1. Field of the Invention
An embodiment of the present invention relates to an arithmetic circuit.
2. Description of the Related Art
In recent years, for higher performance of an electronic appliance, an arithmetic processing unit in which one chip includes a circuit having a plurality of functions, such as a system LSI, has been developed.
In the above arithmetic processing unit, for example, functional circuits including a CMOS circuit, such as an arithmetic circuit and a storage circuit, are provided separately over one substrate, and data is transferred between the arithmetic circuit and the storage circuit through a wiring serving as a data bus (for example, see Patent Document 1).
Further, an arithmetic circuit which includes a storage means so as to have a function of performing a logic operation processing and storing data has been proposed. In the arithmetic circuit, data on the result of the logic operation processing can be stored without transferring the data through the data bus, so that the power consumption can be reduced.
However, in a conventional arithmetic circuit, data of the arithmetic circuit to be stored needs to be separately saved in a nonvolatile storage circuit because a storage means of the conventional arithmetic circuit is volatile. Power is accordingly consumed in saving the data; therefore, the power consumption of the conventional arithmetic circuit is not sufficiently low.
Further, the conventional arithmetic circuit has a problem in that the storage means includes a large number of elements and that the circuit has a large area.
An object of an embodiment of the invention is to reduce power consumption. Another object of an embodiment of the invention is to reduce the power consumption and circuit area.
An embodiment of the invention provides an arithmetic circuit having a function of performing a logic operation processing and storing data on the result of the logic operation processing, which is configured as follows. The arithmetic circuit includes an arithmetic portion, a first transistor controlling whether a potential of an output signal is set at a potential corresponding to the result of the logic operation processing in the arithmetic portion, and a second transistor controlling whether the potential of the output signal is set at a potential corresponding to a reference potential. Further, a field-effect transistor with low off-state current is used as each of the first and second transistors.
In the above arithmetic circuit, by turning off the first and second transistors, the data can be held in the arithmetic circuit. Further, by maintaining the off states of the first and second transistors, the data can be stored for a long time.
An embodiment of the invention is an arithmetic circuit having a function of performing a logic operation processing based on an input signal, holding a potential corresponding to a result of the logic operation processing as stored data, and outputting a signal with a value corresponding to the stored data as an output signal. The arithmetic circuit includes an arithmetic portion performing the logic operation processing, a first field-effect transistor controlling whether a potential of the stored data is set at the potential corresponding to the result of the logic operation processing, and a second field-effect transistor controlling whether the potential of the stored data is set at a reference potential. Further, an off-state current per micrometer of channel width of each of the first and second field-effect transistors is lower than or equal to 10 aA.
According to an embodiment of the invention, data can be held with the power consumption suppressed; therefore, the power consumption can be reduced.
In the accompanying drawings:
Examples of embodiments describing the present invention will be described below with reference to the drawings. Note that it will be readily appreciated by those skilled in the art that details of the embodiments can be modified in various ways without departing from the spirit and scope of the invention. The invention is therefore not limited to the following description of the embodiments.
Note that the contents in different embodiments can be combined with one another as appropriate. In addition, the contents in different embodiments can be replaced with each other.
Further, the ordinal numbers such as “first” and “second” are used to avoid confusion between components and do not limit the number of each component.
(Embodiment 1)
This embodiment will show an example of an arithmetic circuit including a storage means and having a function of performing a logic operation processing and storing data on the result of the logic operation processing.
Examples of the arithmetic circuit in this embodiment will be described with reference to
An arithmetic circuit in
The arithmetic portion 111 has a function of performing the logic operation processing. The input signal InA is input to the arithmetic portion 111. Note that a plurality of input signals InA which are different from one another may be used.
The arithmetic portion 111 includes a signal input terminal, a first terminal, and a second terminal. Here, the input signal InA is input to the signal input terminal, a potential Vb is given to the second terminal, and the arithmetic portion 111 performs the logic operation processing based on the input signal InA input to the signal input terminal. Further, the arithmetic portion 111 switches a conducting state or a non-conducting state between the first terminal and the second terminal depending on the result of the logic operation processing.
The transistor 121 has a function of controlling whether a potential of the output signal OutQ is set at the potential corresponding to the result of the logic operation processing in the arithmetic portion 111.
An example of the transistor 121 is a field-effect transistor. Here, a potential of one of a source and a drain of the transistor 121 is set in accordance with the result of the logic operation processing in the arithmetic portion 111. Further, for example, a clock signal CLK1 is input to a gate of the transistor 121; however, without limitation, another signal or voltage may be applied to the gate of the transistor 121 so that the state of the transistor 121 can be changed.
The transistor 122 has a function of controlling whether the potential of the output signal OutQ is set at a reference potential.
An example of the transistor 122 is a field-effect transistor. Here, a potential Va serving as the reference potential is given to one of a source and a drain of the transistor 122. The other of the source and the drain of the transistor 122 is electrically connected to the other of the source and the drain of the transistor 121; the connection portion is referred to as node FN. Further, for example, a clock signal CLK2 is input to a gate of the transistor 122; however, without limitation, another signal or voltage may be applied to the gate of the transistor 122 so that the state of the transistor 122 can be changed. In the arithmetic circuit in
Further, the transistors 121 and 122 can each be a transistor with low off-state current. In that case, the off-state current per micrometer of channel width of the transistor is 10 aA (1×10−17 A) or lower, preferably 1 aA (1×10−18 A) or lower, more preferably 10 zA (1×10−20 A) or lower, further preferably 1 zA (1×10−21 A) or lower, still further preferably 100 yA (1×10−22 A) or lower.
As the above transistor with low off-state current, it is possible to use a transistor including a semiconductor layer in which a channel is formed and which has a wider band gap than silicon, for example, 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more. An example of the transistor having a wide band gap is a field-effect transistor including an oxide semiconductor layer in which a channel is formed.
Note that in
Note that one of the potentials Va and Vb is a high power supply potential Vdd, and the other is a low power supply potential Vss. The high power supply potential Vdd has a value relatively higher than the low power supply potential Vss, whereas the low power supply potential Vss has a value relatively lower than the high power supply potential Vdd. The values of the potentials Va and Vb might interchange depending on the conductivity type of the transistor, for example. Further, a difference between the potentials Va and Vb may be used as a power supply voltage.
As the clock signal CLK1, for example, a clock signal whose phase is delayed from that of the clock signal CLK2 by less than 1 cycle can be used.
The inverter 131 has a function of outputting a signal with a potential corresponding to the potential of the node FN. In the arithmetic circuit in
Next, as an example of a method of driving the arithmetic circuit in this embodiment, an example of a method of driving the arithmetic circuit in
First, an off state of the transistor 121 is maintained, and the transistor 122 is turned on. For example, in periods T11 in
At this time, the value of the potential of the node FN becomes equivalent to that of the potential Va. Thus, the node FN is precharged. Further, the output signal OutQ is at a low level.
Next, the transistor 121 is turned on and the transistor 122 is turned off. For example, in periods T12 after the periods T11 in
At this time, the potential of the node FN is set in accordance with the result of the logic operation processing in the arithmetic portion 111. For example, in the case where the first terminal and the second terminal of the arithmetic portion 111 are brought into conduction in accordance with the result of the logic operation processing in the arithmetic portion 111 and a potential of the one of the source and the drain of the transistor 121 is set at the potential Vb, as shown in the period T12 in
The arithmetic circuit illustrated in
Further, in the case where the transistors 121 and 122 are each a normally-off type transistor, the supply of the power supply voltage to the arithmetic circuit can be stopped. In order to stop the supply of the power supply voltage to the arithmetic circuit, first, the clock signals CLK1 and CLK2 are set at low levels and then the supply of the clock signals CLK1 and CLK2 to the arithmetic circuit is stopped. After that, the supply of the power supply voltage to the arithmetic circuit is stopped.
At this time, the values of potentials of the gates of the transistors 121 and 122 become equivalent to the low levels, so that the transistors 121 and 122 are brought into off states. However, the value of the stored data (the potential of the node FN) in the arithmetic circuit remains held.
The above description is the example of the method of driving the arithmetic circuit in
The arithmetic circuit in
An arithmetic circuit in
An arithmetic circuit in
An arithmetic circuit in
An arithmetic circuit in
Note that as illustrated in
Examples of the arithmetic circuit in this embodiment are not limited to the above configurations; for example, a plurality of arithmetic circuits illustrated in any of
As described with reference to
In the example of the arithmetic circuit according to this embodiment, the field-effect transistor with low off-state current is used as each of the first and second transistors; therefore, the transistor in an off state can have reduced leakage current. Accordingly, the data can be held for a long time and does not need to be separately saved in a nonvolatile storage circuit; therefore, the operation speed can be increased and the power consumption can be reduced.
Table 1 shows comparison between a magnetic tunnel junction element (also referred to as MTJ element) used in an MRAM and the above nonvolatile storage circuit including a stack (also referred to as OS/Si) of a transistor including an oxide semiconductor and a transistor including a silicon semiconductor.
The MTJ element is disadvantageous in that magnetism is lost when the temperature is the Curie temperature or higher because a magnetic material is used. In addition, the MTJ element is compatible with a silicon bipolar device because current driving is employed; however, the bipolar device is unsuitable for high integration. Furthermore, the MTJ element has a problem in that its power consumption is increased with an increase in write current due to an increase in memory capacitance.
The MTJ element has low resistance to a magnetic field, so that the spin direction is likely to change when the MTJ element is exposed to a high magnetic field. Further, magnetic fluctuation is caused by nanoscaling of a magnetic body used for the MTJ element.
The material cost per bit of the MTJ element is expensive.
On the other hand, the transistor formed using an oxide semiconductor in this embodiment has an element structure and an operation principle which are similar to those of a silicon MOSFET except that a semiconductor material of a channel is a metal oxide. Further, the transistor formed using an oxide semiconductor is not influenced by a magnetic field, and does not cause soft errors. This shows that the transistor is highly conformable to a silicon integrated circuit.
(Embodiment 2)
This embodiment will show an example of an arithmetic circuit which is a full adder, as another example of the arithmetic circuit in Embodiment 1.
First, a configuration example of the arithmetic circuit in this embodiment will be described with reference to
A signal A, a signal B, and a signal C (carry signal from a lower digit) are input as input signals InA to an arithmetic circuit in
The arithmetic circuit in
The arithmetic portion 311 has a function of performing a logic operation processing. The signals A, B, and C are input to the arithmetic portion 311.
The transistor 321_1 has a function of controlling whether a potential of the signal C+ is set at a potential corresponding to the result of the logic operation processing in the arithmetic portion 311.
The transistor 321_1 is an n-channel field-effect transistor. The clock signal CLK1 is input to a gate of the transistor 321_1. One of a source and a drain of the transistor 321_1 is electrically connected to the arithmetic portion 311.
The transistor 322_1 has a function of controlling whether the potential of the signal C+ is set at a potential corresponding to a reference potential.
The transistor 322_1 is an n-channel field-effect transistor. The clock signal CLK2 is input to a gate of the transistor 322_1, and the power supply potential Vdd is given to one of a source and a drain of the transistor 322_1. The other of the source and the drain of the transistor 322_1 is electrically connected to the other of the source and the drain of the transistor 321_1; the connection portion is referred to as node FN_31.
The inverter 331_1 has a function of outputting a signal with a potential corresponding to a potential of the node FN_31. At this time, the inverter 331_1 outputs the signal C+ as the output signal.
The transistor 321_2 has a function of controlling whether a potential of the signal S is set at a potential corresponding to the result of the logic operation processing in the arithmetic portion 311.
The transistor 321_2 is an n-channel field-effect transistor. The clock signal CLK1 is input to a gate of the transistor 321_2. One of a source and a drain of the transistor 321_2 is electrically connected to the arithmetic portion 311.
The transistor 322_2 has a function of controlling whether the potential of the signal S is set at a potential corresponding to a reference potential.
The transistor 322_2 is an n-channel field-effect transistor. The clock signal CLK2 is input to a gate of the transistor 322_2, and the power supply potential Vdd is given to one of a source and a drain of the transistor 322_2. The other of the source and the drain of the transistor 322_2 is electrically connected to the other of the source and the drain of the transistor 321_2; the connection portion is referred to as node FN_32.
The inverter 331_2 has a function of outputting a signal with a potential corresponding to a potential of the node FN_32. At this time, the inverter 331_2 outputs the signal S as the output signal.
Examples of the transistors 321_1, 322_1, 321_2, and 322_2 are each be any field-effect transistor which can be used as the transistors 121 and 122 in
As the clock signal CLK1, for example, a clock signal whose phase is delayed from that of the clock signal CLK2 by less than 1 cycle can be used.
The following will show a configuration example of the arithmetic portion 311.
The arithmetic portion 311 in
The transistor 351 is an n-channel field-effect transistor. One of a source and a drain of the transistor 351 is electrically connected to the one of the source and the drain of the transistor 321_1, and a signal A is input to a gate of the transistor 351.
The transistor 352 is an n-channel field-effect transistor. One of a source and a drain of the transistor 352 is electrically connected to the one of the source and the drain of the transistor 321_1, and a signal B is input to a gate of the transistor 352.
The transistor 353 is an n-channel field-effect transistor. One of a source and a drain of the transistor 353 is electrically connected to the other of the source and the drain of the transistor 351 and the other of the source and the drain of the transistor 352. The ground potential Vgnd is given to the other of the source and the drain of the transistor 353, and a signal C is input to a gate of the transistor 353.
The transistor 354 is an n-channel field-effect transistor. One of a source and a drain of the transistor 354 is electrically connected to the one of the source and the drain of the transistor 321_1, and the signal A is input to a gate of the transistor 354.
The transistor 355 is an n-channel field-effect transistor. One of a source and a drain of the transistor 355 is electrically connected to the other of the source and the drain of the transistor 354, and the signal B is input to a gate of the transistor 355.
The transistor 356 is an n-channel field-effect transistor. One of a source and a drain of the transistor 356 is electrically connected to the other of the source and the drain of the transistor 355. The ground potential Vgnd is given to the other of the source and the drain of the transistor 356, and a signal CB which is an inverted signal of the signal C is input to a gate of the transistor 356. For example, the signal CB can be generated by inverting the signal C by using an inverter or the like.
The transistor 357 is an n-channel field-effect transistor. One of a source and a drain of the transistor 357 is electrically connected to the one of the source and the drain of the transistor 321_2, and the signal A is input to a gate of the transistor 357.
The transistor 358 is an n-channel field-effect transistor. One of a source and a drain of the transistor 358 is electrically connected to the one of the source and the drain of the transistor 321_2, and the signal B is input to a gate of the transistor 358.
The transistor 359 is an n-channel field-effect transistor. One of a source and a drain of the transistor 359 is electrically connected to the other of the source and the drain of the transistor 357 and the other of the source and the drain of the transistor 358. A signal AB which is an inverted signal of the signal A is input to a gate of the transistor 359. For example, the signal AB can be generated by inverting the signal A by using an inverter or the like.
The transistor 360 is an n-channel field-effect transistor. One of a source and a drain of the transistor 360 is electrically connected to the other of the source and the drain of the transistor 357 and the other of the source and the drain of the transistor 358. A signal BB which is an inverted signal of the signal B is input to a gate of the transistor 360. For example, the signal BB can be generated by inverting the signal B by using an inverter or the like.
The transistor 361 is an n-channel field-effect transistor. One of a source and a drain of the transistor 361 is electrically connected to the other of the source and the drain of the transistor 359 and the other of the source and the drain of the transistor 360. The ground potential Vgnd is given to the other of the source and the drain of the transistor 361, and the signal C is input to a gate of the transistor 361.
The transistor 362 is an n-channel field-effect transistor. One of a source and a drain of the transistor 362 is electrically connected to the one of the source and the drain of the transistor 321_2, and the signal A is input to a gate of the transistor 362.
The transistor 363 is an n-channel field-effect transistor. One of a source and a drain of the transistor 363 is electrically connected to the one of the source and the drain of the transistor 321_2, and the signal AB is input to a gate of the transistor 363.
The transistor 364 is an n-channel field-effect transistor. One of a source and a drain of the transistor 364 is electrically connected to the other of the source and the drain of the transistor 362, and the signal B is input to a gate of the transistor 364.
The transistor 365 is an n-channel field-effect transistor. One of a source and a drain of the transistor 365 is electrically connected to the other of the source and the drain of the transistor 363, and the signal BB is input to a gate of the transistor 365.
The transistor 366 is an n-channel field-effect transistor. One of a source and a drain of the transistor 366 is electrically connected to the other of the source and the drain of the transistor 364 and the other of the source and the drain of the transistor 365. The ground potential Vgnd is given to the other of the source and the drain of the transistor 366, and the signal CB is input to a gate of the transistor 366.
As the transistors 351 to 366, it is possible to use transistors in each of which a semiconductor layer where a channel is formed includes a semiconductor belonging to Group 14 of the periodic table (e.g., silicon). In that case, the semiconductor layer may be a single crystal semiconductor layer, a polycrystalline semiconductor layer, a microcrystalline semiconductor layer, or an amorphous semiconductor layer.
The transistors 351 to 366 are all n-channel transistors; thus, the number of manufacturing steps can be reduced.
Note that the transistor gates to which the same signal is input may be electrically connected to one another. Further, the transistor terminals to which the same potential is supplied may be electrically connected to one another.
Next, as an example of a method of driving the arithmetic circuit in this embodiment, an example of a method of driving the arithmetic circuit in
First, off states of the transistors 321_1 and 321_2 are maintained, and the transistors 322_1 and 322_2 are turned on. For example, by setting the clock signal CLK1 at a low level, the off states of the transistors 321_1 and 321_2 are maintained, and by setting the clock signal CLK2 at a high level, the transistors 322_1 and 322_2 are turned on.
At this time, values of potentials of the nodes FN_31 and FN_32 each become equivalent to that of the potential Va. Thus, the nodes FN_31 and FN_32 are precharged. Further, the signals C+ and S are at low levels.
Next, the transistors 322_1 and 322_2 are turned off, and the transistors 321_1 and 321_2 are turned on. For example, by setting the clock signal CLK1 at a high level, the transistors 321_1 and 321_2 are turned on, and by setting the clock signal CLK2 at a low level, the transistors 322_1 and 322_2 are turned off.
At this time, the potentials of the nodes FN_31 and FN_32 are set in accordance with the result of the logic operation processing in the arithmetic portion 311. The values of the signals C+ and S are determined depending on the values of the signals A, B, and C.
For example, as shown in
The arithmetic circuit illustrated in
Further, in the case where the transistors 321_1, 321_2, 322_1, and 322_2 are each a normally-off transistor, the supply of the power supply voltage to the arithmetic circuit can be stopped. In order to stop the supply of the power supply voltage to the arithmetic circuit, first, the clock signals CLK1 and CLK2 are set at low levels and then the supply of the clock signals CLK1 and CLK2 to the arithmetic circuit is stopped. After that, the supply of the power supply voltage to the arithmetic circuit is stopped.
At this time, the values of potentials of the gates of the transistors 321_1, 321_2, 322_1, and 322_2 become equivalent to the low levels, so that the transistors 321_1, 321_2, 322_1, and 322_2 are brought into off states. However, the values of the stored data M1 (the potential of the node FN_31) and the stored data M2 (the potential of the node FN_32) in the arithmetic circuit remain held.
The above description is the example of the method of driving the arithmetic circuit in
Note that the example of the arithmetic circuit in this embodiment is not limited to the above configuration; for example, as illustrated in
In that case, the signal C is input to the gate of the transistor 356 instead of the signal CB. The signal A is input to the gate of the transistor 359 instead of the signal AB. The signal B is input to the gate of the transistor 360 instead of the signal BB. The signal A is input to the gate of the transistor 363 instead of the signal AB. The signal B is input to the gate of the transistor 365 instead of the signal BB. The signal C is input to the gate of the transistor 366 instead of the signal CB.
Note that the description of the arithmetic circuit in
As illustrated in
As described with reference to
In the example of the arithmetic circuit according to this embodiment, the field-effect transistor with low off-state current is used as each of the first to fourth transistors; therefore, the transistor in an off state can have reduced leakage current. Accordingly, the data does not need to be separately saved in a nonvolatile storage circuit; therefore, the operation speed can be increased and the power consumption can be reduced.
(Embodiment 3)
This embodiment will show examples of a field-effect transistor that includes an oxide semiconductor layer and can be applied to the transistor in the arithmetic circuit in the above embodiments.
Examples of structured of transistors in this embodiment will be described with reference to
The transistor illustrated in
The semiconductor layer 603_a includes a region 604a_a and a region 604b_a. The region 604a_a and the region 604b_a are positioned apart from each other and doped with a dopant. Note that a region between the region 604a_a and the region 604b_a serves as a channel formation region. The semiconductor layer 603_a is provided over an element formation layer 600_a. Note that it is not necessary to provide the region 604a_a and the region 604b_a.
The conductive layer 605a_a and the conductive layer 605b_a are provided over the semiconductor layer 603_a and electrically connected to the semiconductor layer 603_a. Side surfaces of the conductive layers 605a_a and 605b_a are tapered.
The conductive layer 605a_a overlaps with part of the region 604a_a; however, this embodiment is not limited to this structure. When the conductive layer 605a_a overlaps with part of the region 604a_a, the resistance between the conductive layer 605a_a and the region 604a_a can be low. Further, a region of the semiconductor layer 603_a which overlaps with the conductive layer 605a_a may be all the region 604a_a.
The conductive layer 605b_a overlaps with part of the region 604b_a; however, this embodiment is not limited to this structure. When the conductive layer 605b_a overlaps with part of the region 604b_a, the resistance between the conductive layer 605b_a and the region 604b_a can be low. Further, a region of the semiconductor layer 603_a which overlaps with the conductive layer 605b_a may be all the region 604b_a.
The insulating layer 602_a is provided over the semiconductor layer 603_a, the conductive layer 605a_a, and the conductive layer 605b_a.
The conductive layer 601_a is provided over part of the insulating layer 602_a, and overlaps with the semiconductor layer 603_a with the insulating layer 602_a placed therebetween. A region of the semiconductor layer 603_a, which overlaps with the conductive layer 601_a with the insulating layer 602_a placed therebetween, serves as the channel formation region.
The transistor illustrated in
The semiconductor layer 603_b includes a region 604a_b and a region 604b_b. The region 604a_b and the region 604b_b are positioned apart from each other and doped with a dopant. The semiconductor layer 603_b is provided over the conductive layers 605a_b and 605b_b and an element formation layer 600_b, for example, and electrically connected to the conductive layers 605a_b and 605b_b. Note that it is not necessary to provide the region 604a_b and the region 604b_b.
The insulating layer 602_b is provided over part of the semiconductor layer 603_b.
The conductive layer 601_b is provided over part of the insulating layer 602_b, and overlaps with the semiconductor layer 603_b with the insulating layer 602_b placed therebetween. A region of the semiconductor layer 603_b, which overlaps with the conductive layer 601_b with the insulating layer 602_b placed therebetween, serves as the channel formation region of the transistor. Note that an insulating layer may be provided over the conductive layer 601_b.
The insulating layer 606a is provided over the insulating layer 602_b and is in contact with one of a pair of side surfaces of the conductive layer 601_b.
The insulating layer 606b is provided over the insulating layer 602_b and is in contact with the other of the pair of side surfaces of the conductive layer 601_b.
Note that the dopant concentration in the portions of the regions 604a_b and 604b_b, which overlap with the insulating layers 606a and 606b with the insulating layer 602_b placed therebetween, may be lower than that of the portions of the regions 604a_b and 604b_b, which do not overlap with the insulating layers 606a and 606b.
The conductive layers 605a_b and 605b_b are provided over the semiconductor layer 603_b.
The conductive layer 605a_b is electrically connected to the region 604a_b and is in contact with the insulating layer 606a.
The conductive layer 605b_b is electrically connected to the region 604b_b and is in contact with the insulating layer 606b.
The insulating layer 607 is provided over the conductive layer 601_b, the conductive layers 605a_b and 605b_b, and the insulating layers 606a and 606b.
Next, the components illustrated in
As the element formation layers 600_a and 600_b, insulating layers or substrates having insulating surfaces can be used, for example. Further, layers over which elements are formed in advance can be used as the element formation layers 600_a and 600_b.
Each of the conductive layers 601_a and 601_b has a function of a gate of the transistor. Note that a layer functioning as a gate of the transistor can be called gate electrode or gate wiring.
As the conductive layers 601_a and 601_b, it is possible to use, for example, a layer of a metal material such as molybdenum, magnesium, titanium, chromium, tantalum, tungsten, aluminum, copper, neodymium, or scandium or an alloy material containing any of these materials as a main component. Moreover, the conductive layers 601_a and 601_b can be a stack of layers containing materials applicable to the conductive layers 601_a and 601_b.
Each of the insulating layers 602_a and 602_b has a function of a gate insulating layer of the transistor.
Each of the insulating layers 602_a and 602_b can be, for example, a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, a silicon nitride oxide layer, an aluminum oxide layer, an aluminum nitride layer, an aluminum oxynitride layer, an aluminum nitride oxide layer, a hafnium oxide layer, or a lanthanum oxide layer. Moreover, the insulating layers 602_a and 602_b can be a stack of layers containing materials applicable to the insulating layers 602_a and 602_b.
Alternatively, as the insulating layers 602_a and 602_b, an insulating layer of a material containing, for example, an element that belongs to Group 13 in the periodic table and oxygen can be used. For example, when the semiconductor layers 603_a and 603_b contain a Group 13 element, the use of insulating layers containing a Group 13 element as insulating layers in contact with the semiconductor layers 603_a and 603_b makes the state of interfaces between the insulating layers and the oxide semiconductor layers favorable.
Examples of the material containing a Group 13 element and oxygen include gallium oxide, aluminum oxide, aluminum gallium oxide, and gallium aluminum oxide. Note that aluminum gallium oxide refers to a substance in which the amount of aluminum is larger than that of gallium in atomic percent, and gallium aluminum oxide refers to a substance in which the amount of gallium is larger than or equal to that of aluminum in atomic percent. For example, it is possible to use a material represented by Al2Ox (x=3+α, where α is larger than 0 and smaller than 1), Ga2Ox (x=3+α, where α is larger than 0 and smaller than 1), or GaxAl2−xO3+α (x is larger than 0 and smaller than 2 and α is larger than 0 and smaller than 1).
The insulating layers 602_a and 602_b can be a stack of layers of materials applicable to the insulating layers 602_a and 602_b. For example, the insulating layers 602_a and 602_b can be a stack of layers containing gallium oxide represented by Ga2Ox. Alternatively, the insulating layers 602_a and 602_b may be a stack of an insulating layer containing gallium oxide represented by Ga2Ox and an insulating layer containing aluminum oxide represented by Al2Ox.
Each of the semiconductor layers 603_a and 603_b functions as a layer in which a channel of the transistor is formed. Examples of an oxide semiconductor applicable to the semiconductor layers 603_a and 603_b are In-based oxide (e.g., indium oxide), Sn-based oxide (e.g., tin oxide), and Zn-based oxide (e.g., zinc oxide).
As the metal oxide, a four-component metal oxide, a three-component metal oxide, or a two-component metal oxide can also be used, for example. Note that a metal oxide which can be used as the above oxide semiconductor may include gallium as a stabilizer for reducing variation in characteristics. A metal oxide which can be used as the above oxide semiconductor may include tin as the stabilizer. A metal oxide which can be used as the above oxide semiconductor may include hafnium as the stabilizer. A metal oxide which can be used as the above oxide semiconductor may include aluminum as the stabilizer. A metal oxide which can be used as the above oxide semiconductor may include one or more of the following materials as the stabilizer: lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, which are lanthanoid. Further, the metal oxide that can be used as the oxide semiconductor may contain silicon oxide.
Examples of a four-component metal oxide include an In—Sn—Ga—Zn-based oxide, an In—Hf—Ga—Zn-based oxide, an In—Al—Ga—Zn-based oxide, an In—Sn—Al—Zn-based oxide, an In—Sn—Hf—Zn-based oxide, and an In—Hf—Al—Zn-based oxide.
Examples of a three-component metal oxide include an In—Ga—Zn-based oxide (also referred to as IGZO), an In—Sn—Zn-based oxide, an In—Al—Zn-based oxide, Sn—Ga—Zn-based oxide, an Al—Ga—Zn-based oxide, a Sn—Al—Zn-based oxide, an In—Hf—Zn-based oxide, an In—La—Zn-based oxide, an In—Ce—Zn-based oxide, an In—Pr—Zn-based oxide, an In—Nd—Zn-based oxide, an In—Sm—Zn-based oxide, an In—Eu—Zn-based oxide, an In—Gd—Zn-based oxide, an In—Tb—Zn-based oxide, an In—Dy—Zn-based oxide, an In—Ho—Zn-based oxide, an In—Er—Zn-based oxide, an In—Tm—Zn-based oxide, an In—Yb—Zn-based oxide, and an In—Lu—Zn-based oxide.
Examples of a two-component metal oxide include an In—Zn-based oxide, a Sn—Zn-based oxide, an Al—Zn-based oxide, a Zn—Mg-based oxide, a Sn—Mg-based oxide, an In—Mg-based oxide, an In—Sn-based oxide, and an In—Ga-based oxide.
Note that for example, an In—Ga—Zn-based oxide refers to an oxide containing In, Ga, and Zn, and there is no limitation on the composition ratio of In, Ga, and Zn. The In—Ga—Zn-based oxide may contain a metal element other than In, Ga, and Zn.
As the oxide semiconductor, a material represented by InLO3(ZnO)m (m is larger than 0) can be used. Here, L in InLO3(ZnO)m represents one or more metal elements selected from Ga, Al, Mn, and Co.
As the oxide semiconductor, an In—Ga—Zn-based oxide with an atomic ratio of In:Ga:Zn=1:1:1 (=1/3:1/3:1/3) or In:Ga:Zn=2:2:1 (=2/5:2/5:1/5), or any of oxides whose composition is in the neighborhood of the above compositions can be used. Moreover, as the oxide semiconductor, an In—Sn—Zn-based oxide with an atomic ratio of In:Sn:Zn=1:1:1 (=1/3:1/3:1/3), In:Sn:Zn=2:1:3 (=1/3:1/6:1/2), or In:Sn:Zn=2:1:5 (=1/4:1/8:5/8) or any of oxides whose composition is in the neighborhood of the above compositions can be used.
Without limitation to the materials given above, a material with an appropriate composition can be used depending on required semiconductor characteristics (e.g., mobility, threshold voltage, and variation). In order to obtain the required semiconductor characteristics, it is preferable that the carrier concentration, the impurity concentration, the defect density, the atomic ratio between a metal element and oxygen, the interatomic distance, the density, and the like be set to appropriate values.
The oxide semiconductor may be either single crystal or non-single-crystal. In the latter case, the oxide semiconductor may be either amorphous or polycrystal. Further, the oxide semiconductor may have either an amorphous structure including a portion having crystallinity or a non-amorphous structure.
As the semiconductor layers 603_a and 603_b, it is possible to use a layer of a crystal with c-axis alignment (c-axis aligned crystal (CAAC)), which has a triangular or hexagonal atomic arrangement when seen from the direction of an a-b plane, a surface, or an interface. In the crystal, metal atoms are arranged in a layered manner or metal atoms and oxygen atoms are arranged in a layered manner along the c-axis, and the direction of the a-axis or the b-axis is varied in the a-b plane (the crystal rotates around the c-axis).
The CAAC is not single crystal, but this does not mean that the CAAC is composed of only an amorphous component. Although the CAAC includes a crystallized portion (crystalline portion), a boundary between one crystalline portion and another crystalline portion is not clearly distinguished in some cases.
In the case where oxygen is included in the CAAC, nitrogen may be substituted for part of oxygen included in the CAAC. The c-axes of individual crystalline portions included in the CAAC may be aligned in one direction (e.g., a direction perpendicular to a surface of a substrate over which the CAAC is formed or a surface of the CAAC). Alternatively, the normals of the a-b planes of the individual crystalline portions included in the CAAC may be aligned in one direction (e.g., a direction perpendicular to a surface of a substrate over which the CAAC is formed or a surface of the CAAC).
The CAAC becomes a conductor, a semiconductor, or an insulator depending on its composition or the like. The CAAC transmits or does not transmit visible light depending on its composition or the like.
An example of such a CAAC is a crystal which is formed into a film shape and has a triangular or hexagonal atomic arrangement when observed from the direction perpendicular to a surface of the film or a surface of a substrate, and in which metal atoms are arranged in a layered manner or metal atoms and oxygen atoms (or nitrogen atoms) are arranged in a layered manner when a cross section of the film is observed.
As the oxide semiconductor, it is possible to use a semiconductor material with a composition represented by InPGaQOR(ZnO)M (0<P<2, 0<Q<2, and M=1 to 3) as the entire layer including a c-axis-aligned crystalline region with a composition represented by In1+σGa1−σO3(ZnO) (0<σ<1 and M=1 to 3).
For example, in the case where the semiconductor layers 603_a and 603_b are oxide semiconductor layers containing the CAAC and the channel length of the transistor is 30 nm, a short-channel effect can be prevented even when the semiconductor layers 603_a and 603_b have a thickness of about 5 nm, for instance.
Examples of a crystal structure of the CAAC will be described with reference to
Note that a plurality of small groups form a medium group, and a plurality of medium groups form a large group (also referred to as unit cell).
A rule of bonding between the small groups is described below. For example, three tetracoordinate O atoms in the upper half with respect to a hexacoordinate In atom in
A metal atom whose coordination number is 4, 5, or 6 is bonded to another metal atom through a tetracoordinate O atom in the c-axis direction. In addition, a medium group can be formed by combining a plurality of small groups so that the total electric charge of the layered structure is 0.
Note that in
The medium group included in the layered structure of the In—Sn—Zn-based oxide in
Here, electric charge for one bond of a tricoordinate O atom and electric charge for one bond of a tetracoordinate O atom can be assumed to be −0.667 and −0.5, respectively. For example, electric charge of a (hexacoordinate or pentacoordinate) In atom, electric charge of a (tetracoordinate) Zn atom, and electric charge of a (pentacoordinate or hexacoordinate) Sn atom are +3, +2, and +4, respectively. Accordingly, electric charge in a small group including a Sn atom is +1. Therefore, electric charge of −1, by which the electric charge of +1 is canceled, is needed to form a layered structure including a Sn atom. As a structure having electric charge of −1, the small group including two Zn atoms as illustrated in
Further, a crystal of an In—Sn—Zn-based oxide (In2SnZn3O8) can be obtained with a structure in which the large group in
The same can be said for the case of using the other four-component metal oxides, three-component metal oxides, and two-component metal oxides shown in this embodiment and other metal oxides.
As an example,
The medium group included in the layered structure of the In—Ga—Zn-based oxide in
Here, since electric charge of a (hexacoordinate or pentacoordinate) In atom, electric charge of a (tetracoordinate) Zn atom, and electric charge of a (pentacoordinate) Ga atom are +3, +2, and +3, respectively, electric charge of a small group including any of the In atom, the Zn atom, and the Ga atom is 0. As a result, the total electric charge of a medium group having a combination of these small groups is always 0.
In order to form the layered structure of the In—Ga—Zn-based oxide, a large group can be formed using not only the medium group in
Specifically, when the large group illustrated in
In the case of n=1 (InGaZnO4), a crystal structure illustrated in
In the case of n=2 (InGaZn2O5), a crystal structure illustrated in
The above is the examples of the structure of the CAAC. An oxide semiconductor with crystallinity, such as the CAAC, has fewer defects than an amorphous oxide semiconductor.
The regions 604a_a, 604b_a, 604a_b, and 604b_b illustrated in
The conductive layers 605a_a, 605b_a, 605a_b, and 605b_b function as the source or the drain of the transistor. Note that a layer functioning as a source of the transistor can be called source electrode or source wiring, and a layer functioning as a drain of the transistor can be called drain electrode or drain wiring.
The conductive layers 605a_a, 605b_a, 605a_b, and 605b_b can be formed using, for example, a layer of a metal material such as aluminum, magnesium, chromium, copper, tantalum, titanium, molybdenum, or tungsten or an alloy material containing any of the above metal materials as a main component. For example, the conductive layers 605a_a, 605b_a, 605a_b, and 605b_b can be formed using a layer of an alloy material containing copper, magnesium, and aluminum. Moreover, the conductive layers 605a_a, 605b_a, 605a_b, and 605b_b can be a stack of materials applicable to these conductive layers. For example, the conductive layers 605a_a, 605b_a, 605a_b, and 605b_b can be formed using a stack including a layer of an alloy material containing copper, magnesium, and aluminum and a layer containing copper.
Alternatively, the conductive layers 605a_a, 605b_a, 605a_b, and 605b_b can be a layer containing a conductive metal oxide. Examples of the conductive metal oxide include indium oxide, tin oxide, zinc oxide, indium oxide-tin oxide, and indium oxide-zinc oxide. Note that silicon oxide may be contained in the conductive metal oxide applicable to the conductive layers 605a_a, 605b_a, 605a_b, and 605b_b.
As the insulating layers 606a and 606b, a layer of a material applicable to the insulating layers 602_a and 602_b can be used, for example. Alternatively, the insulating layers 606a and 606b can be formed using a stack of materials applicable to the insulating layers 606a and 606b.
The insulating layer 607 functions as a protective insulating layer for preventing impurities from entering the transistor.
As the insulating layer 607, a layer of a material applicable to the insulating layers 602_a and 602_b can be used, for example. Alternatively, the insulating layer 607 can be formed using a stack of materials applicable to the insulating layer 607. For example, insulating layer 607 may be formed using a silicon oxide layer, an aluminum oxide layer, or the like. For example, the use of an aluminum oxide layer as the insulating layer 607 can more effectively prevent impurities from entering the semiconductor layer 603_b and effectively prevent the semiconductor layer 603_b from releasing oxygen.
Note that the transistor in this embodiment may have a structure in which an insulating layer is provided over part of the oxide semiconductor layer serving as a channel formation layer and a conductive layer serving as a source or a drain is provided to overlap with the oxide semiconductor layer with the insulating layer placed therebetween. In that case, the insulating layer functions as a layer protecting the channel formation layer of the transistor (also referred to as channel protective layer). As the insulating layer functioning as a channel protective layer, a layer containing a material applicable to the insulating layers 602_a and 602_b can be used, for example. Alternatively, the insulating layer functioning as a channel protective layer may be a stack of materials applicable to the insulating layers 602_a and 602_b.
Further, base layers may be formed over the element formation layers 600_a and 600_b and the transistors may be formed over the base layers. In that case, the base layer can be a layer of a material applicable to the insulating layers 602_a and 602_b, for example. Alternatively, the base layer may be a stack of materials applicable to the insulating layers 602_a and 602_b. For example, a stack of an aluminum oxide layer and a silicon oxide layer used as the base layer can prevent oxygen in the base layer from being released through the semiconductor layers 603_a and 603_b.
Next, as an example of a method of manufacturing the transistor in this embodiment, an example of a method of manufacturing the transistor in
First, as illustrated in
For example, a film of an oxide semiconductor material applicable to the semiconductor layer 603_a (such a film is also referred to as oxide semiconductor film) is formed by sputtering, thereby forming the semiconductor layer 603_a. Note that the oxide semiconductor film may be partly etched after the deposition. Moreover, the oxide semiconductor film may be formed in a rare gas atmosphere, an oxygen atmosphere, or a mixed atmosphere of a rare gas and oxygen.
The oxide semiconductor film may be formed using, as a sputtering target, an oxide target having a composition ratio of In:Ga:Zn=1:1:1, 4:2:3, 3:1:2, 1:1:2, 2:1:3, or 3:1:4 (in an atomic ratio). The oxide target having any of the above composition ratios enables formation of a highly crystalline oxide semiconductor film, and facilitates formation of polycrystals or CAAC's.
In addition, the oxide semiconductor film may be formed using, as the sputtering target, an oxide target having a composition ratio of In:Sn:Zn=1:2:2, 2:1:3, 1:1:1, or 20:45:35 (in an atomic ratio). The oxide target having any of the above composition ratios enables formation of a highly crystalline oxide semiconductor film, and facilitates formation of polycrystals or CAAC's.
Furthermore, an In—Zn-based oxide film may be formed using, as the sputtering target, an oxide target having a composition ratio of In:Zn=50:1 to 1:2 (In2O3:ZnO=25:1 to 1:4 in a molar ratio), preferably In:Zn=20:1 to 1:1 (In2O3:ZnO=10:1 to 1:2 in a molar ratio), further preferably In:Zn=15:1 to 1.5:1 (In2O3:ZnO=15:2 to 3:4 in a molar ratio). Furthermore, when the atomic ratio of the target used for forming the In—Zn-based oxide semiconductor film is expressed by In:Zn:O=S:U:R, R>1.5S+U is satisfied. The increase in In content makes the field-effect mobility (also simply referred to as mobility) of the transistor higher.
In the case of using a sputtering method, the semiconductor layer 603_a is formed in a rare gas (typically argon) atmosphere, an oxygen atmosphere, or a mixed atmosphere of a rare gas and oxygen, for example. In that case, when the semiconductor layer 603_a is formed in a mixed atmosphere of a rare gas and oxygen, the oxygen content is preferably higher than the rare gas content.
When the film is formed by sputtering, it is preferable to sufficiently suppress leakage from the outside of a deposition chamber and degasification through an inner wall of the deposition chamber so that impurities such as hydrogen, water, a hydroxyl group, or hydride (also referred to as hydrogen compound) are not included in a deposited film.
For example, before the film is formed by sputtering, preheat treatment may be performed in a preheating chamber of a sputtering apparatus. By the preheat treatment, the above impurities can be eliminated.
Before the film is formed by sputtering, for example, it is possible to perform treatment by which voltage is applied to a substrate side, not to a target side, in an argon, nitrogen, helium, or oxygen atmosphere with the use of an RF power source and plasma is generated so that a surface of the substrate on which the film is to be formed is modified (such treatment is also referred to as reverse sputtering). With reverse sputtering, powdery substances (also referred to as particles or dust) attached to the surface where the film is to be formed can be removed.
In the case where the film is formed by sputtering, moisture remaining in the deposition chamber for forming the film can be removed by an entrapment vacuum pump or the like. As the entrapment vacuum pump, a cryopump, an ion pump, or a titanium sublimation pump can be used, for example. Alternatively, moisture remaining in the deposition chamber can be removed by a turbo molecular pump provided with a cold trap. With the use of the vacuum pump, back flow of the exhaust including the impurities can be reduced.
When a high-purity gas from which the above impurities are removed is used as a sputtering gas, for example, the impurity concentration of the deposited film can be lowered. For instance, a gas with a dew point of −70° C. or lower is preferably used as a sputtering gas.
The oxide semiconductor film may alternatively be formed by, instead of a sputtering method, a vacuum evaporation method, a plasma-enhanced chemical vapor deposition (PECVD) method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, a molecular beam epitaxy (MBE) method, or the like.
In the example of the method of manufacturing the transistor in this embodiment, a layer is formed by etching part of a film in the following manner, for instance: a resist mask is formed over part of the film by a photolithography process and the film is etched using the resist mask, thereby forming the layer. Note that in this case, the resist mask is removed after the layer is formed.
When an oxide semiconductor layer containing the CAAC is formed as the semiconductor layer 603_a, the oxide semiconductor film is formed by sputtering while the temperature of the element formation layer where the oxide semiconductor film is formed ranges from 100° C. to 600° C., preferably from 150° C. to 550° C., more preferably from 200° C. to 500° C. The oxide semiconductor film is deposited while the temperature of the element formation layer is high, whereby the impurity concentration in the film is reduced, the field-effect mobility of the transistor to be manufactured can be increased, and the gate-bias stress stability can be increased. Further, the atomic arrangement in the oxide semiconductor film is ordered, the density thereof is increased, so that a polycrystal or a CAAC is easily formed. Furthermore, a polycrystal or CAAC is also more easily formed by film deposition in an oxygen gas atmosphere because an unnecessary atom such as a rare gas does not enter the film. Note that a mixed gas atmosphere including an oxygen gas and a rare gas may be used. In that case, the percentage of an oxygen gas is higher than or equal to 30 vol. %, preferably higher than or equal to 50 vol. %, more preferably higher than or equal to 80 vol. %. As the oxide semiconductor film is thinner, the short channel effect of the transistor can be reduced.
Here, the thickness of the oxide semiconductor layer ranges from 1 nm to 40 nm, preferably from 3 nm to 20 nm.
In that case, the element formation layer 600_a is preferably flat. For example, the average surface roughness of the element formation layer 600_a is preferably 1 nm or less, further preferably 0.3 nm or less. By making the element formation layer 600_a flatter, the mobility of the CAAC oxide semiconductor can be made higher than that of an amorphous oxide semiconductor. For example, the element formation layer 600_a can be flattened by at least one of chemical mechanical polishing (CMP) and plasma treatment. Here, plasma treatment includes treatment for performing sputtering on a surface with rare gas ions and treatment for performing etching on a surface with an etching gas.
Then, as illustrated in
For example, a film of a material applicable to the conductive layers 605a_a and 605b_a is formed as a first conductive film by sputtering, and the first conductive film is partly etched, thereby forming the conductive layers 605a_a and 605b_a.
Next, as illustrated in
For example, the insulating layer 602_a can be formed by depositing a film applicable to the insulating layer 602_a by sputtering in a rare gas (typically argon) atmosphere, an oxygen atmosphere, or a mixed atmosphere of a rare gas and oxygen. The temperature of the element formation layer 600_a at the time when the insulating layer 602_a is formed preferably ranges from room temperature to 300° C.
Before the formation of the insulating layer 602_a, plasma treatment with the use of a gas such as N2O, N2, or Ar may be performed to remove water or the like adsorbed on an exposed surface of the semiconductor layer 603_a. In the case where the plasma treatment is performed, the insulating layer 602_a is preferably formed after the plasma treatment without exposure to air.
Next, the conductive layer 601_a is formed over the insulating layer 602_a.
For example, a film of a material applicable to the conductive layer 601_a is formed as a second conductive film by sputtering, and the second conductive film is partly etched, thereby forming the conductive layer 601_a.
Further, in the example of the method of manufacturing the transistor in
Note that a heat treatment apparatus for the heat treatment can be an electric furnace or an apparatus for heating an object by heat conduction or heat radiation from a heater such as a resistance heater. For example, a rapid thermal annealing (RTA) apparatus such as a gas rapid thermal annealing (GRTA) apparatus or a lamp rapid thermal annealing (LRTA) apparatus can be used. An LRTA apparatus is an apparatus for heating an object by radiation of light (electromagnetic wave) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high-pressure sodium lamp, or a high-pressure mercury lamp. A GRTA apparatus is an apparatus for heat treatment using a high-temperature gas. As the high-temperature gas, a rare gas or an inert gas (e.g., nitrogen) which does not react with the object by the heat treatment can be used.
Further, after the heat treatment is performed and while the heating temperature is being maintained or being decreased, a high-purity oxygen gas, a high-purity N2O gas, or ultra-dry air (having a dew point −40° C. or lower, preferably −60° C. or lower) may be introduced in the furnace where the heat treatment has been performed. It is preferable that the oxygen gas or the N2O gas do not contain water, hydrogen, and the like. The purity of the oxygen gas or the N2O gas which is introduced into the heat treatment apparatus is preferably 6N or higher, further preferably 7N or higher; that is, the impurity concentration of the oxygen gas or the N2O gas is preferably 1 ppm or lower, further preferably 0.1 ppm or lower. By the action of the oxygen gas or the N2O gas, oxygen is supplied to the semiconductor layer 603_a, and defects due to oxygen vacancy in the semiconductor layer 603_a can be reduced. Note that the high-purity oxygen gas, high-purity N2O gas, or ultra-dry air may be introduced during the heat treatment.
In the example of the method of manufacturing the transistor in
When the insulating layer in contact with the semiconductor layer 603_a contains an excessive amount of oxygen, oxygen is easily supplied to the semiconductor layer 603_a. Thus, oxygen defects in the semiconductor layer 603_a or at the interface between the insulating layer 602_a and the semiconductor layer 603_a can be reduced, which results in further reduction in the carrier concentration of the semiconductor layer 603_a. This embodiment is not limited to the above; even if an excessive amount of oxygen is contained in the semiconductor layer 603_a through the manufacturing process, the insulating layer in contact with the semiconductor layer 603_a can prevent oxygen from being released from the semiconductor layer 603_a.
For example, when an insulating layer containing gallium oxide is formed as the insulating layer 602_a, the composition of gallium oxide can be set to be Ga2Ox by supplying the insulating layer with oxygen.
When an insulating layer containing aluminum oxide is formed as the insulating layer 602_a, the composition of aluminum oxide can be set to be Al2Ox by supplying the insulating layer with oxygen.
Further, when an insulating layer containing gallium aluminum oxide or aluminum gallium oxide is formed as the insulating layer 602_a, the composition of gallium aluminum oxide or aluminum gallium oxide can be set to be GaxAl2−xO3+α by supplying the insulating layer with oxygen.
Through the above steps, impurities such as hydrogen, water, a hydroxyl group, or hydride (hydrogen compound) are removed from the semiconductor layer 603_a and oxygen is supplied to the semiconductor layer 603_a; thus, the oxide semiconductor layer can be highly purified.
In addition to the heat treatment, after the insulating layer 602_a is formed, heat treatment (preferably at 200° C. to 600° C., for example, at 250° C. to 350° C.) may be performed in an inert gas atmosphere or an oxygen gas atmosphere.
The intended heating temperature of the element formation layer 600_a or the temperature of the heat treatment after the deposition of the oxide semiconductor film is 150° C. or higher, preferably 200° C. or higher, further preferably 400° C. or higher. When the heat treatment after the oxide semiconductor film is deposited is performed at 300° C. or higher, impurities such as hydrogen contained in the film can be released and removed (the film can be dehydrated or dehydrogenated).
The heat treatment can be performed in an oxygen atmosphere; alternatively, the following two steps may be performed: the above dehydration or dehydrogenation is performed under a nitrogen atmosphere or a reduced pressure and then thermal treatment is performed in an oxygen atmosphere. By performing thermal treatment in an atmosphere including oxygen after the dehydration or dehydrogenation, oxygen can be added to the oxide semiconductor, so that the effect of the heat treatment can be further enhanced. Moreover, as the treatment for supplying oxygen, thermal treatment may be performed while the insulating layer is placed in contact with the oxide semiconductor layer. A defect due to oxygen vacancy is easily caused in the oxide semiconductor layer or at the interface between the oxide semiconductor layer and a layer stacked over the oxide semiconductor layer, for example; however, when excess oxygen is included in the oxide semiconductor by the heat treatment, oxygen vacancy caused constantly can be compensated for by excess oxygen. The excess oxygen is mainly oxygen existing between lattices. By setting the concentration of oxygen in the range of 1×1016/cm3 to 2×1020/cm3, oxygen can be included in the oxide semiconductor layer without causing crystal distortion or the like even if the oxide semiconductor layer is crystallized, for example.
The heat treatment performed after the formation of the oxide semiconductor film can increase the gate-bias stress stability of the transistor to be manufactured, and can increase the field-effect mobility of the transistor.
Then, as illustrated in
For example, the dopant can be added by an ion doping apparatus or an ion implantation apparatus.
Note that the given example of the method of manufacturing the transistor is not necessarily applied only to the transistor in
As described with reference to
In the transistor in the example of this embodiment, the carrier concentration of the oxide semiconductor layer can be lower than 1×1014/cm3, preferably lower than 1×1012/cm3, more preferably lower than 1×1011/cm3.
The carrier concentration of an oxide semiconductor applied to the transistor is preferably 1018/cm3 or lower. An oxide semiconductor containing In or Zn can have a carrier concentration of 1018/cm3 or lower by performing high purification of the oxide semiconductor film (removal of hydrogen and the like) or heat treatment after the deposition as described above, as well as by containing Ga or Sn as its component.
By performing at least one of the heat treatment during the deposition of the oxide semiconductor film and the heat treatment after the deposition, the threshold voltage of the transistor can be positively shifted to make the transistor normally off, and the off-state current per micrometer of channel width can be 10 aA (1×10−17 A) or less, 1 aA (1×10−18 A) or less, 10 zA (1×10−20 A) or less, 1 zA (1×10−21 A) or less, and even 100 yA (1×10−22 A) or less. It is preferable that the off-state current of the transistor be as low as possible; the lower limit of the off-state current of the transistor in this embodiment is estimated to be about 10−30 A/μm.
With the use of the transistor including the oxide semiconductor layer in this embodiment as the transistor for controlling the potential of the output signal in any of the arithmetic circuit in the above embodiments for example, a data retention period of the arithmetic circuit can be prolonged.
The transistor in the example of this embodiment and another transistor, for example, a transistor including a semiconductor layer containing a semiconductor belonging to Group 14 of the periodic table (e.g., silicon) can be stacked. Thus, the circuit area can be reduced while the transistor including the oxide semiconductor layer and the another transistor can be formed over one substrate.
The transistor including the oxide semiconductor can have relatively high field-effect mobility regardless of whether the oxide semiconductor is amorphous or crystalline. Such an increase in field-effect mobility might be attributed not only to removal of impurities by dehydration or dehydrogenation but also to a reduction in interatomic distance due to an increase in density. Moreover, the oxide semiconductor film can be crystallized by being purified by removal of impurities from the oxide semiconductor film. For example, the field-effect mobility of a transistor including an In—Sn—Zn-based oxide semiconductor can be higher than 31 cm2/V·s, preferably higher than 39 cm2/V·s, further preferably higher than 60 cm2/V·s. It has been proposed that ideally, a highly purified non-single-crystal oxide semiconductor can achieve a field-effect mobility exceeding 100 cm2/V·s. In addition, the example of the transistor in this embodiment indicates that the field-effect mobility thereof is increased as the defect density of the oxide semiconductor layer decreases. The reason therefor will be given below.
The actually measured field-effect mobility of a field-effect transistor, which is not limited to one including an oxide semiconductor layer, is lower than its inherent mobility for a variety of reasons. One of causes for reduction in the field-effect mobility is a defect in a semiconductor layer or a defect at an interface between the semiconductor layer and an insulating layer. For example, with a Levinson model, the field-effect mobility of a transistor based on the assumption that no defect exists inside an oxide semiconductor layer can be calculated theoretically.
Assuming a potential barrier (such as a grain boundary) exists in a semiconductor layer, the measured field-effect mobility of the semiconductor layer, denoted by is expressed by Formula 1 where the inherent field-effect mobility of the semiconductor layer is μ0.
In Formula 1, E denotes the height of the potential barrier, k denotes the Boltzmann constant, and T denotes the absolute temperature. Further, on the assumption that the potential barrier is attributed to a defect, the height of the potential barrier E can be expressed by Formula 2 according to the Levinson model.
In Formula 2, e denotes the elementary charge, N denotes the average defect density per unit area in a channel, ε denotes the permittivity of the semiconductor, n denotes the carrier concentration per unit area in the channel, Cox denotes the capacitance per unit area, Vg denotes the gate voltage (voltage between a gate and a source), and t denotes the thickness of the channel. In the case where the thickness of the semiconductor layer is less than or equal to 30 nm, the thickness of the channel can be regarded as being the same as the thickness of the semiconductor layer. In addition, the drain current Id (current between a drain and the source) in a linear region is expressed by Formula 3.
In Formula 3, L denotes the channel length and W denotes the channel width, and L and Ware each 10 μm in this example. Moreover, Vd denotes the drain voltage. Both sides of Formula 3 are divided by Vg and then logarithms of both the sides are taken, resulting in Formula 4.
The right side of Formula 4 is a function of Vg. From Formula 4, it is found that the defect density N can be obtained from a line in a graph that is obtained by plotting actual measured values with ln(Id/Vg) as the ordinate and 1/Vg as the abscissa. That is, the defect density can be evaluated from the Id−Vg characteristics of the transistor. For example, the defect density N of an oxide semiconductor film containing indium (In), gallium (Ga), and zinc (Zn) in a 1:1:1 atomic ratio is about 1×1012/cm2.
On the basis of the defect density or the like obtained in the above manner, μ0, the inherent field-effect mobility of the oxide semiconductor layer, is calculated to be 120 cm2/V·s. In general, the measured field-effect mobility of an In—Ga—Zn-based oxide having a defect is about 40 cm2/V·s; however, assuming that no defect exists inside the oxide semiconductor and at the interface between the oxide semiconductor and an insulating film, the mobility μ0 of the oxide semiconductor is expected to be 120 cm2/V·s. It is thus found that the mobility of the oxide semiconductor and the field-effect mobility of the transistor are increased as defects are decreased. For example, an oxide semiconductor layer containing the CAAC or the like has low defect density.
Note that even when no defect exists inside the semiconductor layer, scattering at an interface between a channel and a gate insulating layer affects the transport property of the transistor. In other words, the mobility μ1 at a position that is a distance x away from the interface between the channel and the gate insulator is expressed by Formula 5.
In Formula 5, D denotes the electric field in the gate direction, and B and l are constants. The values of B and l can be obtained from actual measurement results; according to the above measurement results, B is 2.38×107 cm/s and l is 10 nm (the depth to which the influence of interface scattering reaches). In Formula 5, the second term is increased as D increases (i.e., as the gate voltage increases); accordingly, the mobility μ1 is decreased as D increases.
As shown in
The following shows the calculation results of electrical characteristics of a minute transistor using an oxide semiconductor having the above-described high field-effect mobility.
The transistor in
The transistor in
The semiconductor region 653c is positioned between the semiconductor region 653a and the semiconductor region 653b. The semiconductor region 653c is an intrinsic semiconductor region serving as a channel formation region.
The gate electrode 655 is provided over the gate insulating layer 654. The width of the gate electrode 655 is 33 nm.
The sidewall insulators 656a and 656b are provided in contact with side surfaces of the gate electrode 655. In the transistor in
The insulating layer 657 is provided over the gate electrode 655. The insulating layer 657 has a function of preventing a short circuit between the gate electrode 655 and a wiring.
The source electrode 658a is in contact with the semiconductor region 653a.
The drain electrode 658b is in contact with the semiconductor region 653b.
Note that the channel width of the transistor in
The transistor in
Note that the other parameters used in calculation are as described above. For the calculation, Sentaurus Device, the software manufactured by Synopsys, Inc., is used.
As seen from
The peak of the field-effect mobility μ is about 80 cm2/V·s in
Since the field-effect mobility of the transistor including an oxide semiconductor can be high as described above, the transistor can operate the arithmetic circuit in any of the above embodiments without problems.
Next, as another example of the transistor, an example of a transistor that includes an oxide semiconductor layer containing In, Sn, and Zn as a channel formation layer will be described.
Note that the oxide semiconductor layer containing In, Sn, and Zn as its main components may be crystallized in the following manner: oxygen ions are implanted into the oxide semiconductor layer, impurities such as hydrogen, water, a hydroxyl group, or hydride included in the oxide semiconductor are released by heat treatment, and the oxide semiconductor layer is crystallized through the heat treatment or by another heat treatment performed later. By such crystallization treatment or recrystallization treatment, a non-single-crystal oxide semiconductor layer with favorable crystallinity can be obtained.
As for the transistor including the oxide semiconductor layer that contains In, Sn, and Zn as its main components and is formed without heating the element formation layer intentionally, the threshold voltage tends to be negative as shown in
The threshold voltage of a transistor can also be controlled by changing the ratio of In, Sn, and Zn. For example, when the composition ratio of In, Sn, and Zn in the oxide semiconductor film is 2:1:3, the transistor is more likely to be normally off.
For example, when a gate bias is applied with an intensity of 2 MV/cm at 150° C. for 1 hour to perform a bias-temperature stress test (BT test), the drift of the threshold voltage is less than ±1.5 V, preferably less than ±1.0 V. This means that the stability against gate-bias stress is enhanced by at least one of the heat treatment during the deposition of the oxide semiconductor film and the heat treatment after the deposition.
In the positive BT test, first, Vg−Id characteristics of the transistors were measured at a temperature of element formation layers (substrates) of 25° C. and Vd of 10 V. Then, the temperature of the element formation layers (substrates) was set to 150° C. and Vd was set to 0.1 V. After that, Vg of 20 V was applied so that the intensity of an electric field applied to gate insulating layers was 2 MV/cm, and the condition was kept for 1 hour. Next, Vg was set to 0 V. Then, Vg−Id characteristics of the transistors were measured at a temperature of the element formation layers (substrates) of 25° C. and Vd of 10 V.
In the negative BT test, first, Vg−Id characteristics of the transistors were measured at a temperature of the element formation layers (substrates) of 25° C. and Vd of 10 V. Then, the temperature of the element formation layers (substrates) was set to 150° C. and Vd was set to 0.1 V. After that, Vg of −20 V was applied so that the intensity of an electric field applied to the gate insulating layers was −2 MV/cm, and the condition was kept for 1 hour. Next, Vg was set to 0 V. Then, Vg−Id characteristics of the transistors were measured at a temperature of the element formation layers (substrates) of 25° C. and Vd of 10 V.
As shown in
In addition, when an oxide semiconductor film that is formed by sputtering using a metal oxide target having a composition ratio of In:Sn:Zn=1:1:1 without heating an element formation layer intentionally is analyzed by X-ray diffraction (XRD), a halo pattern is observed. However, the oxide semiconductor film can be crystallized by being subjected to heat treatment. The temperature of the heat treatment at that time can be set as appropriate; when the heat treatment is performed at 650° C., for example, a clear diffraction peak can be observed in X-ray diffraction.
Here, the results of XRD measurement of an In—Sn—Zn—O film are shown below. The XRD measurement was conducted using an X-ray diffractometer D8 ADVANCE manufactured by Bruker AXS, and the measurement was performed by an out-of-plane method.
Sample A and Sample B were prepared and the XRD measurement was performed thereon. A method of fabricating Sample A and Sample B will be described below.
An In—Sn—Zn—O film with a thickness of 100 nm was formed over a quartz substrate that had been subjected to dehydrogenation treatment.
The In—Sn—Zn—O film was deposited with a sputtering apparatus with a power of 100 W (DC) in an oxygen atmosphere. As a target for the sputtering, an In—Sn—Zn—O target having an atomic ratio of In:Sn:Zn=1:1:1 was used. The heating temperature at the deposition was 200° C. A sample fabricated in the above step was Sample A.
Next, a sample fabricated by a method similar to that of Sample A was subjected to heat treatment at 650° C. Here, heat treatment in a nitrogen atmosphere was performed for 1 hour and then, heat treatment in an oxygen atmosphere was performed for 1 hour without lowering the temperature. A sample fabricated in the above steps was Sample B.
By performing at least one of the heat treatment during the deposition of the oxide semiconductor film and the heat treatment after the deposition, the off-state current of the fabricated transistor per micrometer of channel width was 0.1 aA (1×10−19 A) or lower and 10 zA (1×10−20 A) or lower when the temperature of the element formation layer (substrate) was 125° C. and 85° C., respectively, as shown in
Although hydrogen can be removed from an oxide semiconductor film containing In, Sn, and Zn as its main components by heat treatment, a film that does not contain impurities inherently is preferably formed because moisture is released from the oxide semiconductor film at a higher temperature than from an oxide semiconductor containing In, Ga, and Zn as its main components.
In addition, the relation between the temperature of the element formation layer (substrate) and electrical characteristics of a sample, on which heat treatment at 650° C. was performed after formation of the oxide semiconductor film, was evaluated.
The transistor used for the measurement has a channel length L of 3 μm, a channel width W of 10 μm, Lov of 3 μm on one side (total Lov of 6 μm), and dW of 0 μm. Note that Vd was 10 V. The measurement was performed under the following six conditions: the temperatures of the element formation layer (substrate) were −40° C., −25° C., 25° C., 75° C., 125° C., and 150° C. Note that Lov represents the length in the channel length direction of a portion where a gate electrode overlaps with one of a pair of source and drain electrodes, and dW represents the width of a portion of the pair of electrodes in the channel width direction, which does not overlap with an oxide semiconductor film.
From
From
The above is the description of the transistors including the oxide semiconductor layer containing In, Sn, and Zn.
In the transistor including the oxide semiconductor layer containing In, Sn, and Zn as its main components, the field-effect mobility can be 30 cm2/V·s or higher, preferably 40 cm2/V·s or higher, more preferably 60 cm2/V·s or higher with the off-state current maintained at 1 aA/μm or lower, and can have on-state current high enough to meet the specifications demanded for LSI's. For example, in a transistor with a channel width of 40 nm and a channel length of 33 nm, an on-state current of 12 μA or higher can flow when the gate voltage is 2.7 V and the drain voltage is 1.0 V. Moreover, the transistor can have favorable electrical characteristics in the operating temperature range of transistors. Since the transistor including the oxide semiconductor layer has such characteristics, even when the transistor including the oxide semiconductor layer is included in a circuit constituted by transistors including semiconductor layers containing a semiconductor of Group 14 (e.g., silicon), a circuit having a novel function can be provided without decreasing the operation speed.
(Embodiment 4)
This embodiment will show an example of an arithmetic processing unit such as a CPU.
An example of the arithmetic processing unit in this embodiment is described with reference to
The arithmetic processing unit in
The bus interface 801 has a function of transmitting and receiving signals with an external unit and a function of exchanging signals with circuits in the arithmetic processing unit, and the like.
The control unit 802 has a function of controlling operations of the circuits in the arithmetic processing unit.
For example, the control unit 802 can include the arithmetic circuit in any of the above embodiments.
The cache memory 803 is controlled by the control unit 802 and has a function of temporary retaining data during the operation of the arithmetic processing unit. Note that the arithmetic processing unit may include a plurality of cache memory 803 as a primary cache and a secondary cache, for example.
The instruction decoder 805 has a function of translating an instruction signal which is read. The translated instruction signal is input to the control unit 802, and the control unit 802 outputs a control signal in accordance with the instruction signal to the arithmetic logic unit 806.
For example, the instruction decoder 805 can include the arithmetic circuit in any of the above embodiments.
The arithmetic logic unit 806 is controlled by the control unit 802 and has a function of performing logic operation processing in accordance with the input instruction signal.
For example, the arithmetic logic unit 806 can include the arithmetic circuits in any of the above embodiments.
Note that a register may be provided in the arithmetic processing unit. In that case, the register is controlled by the control unit 802. For example, a plurality of registers may be provided in the arithmetic processing unit, and some registers may be used for the arithmetic logic unit 806 and other registers may be used for the instruction decoder 805.
As described with reference to
Further, in the arithmetic processing unit exemplified in this embodiment, the arithmetic circuit in the above embodiment allows the data to be held for a long time while saving power. Accordingly, the power consumption of the arithmetic processing unit can be reduced. Further, the arithmetic processing unit including the arithmetic circuit in this embodiment can have a smaller area.
(Embodiment 5)
This embodiment will show examples of electronic appliances each provided with the arithmetic processing unit of any of the above embodiments.
Structural examples of the electronic appliances of this embodiment will be described with reference to
An electronic appliance in
Note that a side surface 1003a of the housing 1001a may be provided with one or both of a connection terminal for connecting the mobile information terminal to an external device and a button for operating the mobile information terminal in
The housing 1001a of the mobile information terminal in
The mobile information terminal in
An electronic appliance in
In the mobile information terminal in
Note that a side surface 1003b of the housing 1001b or a side surface 1007 of the housing 1004 may be provided with one or both of a connection terminal for connecting the mobile information terminal to an external device and a button for operating the mobile information terminal in
The display portion 1002b and the display portion 1005 may display different images or one image. Note that the display portion 1005 is not necessarily provided, and a keyboard which is an input device may be provided instead of the display portion 1005.
The housing 1001b or the housing 1004 of the mobile information terminal in
The mobile information terminal in
An electronic appliance in
Note that the display portion 1002c can be provided on a countertop portion 1008 of the housing 1001c.
The stationary information terminal in
Further, a side surface 1003c of the housing 1001c in the stationary information terminal in
The stationary information terminal in
Note that a side surface 1003d of the housing 1001d may be provided with one or both of a connection terminal for connecting the stationary information terminal to an external device and a button for operating the stationary information terminal in
The stationary information terminal in
The stationary information terminal in
The arithmetic processing unit in the above embodiment is used as the CPU in any of the electronic appliances in
As described with reference to
Further, in the electronic appliances exemplified in this embodiment, the arithmetic processing unit in the above embodiment allows the data to be held for a long time while saving power. Accordingly, the power consumption of the arithmetic processing unit can be reduced. Further, the arithmetic processing unit including the arithmetic circuit in this embodiment can have a smaller area.
This application is based on Japanese Patent Application serial no. 2011-112834 filed with Japan Patent Office on May 19, 2011, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2011-112834 | May 2011 | JP | national |
This application is a continuation of U.S. application Ser. No. 13/471,630, filed May 15, 2012, now allowed, which claims the benefit of a foreign priority application filed in Japan as Serial No. 2011-112834 on May 19, 2011, both of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4316106 | Young et al. | Feb 1982 | A |
4642487 | Carter | Feb 1987 | A |
4656607 | Hagiwara et al. | Apr 1987 | A |
4788457 | Mashiko et al. | Nov 1988 | A |
4797576 | Asazawa | Jan 1989 | A |
4809225 | Dimmler et al. | Feb 1989 | A |
5218607 | Saito et al. | Jun 1993 | A |
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
5825208 | Levy et al. | Oct 1998 | A |
5898330 | Klass | Apr 1999 | A |
5936879 | Brouwer et al. | Aug 1999 | A |
6046606 | Chu et al. | Apr 2000 | A |
6127702 | Yamazaki et al. | Oct 2000 | A |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6385120 | Steiss | May 2002 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6576943 | Ishii et al. | Jun 2003 | B1 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
6738281 | Yokozeki | May 2004 | B2 |
6788567 | Fujimori | Sep 2004 | B2 |
6809952 | Masui | Oct 2004 | B2 |
6845032 | Toyoda et al. | Jan 2005 | B2 |
6876023 | Ishii et al. | Apr 2005 | B2 |
6934178 | Yokozeki et al. | Aug 2005 | B2 |
6944045 | Fujimori | Sep 2005 | B2 |
6972986 | Peng et al. | Dec 2005 | B2 |
7049190 | Takeda et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7064574 | Voogel et al. | Jun 2006 | B1 |
7064973 | Peng et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7211825 | Shih et al. | May 2007 | B2 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7336097 | Madurawe | Feb 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7535259 | Osame et al. | May 2009 | B2 |
7612594 | Fukuoka | Nov 2009 | B2 |
7616040 | Motomura | Nov 2009 | B2 |
7671660 | Van Acht et al. | Mar 2010 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7847287 | Kim et al. | Dec 2010 | B2 |
7863611 | Abe et al. | Jan 2011 | B2 |
7863627 | Honda | Jan 2011 | B2 |
7893495 | Li et al. | Feb 2011 | B2 |
7910490 | Akimoto et al. | Mar 2011 | B2 |
7932521 | Akimoto et al. | Apr 2011 | B2 |
7940085 | Kim et al. | May 2011 | B2 |
8085076 | Djaja et al. | Dec 2011 | B2 |
8115201 | Yamazaki et al. | Feb 2012 | B2 |
8158987 | Nabekura et al. | Apr 2012 | B2 |
8202365 | Umeda et al. | Jun 2012 | B2 |
8217680 | Kim et al. | Jul 2012 | B2 |
8274077 | Akimoto et al. | Sep 2012 | B2 |
8274078 | Itagaki et al. | Sep 2012 | B2 |
8362478 | Yamazaki et al. | Jan 2013 | B2 |
8492758 | Yamazaki et al. | Jul 2013 | B2 |
9214563 | Yamazaki et al. | Dec 2015 | B2 |
9318617 | Yamazaki et al. | Apr 2016 | B2 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020074568 | Yoshida et al. | Jun 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040071039 | Fujimori | Apr 2004 | A1 |
20040127038 | Carcia et al. | Jul 2004 | A1 |
20040164778 | Toyoda et al. | Aug 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050169039 | Peng et al. | Aug 2005 | A1 |
20050169040 | Peng et al. | Aug 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20050205921 | Ishii et al. | Sep 2005 | A1 |
20050225358 | Campbell | Oct 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060095975 | Yamada et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070019460 | Kang et al. | Jan 2007 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070126666 | Yamazaki et al. | Jun 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070182455 | Wang et al. | Aug 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070223275 | Nakajima et al. | Sep 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080048744 | Fukuoka | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080169836 | Rahim et al. | Jul 2008 | A1 |
20080170028 | Yoshida | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080197414 | Hoffman et al. | Aug 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080258789 | Motomura | Oct 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20080308796 | Akimoto et al. | Dec 2008 | A1 |
20080308805 | Akimoto et al. | Dec 2008 | A1 |
20090002044 | Kobayashi | Jan 2009 | A1 |
20090002590 | Kimura | Jan 2009 | A1 |
20090008639 | Akimoto et al. | Jan 2009 | A1 |
20090045397 | Iwasaki | Feb 2009 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090167404 | Kimura | Jul 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20090305461 | Akimoto et al. | Dec 2009 | A1 |
20100019839 | Monden | Jan 2010 | A1 |
20100065844 | Tokunaga | Mar 2010 | A1 |
20100085081 | Ofuji et al. | Apr 2010 | A1 |
20100092800 | Itagaki et al. | Apr 2010 | A1 |
20100109002 | Itagaki et al. | May 2010 | A1 |
20100136743 | Akimoto et al. | Jun 2010 | A1 |
20100148171 | Hayashi et al. | Jun 2010 | A1 |
20100193785 | Kimura | Aug 2010 | A1 |
20100200851 | Oikawa et al. | Aug 2010 | A1 |
20100252832 | Asano et al. | Oct 2010 | A1 |
20100264956 | Yin | Oct 2010 | A1 |
20100320458 | Umeda et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20110010493 | Kimura et al. | Jan 2011 | A1 |
20110017990 | Son | Jan 2011 | A1 |
20110024741 | Abe et al. | Feb 2011 | A1 |
20110084731 | Kawae | Apr 2011 | A1 |
20110089417 | Yamazaki et al. | Apr 2011 | A1 |
20110089975 | Yamazaki et al. | Apr 2011 | A1 |
20110101351 | Yamazaki | May 2011 | A1 |
20110102018 | Shionoiri et al. | May 2011 | A1 |
20110104851 | Akimoto et al. | May 2011 | A1 |
20110108706 | Koyama | May 2011 | A1 |
20110108837 | Yamazaki et al. | May 2011 | A1 |
20110117697 | Akimoto et al. | May 2011 | A1 |
20110121290 | Akimoto et al. | May 2011 | A1 |
20110121878 | Kato et al. | May 2011 | A1 |
20110148463 | Kato et al. | Jun 2011 | A1 |
20110156024 | Koyama et al. | Jun 2011 | A1 |
20110163311 | Akimoto et al. | Jul 2011 | A1 |
20110176357 | Koyama et al. | Jul 2011 | A1 |
20110187410 | Kato et al. | Aug 2011 | A1 |
20120051117 | Yamazaki et al. | Mar 2012 | A1 |
20120132910 | Yamazaki et al. | May 2012 | A1 |
20120161121 | Yamazaki | Jun 2012 | A1 |
20120170355 | Ohmaru et al. | Jul 2012 | A1 |
20120195115 | Fujita et al. | Aug 2012 | A1 |
20120195122 | Ohmaru | Aug 2012 | A1 |
20120206956 | Fujita | Aug 2012 | A1 |
20120230078 | Fujita | Sep 2012 | A1 |
20120230138 | Endo | Sep 2012 | A1 |
20120243340 | Kobayashi et al. | Sep 2012 | A1 |
20120250407 | Kurokawa | Oct 2012 | A1 |
20120257439 | Kurokawa | Oct 2012 | A1 |
20120257440 | Takemura | Oct 2012 | A1 |
20120262982 | Takemura | Oct 2012 | A1 |
20120262983 | Kobayashi | Oct 2012 | A1 |
20120268849 | Tomatsu | Oct 2012 | A1 |
20120269013 | Matsuzaki | Oct 2012 | A1 |
20120271984 | Ohmaru et al. | Oct 2012 | A1 |
20120274356 | Takahashi | Nov 2012 | A1 |
20120274361 | Miyake | Nov 2012 | A1 |
20120274378 | Fujita | Nov 2012 | A1 |
20120274379 | Yoneda et al. | Nov 2012 | A1 |
20120275214 | Atsumi et al. | Nov 2012 | A1 |
20120280715 | Sekine | Nov 2012 | A1 |
20120286823 | Yoneda | Nov 2012 | A1 |
20120286851 | Yoneda | Nov 2012 | A1 |
20120287701 | Takemura | Nov 2012 | A1 |
20120287702 | Fujita | Nov 2012 | A1 |
20120287703 | Kobayashi et al. | Nov 2012 | A1 |
20120292613 | Shionoiri et al. | Nov 2012 | A1 |
20120293201 | Fujita et al. | Nov 2012 | A1 |
20120293210 | Yakubo et al. | Nov 2012 | A1 |
20120293242 | Kato | Nov 2012 | A1 |
20120294066 | Yoneda | Nov 2012 | A1 |
20120297219 | Kato | Nov 2012 | A1 |
20130057315 | Kato et al. | Mar 2013 | A1 |
20160218226 | Yamazaki et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
0135036 | Mar 1985 | EP |
0297777 | Jan 1989 | EP |
0404061 | Dec 1990 | EP |
0530928 | Mar 1993 | EP |
0818891 | Jan 1998 | EP |
0936546 | Aug 1999 | EP |
1447909 | Aug 2004 | EP |
1583239 | Oct 2005 | EP |
1737044 | Dec 2006 | EP |
1770788 | Apr 2007 | EP |
1995787 | Nov 2008 | EP |
1998373 | Dec 2008 | EP |
1998374 | Dec 2008 | EP |
1998375 | Dec 2008 | EP |
2226847 | Sep 2010 | EP |
56-501903 | Dec 1981 | JP |
58-205226 | Nov 1983 | JP |
60-025269 | Feb 1985 | JP |
60-198861 | Oct 1985 | JP |
62-177794 | Aug 1987 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
64-066899 | Mar 1989 | JP |
03-027419 | Feb 1991 | JP |
03-192915 | Aug 1991 | JP |
05-110392 | Apr 1993 | JP |
05-251705 | Sep 1993 | JP |
07-147530 | Jun 1995 | JP |
08-264794 | Oct 1996 | JP |
09-232942 | Sep 1997 | JP |
10-056373 | Feb 1998 | JP |
10-078836 | Mar 1998 | JP |
10-093423 | Apr 1998 | JP |
11-505377 | May 1999 | JP |
11-261406 | Sep 1999 | JP |
2000-044236 | Feb 2000 | JP |
2000-077982 | Mar 2000 | JP |
2000-077982 | Mar 2000 | JP |
2000-150900 | May 2000 | JP |
2000-269457 | Sep 2000 | JP |
2000-349163 | Dec 2000 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
2005-269616 | Sep 2005 | JP |
2005-323295 | Nov 2005 | JP |
2006-050208 | Feb 2006 | JP |
2006-165532 | Jun 2006 | JP |
2007-096055 | Apr 2007 | JP |
2007-123861 | May 2007 | JP |
2007-125823 | May 2007 | JP |
2007-157934 | Jun 2007 | JP |
2007-179021 | Jul 2007 | JP |
2008-052847 | Mar 2008 | JP |
2008-147903 | Jun 2008 | JP |
2009-509449 | Mar 2009 | JP |
2009-175716 | Aug 2009 | JP |
2009-206942 | Sep 2009 | JP |
2009-212443 | Sep 2009 | JP |
2009-260378 | Nov 2009 | JP |
2010-034710 | Feb 2010 | JP |
2010-040815 | Feb 2010 | JP |
2010-062229 | Mar 2010 | JP |
2010-062546 | Mar 2010 | JP |
2010-258434 | Nov 2010 | JP |
2010-267955 | Nov 2010 | JP |
2010-282721 | Dec 2010 | JP |
2011-091375 | May 2011 | JP |
WO-1981002080 | Jul 1981 | WO |
WO-2003044953 | May 2003 | WO |
WO-2004059838 | Jul 2004 | WO |
WO-2004114391 | Dec 2004 | WO |
WO-2007034384 | Mar 2007 | WO |
WO-2009110623 | Sep 2009 | WO |
WO-2011036999 | Mar 2011 | WO |
Entry |
---|
Kamiya.T et al., “Carrier transport properties and electronic structures of amorphous oxide semiconductors: the present statue”, Solid State Physics, Sep. 1, 2009, vol. 44, No. 9, pp. 621-633, Agne Gijutsu Center. |
Jeon.S et al., “180nm Gate Length Amorphous InGaZnO Thin Film Transistor for High Density Image Sensor Applications”, IEDM 10: Technical Digest of International Electron Devices Meeting, Dec. 6, 2010, pp. 504-507. |
Ishii.T et al., “A Poly-Silicon TFT With a Sub-5-nm Thick Channel for Low-Power Gain Cell Memory in Mobile Applications”, IEEE Transactions on Electron Devices, Nov. 1, 2004, vol. 51, No. 11, pp. 1805-1810. |
Shukuri.S et al., “A Semi-Static Complementary Gain Cell Technology for Sub-1 V Supply DRAM's”, IEEE Transactions on Electron Devices, Jun. 1, 1994, vol. 41, No. 6, pp. 926-931. |
Kim.W et al., “An Experimental High-Density DRAM Cell with a Built-in Gain Stage”, IEEE Journal of Solid-State Circuits, Aug. 1, 1994, vol. 29, No. 8, pp. 978-981. |
Shukuri.S et al., “A Complementary Gain Cell Technology for sub-1 V Supply DRAMs ”, IEDM 92: Technical Digest of International Electron Devices Meeting, Dec. 13, 1992, pp. 1006-1008. |
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using Cg-Silicon Technology”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment”, Appl. Phys. Lett. (Applied Physics Letters), Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTs”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Nakamura.M et al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350° C.”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315. |
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630. |
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3—In2O3—ZnO) TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Lee.J et al., “World'S Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MOO3 as a Charge-Generation Layer”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3. pp. 339-342. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2060, vol. 85, No. 5, pp. 1012-1015. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics. |
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array”, SID Digiest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299. |
Ohara.H et al., “Amorphous In—Ga—Zn-Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase””, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Cho.D et al., “21.2:Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Backplane”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Using Amorphous In—Ga—Zn-Oxide TFTs”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and Their Application for Large Size AMOLED”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by PEALD Grown ZnO TFT”, IMID '07 Digest, 2007, pp. 1249-1252. |
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn-Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn-Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AMLCDS”, Journal of the SID, 2007, vol. 15, No. 1, pp. 17-22. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn-Oxide TFTs With a Novel Passivation Layer”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites For Display Applications”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Asaoka.Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED ”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases For Display Application”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740. |
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68. |
Kimizuka.N et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3—A2O3—BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu,or Zn] at Temperatures Over 1000° C.”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A et al., “Native Point Defects in ZnO”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22. |
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure To Water”, Appl. Phys. Lett. (Applied Physics Letters) , 2008. vol. 92, pp. 072104-1-072104-3. |
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 1277-1280. |
Janotti.A et al., “Oxygen Vacancies in ZnO”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study”, Phys. Rev. B. (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m <4):a Zn4s conductor”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas”, 214th ECS Meeting, 2008, No. 2317, ECS. |
Clark.S et al., “First Principles Methods Using CASTEP”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator”, Appl. Phys. Lett. (Applied Physics Letters), Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Yamazaki.S et al., “Research, Development, and Application of Crystalline Oxide Semiconductor”, SID Digest '12 : SID International Symposium Digest of Technical Papers, Jun. 5, 2012, pp. 183-186. |
Nishijima.T et al., “Low-power Display System Driven by Utilizing Technique Using Crystalline IGZO Transistor”, SID Digest '12 : SID International Symposium Digest of Technical Papers, 2012, pp. 583-586. |
Taiwanese Office Action (Application No. 101117375) dated Jun. 7, 2016. |
Taiwanese Office Action (Application No. 105135539) dated Jul. 4, 2017. |
Mendoza-Hernandez.F et al., “Noise-tolerance improvement in dynamic CMOS logic circuits”, IEE Proceedings—Circuits, Devices and Systems, Dec. 4, 2006, vol. 153, No. 6, pp. 565-573. |
Number | Date | Country | |
---|---|---|---|
20140284600 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13471630 | May 2012 | US |
Child | 14297692 | US |