This U.S. non-provisional patent application claims priority under 35 U.S.C. § 119 of Korean Patent Application No. 10-2020-0098784, filed on Aug. 6, 2020, the disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure relates to a display device capable of performing mura compensation and an apparatus for testing a display device.
Multimedia electronic devices such as televisions, mobile phones, tablet computers, navigation devices, game machines, and the like are provided with a display device for displaying an image. The display device includes a plurality of pixels for displaying the image. The plurality of pixels may have different characteristics due to a process deviation even if the pixels are formed through the same manufacturing process. As a result, some of the pixels provided with an image signal having the same gradation may output light at different luminance levels, causing a degradation of the display quality such as an mura effect.
The present disclosure provides a test apparatus that tests a characteristic difference among pixels and a display device which performs mura compensation.
According to an embodiment of the present disclosure, a test apparatus includes: a compensation coefficient calculator configured to calculate a main compensation coefficient for a main gradation and a sub compensation coefficient for a sub gradation based on a detected image signal; a primary predictor configured to divide a display panel into a plurality of blocks, determine a representative value of each of the plurality of blocks based on the detected image signal, and output a prediction compensation coefficient for the sub gradation based on the main compensation coefficient and the representative value corresponding to each of the plurality of blocks; a secondary predictor configured to determine a flag based on the sub compensation coefficient received from the compensation coefficient calculator and the prediction compensation coefficient received from the primary predictor; a memory configured to store the main compensation coefficient and the flag; and a controller configured to output compensation data comprising the main compensation coefficient, the representative value, and the flag stored in the memory.
In an embodiment, the representative value may include a main mean and a main standard deviation corresponding to the main gradation of each of the plurality of blocks and a sub mean and a sub standard deviation corresponding to the sub gradation of each of the plurality of blocks.
In an embodiment, the controller may determine a compensation value corresponding to the flag based on the standard deviation corresponding to the sub gradation, and the compensation data may further include the compensation value.
In an embodiment, the compensation value may minimize a mean squared error corresponding to the prediction compensation coefficient.
In an embodiment, the compensation value may be
where σ denotes the sub standard deviation corresponding to the sub gradation.
In an embodiment, a width of the flag may be 1 bit, and in a case where the prediction compensation coefficient is less than the sub compensation coefficient, the flag may be 1, and the compensation value may be a positive number.
In an embodiment, a width of the flag may be 1 bit, and in a case where the prediction compensation coefficient is larger the sub compensation coefficient, the flag may be 0, and the compensation value may be a negative number.
In an embodiment, the prediction compensation coefficient for the sub gradation may be denoted as x′ and obtained using an equation
where x0, μ0, and σ0 denote the main compensation coefficient, the main mean, and the main standard deviation corresponding to the main gradation of a pixel, and μ1 and σ1 denote the sub mean and the sub standard deviation corresponding to the sub gradation of the pixel.
According to an embodiment of the present disclosure, a display device includes: a display panel including a plurality of pixels connected to a plurality of data lines and a plurality of scan lines; a data driving circuit configured to drive the plurality of data lines; a scan driving circuit configured to drive the plurality of scan lines; a memory configured to store compensation data; and a driving controller configured to receive a control signal and an input image signal, control the data driving circuit and the scan driving circuit to display an image on the display panel, and provide, to the data driving circuit, an image data signal obtained by correcting the input image signal based on the compensation data. The compensation data includes a main compensation coefficient for a main gradation, a representative value for the main gradation, a representative value for a sub gradation, and a flag and a compensation value for the sub gradation.
In an embodiment, the driving controller may output the image data signal based on the main compensation coefficient in a case where the input image signal corresponds to the main gradation.
In an embodiment, in a case where the input image signal does not correspond to the main gradation, the driving controller may determine a prediction compensation coefficient based on the main compensation coefficient, the representative value for the main gradation, the representative value for the sub gradation, the flag, and the compensation value, and output the image data signal based on the prediction compensation coefficient.
In an embodiment, in a case where the input image signal corresponds to the sub gradation, the driving controller may determine the prediction compensation coefficient denoted as G′ using an equation
where G0, μ0, and σ0 denote the main compensation coefficient, a main mean, and a main standard deviation corresponding to the main gradation, and μ1 and σ1 denote a sub mean and a sub standard deviation corresponding to the input image signal.
In an embodiment, the driving controller may output the image data signal by adding the compensation value to the prediction compensation coefficient.
According to an embodiment of the present disclosure, a mura compensation method of a display device includes: receiving a detected image signal for a main gradation and determining a main compensation coefficient for the main gradation; receiving the detected image signal for a sub gradation and determining a sub compensation coefficient for the sub gradation; performing primary prediction by dividing a display panel into a plurality of blocks, determining a representative value for each of the plurality of blocks, and determining a prediction compensation coefficient for the sub gradation based on the representative value and the main compensation coefficient; performing secondary prediction by determining a flag based on the sub compensation coefficient and the prediction compensation coefficient; providing compensation data including the main compensation coefficient, the representative value, and the flag; and providing an image signal that is obtained by correcting an input image signal based on the compensation data, and displaying an image based on the image signal.
In an embodiment, the representative value may include a main mean and a main standard deviation corresponding to the main gradation of each of the plurality of blocks and a sub mean and a sub standard deviation corresponding to the sub gradation of each of the plurality of blocks.
In an embodiment, the outputting of the compensation data may include determining a compensation value corresponding to the flag based on the sub standard deviation corresponding to the sub gradation, and the compensation data may further include the compensation value.
In an embodiment, the compensation value may minimize a mean squared error corresponding to the prediction compensation coefficient.
In an embodiment, the compensation value may be
where σ denotes the sub standard deviation corresponding to the sub gradation.
In an embodiment, a width of the flag may be 1 bit, and the performing of the secondary prediction may include: setting the flag to 1 in a first case where the prediction compensation coefficient is less than the sub compensation coefficient; and setting the flag to 0 in a second case the prediction compensation coefficient is larger than the sub compensation coefficient.
In an embodiment, the prediction compensation coefficient for the sub gradation may be denoted as x′ and obtained using an equation
where x0, μ0, and σ0 denote the main compensation coefficient, the main mean, and the main standard deviation corresponding to the main gradation of a pixel, and μ1 and σ1 denote the sub mean and the sub standard deviation corresponding to the sub gradation of the pixel.
The drawings are included to provide further understanding of the present disclosure. The drawings are incorporated in and constitute a part of this specification, illustrate various embodiments of the present disclosure, and together with the description serve to explain principles of the inventive concept of the present disclosure. In the drawings:
It will be understood that an element (or a region, layer, portion, or the like) referred to as being “on,” “connected to,” or “coupled to” another element can be directly on or directly connected/coupled to the other element, or a third element may be present therebetween.
The same reference numerals may refer to the same elements. In the drawings, the thicknesses, ratios, and dimensions of elements may be exaggerated for clarity of illustration. As used herein, the term “and/or” includes any combinations that can be defined by associated elements.
The terms “first,” “second,” and the like may be used for describing various elements, but the elements should not be construed as being limited by the terms. Such terms are only used for distinguishing one element from other elements. For example, a first element could be termed a second element and vice versa without departing from the teachings of the present disclosure. The terms of a singular form may include plural forms unless specifically specified otherwise.
Furthermore, the terms “under,” “lower side,” “on,” “upper side,” and the like are used to describe association relationships among elements illustrated in the drawings. The relative terms may be used based on directions illustrated in the drawings.
It will be further understood that the terms “include,” “including,” “has,” “having,” and the like, when used in this specification, specify the presence of stated features, numbers, steps, operations, elements, components, or combinations thereof, but do not preclude a presence or an addition of one or more other features, numbers, steps, operations, elements, components, or combinations thereof.
The terms used herein (including technical and scientific terms) are assumed to have the same meanings as understood by those skilled in the art, unless specifically defined otherwise. Terms in common usage such as those defined in commonly used dictionaries should be interpreted to contextually cover the meanings in the relevant art, and should not be interpreted in an idealized or overly formal sense.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
Referring to
As illustrated in
Although
Referring to
The compensation coefficient calculator 110 receives the detected image signal IM and calculates a main compensation coefficient M_CV for a main gradation and a sub compensation coefficient S_CV for a sub gradation based on the detected image signal IM.
The primary predictor 120 receives the detected image signal IM and divides the display panel DP of the display device DD into a plurality of blocks and calculates a representative value RV of each of the plurality of blocks based on the detected image signal IM. The primary predictor 120 outputs a prediction compensation coefficient P_CV based on the main compensation coefficient M_CV and the representative value RV corresponding to each of the plurality of blocks.
The secondary predictor 130 receives the prediction compensation coefficient P_CV and determines a flag FG based on the sub compensation coefficient S_CV and the prediction compensation coefficient P_CV.
The memory 140 stores the main compensation coefficient M_CV received from the compensation coefficient calculator 110, the representative value RV received from the primary predictor 120, and the flag FG received from the secondary predictor 130.
The controller 150 outputs, as the compensation data CP_DATA, the main compensation coefficient M_CV, the representative value RV, and the flag FG stored in the memory 140. The controller 150 may control operation of the compensation coefficient calculator 110, the primary predictor 120, and/or the secondary predictor 130. Furthermore, the controller 150 may control operation of the camera CAM of
Specific operation of each of elements of the test apparatus TD is described in detail below.
Referring to
For example, the display device DD may provide, to the pixels, an image data signal corresponding to a main gradation M, and the camera CAM may detect an image in which the pixels may have different values of luminance according to the characteristics of the pixels. The compensation coefficient calculator 110 included in the test apparatus TD may generate different compensation coefficients M1, M2, M3, and M4 based on the detected image signal IM received from the camera CAM.
In general, a pixel has a regular tendency according to a gradation. For example, a pixel that outputs lower luminance than desired luminance at the main gradation M may output lower luminance than desired luminance at a sub gradation A that is lower than the main gradation M, and may also output lower luminance than desired luminance at a sub gradation B that is higher than the main gradation M.
For another example, a pixel that outputs higher luminance than desired luminance at the main gradation M may output higher luminance than desired luminance at the sub gradation A that is lower than the main gradation M, and may also output higher luminance than desired luminance at the sub gradation B that is higher than the main gradation M.
The compensation coefficient calculator 110 may set a compensation coefficient of a pixel to a lower value when the luminance of the pixel is higher than desired luminance and may set a compensation coefficient of a pixel to a higher value when the luminance of the pixel is lower than desired luminance. In the example illustrated in
For a pixel having the main compensation coefficient M1 at the gradation M, the prediction compensation coefficient may be predicted to be A1 at the gradation A and predicted to be B1 at the gradation B. For a pixel having the main compensation coefficient M2 at the gradation M, the prediction compensation coefficient may be predicted to be A2 at the gradation A and predicted to be B2 at the gradation B. For a pixel having the main compensation coefficient M3 at the gradation M, the prediction compensation coefficient may be predicted to be A3 at the gradation A and predicted to be B3 at the gradation B. For a pixel having the main compensation coefficient M4 at the gradation M, the prediction compensation coefficient may be predicted to be A4 at the gradation A and predicted to be B4 at the gradation B.
The compensation coefficient calculator 110 of the test apparatus TD may calculate each of the main compensation coefficient M_CV for the main gradation M and the sub compensation coefficient S_CV for one or more sub gradations (e.g., gradation A, gradation B) based on the detected image signal IM. Furthermore, the primary predictor 120 of the test apparatus TD may calculate the prediction compensation coefficient P_CV for the sub gradation (e.g., gradation A and gradation B) based on the main compensation coefficient M_CV.
Referring to
Referring to
Referring to
Each of the blocks BK11-BK16, BK21-BK26, BK31-BK36, and BK41-BK46 may include 180 pixels in the first direction DR1 and 100 pixels in the second direction DR2. The number of pixels included in one block, or a size of each block, may be variously changed without deviating from the scope of the present disclosure.
Although
Referring to
Although
The primary predictor 120 may calculate the representative values RV corresponding to each of the plurality of blocks. The representative value RV corresponding to the block BK11 may include a mean ME_M and a standard deviation SD_M corresponding to the main gradation M, a mean ME_A and a standard deviation SD_A corresponding to the sub gradation A, and a mean ME_B and a standard deviation SD_B corresponding to the sub gradation B.
Although
The primary predictor 120 may output the prediction compensation coefficient P_CV corresponding to each of pixels in a block based on the main compensation coefficient M_CV and output the representative value RV corresponding to each of the blocks BK11-BK16, BK21-BK26, BK31-BK36, and BK41-BK46.
For example, the prediction compensation coefficient P_CV may be calculated through following Equation 1.
In Equation 1, x0, μ0, and σ0 respectively denote the main compensation coefficient M_CV, a mean, and a standard deviation corresponding to a main gradation of a pixel, and x′, μ1, and σ1 respectively denote the prediction compensation coefficient P_CV, a mean, and a standard deviation corresponding to a sub gradation (e.g., the sub gradation A, the sub gradation B) of the pixel.
The secondary predictor 130 may determine the flag FG based on the sub compensation coefficient S_CV that is received from the compensation coefficient calculator 110 and the prediction compensation coefficient P_CV that is received from the primary predictor 120.
As described above with reference to
According to an embodiment, the secondary predictor 130 may determine the flag FG corresponding to a difference between the sub compensation coefficient S_CV and the prediction compensation coefficient P_CV. The flag FG output from the secondary predictor 130 may be stored in the memory 140.
As illustrated in
The secondary predictor 130 may perform pixel-wise prediction for calculating a flag bit B corresponding to each pixel based on the prediction compensation coefficient P_CV received from the primary predictor 120.
Although
Referring to
In one embodiment, the bit width of the flag bit B corresponding to a predetermined pixel is one bit, and the flag bit B may be 1 or 0 according to the difference between the sub compensation coefficient S_CV and the prediction compensation coefficient P_CV.
For example, when the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV that is calculated by the compensation coefficient calculator 110 is 14, a compensation value β is added to the prediction compensation coefficient P_CV (10+β). When the prediction compensation coefficient P_CV is less than the sub compensation coefficient S_CV (P_CV<S_CV), i.e., when the compensation value β is a positive number, the flag bit B may be 1.
On the contrary, when the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV that is calculated by the compensation coefficient calculator 110 is 5, the compensation value β is subtracted from the prediction compensation coefficient P_CV (10−β). As described above, when the prediction compensation coefficient P_CV is larger than the sub compensation coefficient S_CV (P_CV>S_CV), i.e., when the compensation value β is a negative number, the flag bit B may be 0.
Referring to
NΔΔgB−Δ′B (Equation 2)
In the example illustrated in
A final compensation value Δg″B may be determined by following Equation 3.
The compensation value β may be determined to minimize a mean squared error (MSE).
Equation 4 expresses an MSE for calculating the compensation value β.
Hereinafter, x denotes the prediction compensation coefficient P_CV for the sub gradation B, and G denotes a standard deviation for the sub gradation B.
In Equation 4, fG(x) may be expressed as Equation 5.
In Equation 4, when the term
is referred to as M1, M1 may be expressed as Equation 6.
In Equation 6, when
is referred to as M1A and y substitutes for x/σ, M1A may be expressed as Equation 7.
In Equation 7, when
is 0, M1A may be σ2/2.
In Equation 6, when
is referred to as M1B and y substitutes for x/σ, M1B may be expressed as Equation 8.
In Equation 6, when
is referred to as M1C and y substitutes for x/σ, M1C may be expressed as Equation 9.
In Equation 4, when
is referred to as M2, M2 may be expressed as Equation 10.
In Equation 10, when
is referred to as M2A, M2A may be expressed as Equation 11.
In Equation 11, when
is 0, M2A is σ2/2.
In Equation 10, when
is referred to as M2B, M2B may be expressed as Equation 12.
In Equation 10, when
is referred to as M2C, M2C may be expressed as Equation 13.
When M1 of Equation 6 obtained through Equations 7 to 9 and M2 of Equation 10 obtained through Equations 11 to 13 are applied to Equation 4, the MSE may be simplified as Equation 14.
As recognized from Equation 14, when
the MSE has a minimum value
That is, the compensation value β may be appropriately set to
The controller 150 illustrated in
Although the sub compensation coefficient S_CV, the prediction compensation coefficient P_CV, the representative value RV, and the flag FG corresponding to the sub gradation B have been described with reference to
Furthermore, the test apparatus TD may also obtain the sub compensation coefficient S_CV, the prediction compensation coefficient P_CV, the representative value RV, and the flag FG for sub gradations other than the sub gradations A and B as illustrated in
A peak signal to noise ratio (PSNR) may be expressed as Equation 15.
When the compensation value β derived through Equations 4 to 14 is applied to the PSNR, a calculated PSNR* may be expressed as Equation 16.
That is, it may be recognized that the calculated PSNR* theoretically increases by about 4.4 dB compared to the PSNR when the compensation value β is applied.
Referring to
According to one embodiment, the bit width of the flag bit B corresponding to a predetermined pixel is 2 bits, and the flag bit B may be one among 00, 01, 10, and 11 according to the difference between the sub compensation coefficient S_CV and the prediction compensation coefficient P_CV.
For example, when the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV calculated by the compensation coefficient calculator 110 is 12, i.e., when the sub compensation coefficient S_CV is greater than the prediction compensation coefficient P_CV but the difference is less than a first threshold value (e.g., 3), a compensation value α may be added to the prediction compensation coefficient P_CV (10+α). In this case, the flag bit B may be 10.
When the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV is 14, i.e., when the sub compensation coefficient S_CV is greater than the prediction compensation coefficient P_CV and the difference is greater than the first threshold value, a compensation value β may be added to the prediction compensation coefficient P_CV (10+β). In this case, the flag bit B may be 11.
When the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV is 8, i.e., when the prediction compensation coefficient P_CV is greater than the sub compensation coefficient S_CV but the difference is less than the first threshold value, the compensation value α may be subtracted from the prediction compensation coefficient P_CV (10−α). In this case, the flag bit B may be 01.
When the prediction compensation coefficient P_CV is 10 and the sub compensation coefficient S_CV is 5, i.e., when the prediction compensation coefficient P_CV is greater than the sub compensation coefficient S_CV and the difference is greater than the first threshold value, the compensation value β may be subtracted from the prediction compensation coefficient P_CV (10−β). In this case, the flag bit B may be 00.
Although
Referring to
The display panel DP includes a scan driving circuit 240, a plurality of pixels PX, a plurality of data lines DL1 to DLm, and a plurality of scan lines SL1 to SLn. Each of the plurality of pixels PX is connected to a corresponding data line among the plurality of data lines DL1 to DLm, and a corresponding scan line among the plurality of scan lines SL1 to SLn.
The display panel DP that displays an image may be one of various types of display panels including, but not limited to, liquid crystal display (LCD) panel, electrophoretic display panel, organic light emitting diode (OLED) panel, light emitting diode (LED) panel, inorganic electro luminescent (EL) display panel, field emission display (FED) panel, surface-conduction electron-emitter display (SED) panel, plasma display panel (PDP), and cathode ray tube (CRT) display panel.
The driving controller 210 may externally receive an input image signal RGB and a control signal CTRL for controlling operation of the display panel DP that display an image corresponding to the input image signal RGB. The control signal CTRL may include at least one synchronization signal and at least one clock signal. The driving controller 210 may provide, to the data driving circuit 220, an image data signal DAS that is obtained by processing the input image signal RGB to satisfy an operation condition of the display panel DP. The driving controller 210 may provide a first control signal DCS to the data driving circuit 220 and provide a second control signal SCS to the scan driving circuit 240 based on the control signal CTRL. The first control signal DCS may include, but is not limited to, a horizontal synchronization start signal, a clock signal, and a line latch signal, and the second control signal SCS may include, but is not limited to, a vertical synchronization start signal and an output enable signal.
The data driving circuit 220 may output gradation voltages for driving the plurality of data lines DL1 to DLm in response to the first control signal DCS and the image data signal DAS that are received from the driving controller 210. In an embodiment of the present disclosure, the data driving circuit 220 may be implemented as an integrated circuit (IC), and it may be directly mounted in a predetermined region of the display panel DP, or may be mounted on a separate printed circuit board using a chip-on-film (COF) method to be electrically connected to the display panel DP. In another embodiment, the data driving circuit 220 may be formed on the display panel DP using the same process that forms a driving circuit (e.g., the scan driving circuit 240, the data driving circuit 220) of the display device DD.
The scan driving circuit 240 may drive the plurality of scan lines SL1 to SLn in response to the second control signal SCS that is received from the driving controller 210. In an embodiment of the present disclosure, the scan driving circuit 240 may be formed on the display panel DP using the same process as the driving circuit of the pixels PX, but the present disclosure is not limited thereto. For example, the scan driving circuit 240 may be implemented as an integrated circuit (IC), and it may be directly mounted in a predetermined region of the display panel DP, or may be mounted on a separate printed circuit board using a chip-on-film (COF) method to be electrically connected to the display panel DP.
The memory 250 may store the compensation data CP_DATA. The compensation data CP_DATA stored in the memory 250 may be provided from the test apparatus TD illustrated in
The driving controller 210 may correct the externally provided input image signal RGB based on the compensation data CP_DATA stored in the memory 250, and may provide the image data signal DAS to the data driving circuit 220.
If the externally provided input image signal RGB corresponds to the main gradation M (see
The driving controller 210 may calculate the prediction compensation coefficient P_CV according to Equation 17 similar to Equation 1.
In Equation 17, G0, μ0, and σ0 denote the main compensation coefficient M_CV, the mean, and the standard deviation corresponding to the main gradation M of a pixel, and G′, μ1, and σ1 denote the prediction compensation coefficient P_CV, the mean, and the standard deviation corresponding to the input image signal RGB for the pixel.
In Equation 17, G0 denoting the main compensation coefficient M_CV and the representative values μ0, σ0, μ1, and σ1 may be provided from the memory 250.
The driving controller 210 may generate the image data signal DAS by adding the compensation value β that is provided from the memory 250 to the calculated prediction compensation coefficient P_CV (denoted as G′) as expressed by Equation 18.
DAS=G′+β (Equation 18)
If the externally provided input image signal RGB corresponds to the sub gradation A (see
If the externally provided input image signal RGB does not correspond to the main gradation M or the sub gradation B, the driving controller 210 may calculate the representative value RV corresponding to a gradation of the input image signal RGB based on the representative values ME_M and SD_M of the main gradation M and the representative values ME_B and SD_B of the sub gradation B. For example, the driving controller 210 may calculate the representative value corresponding to the gradation of the input image signal RGB using a linear interpolation method or spatial interpolation method. Furthermore, the driving controller 210 may apply the calculated representative value RV to Equations 17 and 18 to generate the image data signal DAS.
The test apparatus TD described above may provide, to the display device DD, the main compensation coefficient M_CV of the main gradation M for each pixel, and the representative value RV, the flag FG, and the compensation value β for each block as the compensation data CP_DATA.
The display device DD may generate compensation coefficients for all gradations of each of pixels using the main compensation coefficient M_CV, the representative value RV, the flag FG, and the compensation value β for each block. This may reduce the size of the memory 250 in comparison with a method of storing compensation coefficients for all gradations of each of pixels in the memory 250 of the display device DD.
Referring to
The compensation coefficient calculator 110 of the test apparatus TD may receive the detected image signal IM for the main gradation M (see
The compensation coefficient calculator 110 may calculate the main compensation coefficient M_CV (see
The compensation coefficient calculator 110 of the test apparatus TD may receive the detected image signal IM for the sub gradation B (see
The compensation coefficient calculator 110 may calculate the sub compensation coefficient S_CV based on the detected image signal IM (operation S130). It is noted that the operations S110 and S130 may be performed in a reverse order or performed independently from each other or in parallel.
The primary predictor 120 may divide the display panel DP into a plurality of blocks, e.g., blocks BK11-BK16, BK21-BK26, BK31-BK36, and BK41-BK46 (see
The secondary predictor 130 may perform secondary prediction for determining the flag bit B (see
The controller 150 may output the compensation data CP_DATA based on the main compensation coefficient M_CV, the representative value RV, and the flag FG stored in the memory 140 (operation S160). The controller 150 may calculate the compensation value β based on a standard deviation σ1 (see Equation 1) corresponding to the sub gradation B included in the representative value RV, and may include the compensation value β in the compensation data CP_DATA.
The driving controller 210 of the display device DD may compensation mura by correcting the externally provided input image signal RGB based on the compensation data CP_DATA stored in the memory 250, and may provide the image data signal DAS to the data driving circuit 220 (S170).
As described above, a plurality of pixels PX of the display panel DP may have different characteristics due to a process deviation. Even if image signals having the same gradation are provided to the pixels PX, the pixels PX may output light at different luminance levels. The display device DD according to an embodiment of the present disclosure may output the image data signal DAS that is obtained by correcting the input image signal RGB based on the compensation data CP_DATA stored in the memory 250. Therefore, the display device DD may prevent a mura effect that may be caused by deviation of the pixel characteristics.
The test apparatus TD having the above-described configuration may test a characteristic difference among pixels PX and generate compensation data corresponding to each pixel. In particular, a memory size may be reduced by performing secondary prediction for generating the flag FG for each pixel after primarily predicting the prediction compensation coefficient P_CV in a block-wise manner.
Although the embodiments of the present disclosure have been described, it is understood that the present disclosure should not be limited to these embodiments but various changes and modifications can be made by one ordinary skilled in the art within the spirit and scope of the present disclosure as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0098784 | Aug 2020 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20150116387 | Jun et al. | Apr 2015 | A1 |
20200265804 | Chen | Aug 2020 | A1 |
20200265877 | Zheng | Aug 2020 | A1 |
20200267359 | Seiler | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
10-2015-0048394 | May 2015 | KR |
10-2017-0003226 | Jan 2017 | KR |
10-2017-0023614 | Mar 2017 | KR |
Number | Date | Country | |
---|---|---|---|
20220044608 A1 | Feb 2022 | US |