stabilization times without increasing encapsulation process time. For the current monomer blend, the stabilization temperature would be in the range of about 35° to 40° Celsius. Other monomer blends may require a different stabilization temperature. This would be determined by characterizing the deposition efficiency sensitivity to substrate temperature. A temperature control system using a circulating fluid and a heater/chiller would provide the fastest and most precise control of the range of temperatures of interest. Such an approach may be easily applied to the masks used during the encapsulation process. A reduction in the difference in mask and substrate temperature would reduce the contribution of differential thermal expansion to the masking tolerance. It will be appreciated by those skilled in the art that the above approaches are mentioned as exemplary, and that other approaches could be used to meet monomer process control requirements.
Another method of regulating temperature in one or both of the organic material deposition station 334 and the organic material curing station 336 is to route heating or cooling fluid through the walls of the process chambers. For example, jacketed chambers and a means to circulate a temperature controlled (i.e., heated or chilled) fluid could be employed.
Referring next to
In one form, the thermal barrier 334E shields the substrate 6 from heat radiated by the relatively hot monomer deposition nozzle 334C, thereby reducing the heat input into the substrate. In addition, thermal barrier 334E shields surfaces of the second region 335B of interior chamber 335. A particular embodiment of the thermal barrier 334E can be in the form of a water cooled jacket that surrounds the monomer deposition nozzle 334C everywhere save the aperture in the nozzle, thereby reducing the spread of heat to second region 335B of interior chamber 335.
As previously discussed, the deposition rate of monomer onto the substrate 6 is strongly dependent upon the latter's temperature. To maintain a predictable deposition rate, all of the substrates should have as close to the same thermal history as each other. In addition, it is preferable that that exposure of the substrates 6 be relatively benign (in other words, that the temperatures they are exposed to be not far above ambient temperatures). To this end, it may be beneficial to keep line of sight radiant heating of the substrate 6 to a minimum by thermally insulating it from the elevated temperature produced in the first region 335A during monomer deposition. One approach may involve cooling the exterior of the first region 335A.
Whenever the flow rate of monomer introduced into the evaporator 334B (shown in
During periods of monomer flow, portions of the monomer passing through monomer deposition nozzle 334C may condense on the inside wall of the first region 335A, as well as on shutter 334G. This condensation on the backside of the shutter 334G can re-evaporate into the first region 335A when the shutter 334G is closed. In addition, accumulation of monomer upon the shutter 334G may interfere with its actuation. By heating the shutter 334G, accumulation due to such condensation can be minimized. This provides effective isolation of the first region 335A by minimizing conductance without liberating particles, where adjacent component rubbing presents such a risk. Thus, when the shutter 334G is closed, a low conductance gap is preferred over a tight closure. As with the shutter 334G, the interior walls of first region 335A can be heated to minimize condensation and subsequent accumulation of monomer. This prevents the possibility of monomer condensation forming a drip which could run into and damage the first region pump 334H1.
A cold trap 334I can be used to capture excess monomer that does escape from the first region 335A to the second region 335B. The efficiency of the cold trap 334I depends on the temperature and area of the cold trapping surfaces. In a preferred orientation, the cold trap 334I is offset from the perimeter of the shutter opening. In a more particular embodiment, there may be two traps, one on each side of and of similar length to the long edge of the shutter opening. Although cryogenic temperatures are the most efficient for cold trap 334I, mere sub-freezing temperatures (made possible, for example, with a chiller with a glycol-based heat transfer fluid) are probably sufficient, and more economical and safer to implement. To enhance serviceability, a removable trap with a snap-on cap can be used. This is also conducive to safe handling of the captured monomer.
Shutter 334G can provide additional protection of the aforementioned quartz window of the organic material curing station 336, thereby minimizing conductance between the monomer source and the window during monomer deposition. To be most effective, the shutter 334G would be located a sufficient distance from the monomer source 334A (shown in
Various forms of monomer confinement 334D may be used, either on its own or in conjunction with shutter 334G or other components. For example, referring again to
While it may not be practical to achieve complete monomer confinement in the tool 300, with the approach of the present invention, it is possible to reduce the amount of stray monomer to increase the mean time between service. For example, use of the separate first and second regions 335A, 335B in conjunction with the monomer confinement 334D and shutter 334G can promote up to approximately a ninety percent capture of excess monomer. In addition, the cold trap 334I can capture approximately three-fourths of the balance, with about half of that until the pallet 340 entirely covers the trap 334I. The shutter 334G is also well-suited to keeping monomer away from the window of the organic material curing station 336.
Referring again to
As with the inorganic sputtering, radio frequency, related microwave activation or other means can be employed to generate the plasma. The precursor components (typically in gaseous form) are fed into a plasma enclosure (not shown) for the plasma source, while the reactive species are delivered into the organic material deposition station 334 through a suitable coupling port (not shown). One or more precursor gases may be used, including O2, O3, H2, N2, NF3, CF4, C2F6, and C3F8, to generate suitable levels of reactive species with long life times to feed to the internal surfaces of interest within the organic material deposition station 334. A substrate transport can be used to raise and lower substrate 6, thereby selectively placing it in the path of plasma source. Precursor gases and process settings are preferably chosen to create volatile byproducts that can then be easily removed via vacuum or related pumping source. Formation of particulate byproducts are preferably avoided because they can settle on surfaces and ultimately cause coating defects. The reactive plasma cleaning approach can be an effective way to minimize organic layer buildup on components within the in-line tool section 330. A cooling device (for example, a water-cooled jacket) can be included to keep chambers (or portions of chambers) within the in-line tool section 330 cooled.
It is desirable to either: locate a glow discharge source within a chamber containing the organic material deposition station 334 and configure a delivery means to supply the working (precursor) gas; or locate the glow discharge source in a secondary chamber connected (and under vacuum) to a chamber containing the organic material deposition station 334. In either case, considerations of internal space, serviceability or the like may dictate which configuration is preferable. For example, the basic need to address the organic deposition station may include considerations of adjacent UV curing station cleaning. The sputtering chamber can be self cleaning, where appropriate control settings can be used to produce a low power (glow discharge) plasma suitable for cleaning avoiding unwanted and potentially undesirable sputtering during a cleaning process.
In another form, auxiliary component electrodes can be placed in permanently fixed or movable satellite positions within the organic material deposition station 334 in order to strike and generate a cluster of localized reactive plasma cleaning processes in strategic positions of interest. As discussed in the previous paragraph, one or more precursor gases may be used to remove the organic residues. In either case, due to the temperature-dependant nature of the chemical reactive removal processes, the rate of reaction and removal of the organic deposits can be further enhanced by elevating the temperature of the surface of interest to be cleaned. Such temperature elevation may be achieved through external and/or internal sources of resistive and/or irradiative heating.
In one form of operation, use of an appropriately high-rate cleaning process at room temperature may be employed to clean and remove the deposited organic material residues immediately after every each multilayer deposition run. This has the advantage of maintaining similarity of the related starting background and conditions for every deposition run. Where separate chambers for organic and inorganic deposition are utilized, there will be the opportunity to clean the residues following every single organic layer 9A deposition. The process, of course, may be carried out more infrequently, depending on the compromises involved with regards to the economics of deposition tool uptime and utilization versus condition of the process chamber, drift and contamination.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention, which is defined in the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/412,133, filed Apr. 11, 2003, which claims the benefit of U.S. Provisional Application No. 60/372,559, filed Apr. 15, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2382432 | McManus et al. | Aug 1945 | A |
2384500 | Stoll | Sep 1945 | A |
3475307 | Knox et al. | Oct 1969 | A |
3607365 | Lindlof | Sep 1971 | A |
3661117 | Cornelius et al. | May 1972 | A |
3941630 | Larrabee | Mar 1976 | A |
4061835 | Poppe et al. | Dec 1977 | A |
4098965 | Kinsman | Jul 1978 | A |
4266223 | Frame | May 1981 | A |
4283482 | Hattori et al. | Aug 1981 | A |
4313254 | Feldman et al. | Feb 1982 | A |
4426275 | Meckel et al. | Jan 1984 | A |
4521458 | Nelson | Jun 1985 | A |
4537814 | Itoh et al. | Aug 1985 | A |
4555274 | Kitajima et al. | Nov 1985 | A |
4557978 | Mason | Dec 1985 | A |
4572845 | Dietrich et al. | Feb 1986 | A |
4581337 | Frey et al. | Apr 1986 | A |
4624867 | Iijima et al. | Nov 1986 | A |
4695618 | Mowrer | Sep 1987 | A |
4710426 | Stephens | Dec 1987 | A |
4722515 | Ham | Feb 1988 | A |
4768666 | Kessler | Sep 1988 | A |
4842893 | Yializis et al. | Jun 1989 | A |
4843036 | Schmidt et al. | Jun 1989 | A |
4855186 | Grolig et al. | Aug 1989 | A |
4889609 | Cannella | Dec 1989 | A |
4913090 | Harada et al. | Apr 1990 | A |
4931158 | Bunshah et al. | Jun 1990 | A |
4934315 | Linnebach et al. | Jun 1990 | A |
4954371 | Yializis | Sep 1990 | A |
4977013 | Ritchie et al. | Dec 1990 | A |
5032461 | Shaw et al. | Jul 1991 | A |
5036249 | Pike-Biegunski et al. | Jul 1991 | A |
5047131 | Wolfe et al. | Sep 1991 | A |
5059861 | Littman et al. | Oct 1991 | A |
5124204 | Yamashita et al. | Jun 1992 | A |
5189405 | Yamashita et al. | Feb 1993 | A |
5203898 | Carpenter et al. | Apr 1993 | A |
5204314 | Kirlin et al. | Apr 1993 | A |
5237439 | Misono et al. | Aug 1993 | A |
5260095 | Affinito | Nov 1993 | A |
5336324 | Stall et al. | Aug 1994 | A |
5354497 | Fukuchi et al. | Oct 1994 | A |
5356947 | Ali et al. | Oct 1994 | A |
5357063 | House et al. | Oct 1994 | A |
5376467 | Abe et al. | Dec 1994 | A |
5393607 | Kawasaki et al. | Feb 1995 | A |
5395644 | Affinito | Mar 1995 | A |
5402314 | Amago et al. | Mar 1995 | A |
5427638 | Goetz et al. | Jun 1995 | A |
5440446 | Shaw et al. | Aug 1995 | A |
5451449 | Shetty et al. | Sep 1995 | A |
5461545 | Leroy et al. | Oct 1995 | A |
5464667 | Kohler et al. | Nov 1995 | A |
5510173 | Pass et al. | Apr 1996 | A |
5512320 | Turner et al. | Apr 1996 | A |
5536323 | Kirlin et al. | Jul 1996 | A |
5547508 | Affinito | Aug 1996 | A |
5554220 | Forrest et al. | Sep 1996 | A |
5576101 | Saitoh et al. | Nov 1996 | A |
5578141 | Mori et al. | Nov 1996 | A |
5607789 | Treger et al. | Mar 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5629389 | Roitman et al. | May 1997 | A |
5652192 | Matson et al. | Jul 1997 | A |
5654084 | Egert | Aug 1997 | A |
5660961 | Yu | Aug 1997 | A |
5665280 | Tropsha | Sep 1997 | A |
5681615 | Affinito et al. | Oct 1997 | A |
5681666 | Treger et al. | Oct 1997 | A |
5684084 | Lewin et al. | Nov 1997 | A |
5686360 | Harvey, III et al. | Nov 1997 | A |
5693956 | Shi et al. | Dec 1997 | A |
5695564 | Imahashi | Dec 1997 | A |
5711816 | Kirlin et al. | Jan 1998 | A |
5725909 | Shaw et al. | Mar 1998 | A |
5731661 | So et al. | Mar 1998 | A |
5736207 | Walther et al. | Apr 1998 | A |
5747182 | Friend et al. | May 1998 | A |
5757126 | Harvey, III et al. | May 1998 | A |
5759329 | Krause et al. | Jun 1998 | A |
5771177 | Tada et al. | Jun 1998 | A |
5771562 | Harvey, III et al. | Jun 1998 | A |
5782355 | Katagiri et al. | Jul 1998 | A |
5792550 | Phillips et al. | Aug 1998 | A |
5795399 | Hasegawa et al. | Aug 1998 | A |
5811177 | Shi et al. | Sep 1998 | A |
5811183 | Shaw et al. | Sep 1998 | A |
5821138 | Yamazaki et al. | Oct 1998 | A |
5821692 | Rogers et al. | Oct 1998 | A |
5844363 | Gu et al. | Dec 1998 | A |
5869791 | Young | Feb 1999 | A |
5872355 | Hueschen | Feb 1999 | A |
5891554 | Hosokawa et al. | Apr 1999 | A |
5895228 | Biebuyck et al. | Apr 1999 | A |
5902641 | Affinito et al. | May 1999 | A |
5902688 | Antoniadis et al. | May 1999 | A |
5904958 | Dick et al. | May 1999 | A |
5912069 | Yializis et al. | Jun 1999 | A |
5919328 | Tropsha et al. | Jul 1999 | A |
5920080 | Jones | Jul 1999 | A |
5922161 | Wu et al. | Jul 1999 | A |
5929562 | Pichler | Jul 1999 | A |
5934856 | Asakawa et al. | Aug 1999 | A |
5945174 | Shaw et al. | Aug 1999 | A |
5948552 | Antoniadis et al. | Sep 1999 | A |
5952778 | Haskal et al. | Sep 1999 | A |
5955161 | Tropsha | Sep 1999 | A |
5965907 | Huang et al. | Oct 1999 | A |
5968620 | Harvey et al. | Oct 1999 | A |
5994174 | Carey et al. | Nov 1999 | A |
5996498 | Lewis | Dec 1999 | A |
6013337 | Knors | Jan 2000 | A |
6040017 | Mikhael et al. | Mar 2000 | A |
6045864 | Lyons et al. | Apr 2000 | A |
6066826 | Yializis | May 2000 | A |
6083313 | Venkatraman et al. | Jul 2000 | A |
6083628 | Yializis | Jul 2000 | A |
6084702 | Byker et al. | Jul 2000 | A |
6087007 | Fuji et al. | Jul 2000 | A |
6092269 | Yializis et al. | Jul 2000 | A |
6106627 | Yializis et al. | Aug 2000 | A |
6117266 | Horzel et al. | Sep 2000 | A |
6118218 | Yializis et al. | Sep 2000 | A |
6137221 | Roitman et al. | Oct 2000 | A |
6146225 | Sheats et al. | Nov 2000 | A |
6146462 | Yializis et al. | Nov 2000 | A |
6150187 | Zyung et al. | Nov 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6178082 | Farooq et al. | Jan 2001 | B1 |
6195142 | Gyotoku et al. | Feb 2001 | B1 |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6198220 | Jones et al. | Mar 2001 | B1 |
6203898 | Kohler et al. | Mar 2001 | B1 |
6207238 | Affinito | Mar 2001 | B1 |
6207239 | Affinito | Mar 2001 | B1 |
6214422 | Yializis | Apr 2001 | B1 |
6217947 | Affinito | Apr 2001 | B1 |
6224948 | Affinito | May 2001 | B1 |
6228434 | Affinito | May 2001 | B1 |
6228436 | Affinito | May 2001 | B1 |
6231939 | Shaw et al. | May 2001 | B1 |
6264747 | Shaw et al. | Jul 2001 | B1 |
6268695 | Affinito | Jul 2001 | B1 |
6274204 | Affinito | Aug 2001 | B1 |
6322860 | Stein et al. | Nov 2001 | B1 |
6333065 | Arai et al. | Dec 2001 | B1 |
6348237 | Kohler et al. | Feb 2002 | B2 |
6350034 | Fleming et al. | Feb 2002 | B1 |
6352777 | Bulovic et al. | Mar 2002 | B1 |
6358570 | Affinito | Mar 2002 | B1 |
6361885 | Chou | Mar 2002 | B1 |
6387732 | Akram | May 2002 | B1 |
6397776 | Yang et al. | Jun 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6416872 | Maschwitz | Jul 2002 | B1 |
6420003 | Shaw et al. | Jul 2002 | B2 |
6436544 | Veyrat et al. | Aug 2002 | B1 |
6440277 | D'Amato | Aug 2002 | B1 |
6465953 | Duggal | Oct 2002 | B1 |
6468595 | Mikhael et al. | Oct 2002 | B1 |
6469437 | Parthasarathy et al. | Oct 2002 | B1 |
6492026 | Graff et al. | Dec 2002 | B1 |
6497598 | Affinito | Dec 2002 | B2 |
6497924 | Affinito et al. | Dec 2002 | B2 |
6509065 | Affinito | Jan 2003 | B2 |
6512561 | Terashita et al. | Jan 2003 | B1 |
6522067 | Graff et al. | Feb 2003 | B1 |
6537688 | Silvernail et al. | Mar 2003 | B2 |
6544600 | Affinito et al. | Apr 2003 | B2 |
6548912 | Graff et al. | Apr 2003 | B1 |
6569515 | Hebrink et al. | May 2003 | B2 |
6570325 | Graff et al. | May 2003 | B2 |
6573652 | Graff et al. | Jun 2003 | B1 |
6576351 | Silvernail | Jun 2003 | B2 |
6592969 | Burroughes et al. | Jul 2003 | B1 |
6597111 | Silvernail et al. | Jul 2003 | B2 |
6613395 | Affinito et al. | Sep 2003 | B2 |
6614057 | Silvernail et al. | Sep 2003 | B2 |
6624568 | Silvernail | Sep 2003 | B2 |
6627267 | Affinito | Sep 2003 | B2 |
6628071 | Su | Sep 2003 | B1 |
6653780 | Sugimoto et al. | Nov 2003 | B2 |
6656537 | Affinito et al. | Dec 2003 | B2 |
6660409 | Komatsu et al. | Dec 2003 | B1 |
6664137 | Weaver | Dec 2003 | B2 |
6681716 | Schaepkens | Jan 2004 | B2 |
6710542 | Chun et al. | Mar 2004 | B2 |
6720203 | Carcia et al. | Apr 2004 | B2 |
6734625 | Vong et al. | May 2004 | B2 |
6737753 | Kumar et al. | May 2004 | B2 |
6743524 | Schaepkens | Jun 2004 | B2 |
6749940 | Terasaki et al. | Jun 2004 | B1 |
6765351 | Forrest et al. | Jul 2004 | B2 |
6803245 | Auch et al. | Oct 2004 | B2 |
6811829 | Affinito et al. | Nov 2004 | B2 |
6815887 | Lee et al. | Nov 2004 | B2 |
6818291 | Funkenbusch et al. | Nov 2004 | B2 |
6822391 | Yamazaki et al. | Nov 2004 | B2 |
6827788 | Takahashi | Dec 2004 | B2 |
6835950 | Brown et al. | Dec 2004 | B2 |
6836070 | Chung et al. | Dec 2004 | B2 |
6837950 | Berard | Jan 2005 | B1 |
6864629 | Miyaguchi et al. | Mar 2005 | B2 |
6866901 | Burrows et al. | Mar 2005 | B2 |
6867539 | McCormick et al. | Mar 2005 | B1 |
6872114 | Chung et al. | Mar 2005 | B2 |
6872248 | Mizutani et al. | Mar 2005 | B2 |
6872428 | Yang et al. | Mar 2005 | B2 |
6878467 | Chung et al. | Apr 2005 | B2 |
6888305 | Weaver | May 2005 | B2 |
6888307 | Silvernail et al. | May 2005 | B2 |
6891330 | Duggal et al. | May 2005 | B2 |
6897474 | Brown et al. | May 2005 | B2 |
6897607 | Sugimoto et al. | May 2005 | B2 |
6905769 | Komada | Jun 2005 | B2 |
6923702 | Graff et al. | Aug 2005 | B2 |
6936131 | McCormick et al. | Aug 2005 | B2 |
6975067 | McCormick et al. | Dec 2005 | B2 |
6994933 | Bates | Feb 2006 | B1 |
6998648 | Silvernail | Feb 2006 | B2 |
7002294 | Forrest et al. | Feb 2006 | B2 |
7012363 | Weaver et al. | Mar 2006 | B2 |
7015640 | Schaepkens et al. | Mar 2006 | B2 |
7018713 | Padiyath et al. | Mar 2006 | B2 |
7029765 | Kwong et al. | Apr 2006 | B2 |
7033850 | Tyan et al. | Apr 2006 | B2 |
7056584 | Iacovangelo | Jun 2006 | B2 |
7074501 | Czeremuszkin et al. | Jul 2006 | B2 |
7086918 | Hsiao et al. | Aug 2006 | B2 |
7112351 | Affinito | Sep 2006 | B2 |
7156942 | McCormick et al. | Jan 2007 | B2 |
7166007 | Auch et al. | Jan 2007 | B2 |
7183197 | Won et al. | Feb 2007 | B2 |
7186465 | Bright | Mar 2007 | B2 |
7198832 | Burrows et al. | Apr 2007 | B2 |
7221093 | Auch et al. | May 2007 | B2 |
7255823 | Guenther et al. | Aug 2007 | B1 |
7298072 | Czeremuszkin et al. | Nov 2007 | B2 |
7429300 | Kido et al. | Sep 2008 | B2 |
20010006827 | Yamazaki et al. | Jul 2001 | A1 |
20010015074 | Hosokawa | Aug 2001 | A1 |
20010015620 | Affinito | Aug 2001 | A1 |
20010044035 | Morii | Nov 2001 | A1 |
20020015818 | Takahashi et al. | Feb 2002 | A1 |
20020022156 | Bright | Feb 2002 | A1 |
20020025444 | Hebgrink et al. | Feb 2002 | A1 |
20020068143 | Silvernail | Jun 2002 | A1 |
20020069826 | Hunt et al. | Jun 2002 | A1 |
20020102363 | Affinito et al. | Aug 2002 | A1 |
20020102818 | Sandhu et al. | Aug 2002 | A1 |
20020125822 | Graff et al. | Sep 2002 | A1 |
20020139303 | Yamazaki et al. | Oct 2002 | A1 |
20020140347 | Weaver | Oct 2002 | A1 |
20030038590 | Silvernail et al. | Feb 2003 | A1 |
20030045021 | Akai | Mar 2003 | A1 |
20030085652 | Weaver | May 2003 | A1 |
20030098647 | Silvernail et al. | May 2003 | A1 |
20030117068 | Forrest et al. | Jun 2003 | A1 |
20030124392 | Bright | Jul 2003 | A1 |
20030127973 | Weaver et al. | Jul 2003 | A1 |
20030134487 | Breen et al. | Jul 2003 | A1 |
20030184222 | Nilsson et al. | Oct 2003 | A1 |
20030197197 | Brown et al. | Oct 2003 | A1 |
20030218422 | Park et al. | Nov 2003 | A1 |
20030235648 | Affinito et al. | Dec 2003 | A1 |
20040018305 | Pagano et al. | Jan 2004 | A1 |
20040029334 | Bijker et al. | Feb 2004 | A1 |
20040046497 | Schaepkens et al. | Mar 2004 | A1 |
20040071971 | Lacovangelo | Apr 2004 | A1 |
20040113542 | Hsiao et al. | Jun 2004 | A1 |
20040115402 | Schaepkens | Jun 2004 | A1 |
20040115859 | Murayama et al. | Jun 2004 | A1 |
20040119028 | McCormick et al. | Jun 2004 | A1 |
20040175512 | Schaepkens | Sep 2004 | A1 |
20040175580 | Schaepkens | Sep 2004 | A1 |
20040209090 | Iwanaga | Oct 2004 | A1 |
20040212759 | Hayashi | Oct 2004 | A1 |
20040219380 | Naruse et al. | Nov 2004 | A1 |
20040229051 | Schaepkens et al. | Nov 2004 | A1 |
20040241454 | Shaw et al. | Dec 2004 | A1 |
20040263038 | Ribolzi et al. | Dec 2004 | A1 |
20050003098 | Kohler et al. | Jan 2005 | A1 |
20050006786 | Sawada | Jan 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050079295 | Schaepkens | Apr 2005 | A1 |
20050079380 | Iwanaga | Apr 2005 | A1 |
20050093001 | Liu et al. | May 2005 | A1 |
20050093437 | Ouyang | May 2005 | A1 |
20050094394 | Padiyath et al. | May 2005 | A1 |
20050095422 | Sager et al. | May 2005 | A1 |
20050095736 | Padiyath et al. | May 2005 | A1 |
20050112378 | Naruse et al. | May 2005 | A1 |
20050115603 | Yoshhida et al. | Jun 2005 | A1 |
20050122039 | Satani | Jun 2005 | A1 |
20050129841 | McCormick et al. | Jun 2005 | A1 |
20050133781 | Yan et al. | Jun 2005 | A1 |
20050140291 | Hirakata et al. | Jun 2005 | A1 |
20050146267 | Lee et al. | Jul 2005 | A1 |
20050174045 | Lee et al. | Aug 2005 | A1 |
20050176181 | Burrows et al. | Aug 2005 | A1 |
20050202646 | Burrows et al. | Sep 2005 | A1 |
20050212419 | Vazan et al. | Sep 2005 | A1 |
20050224935 | Schaepkens et al. | Oct 2005 | A1 |
20050238846 | Arakatsu et al. | Oct 2005 | A1 |
20060001040 | Kim et al. | Jan 2006 | A1 |
20060003474 | Tyan et al. | Jan 2006 | A1 |
20060006799 | Yamazaki et al. | Jan 2006 | A1 |
20060028128 | Ohkubo | Feb 2006 | A1 |
20060061272 | McCormick et al. | Mar 2006 | A1 |
20060062937 | Padiyath et al. | Mar 2006 | A1 |
20060063015 | McCormick et al. | Mar 2006 | A1 |
20060132461 | Furukawa et al. | Jun 2006 | A1 |
20060216951 | Moro et al. | Sep 2006 | A1 |
20060246811 | Winters et al. | Nov 2006 | A1 |
20060250084 | Cok et al. | Nov 2006 | A1 |
20060291034 | Patry et al. | Dec 2006 | A1 |
20070009674 | Okubo et al. | Jan 2007 | A1 |
20070033965 | Lifson et al. | Feb 2007 | A1 |
20070281089 | Heller et al. | Dec 2007 | A1 |
20100193468 | Burrows et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
704 297 | Feb 1968 | BE |
2353506 | May 2000 | CA |
196 03 746 | Apr 1997 | DE |
696 15 510 | May 2002 | DE |
0 147 696 | Jul 1985 | EP |
0 299 753 | Jan 1989 | EP |
0 340 935 | Nov 1989 | EP |
0 390 540 | Oct 1990 | EP |
0 468 440 | Jan 1992 | EP |
0 547 550 | Jun 1993 | EP |
0 590 467 | Apr 1994 | EP |
0 722 787 | Jul 1996 | EP |
0 777 280 | Jun 1997 | EP |
0 777 281 | Jun 1997 | EP |
0 787 824 | Jun 1997 | EP |
0 787 826 | Jun 1997 | EP |
0 916 394 | May 1998 | EP |
0 915 105 | May 1999 | EP |
0 931 850 | Jul 1999 | EP |
0 977 469 | Feb 2000 | EP |
1 021 070 | Jul 2000 | EP |
1127 381 | Aug 2001 | EP |
1 130 420 | Sep 2001 | EP |
1 278 244 | Jan 2003 | EP |
1 426 813 | Jun 2004 | EP |
1 514 317 | Mar 2005 | EP |
2 210 826 | Jun 1989 | GB |
S63-96895 | Apr 1988 | JP |
63136316 | Jun 1988 | JP |
64-18441 | Jan 1989 | JP |
01041067 | Feb 1989 | JP |
S64-41192 | Feb 1989 | JP |
2-183230 | Jul 1990 | JP |
3-183759 | Aug 1991 | JP |
3-290375 | Dec 1991 | JP |
4-14440 | Jan 1992 | JP |
4-48515 | Feb 1992 | JP |
4-1440 | Apr 1992 | JP |
04267097 | Sep 1992 | JP |
05-217158 | Jan 1993 | JP |
5-147678 | Jun 1993 | JP |
05182759 | Jul 1993 | JP |
06-104206 | Apr 1994 | JP |
06-136159 | May 1994 | JP |
61-79644 | Jun 1994 | JP |
06158305 | Jun 1994 | JP |
06-196260 | Jul 1994 | JP |
06-223966 | Aug 1994 | JP |
6-234186 | Aug 1994 | JP |
07-074378 | Mar 1995 | JP |
7147189 | Jun 1995 | JP |
07192866 | Jul 1995 | JP |
8-72188 | Mar 1996 | JP |
8-179292 | Jul 1996 | JP |
08171988 | Jul 1996 | JP |
08-203669 | Aug 1996 | JP |
08325713 | Oct 1996 | JP |
8-318590 | Dec 1996 | JP |
09059763 | Apr 1997 | JP |
09-232553 | May 1997 | JP |
09132774 | May 1997 | JP |
09-161967 | Jun 1997 | JP |
9-161967 | Jun 1997 | JP |
9-201897 | Aug 1997 | JP |
09-232553 | Sep 1997 | JP |
10-725 | Jan 1998 | JP |
10-013083 | Jan 1998 | JP |
10-016150 | Jan 1998 | JP |
10312883 | Nov 1998 | JP |
10-334744 | Dec 1998 | JP |
11-017106 | Jan 1999 | JP |
11-040344 | Feb 1999 | JP |
11-149826 | Jun 1999 | JP |
11-255923 | Sep 1999 | JP |
2000-058258 | Feb 2000 | JP |
2002505969 | Feb 2002 | JP |
2002-117973 | Apr 2002 | JP |
2002-151254 | May 2002 | JP |
2003-123969 | Apr 2003 | JP |
2003-217845 | Jul 2003 | JP |
2004-176111 | Jun 2004 | JP |
2004-294601 | Oct 2004 | JP |
3579556 | Oct 2004 | JP |
2004-309932 | Nov 2004 | JP |
2004-353021 | Dec 2004 | JP |
2006-294780 | Oct 2006 | JP |
2008-275737 | Nov 2008 | JP |
WO 8707848 | Dec 1987 | WO |
WO 8900337 | Jan 1989 | WO |
WO 9510117 | Apr 1995 | WO |
WO 9623217 | Aug 1996 | WO |
WO 9704885 | Feb 1997 | WO |
WO 9716053 | May 1997 | WO |
WO 9722631 | Jun 1997 | WO |
WO 9810116 | Mar 1998 | WO |
WO 9818852 | May 1998 | WO |
WO 9916557 | Apr 1999 | WO |
WO 9916931 | Apr 1999 | WO |
WO 9946120 | Sep 1999 | WO |
WO 0026973 | May 2000 | WO |
WO 0035603 | Jun 2000 | WO |
WO 0035604 | Jun 2000 | WO |
WO 0035993 | Jun 2000 | WO |
WO 0036661 | Jun 2000 | WO |
WO 0036665 | Jun 2000 | WO |
0053423 | Sep 2000 | WO |
0157904 | Aug 2001 | WO |
WO 0068360 | Sep 2001 | WO |
WO 0181649 | Nov 2001 | WO |
WO 0182336 | Nov 2001 | WO |
WO 0182389 | Nov 2001 | WO |
WO 0187825 | Nov 2001 | WO |
WO 0189006 | Nov 2001 | WO |
WO 0226973 | Apr 2002 | WO |
WO 03016589 | Feb 2003 | WO |
03090260 | Oct 2003 | WO |
WO 03098716 | Nov 2003 | WO |
WO 2004006199 | Jan 2004 | WO |
WO 2004016992 | Feb 2004 | WO |
WO 2004070840 | Aug 2004 | WO |
WO 2004089620 | Oct 2004 | WO |
2004112165 | Dec 2004 | WO |
WO 2005015655 | Feb 2005 | WO |
WO 2005045947 | May 2005 | WO |
WO 2005048368 | May 2005 | WO |
2005050754 | Jun 2005 | WO |
WO 2006036492 | Apr 2006 | WO |
Entry |
---|
Wong, F.L., et al., “Long-lifetime thin-film encapsulated organic light-emitting diodes,” Journal of Applied Physics 104, pp. 014509-1-4 (2008). |
otb Engineering Organic Light Emitting Diodes; 6th Annual Display Search US FPD Conference; JA Eindhoven, The Netherlands, website: www.otb.nl. |
Akedo et al., “LP-5: Lake-News Poster: Plasma-CVD SiNx/Plasma-Polymerized CNx:H Multi-layer Passivation Films for Organic Light Emmitting Diods”, SID 03 Digest. |
Chwang et al., “Thin Film encapsulated flexible organic electroluminescent displays”, American Institute of Physics, 2003. |
Clark I. Bright, et al., Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays, Oct. 17-19, 1999, pp. 247-264, Tucson, Arizona. |
Kim, Han-Ki et al., “Magnetic Field Shape Effect on Electrical Properties of TOLEDs in the Deposition of ITO Top Cathode Layer”, Electrochemical and Solid-State Letters, 8 (12), (2005), pp. H103-H105. |
Moro, L. et al., “Process and design of a multilayer thin film encapsulation of passive matrix OLED displays”, Organic Light-Emitting Materials and Devices VII, Proceedings of SPIE vol. 5214, 2004, pp. 83-93. |
otb Engineering Organic Light Emitting Diodes; JA Eindhoven; The Netherlands, website: www.otb.nl; 6th Annual Display Search US FPD Conference; Mar. 30-Apr. 1, 2004. |
Affinito, J.D. et al.; “A new method for fabricating transparent barrier layers” 23rd International Conference on Metallurgical Coatings and Thin Films; San Diego, CA, USA Apr. 22-26, 1996; vol. 290-291; pp. 63-67; XP004173291 Thin Solid Films; Dec. 15, 1996; Elsevier, Switzerland, ISSN: 0040-6090. |
Graupner, W. et al.; “High Resolution Color Organic Light Emitting Diode Microdisplay Fabrication Method” SPIE Proceedings 4207; 11-19, 2000 pp. 1-9. |
Yializis, A.; “High Oxygen Barrier Polypropylene Films Using Transparent Acrylate-AxOc3 and Opaque Al-Acrylate Coatings” 1995 Society of Vacuum Coaters; 38th Annual Technical Conference Proceedings; Dec. 1995; pp. 95-102. |
Brunshah, R.F. et al.; “Deposition Technologies for Films and Coatings” Noyes Publications; Park Ridge, New Jersey; 1982; p. 339. |
Affinito, J.D.; Energy Res. Abstr. 18(6); #17171; 1993. |
Czeremuszkin, G. et al.; “Permeation Through Defects in Transparent Barrier Coated Plastic Films” 43rd Annual Technical Conference Proceedings; Apr. 15, 2000; pp. 408-413. |
Klemberg-Sapieha, J.E. et al.; “Transparent Gas Barrier Coatings Produced by Dual-Frequency PECVD” 36th Annual Technical Conference Proceedings; Dec. 1993; pp. 445-449. |
Krug, T. et al.; “New Developments in Transparent Barrier Coatings” 36th Annual Technical Conference Proceedings; Dec. 1993; pp. 302-305. |
Hoffmann, G. et al.; “Transparent Barrier Coatings by Reactive Evaporation” 37th Annual Technical Conference Proceedings; Dec. 1994; pp. 155-160. |
Kukla, R. et al.; “Transparent Barrier Coatings with EB-Evaporation, an Update; Section Five” Thirteenth International Conference on Vacuum Web Coating, Oct. 17-19, 1999; pp. 223-233. |
Hibino, N. et al.; “Transparent Barrier AI203 Coating by Activated Reactive Evaporation” Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 234-246. |
Henry, B.M. et al.; “Microstructural Studies of Transparent Gas Barrier Coatings on Polymer Substrates” Thirteenth International Conference on Vacuum Web Coatings; Oct. 17-19, 1999; pp. 265-273. |
Bright, C.I. et al.; “Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays” Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 247-255. |
Finson, E. et al.; “Transparent SiO2 Barrier Coatings: Conversion and Production Status” 37th Annual Technical Conference Proceedings; Dec. 1994; pp. 139-143. |
Yamada, Y. et al.; “The Properties of a New Transparent and Colorless Barrier Film” 38th Annual Technical Conference Proceedings; Dec. 1995; pp. 28-31. |
Shi, M.K. et al.; Plasma treatment of PET and acrylic coating surfaces-I. In situ XPS measurements; Journal of Adhesion Science and Technology; Mar. 2000, 14(12); pp. 1-28. |
Shi, M.K. et al.; In situ and real-time monitoring of plasma-induced etching PET and acrylic films, Plasmas and Polymers; Dec. 1999; 4(4); pp. 1-25. |
Affinito, J.D. et al., Vacuum Deposited Conductive Polymer Films, The Eleventh International Conference on Vacuum Web Coating; no earlier than Feb. 1998; pp. 200-213. |
Mahon, J.K. et al.; Requirements of Flexible Substrates for Organic Light Emitting Devices in Flat Panel Display Applications; Society of Vacuum Coaters; 42nd Annual Technical Conference Proceedings; Apr. 1999; pp. 456-459. |
Affinito, J.D. et al.; Vacuum Deposited Conductive Polymer Films; The Eleventh International Conference on Vacuum Web Coating; Nov. 9-11, 1997; pp. 1-12. |
Henry, B.M. et al.; “Microstructural and Gas Barrier Properties of Transparent Aluminum Oxide and Indium Tin Oxide Films” 43rd Annual Technical Conference Proceedings; Denver, Apr. 15-20, 2000; pp. 373-378. |
Phillips, R.W. et al.; “Evaporated Dielectric Colorless Films on PET and OPP Exhibiting High Barriers Toward Moisture and Oxygen” 36th Annual Technical Conference Proceedings; Dec. 1993; pp. 293-301. |
Affinito, J.D. et al.; Vacuum deposited polymer/metal multi-layer films for optical application; Thin Solid Films 270; 1995; pp. 43-48. |
Affinito, J.D. et al., PML/Oxide Transparent Barrier Layers; 39th Annual Technical Conference Proceedings of the Society of Vacuum Coaters; Vacuum Web Coating Session; 1996; pp. 392-397. |
Affinito, J.D. et al.; Polymer/Polymer, Polymer/Oxide, and Polymer/Metal Vacuum Deposited Interference Filters; Tenth International Vacuum Web Coating Conference; Nov. 1996; pp. 1-14. |
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; 45th International Symposium of the American Vacuum Society; Nov. 2-6, 1998; pp. 1-26. |
Affinito, J.D. et al.; Molecularly Doped Polymer Composite Films for Light Emitting Polymer Applications Fabricated by the PML Process; 41st Technical Conference of the Society of Vacuum Coaters; Apr. 1998; pp. 1-6. |
Affinito, J.D. et al.; Vacuum Deposition of Polymer Electrolytes On Flexible Substrates; The Ninth International Conference on Vacuum Web Coating; 1995; pp. 1-16. |
Shaw, D.G., et al.; Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film, Society of Vacuum Coaters; 37th Annual Technical Conference Proceedings; Dec. 1994; pp. 240-244. |
Chahroudi, D.; Transparent Glass Barrier Coatings for Flexible Film Packaging; Society of Vacuum Coaters; 34th Annual Technical Conference Proceedings; Dec. 1991; pp. 130-133. |
Tropsha, Y.G. et al.; Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terephthalate) Composite Barrier Structures; J. Phys. Chem. B. vol. 101, No. 13; Mar. 1997; pp. 2259-2266. |
Affinito, J.D. et al.; Vacuum Deposited Polymer/metal Multilayer Films for Optical Applications; Paper No. C1.13; International Conference on Metallurgical Coatings; Apr. 15-21, 1995; pp. 1-14. |
Norenberg H. et al.; “Comparative Study of Oxygen Permeation Through Polymers and Gas Barrier Films” 43rd Annual Technical Conference Proceedings; Denver, Apr. 15-20, 2000; pp. 347-351. |
Affinito, J.D. et al.; Ultrahigh Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; Journal Vacuum Science Technology A 17(4); Jul./Aug. 1999; pp. 1974-1982; American Vacuum Society. |
Affinito, J.D. et al.; Molecularly Doped Polymer Composite Films for Light Emitting Polymer Application Fabricated by the PML Process; 41st Technical Conference of the Society of Vacuum Coaters; Apr. 1998; pp. 220-225. |
Felts, J.T.; Transparent Barrier Coatings Update: Flexible Substrates 36th Annual Technical Conference Proceedings; Apr. 25-30, 1993; pp. 324-331. |
Notification of the Transmittal of the International Search Report or the Declaration, Mar. 3, 2000, PCT/US99/29853. |
Affinito, J.D. et al.; “Vacuum Deposition of Polymer Electrolytes on Flexible Substrates,” “Proceedings of the Ninth International Conference on Vacuum Web Coating,” Nov. 1995 ed R. Bakish, Bakish Press 1995; pp. 20-36. |
Vossen, J.L. et al.; Thin Film Processes, Academic Press; 1978, Part II, Chapter 11-1, Glow Discharge Sputter Deposition, p. 12-63; Part IV, Chapter IV-1, Plasma Deposition of Inorganic Compounds and Chapter IV-2 Glow Discharge Polymerization; p. 335-397. |
Penning, F.M.; Electrical Discharges in Gasses; Gordon and Breach Science Publishers; 1965; Chapters 5-6; p. 19-35; and Chapter 8; p. 41-50. |
Affinito, J.D. et al.; “High Rate Vacuum Deposition of Polymer Electrolytes;” Journal Vacuum Science Technology A (14)(3); May/Jun. 1996; pp. 733-738. |
Inoue et al., Fabrication of a Thin Film of MNA by Vapour Deposition, Proc. Jpn. Cong. Mater. Res., vol. 33, pp. 177-9, 1990. |
Affinito, J.D. et al.; “PML/Oxide/PML Barrier Layer Performance Differences Arising From Use of UV or Electron Beam Polymerization of the PML Layers;” Thin Solid Films; Elsevier Science S.A.; vol. 308-309; Oct. 31, 1997; pp. 19-25. |
Gustafsson, G. et al.; “Flexible light-emitting diodes made from soluble conducting polymers;” Nature; vol. 357; Jun. 11, 1992; pp. 447-479. |
Affinito, J.D. et al.; “PML/Oxide/PML Barrier Layer Performance Differences Arising From Use of UV or Electron Beam Polymerization of the PML Layers;” SVC 40th Annual Technical Conference; Apr. 12-17, 1997; pp. 19-25. |
Wong, C.P.; “Recent Advances in IC Passivation and Encapsulation: Process Techniques and Materials;” Polymers for Electronic and Photonic Applications; AT&T Bell Laboratories; 1993; pp. 167-209. |
De Gryse, R. et al.; “Sputtered Transparent Barrier Layers;” Tenth International Conference on Vacuum Web Coating; Nov. 1996; pp. 190-198. |
Yializis A. et al.; “Ultra High Barrier Films” 43rd Annual Technical Conference Proceedings; Denver, Apr. 15-20, 2000; pp. 404-407. |
Tropsha, Y.G. et al.; Combinatorial Barrier Effect of the Multilayer SiOx Coatings on Polymer Substrates; 1997 Society of Vacuum Coaters; 40th Annual Technical Conference Proceedings; Apr. 12-17, 1997; pp. 64-69. |
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Liquid/Solid Suspension Monomer Precursors; MRS Conference; Nov. 29-Dec. 3, 1998; Paper No. Y12.1. |
Number | Date | Country | |
---|---|---|---|
20050239294 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
60372559 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10412133 | Apr 2003 | US |
Child | 11112880 | US |