ATXN2 IRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING OR PREVENTING ATXN2-ASSOCIATED NEURODEGENERATIVE DISEASES

Abstract
The disclosure relates to double stranded ribonucleic acid (dsRNAi) agents and compositions targeting an ATXN2 gene, as well as methods of inhibiting expression of an ATXN2 gene and methods of treating subjects having an ATXN2-associated neurodegenerative disease or disorder, e.g., SCAs and ALS, using such dsRNAi agents and compositions.
Description
FIELD OF THE INVENTION

The instant disclosure relates generally to ATXN2-targeting RNAi agents and methods.


SEQUENCE LISTING

The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 28, 2021, is named BN00005_0142_ALN_355WO01_SL.txt and is 1.14 MB in size.


BACKGROUND OF THE INVENTION

Spinocerebellar ataxias (SCAs) describe a large group of neurodegenerative disorders that affect movement, with more than 40 autosomal dominant SCAs described. As implied in the name, these disorders are characterized by progressive degeneration of the cerebellum and spinal motor neurons; however, both the affected brain regions and the clinical features of SCAs vary depending on the subtype. Ataxia—the key feature of SCAs—is manifested as dysfunction of motor coordination affecting gait, balance and speech. While the initial symptoms of SCAs are predominantly cerebellar, the neuronal degeneration in SCA also affects brainstem, pyramidal and extrapyramidal neurons, oculomotor system, lower motor neurons, and peripheral nerves. Oculomotor symptoms include progressive external ophthalmoplegia (weakness of the eye muscles) and diplopia (double vision); the pyramidal symptoms include spasticity, hyperreflexia, and weakness; extrapyramidal symptoms include dystonia (continuous spasms and muscle contractions), tremors, bradykinesia (slowness of movement) and other symptoms that may resemble Parkinson's disease (Bettencourt and Lima (2011) Orphanet journal ofrare diseases 6, 35-35). No disease modifying treatments exist for SCAs; however, physical therapy may improve symptoms (Ashizawa et al. (2018) Nat Rev Neurol 14, 590-605).


The Ataxin 2 (ATXN2) gene region covers approximately 147 kb; the transcript contains 25 exons, and 3 mRNA isoforms may be produced (isoform 1 transcript NM_002973.3 which encodes polypeptide NP_002964.3, isoform 2 transcript NM_001310121.1 which encodes polypeptide NP_001297050.1, and isoform 3 transcript NM_001310123.1 which encodes polypeptide NP_001297052.1) (each of the Accession Numbers is incorporated herein by reference in the form available on the filing date of the instant application). Five protein isoforms of ATXN2 have been described in UniProt. The longest ATXN2 isoform encodes an approximately 140 KDa protein (Isoform 1 UniProt: Q99700-1, 1,313 amino acids). Other ATXN2 isoforms in UniProt include: Isoform 2 UniProt: Q99700-2 of 1,313 amino acids; Isoform 3 UniProt: Q99700-3 of 258 amino acids; Isoform 4 UniProt: Q99700-4 of 1,243 amino acids; and Isoform 5 UniProt: Q99700-5 of 1,006 amino acids. Exon 2 of wildtype ATXN2 Q99700-1 contains a stretch of 22 to 31 glutamines (polyQ), encoded by imperfect CAG repeats; the most common sequence is (CAG)8(CAA)1(CAG)4(CAA)1(CAG)8. The CAA interruptions are believed to confer stability to this repeat region (Choudhry et al. (2001) Hum Mol Genet 10, 2437-2446). The 22 polyQ repeat allele represents more than 90% of normal individuals worldwide, followed by the 23 and the 27 repeat alleles (Antenora et al. (2017) Annals of clinical and translational neurology 4, 687-695; Pulst et al. (1996) Nat Genet 14, 269-276). The disease states associated with ATXN2 show expanded polyQ repeats.


Expansion of the polyQ repeat to 34 or beyond is associated with spinocerebellar ataxia 2 (SCA2) (Pulst et al. (1996) Nat Genet 14, 269-276). Although 33 repeats may be sufficient to manifest late-onset SCA2 (Fernandez et al. (2000) Neurology 55, 569-572) and 31 repeat expansion may act as a recessive allele for SCA2 (Pulst (2018) Neurology Genetics 4, e299). The most common SCA2-associated alleles have 37-39 repeats; longer CAG repeat expansions are associated with early onset.


SCA2 is one of the most common spinocerebellar ataxias. The average onset of SCA2 is in the fourth decade of life, with up to a quarter of patients having onset between 10 to 25 years of age (Antenora et al. (2017) Annals of clinical and translational neurology 4, 687-695). The clinical features include progressive gait ataxia, dysarthria, dysmetria, tremor, abnormal eye movements (slow saccades and supranuclear ophthalmoplegia), and peripheral neuropathy. Signs of pyramidal tract impairment affect about one-fourth of the patients. Autonomic dysfunctions are also common; these may include postural hypotension, gastrointestinal alterations, sexual dysfunction, increased salivation, sweating, and lacrimation (Id.). The disease progresses to the use of the cane, walker, and wheelchair that occurs within 12 to 25 years on average after disease onset. The mean progression rate is 1.49 (±0.07 SE) per year at the Scale for Assessment and Rating of Ataxia (SARA) (Schmitz-Hubsch et al. (2006) Neurology 66, 1717-1720) (Jacobi et al. (2015) Lancet Neurol 14, 1101-1108).


Intermediate expansions of polyQ in ATXN2 are associated with ALS (Elden et al. (2010) Nature 466, 1069-1075). Specifically, polyQ expansions between 29 and 33 repeats show correlation with amyotrophic lateral sclerosis (ALS) across multiple ethnic groups (Neuenschwander et al. (2014) JAMA Neurology 71, 1529-1534). ATXN2 interacts with TAR DNA binding protein (TDP-43), which is believed to be the driver in a large fraction of sporadic and familial ALS cases (Elden et al. (2010) Nature 466, 1069-1075). While the majority of ALS cases show accumulation of TDP-43, only a small fraction of ALS patients have mutations in TDP-43. Silencing of ATXN2 in TDP-43 mutant mice (Becker et al. (2017) Nature 544, 367) improves ALS phenotypes, supporting the role of ATXN2 in TDP-43 pathology. In addition to TDP-43, synergy of ATXN2 intermediate-length expansion and C9orf72 expansions in ALS and frontotemporal dementia (FTD) has also been suggested (Ciura et al. (2016) Autophagy 12, 1406-1408).


ATXN2 is ubiquitously expressed, with enrichment in the Purkinje cells of the cerebellum and spinal motor neurons. The polyQ expansion is believed to alter ATXN2 protein function, with gain of function activity contributing to the disease mechanism. The wild type ATXN2 protein is primarily in the Golgi complex (Huynh et al. (2003) Hum Mol Genet 12, 1485-1496). It has been observed the polyQ expansions drive accumulation of ATXN2 aggregates and changes in sub-cellular localization (Id.).


ATXN2 is an RNA binding protein whose activity in not well understood. ATXN2 knockout mice are viable with no obvious pathology, aside from susceptibility to obesity (Kiehl et al. (2006) Biochem Biophys Res Commun 339, 17-24). Moreover, knockdown of polyQ-expanded ATXN2 mRNA in the brain of two SCA2 mouse models increased motor function (Scoles et al. (2017) Nature 544, 362-366), an indication of improvement of SCA2 phenotypes.


There are no known cures for SCAs, and treatment options are limited, e.g., merely palliative. Thus, noting the described involvement of ATXN2 in SCAs, there remains a need for an agent that can selectively and efficiently silence the ATXN2 gene using the cell's own RNAi machinery that has both high biological activity and in vivo stability, and that can effectively inhibit expression of a target ATXN2 gene.


BRIEF SUMMARY OF THE INVENTION

The present disclosure provides RNAi agent compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of an Ataxin 2 (ATXN2) gene. The ATXN2 gene may be within a cell, e.g., a cell within a subject, such as a human. The present disclosure also provides methods of using the RNAi agent compositions of the disclosure for inhibiting the expression of an ATXN2 gene or for treating a subject who would benefit from inhibiting or reducing the expression of an ATXN2 gene, e.g., a subject suffering or prone to suffering from an ATXN2-associated neurodegenerative disease or disorder, e.g., spinocerebellar ataxias (SCAs), such as spinocerebellar ataxia 2 (SCA2), and Amyotrophic Lateral Sclerosis (ALS).


Accordingly, in one aspect, the instant disclosure provides a double stranded ribonucleic acid (RNAi) agent for inhibiting expression of ATXN2, where the dsRNA agent includes a sense strand and an antisense strand forming a double stranded region, where the sense strand harbors a nucleotide sequence including at least 15 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, or a nucleotide sequence having at least 90% nucleotide sequence identity to a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand harbors a nucleotide sequence including at least 15 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, or a nucleotide sequence having at least 90% nucleotide sequence identity to a portion of the nucleotide sequence of SEQ ID NO: 2.


In another aspect, the instant disclosure provides a double stranded ribonucleic acid (RNAi) agent for inhibiting expression of an ATXN2 gene, where the RNAi agent includes a sense strand and an antisense strand, and where the antisense strand includes a region of complementarity which includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the antisense sequences listed in any one of Tables 2, 3, 5, 6, 9 or 10.


Optionally, the sense strand or the antisense strand is conjugated to one or more lipophilic moieties.


In certain embodiments, the sense strand harbors a nucleotide sequence including at least 17 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand harbors a nucleotide sequence including at least 17 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand.


In some embodiments, the sense strand harbors a nucleotide sequence including at least 19 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand harbors a nucleotide sequence including at least 19 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand.


In embodiments, the sense strand harbors a nucleotide sequence including at least 21 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand harbors a nucleotide sequence including at least 21 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand.


In certain embodiments, the antisense strand includes a region of complementarity which includes at least 15 contiguous nucleotides of any one of the antisense sequences listed in any one of Tables 2, 3, 5, 6, 9 or 10. In certain embodiments, the antisense strand includes a region of complementarity which includes at least 19 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the antisense sequences listed in any one of Tables 2, 3, 5, 6, 9 or 10. In certain embodiments, the antisense strand includes a region of complementarity which includes at least 19 contiguous nucleotides of any one of the antisense sequences listed in any one of Tables 2, 3, 5, 6, 9 or 10. In certain embodiments, thymine-to-uracil or uracil-to-thymine differences between aligned (compared) sequences are not counted as nucleotides that differ between the aligned (compared) sequences.


In some embodiments, the agents include one or more lipophilic moieties conjugated to one or more nucleotide positions (optionally internal nucleotide positions), optionally via a linker or carrier. In certain embodiments, the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent. Optionally, the one or more lipophilic moieties are conjugated to at least the sense strand. In certain embodiments, the one or more lipophilic moieties are conjugated to at least the antisense strand. In embodiments, the one or more lipophilic moieties are conjugated to both strands.


In embodiments, lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0.


In some embodiments, the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2. Optionally, the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene, where the dsRNA agent includes a sense strand and an antisense strand, where the sense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the sense strand sequences presented in Tables 2, 3, 5, 6, 9 or 10; and where the antisense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of antisense strand nucleotide sequences presented in Tables 2, 3, 5, 6, 9 or 10. In certain embodiments, the sense strand includes at least 15 contiguous nucleotides of any one of the sense strand sequences presented in Tables 2, 3, 5, 6, 9 or 10; and where the antisense strand includes at least 15 contiguous nucleotides of any one of antisense strand nucleotide sequences presented in Tables 2, 3, 5, 6, 9 or 10. In certain embodiments, the sense strand includes at least 19 contiguous nucleotides of any one of the sense strand sequences presented in Tables 2, 3, 5, 6, 9 or 10; and where the antisense strand includes at least 19 contiguous nucleotides of any one of antisense strand nucleotide sequences presented in Tables 2, 3, 5, 6, 9 or 10 (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of antisense strand nucleotide sequences presented in Tables 2, 3, 5, 6, 9 or 10.


An additional aspect of the disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene, where the dsRNA agent includes a sense strand and an antisense strand, where the sense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1, 3, 5, or 7, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 1, 3, 5, or 7, where a substitution of a uracil for any thymine of SEQ ID NOs: 1, 3, 5, or 7 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1, 3, 5, or 7, or the nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 1, 3, 5, or 7; and where the antisense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the nucleotide sequences of SEQ ID NOs: 2, 4, 6, or 8, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, or 8, where a substitution of a uracil for any thymine of SEQ ID NOs: 2, 4, 6, or 8 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides from any one of the nucleotide sequences of SEQ ID NOs: 2, 4, 6, or 8, or the nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, or 8, where at least one of the sense strand and the antisense strand includes one or more lipophilic moieties conjugated to one or more internal nucleotide positions, optionally via a linker or carrier.


In one embodiment, the double stranded RNAi agent targeted to ATXN2 comprises a sense strand which includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from the nucleotide sequence of the sense strand nucleotide sequence of a duplex in Tables 2, 3, 5, 6, 9 or 10.


In one embodiment, the double stranded RNAi agent targeted to ATXN2 comprises an antisense strand which includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from the antisense nucleotide sequence of duplex in one of Tables 2, 3, 5, 6, 9 or 10.


Optionally, the double stranded RNAi agent includes at least one modified nucleotide. In embodiments, no more than five of the sense strand nucleotides and no more than five of the nucleotides of the antisense strand are unmodified nucleotides.


In certain embodiments, substantially all of the nucleotides of the sense strand are modified nucleotides. Optionally, all of the nucleotides of the sense strand are modified nucleotides.


In some embodiments, substantially all of the nucleotides of the antisense strand are modified nucleotides. Optionally, all of the nucleotides of the antisense strand are modified nucleotides.


Optionally, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand are modified nucleotides.


In one embodiment, at least one of the modified nucleotides is a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, a nucleotide comprising a 5′-methylphosphonate group, a nucleotide comprising a 5′ phosphate or 5′ phosphate mimic, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA), a nucleotide comprising thymidine-glycol nucleic acid (GNA)S-Isomer, a nucleotide comprising 2-hydroxymethyl-tetrahydrofurane-5-phosphate, a nucleotide comprising 2′-deoxythymidine-3′phosphate, a nucleotide comprising 2′-deoxyguanosine-3′-phosphate, or a terminal nucleotide linked to a cholesteryl derivative or a dodecanoic acid bisdecylamide group.


In a related embodiment, the modified nucleotide is a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, 3′-terminal deoxy-thymine nucleotides (dT), a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, or a non-natural base comprising nucleotide.


In one embodiment, the modified nucleotide includes a short sequence of 3′-terminal deoxy-thymine nucleotides (dT).


In another embodiment, the modifications on the nucleotides are 2′-O-methyl, 2′fluoro and GNA modifications.


In an additional embodiment, the double stranded RNAi agent includes at least one phosphorothioate internucleotide linkage. Optionally, the double stranded RNAi agent includes 6-8 (e.g., 6, 7, or 8) phosphorothioate internucleotide linkages.


In certain embodiments, the region of complementarity is at least 17 nucleotides in length. Optionally, the region of complementarity is 19-23 nucleotides in length. Optionally, the region of complementarity is 19 nucleotides in length.


In one embodiment, each strand is no more than 30 nucleotides in length.


In another embodiment, at least one strand includes a 3′ overhang of at least 1 nucleotide.


Optionally, at least one strand includes a 3′ overhang of at least 2 nucleotides.


In embodiments, the double stranded region is 15-30 nucleotide pairs in length.


Optionally, the double stranded region is 17-23 nucleotide pairs in length.


In some embodiments, the double stranded region is 17-25 nucleotide pairs in length.


In certain embodiments, the double stranded region is 23-27 nucleotide pairs in length.


In embodiments, the double stranded region is 19-21 nucleotide pairs in length.


In another embodiment, the double stranded region is 21-23 nucleotide pairs in length.


In embodiments, each strand has 19-30 nucleotides. Optionally, each strand has 19-23 nucleotides. In certain embodiments, each strand has 21-23 nucleotides.


In some embodiments, the double stranded RNAi agent further includes a lipophilic ligand, e.g., a C16 ligand, conjugated to the 3′ end of the sense strand through a monovalent or branched bivalent or trivalent linker.


In one embodiment, the ligand is




embedded image


where B is a nucleotide base or a nucleotide base analog, optionally where B is adenine, guanine, cytosine, thymine or uracil.


In other embodiments, the agent further comprises a targeting ligand that targets a liver tissue, e.g., one or more GalNAc derivatives, optionally conjugated to the double stranded RNAi agent via a linker or carrier.


In yet other embodiments, the agents further comprise a lipophilic ligand, e.g., a C16 ligand, conjugated to the 3′ end of the sense strand through a monovalent or branched bivalent or trivalent linker and a targeting ligand that targets a liver tissue, e.g., one or more GalNAc derivatives conjugated to the 3′ end of the sense strand through a monovalent or branched bivalent or trivalent linker.


In another embodiment, the region of complementarity to ATXN2 includes any one of the antisense sequences in any one of Tables 2, 3, 5, 6, 9 or 10.


In an additional embodiment, the region of complementarity to ATXN2 is that of any one of the antisense sequences in any one of Tables 2, 3, 5, 6, 9 or 10. In some embodiments, the internal nucleotide positions include all positions except the terminal two positions from each end of the strand.


In a related embodiment, the internal positions include all positions except terminal three positions from each end of the strand. Optionally, the internal positions exclude the cleavage site region of the sense strand.


In some embodiments, the internal positions exclude positions 9-12, counting from the 5′-end of the sense strand. In certain embodiments, the sense strand is 21 nucleotides in length.


In other embodiments, the internal positions exclude positions 11-13, counting from the 3′-end of the sense strand. Optionally, the internal positions exclude the cleavage site region of the antisense strand. In certain embodiments, the sense strand is 21 nucleotides in length.


In some embodiments, the internal positions exclude positions 12-14, counting from the 5′-end of the antisense strand. In certain embodiments, the antisense strand is 23 nucleotides in length.


In another embodiment, the internal positions excluding positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end. In certain embodiments, the sense strand is 21 nucleotides in length and the antisense strand is 23 nucleotides in length.


In an additional embodiment, one or more lipophilic moieties are conjugated to one or more of the following internal positions: positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand. Optionally, one or more lipophilic moieties are conjugated to one or more of the following internal positions: positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand. In certain embodiments, the sense strand is 21 nucleotides in length and the antisense strand is 23 nucleotides in length.


Optionally, the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


In certain embodiments, the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand.


In embodiments, the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand.


In some embodiments, the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand.


In embodiments, the lipophilic moiety is conjugated to position 16 of the antisense strand.


In certain embodiments, the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound. Optionally, the lipophilic moiety is lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, 03-(oleoyl)lithocholic acid, 03-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


In some embodiments, the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected that is hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, or alkyne.


In certain embodiments, the lipophilic moiety contains a saturated or unsaturated C6-Cis hydrocarbon chain. Optionally, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain. In a related embodiment, the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s). In certain embodiments, the carrier is a cyclic group that is pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, or decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


In embodiments, the saturated or unsaturated C16 hydrocarbon chain is conjugated to position 6, counting from the 5′-end of the strand.


In some embodiments, the lipophilic moiety is conjugated to the double-stranded RNAi agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


In one embodiment, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


In another embodiment, the double-stranded RNAi agent further includes a phosphate or phosphate mimic at the 5′-end of the antisense strand. Optionally, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In certain embodiments, the double-stranded RNAi agent further includes a targeting ligand that targets a receptor which mediates delivery to a CNS tissue, e.g., a hydrophilic ligand. In certain embodiments, the targeting ligand is a C16 ligand.


In some embodiments, the double-stranded RNAi agent further includes a targeting ligand that targets a brain tissue, e.g., striatum.


In some embodiments, the double-stranded RNAi agent further includes a targeting ligand that targets a liver tissue, e.g., hepatocytes.


In one embodiment, the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker that is DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, or a combination thereof.


In a related embodiment, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, the cyclic group being pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, or decalinyl.


In one embodiment, the RNAi agent includes at least one modified nucleotide that is a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a nucleotide that includes a glycol nucleic acid (GNA) or a nucleotide that includes a vinyl phosphonate. Optionally, the RNAi agent includes at least one of each of the following modifications: 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a nucleotide comprising a glycol nucleic acid (GNA) and a nucleotide comprising vinyl phosphonate.


In another embodiment, the RNAi agent includes a pattern of modified nucleotides as provided below in Tables 2, 3, 5, 6, 9 or 10, optionally where locations of 2′-C16, 2′-O-methyl, GNA, phosphorothioate and 2′-fluoro modifications are irrespective of the individual nucleotide base sequences of the displayed RNAi agents.


In embodiments, the dsRNA agent further includes: a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; or a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In some embodiments, the dsRNA agent further includes: a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; or a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In certain embodiments, the dsRNA agent further includes: a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; or a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In embodiments, the dsRNA agent further includes: a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; or a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further includes: a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; or a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


An additional aspect of the instant disclosure provides a cell harboring a dsRNA agent of the instant disclosure.


One aspect of the instant disclosure provides a pharmaceutical composition for inhibiting expression of a gene encoding ATXN2 that includes a dsRNA agent of the instant disclosure.


An additional aspect of the disclosure provides a method of inhibiting expression of an ATXN2 gene in a cell, the method involving: (a) contacting the cell with a double stranded RNAi agent of the instant disclosure or a pharmaceutical composition of the instant disclosure; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of an ATXN2 gene, thereby inhibiting expression of the ATXN2 gene in the cell.


In one embodiment, the cell is within a subject. Optionally, the subject is a human.


In certain embodiments, the subject is a rhesus monkey, a cynomolgous monkey, a mouse, or a rat.


In embodiments, the expression of ATXN2 is inhibited by at least 50%.


In certain embodiments, the subject meets at least one diagnostic criterion for an ATXN2-associated disease.


In certain embodiments, the human subject has been diagnosed with or suffers from an ATXN2-associated neurodegenerative disease, e.g., a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), and Amyotrophic Lateral Sclerosis (ALS).


In certain embodiments, the method further involves administering an additional therapeutic agent or therapy to the subject. Exemplary additional therapeutics and treatments include, for example, sedatives, antidepressants, clonazepam, sodium valproate, opiates, antiepileptic drugs, cholinesterase inhibitors, memantine, benzodiazepines, levodopa, COMT inhibitors (e.g., tolcapone and entacapone), dopamine agonists (e.g., bromocriptine, pergolide, pramipexole, ropinirole, piribedil, cabergoline, apomorphine and lisuride), MAO-B inhibitors (e.g., safinamide, selegiline and rasagiline), amantadine, an anticholinergic, modafinil, pimavanserin, doxepin, rasagline, an antipsychotic, an atypical antipsychotic (e.g., amisulpride, olanzapine, risperidone, and clozapine), riluzole, edaravone, deep brain stimulation, non-invasive ventilation (NIV), invasive ventilation physical therapy, occupational therapy, speech therapy, dietary changes and swallowing technique a feeding tube, a PEG tube, probiotics, and psychological therapy.


In certain embodiments, the double stranded RNAi agent is administered at a dose of about 0.01 mg/kg to about 50 mg/kg.


In some embodiments, the double stranded RNAi agent is administered to the subject intrathecally.


In one embodiment, the method reduces the expression of an ATXN2 gene in a brain (e.g., striatum) or spine tissue. Optionally, the brain or spine tissue is striatum, cortex, cerebellum, cervical spine, lumbar spine, or thoracic spine.


In some embodiments, the double stranded RNAi agent is administered to the subject subcutaneously.


In one embodiment, the method reduces the expression of an ATXN2 gene in the liver.


In other embodiments, the method reduces the expression of an ATXN2 gene in the liver and the brain.


Another aspect of the instant disclosure provides a method of treating a subject diagnosed with an ATXN2-associated neurodegenerative disease, the method involving administering to the subject a therapeutically effective amount of a dsRNA agent or a pharmaceutical composition of the instant disclosure, thereby treating the subject.


In one embodiment, treating involves amelioration of at least on sign or symptom of the disease.


In certain embodiments, treating includes prevention of progression of the disease.


In embodiments, the ATXN2-associated disease is characterized by progressive cerebellar ataxia or blindness. In certain embodiments, the ATXN2-associated disease is a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).


An additional aspect of the disclosure provides a method of preventing development of an ATXN2-associated neurodegenerative disease in a subject meeting at least one diagnostic criterion for an ATXN2-associated neurodegenerative disease, the method involving administering to the subject a therapeutically effective amount of a dsRNA agent or pharmaceutical composition of the disclosure, thereby preventing the development of an ATXN2-associated neurodegenerative disease in the subject meeting at least one diagnostic criterion for an ATXN2-associated neurodegenerative disease.


In certain embodiments, the method further involves administering to the subject an additional agent or a therapy suitable for treatment or prevention of an ATXN2-associated disease or disorder.


Another aspect of the instant disclosure provides a method of inhibiting the expression of ATXN2 in a subject, the method involving: administering to the subject a therapeutically effective amount of a double stranded RNAi agent of the disclosure or a pharmaceutical composition of the disclosure, thereby inhibiting the expression of ATXN2 in the subject.


An additional aspect of the disclosure provides a method for treating or preventing a disorder or ATXN2-associated neurodegenerative disease or disorder in a subject, the method involving administering to the subject a therapeutically effective amount of a double stranded RNAi agent of the disclosure or a pharmaceutical composition of the disclosure, thereby treating or preventing an ATXN2-associated neurodegenerative disease or disorder in the subject.


Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding ATXN2, where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):











sense:



5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′







antisense:



3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-







Na′-nq′ 5′ (III)








    • where:

    • i, j, k, and 1 are each independently 0 or 1;

    • p, p′, q, and q′ are each independently 0-6;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof, each np, np′, nq, and nq′, each of which may or may not be present, independently represents an overhang nucleotide;

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides;


      modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′; and

    • where the sense strand is conjugated to at least one ligand.





In one embodiment, i is 0; j is 0; i is 1; j is 1; both i and j are 0; or both i and j are 1.


In another embodiment, k is 0; 1 is 0; k is 1; 1 is 1; both k and 1 are 0; or both k and 1 are 1.


In certain embodiments, XXX is complementary to X′X′X′, YYY is complementary to Y′Y′Y′, and ZZZ is complementary to Z′Z′Z′.


In another embodiment, the YYY motif occurs at or near the cleavage site of the sense strand.


In an additional embodiment, the Y′Y′Y′ motif occurs at the 11, 12 and 13 positions of the antisense strand from the 5′-end. Optionally, the Y′ is 2′-O-methyl.


In some embodiments, formula (III) is represented by formula (IIIa):











sense:



5′ np-Na-Y Y Y-Na-nq 3′







antisense:



3′ np′-Na′-Y′Y′Y′-Na′-nq′ 5′ (IIIa).  






In another embodiment, formula (III) is represented by formula (IIIb):











sense:



5′ np-Na-Y Y Y-Nb-Z Z Z-Na-nq 3′







antisense:



3′ np′-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′ 5′ (IIIb)








    • where each Nb and Nb′ independently represents an oligonucleotide sequence including 1-5 modified nucleotides.





In an additional embodiment, formula (III) is represented by formula (IIIc):











sense:



5′ np-Na-X X X-Nb-Y Y Y-Na-nq 3′







antisense:



3′ np′-Na′-X′X′X′-Nb′-Y'Y'Y'-Na′-nq′ 5′ (IIIc)








    • where each Nb and Nb′ independently represents an oligonucleotide sequence including 1-5 modified nucleotides.





In certain embodiments, formula (III) is represented by formula (IIId):









(IIId)


sense:


5′ np-Na-X X X-Nb-Y Y Y-Nb-ZZZ-Na-nq 3′





antisense:


3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′ 5′








    • where each Nb and Nb′ independently represents an oligonucleotide sequence including 1-5 modified nucleotides and each Na and Na′ independently represents an oligonucleotide sequence including 2-10 modified nucleotides.





In another embodiment, the double stranded region is 15-30 nucleotide pairs in length. Optionally, the double stranded region is 17-23 nucleotide pairs in length.


In certain embodiments, the double stranded region is 17-25 nucleotide pairs in length. Optionally, the double stranded region is 23-27 nucleotide pairs in length.


In some embodiments, the double stranded region is 19-21 nucleotide pairs in length. Optionally, the double stranded region is 21-23 nucleotide pairs in length.


In certain embodiments, each strand has 15-30 nucleotides. Optionally, each strand has 19-30 nucleotides. Optionally, each strand has 19-23 nucleotides.


In certain embodiments, the double stranded region is 19-21 nucleotide pairs in length and each strand has 19-23 nucleotides.


In another embodiment, the modifications on the nucleotides of the RNAi agent are LNA, glycol nucleic acid (GNA), HNA, CeNA, 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C— allyl, 2′-fluoro, 2′-deoxy or 2′-hydroxyl, and combinations thereof. Optionally, the modifications on nucleotides include 2′-O-methyl, 2′-fluoro or GNA, and combinations thereof. In a related embodiment, the modifications on the nucleotides are 2′-O-methyl or 2′-fluoro modifications.


In one embodiment the RNAi agent includes a ligand that is or includes one or more lipophilic, e.g., C16, moieties attached through a bivalent or trivalent branched linker.


In other embodiments, the agent further comprises a targeting ligand that targets a liver tissue, e.g., one or more GalNAc derivatives.


In yet other embodiments, the agents further comprise a lipophilic ligand, e.g., a C16 ligand, conjugated to the 3′ end of the sense strand through a monovalent or branched bivalent or trivalent linker and a targeting ligand that targets a liver tissue, e.g., one or more GalNAc derivatives conjugated to the 3′ end of the sense strand through a monovalent or branched bivalent or trivalent linker.


In certain embodiments, the ligand is attached to the 3′ end of the sense strand.


In some embodiments, the RNAi agent further includes at least one phosphorothioate or methylphosphonate internucleotide linkage. In a related embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand. In a related embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand.


In another embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the both the 5′- and 3′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand.


In an additional embodiment, the base pair at the 1 position of the 5′-end of the antisense strand of the RNAi agent duplex is an A:U base pair.


In certain embodiments, the Y nucleotides contain a 2′-fluoro modification.


In some embodiments, the Y′ nucleotides contain a 2′-O-methyl modification.


In certain embodiments, p′>0. Optionally, p′=2.


In some embodiments, q′=0, p=0, q=0, and p′ overhang nucleotides are complementary to the target mRNA.


In certain embodiments, q′=0, p=0, q=0, and p′ overhang nucleotides are non-complementary to the target mRNA.


In one embodiment, the sense strand of the RNAi agent has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


In another embodiment, at least one np′ is linked to a neighboring nucleotide via a phosphorothioate linkage. Optionally, all np′ are linked to neighboring nucleotides via phosphorothioate linkages.


In certain embodiments, the ATXN2 RNAi agent of the instant disclosure is one of those listed in Tables 2, 3, 5, 6, 9 or 10. In some embodiments, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand include a modification.


Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene in a cell, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding an ATXN2 gene, where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-





nq′ 5′








    • where:

    • i, j, k, and 1 are each independently 0 or 1;

    • p, p′, q, and q′ are each independently 0-6;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof, each np, np′, nq, and nq′, each of which may or may not be present independently represents an overhang nucleotide;

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides, and where the modifications are 2′-O-methyl or 2′-fluoro modifications;

    • modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′; and

    • where the sense strand is conjugated to at least one ligand, optionally where the ligand is one or more lipophilic, e.g., C16, ligands, or one or more GalNAc derivatives.





An additional aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene in a cell, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding ATXN2, where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-





nq′ 5′








    • where:

    • i, j, k, and 1 are each independently 0 or 1;

    • each np, nq, and nq′, each of which may or may not be present, independently represents an overhang nucleotide;

    • p, q, and q′ are each independently 0-6;

    • np′>0 and at least one np′ is linked to a neighboring nucleotide via a phosphorothioate linkage;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof, XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides, and where the modifications are 2′-O-methyl, glycol nucleic acid (GNA) or 2′-fluoro modifications;

    • modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′; and

    • where the sense strand is conjugated to at least one ligand, optionally where the ligand is one or more lipophilic, e.g., C16, ligands, or one or more GalNAc derivatives.





Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene in a cell, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding ATXN2 (SEQ ID NO: 1, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of SEQ ID NO: 1), where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-





nq′ 5′








    • where:

    • i, j, k, and 1 are each independently 0 or 1;

    • each np, nq, and nq′, each of which may or may not be present, independently represents an overhang nucleotide;

    • p, q, and q′ are each independently 0-6;

    • np′>0 and at least one np′ is linked to a neighboring nucleotide via a phosphorothioate linkage;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof;

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides, and where the modifications are 2′-O-methyl or 2′-fluoro modifications;

    • modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′; and

    • where the sense strand is conjugated to at least one ligand, optionally where the ligand is one or more lipophilic, e.g., C16, ligands, or one or more GalNAc derivatives.





An additional aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene in a cell, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding ATXN2 (SEQ ID NO: 1, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of SEQ ID NO: 1), where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)t-Na′-





nq′ 5′








    • where:

    • i, j, k, and 1 are each independently 0 or 1;

    • each np, nq, and nq′, each of which may or may not be present, independently represents an overhang nucleotide;

    • p, q, and q′ are each independently 0-6;

    • np′>0 and at least one np′ is linked to a neighboring nucleotide via a phosphorothioate linkage;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof,

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides, and where the modifications are 2′-O-methyl or 2′-fluoro modifications;

    • modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′;

    • where the sense strand includes at least one phosphorothioate linkage; and

    • where the sense strand is conjugated to at least one ligand, optionally where the ligand is one or more lipophilic, e.g., C16, ligands or one or more GalNAc derivatives.





Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene in a cell, where the double stranded RNAi agent includes a sense strand complementary to an antisense strand, where the antisense strand includes a region complementary to part of an mRNA encoding ATXN2 (SEQ ID NO: 1, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of SEQ ID NO: 1), where each strand is about 14 to about 30 nucleotides in length, where the double stranded RNAi agent is represented by formula (III):











(IIIa)



sense:



5′ np-Na-Y Y Y-Na-nq 3′







antisense:



3′ np′-Na′-Y′Y′Y′-Na′-nq′ 5′








    • where:

    • each np, nq, and nq′, each of which may or may not be present, independently represents an overhang nucleotide;

    • p, q, and q′ are each independently 0-6;

    • np′>0 and at least one np′ is linked to a neighboring nucleotide via a phosphorothioate linkage;

    • each Na and Na′ independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides;

    • YYY and Y′Y′Y′ each independently represent one motif of three identical modifications on three consecutive nucleotides, and where the modifications are 2′-O-methyl or 2′-fluoro modifications;

    • where the sense strand includes at least one phosphorothioate linkage; and

    • where the sense strand is conjugated to at least one ligand, optionally where the ligand is one or more lipophilic, e.g., C16 ligands, or one or more GalNAc derivatives.





An additional aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene, where the double stranded RNAi agent targeted to ATXN2 includes a sense strand and an antisense strand forming a double stranded region, where the sense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1, 3, 5, and 7, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 1, 3, 5, or 7, and the antisense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 2, 4, 6, and 8, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, and 8; where a substitution of a uracil for any thymine in the sequences provided in the SEQ ID NOs: 1-8 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides from any one of the nucleotide sequences provided in SEQ ID NOs: 1-8, where substantially all of the nucleotides of the sense strand include a modification that is a 2′-O-methyl modification, a GNA or a 2′-fluoro modification, where the sense strand includes two phosphorothioate internucleotide linkages at the 5′-terminus, where substantially all of the nucleotides of the antisense strand include a modification selected from the group consisting of a 2′-O-methyl modification and a 2′-fluoro modification, where the antisense strand includes two phosphorothioate internucleotide linkages at the 5′-terminus and two phosphorothioate internucleotide linkages at the 3′-terminus, and where the sense strand is conjugated to one or more lipophilic, e.g., C16, ligands, optionally, further comprising a liver targeting ligand, e.g., a ligand comprising one or more GalNAc derivatives.


Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of an ATXN2 gene, where the double stranded RNAi agent targeted to ATXN2 includes a sense strand and an antisense strand forming a double stranded region, where the sense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1, 3, 5, and 7, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 1, 3, 5, or 7, and the antisense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 2, 4, 6, and 8, or a nucleotide sequence having at least 90% nucleotide sequence identity, e.g. 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity, to the entire nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, and 8, where a substitution of a uracil for any thymine in the sequences provided in the SEQ ID NOs: 1-8 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides from any one of the nucleotide sequences provided in SEQ ID NOs: 1-8; where the sense strand includes at least one 3′-terminal deoxy-thymine nucleotide (dT), and where the antisense strand includes at least one 3′-terminal deoxy-thymine nucleotide (dT).


In one embodiment, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand are modified nucleotides.


In another embodiment, each strand has 19-30 nucleotides.


In certain embodiments, the antisense strand of the RNAi agent includes at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region or a precursor thereof. Optionally, the thermally destabilizing modification of the duplex is one or more of




embedded image


where B is nucleobase.


Another aspect of the instant disclosure provides a cell containing a double stranded RNAi agent of the instant disclosure.


An additional aspect of the instant disclosure provides a pharmaceutical composition for inhibiting expression of an ATXN2 gene that includes a double stranded RNAi agent of the instant disclosure.


In one embodiment, the double stranded RNAi agent is administered in an unbuffered solution. Optionally, the unbuffered solution is saline or water.


In another embodiment, the double stranded RNAi agent is administered with a buffer solution. Optionally, the buffer solution includes acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof. In another embodiment, the buffer solution is phosphate buffered saline (PBS).


Another aspect of the disclosure provides a pharmaceutical composition that includes a double stranded RNAi agent of the instant disclosure and a lipid formulation.


In one embodiment, the lipid formulation includes a lipid nanoparticle (LNP).


Another aspect of the instant disclosure provides a kit for performing a method of the instant disclosure, the kit including: a) a double stranded RNAi agent of the instant disclosure, and b) instructions for use, and c) optionally, a device for administering the double stranded RNAi agent to the subject.


An additional aspect of the instant disclosure provides a double stranded ribonucleic acid (RNAi) agent for inhibiting expression of an ATXN2 gene, where the RNAi agent possesses a sense strand and an antisense strand, and where the antisense strand includes a region of complementarity which includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), e.g., at least 15 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), at least 19 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), from any one of the antisense strand nucleobase sequences of Tables 2, 3, 5, 6, 9 or 10. In one embodiment, the RNAi agent includes one or more of the following modifications: a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-C-alkyl-modified nucleotide, a nucleotide comprising a glycol nucleic acid (GNA), a phosphorothioate (PS) and a vinyl phosphonate (VP). Optionally, the RNAi agent includes at least one of each of the following modifications: a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-C-alkyl-modified nucleotide, a nucleotide comprising a glycol nucleic acid (GNA), a phosphorothioate and a vinyl phosphonate (VP).


In another embodiment, the RNAi agent includes four or more PS modifications, optionally six to ten PS modifications, optionally eight PS modifications.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent possesses a 5′-terminus and a 3′-terminus, and the RNAi agent includes eight PS modifications positioned at each of the penultimate and ultimate internucleotide linkages from the respective 3′- and 5′-termini of each of the sense and antisense strands of the RNAi agent.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes only one nucleotide including a GNA. Optionally, the nucleotide including a GNA is positioned on the antisense strand at the seventh nucleobase residue from the 5′-terminus of the antisense strand.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes one to four 2′-C-alkyl-modified nucleotides. Optionally, the 2′-C-alkyl-modified nucleotide is a 2′-C16-modified nucleotide. Optionally, the RNAi agent includes a single 2′-C-alkyl, e.g., C16-modified nucleotide. Optionally, the single 2′-C-alkyl, e.g., C16-modified nucleotide is located on the sense strand at the sixth nucleobase position from the 5′-terminus of the sense strand.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes two or more 2′-fluoro modified nucleotides. Optionally, each of the sense strand and the antisense strand of the RNAi agent includes two or more 2′-fluoro modified nucleotides. Optionally, the 2′-fluoro modified nucleotides are located on the sense strand at nucleobase positions 7, 9, 10 and 11 from the 5′-terminus of the sense strand and on the antisense strand at nucleobase positions 2, 14 and 16 from the 5′-terminus of the antisense strand.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes one or more VP modifications. Optionally, the RNAi agent includes a single VP modification at the 5′-terminus of the antisense strand.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes two or more 2′-O-methyl modified nucleotides. Optionally, the RNAi agent includes 2′-O-methyl modified nucleotides at all nucleobase locations not modified by a 2′-fluoro, a 2′-C-alkyl or a glycol nucleic acid (GNA). Optionally, the two or more 2′-O-methyl modified nucleotides are located on the sense strand at positions 1, 2, 3, 4, 5, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 from the 5′-terminus of the sense strand and on the antisense strand at positions 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22 and 23 from the 5′-terminus of the antisense strand.


Definitions

That the present disclosure may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this disclosure.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element, e.g., a plurality of elements.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”.


The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


The term “about” is used herein to mean within the typical ranges of tolerances in the art. For example, “about” can be understood as about 2 standard deviations from the mean. In certain embodiments, about means±10%. In certain embodiments, about means±5%. When about is present before a series of numbers or a range, it is understood that “about” can modify each of the numbers in the series or range.


The term “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 18 nucleotides of a 21 nucleotide nucleic acid molecule” means that 18, 19, 20, or 21 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “no more than” or “less than” is understood as the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, a duplex with an overhang of “no more than 2 nucleotides” has a 2, 1, or 0 nucleotide overhang. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range. As used herein, ranges include both the upper and lower limit.


As used herein, methods of detection can include determination that the amount of analyte present is below the level of detection of the method.


In the event of a conflict between an indicated target site and the nucleotide sequence for a sense or antisense strand, the indicated sequence takes precedence.


In the event of a conflict between a chemical structure and a chemical name, the chemical structure takes precedence.


The term “ataxin 2” or “ATXN2”, also known as SCA2 and TNRC13, refers to a gene that belongs to a group of genes that is associated with microsatellite-expansion diseases, a class of neurological and neuromuscular disorders caused by expansion of short stretches of repetitive DNA. The protein encoded by the ATXN2 gene has two globular domains near the N-terminus, one of which contains a clathrin-mediated trans-Golgi signal and an endoplasmic reticulum exit signal. The encoded cytoplasmic protein localizes to the endoplasmic reticulum and plasma membrane, is involved in endocytosis, and modulates mTOR signals, modifying ribosomal translation and mitochondrial function. The N-terminal region of the protein contains a polyglutamine (polyQ) tract of 14-31 residues that can be expanded in the pathogenic state to 32-200 residues. Intermediate length expansions of this tract increase susceptibility to amyotrophic lateral sclerosis (ALS), while long expansions of this tract result in spinocerebellar ataxia-2 (the SCA2 disorder), an autosomal-dominantly inherited, neurodegenerative disorder. Alternative splicing results in multiple transcript variants. Nucleotide and amino acid sequences of ATXN2 may be found, for example, at GenBank Accession No. NM_002973.3 (Homo sapiens ATXN2, SEQ ID NO: 1, reverse complement, SEQ ID NO: 2); GenBank Accession No. XM_005572266.1 (Macaca fascicularis ATXN2, SEQ ID NO: 3, reverse complement, SEQ ID NO: 4); GenBank Accession No.: NM_009125.2 (Mus musculus ATXN2, SEQ ID NO: 5, reverse complement, SEQ ID NO: 6); and GenBank Accession No. XM_008769286.2 (Rattus norvegicus ATXN2, SEQ ID NO: 7, reverse complement, SEQ ID NO: 8). Additional examples of ATXN2 sequences can be found in publicly available databases, for example, GenBank, OMIM, UniProt, and the Macaca genome project web site (macaque.genomics.org.cn/page/species/index.jsp). Additional information on ATXN2 can be found, for example, at www.ncbi.nlm.nih.gov/gene/6311.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term “ATXN2” as used herein also refers to variations of the ATXN2 gene including naturally occurring sequence variants provided, for example, at UniProt and in NCBI dbSNP (see, e.g., www.ncbi.nlm.nih.gov/snp?LinkName=gene_snp&from_uid=6311, the entire contents of which is incorporated herein by reference as of the date of filing this application.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an ATXN2 gene, including mRNA that is a product of RNA processing of a primary transcription product. In one embodiment, the target portion of the sequence will be at least long enough to serve as a substrate for RNAi-directed cleavage at or near that portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an ATXN2 gene. In one embodiment, the target sequence is within the protein coding region of the ATXN2 gene. In another embodiment, the target sequence is within the 3′ UTR of the ATXN2 gene.


The target sequence may be from about 9-36 nucleotides in length, e.g., about 15-30 nucleotides in length. For example, the target sequence can be from about 15-30 nucleotides, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length. In some embodiments, the target sequence is about 19 to about 30 nucleotides in length. In other embodiments, the target sequence is about 19 to about 25 nucleotides in length. In still other embodiments, the target sequence is about 19 to about 23 nucleotides in length. In some embodiments, the target sequence is about 21 to about 23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


“G,” “C,” “A,” “T”, and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine, and uracil as a base, respectively in the context of a modified or unmodified nucleotide. However, it will be understood that the term “ribonucleotide” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety (see, e.g., Table 1). The skilled person is well aware that guanine, cytosine, adenine, thymidine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base can base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine can be replaced in the nucleotide sequences of dsRNA featured in the disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the disclosure.


The terms “iRNA”, “RNAi agent,” “iRNA agent,” “RNA interference agent” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. RNA interference (RNAi) is a process that directs the sequence-specific degradation of mRNA. RNAi modulates, e.g., inhibits, the expression of ATXN2 in a cell, e.g., a cell within a subject, such as a mammalian subject.


In one embodiment, an RNAi agent of the disclosure includes a single stranded RNAi that interacts with a target RNA sequence, e.g., an ATXN2 target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory it is believed that long double stranded RNA introduced into cells is broken down into double-stranded short interfering RNAs (siRNAs) comprising a sense strand and an antisense strand by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15: 485). Dicer, a ribonuclease-III-like enzyme, processes these dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409: 363). These siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107: 309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15: 188). Thus, in one aspect the disclosure relates to a single stranded RNA (ssRNA) (the antisense strand of a siRNA duplex) generated within a cell and which promotes the formation of a RISC complex to effect silencing of the target gene, i.e., an ATXN2 gene. Accordingly, the term “siRNA” is also used herein to refer to an RNAi as described above.


In another embodiment, the RNAi agent may be a single-stranded RNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease, Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded RNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150: 883-894.


In another embodiment, a “RNAi agent” for use in the compositions and methods of the disclosure is a double stranded RNA and is referred to herein as a “double stranded RNAi agent,” “double stranded RNA (dsRNA) molecule,” “dsRNA agent,” or “dsRNA”. The term “dsRNA” refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary nucleic acid strands, referred to as having “sense” and “antisense” orientations with respect to a target RNA, i.e., an ATXN2 gene. In some embodiments of the disclosure, a double stranded RNA (dsRNA) triggers the degradation of a target RNA, e.g., an mRNA, through a post-transcriptional gene-silencing mechanism referred to herein as RNA interference or RNAi.


In general, a dsRNA molecule can include ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide, a modified nucleotide. In addition, as used in this specification, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides.


As used herein, the term “modified nucleotide” refers to a nucleotide having, independently, a modified sugar moiety, a modified internucleotide linkage, or a modified nucleobase. Thus, the term modified nucleotide encompasses substitutions, additions or removal of, e.g., a functional group or atom, to internucleoside linkages, sugar moieties, or nucleobases. The modifications suitable for use in the agents of the disclosure include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.


In certain embodiments of the instant disclosure, inclusion of a deoxy-nucleotide—which is acknowledged as a naturally occurring form of nucleotide—if present within an RNAi agent can be considered to constitute a modified nucleotide.


The duplex region may be of any length that permits specific degradation of a desired target RNA through a RISC pathway, and may range from about 9 to 36 base pairs in length, e.g., about 15-30 base pairs in length, for example, about 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 base pairs in length, such as about 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the invention.


The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” A hairpin loop can comprise at least one unpaired nucleotide. In some embodiments, the hairpin loop can comprise at at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides or nucleotides not directed to the target site of the dsRNA. In some embodiments, the hairpin loop can be 10 or fewer nucleotides. In some embodiments, the hairpin loop can be 8 or fewer unpaired nucleotides. In some embodiments, the hairpin loop can be 4-10 unpaired nucleotides. In some embodiments, the hairpin loop can be 4-8 nucleotides.


In certain embodiments, the two strands of double-stranded oligomeric compound can be linked together. The two strands can be linked to each other at both ends, or at one end only. By linking at one end is meant that 5′-end of first strand is linked to the 3′-end of the second strand or 3′-end of first strand is linked to 5′-end of the second strand. When the two strands are linked to each other at both ends, 5′-end of first strand is linked to 3′-end of second strand and 3′-end of first strand is linked to 5′-end of second strand. The two strands can be linked together by an oligonucleotide linker including, but not limited to, (N)n; wherein N is independently a modified or unmodified nucleotide and n is 3-23. In some embodiments, n is 3-10, e.g., 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, the oligonucleotide linker is selected from the group consisting of GNRA, (G)4, (U)4, and (dT)4, wherein N is a modified or unmodified nucleotide and R is a modified or unmodified purine nucleotide. Some of the nucleotides in the linker can be involved in base-pair interactions with other nucleotides in the linker. The two strands can also be linked together by a non-nucleosidic linker, e.g. a linker described herein. It will be appreciated by one of skill in the art that any oligonucleotide chemical modifications or variations describe herein can be used in the oligonucleotide linker.


Hairpin and dumbbell type oligomeric compounds will have a duplex region equal to or at least 14, 15, 15, 16, 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region can be equal to or less than 200, 100, or 50, in length. In some embodiments, ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.


The hairpin oligomeric compounds can have a single strand overhang or terminal unpaired region, in some embodiments at the 3′, and in some embodiments on the antisense side of the hairpin. In some embodiments, the overhangs are 1-4, more generally 2-3 nucleotides in length. The hairpin oligomeric compounds that can induce RNA interference are also referred to as “shRNA” herein.


Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi may comprise one or more nucleotide overhangs.


In one embodiment, an RNAi agent of the disclosure is a dsRNA, each strand of which is 24-30 nucleotides in length, that interacts with a target RNA sequence, e.g., an ATXN2 target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15: 485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409: 363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107: 309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15: 188).


In one embodiment, an RNAi agent of the disclosure is a dsRNA agent, each strand of which comprises 19-23 nucleotides that interacts with an ATXN2 RNA sequence to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15: 485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409: 363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107: 309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15: 188). In one embodiment, an RNAi agent of the disclosure is a dsRNA of 24-30 nucleotides that interacts with an ATXN2 RNA sequence to direct the cleavage of the target RNA.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an RNAi agent, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment of the dsRNA, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand comprises a 3′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In other embodiments, at least one strand of the RNAi agent comprises a 5′ overhang of at least 1 nucleotide. In certain embodiments, at least one strand comprises a 5′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In still other embodiments, both the 3′ and the 5′ end of one strand of the RNAi agent comprise an overhang of at least 1 nucleotide.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., 0-3, 1-3, 2-4, 2-5, 4-10, 5-10, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end, the 5′-end, at both ends, or at neither end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end, the 5′-end, at both ends, or at neither end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the overhang on the sense strand or the antisense strand, or both, can include extended lengths longer than 10 nucleotides, e.g., 1-30 nucleotides, 2-30 nucleotides, 10-30 nucleotides, or 10-15 nucleotides in length. In certain embodiments, an extended overhang is on the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the sense strand of the duplex. In certain embodiments, an extended overhang is on the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the antisense strand of the duplex. In certain embodiments, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate. In certain embodiments, the overhang includes a self-complementary portion such that the overhang is capable of forming a hairpin structure that is stable under physiological conditions.


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double stranded over its entire length.


The term “antisense strand” or “guide strand” refers to the strand of an RNAi agent, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence, e.g., an ATXN2 mRNA.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, e.g., an ATXN2 nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- or 3′-terminus of the RNAi agent.


In some embodiments, a double stranded RNA agent of the disclosure includes a nucleotide mismatch in the antisense strand.


In some embodiments, the antisense strand of the double stranded RNA agent of the disclosure includes no more than 4 mismatches with the target mRNA, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the target mRNA. In some embodiments, the antisense strand double stranded RNA agent of the disclosure includes no more than 4 mismatches with the sense strand, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the sense strand. In some embodiments, a double stranded RNA agent of the disclosure includes a nucleotide mismatch in the sense strand. In some embodiments, the sense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the antisense strand, e.g., the sense strand includes 4, 3, 2, 1, or 0 mismatches with the antisense strand. In some embodiments, the nucleotide mismatch is, for example, within 5, 4, 3 nucleotides from the 3′-end of the iRNA. In another embodiment, the nucleotide mismatch is, for example, in the 3′-terminal nucleotide of the iRNA agent. In some embodiments, the mismatch(s) is not in the seed region.


Thus, an RNAi agent as described herein can contain one or more mismatches to the target sequence. In one embodiment, an RNAi agent as described herein contains no more than 3 mismatches (i.e., 3, 2, 1, or 0 mismatches). In one embodiment, an RNAi agent as described herein contains no more than 2 mismatches. In one embodiment, an RNAi agent as described herein contains no more than 1 mismatch. In one embodiment, an RNAi agent as described herein contains 0 mismatches. In certain embodiments, if the antisense strand of the RNAi agent contains mismatches to the target sequence, the mismatch can optionally be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, in such embodiments, for a 23 nucleotide RNAi agent, the strand which is complementary to a region of an ATXN2 gene, generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an RNAi agent containing a mismatch to a target sequence is effective in inhibiting the expression of an ATXN2 gene. Consideration of the efficacy of RNAi agents with mismatches in inhibiting expression of an ATXN2 gene is important, especially if the particular region of complementarity in an ATXN2 gene is known to have polymorphic sequence variation within the population.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an RNAi agent that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


As used herein, “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or 1 unmodified nucleotides.


As used herein, the term “cleavage region” refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions can include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing (see, e.g., “Molecular Cloning: A Laboratory Manual, Sambrook, et al. (1989) Cold Spring Harbor Laboratory Press). Other conditions, such as physiologically relevant conditions as can be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an RNAi agent, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they can form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, can also include, or be formed entirely from, non-Watson-Crick base pairs or base pairs formed from non-natural and modified nucleotides, in so far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein can be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an RNAi agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding ATXN2). For example, a polynucleotide is complementary to at least a part of an ATXN2 mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding ATXN2.


Accordingly, in some embodiments, the antisense strand polynucleotides disclosed herein are fully complementary to the target ATXN2 sequence.


In certain embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target ATXN2 sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 1, 3, 5, or 7 for ATXN2, or a fragment of SEQ ID NOs: 1, 3, 5, or 7, such as about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target ATXN2 sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 9 or 10, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 9 or 10, such as about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target ATXN2 sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 2, 4, 6, or 8, or a fragment of any one of SEQ ID NOs: 2, 4, 6, or 8, such as about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In some embodiments, an iRNA of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target ATXN2 sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 2, 3, 5, 6, 9 or 10, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 9 or 10, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary


In some embodiments, the double-stranded region of a double-stranded iRNA agent is equal to or at least, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30 or more nucleotide pairs in length.


In some embodiments, the antisense strand of a double-stranded iRNA agent is equal to or at least 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In some embodiments, the sense strand of a double-stranded iRNA agent is equal to or at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each 15 to 30 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each 19 to 25 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each 21 to 23 nucleotides in length.


In one embodiment, the sense strand of the iRNA agent is 21-nucleotides in length, and the antisense strand is 23-nucleotides in length, wherein the strands form a double-stranded region of 21 consecutive base pairs having a 2-nucleotide long single stranded overhangs at the 3′-end.


In some embodiments, the majority of nucleotides of each strand are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide or a modified nucleotide. In addition, an “iRNA” may include ribonucleotides with chemical modifications. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in an iRNA molecule, are encompassed by “iRNA” for the purposes of this specification and claims.


In one aspect of the disclosure, an agent for use in the methods and compositions of the disclosure is a single-stranded antisense nucleic acid molecule that inhibits a target mRNA via an antisense inhibition mechanism. The single-stranded antisense RNA molecule is complementary to a sequence within the target mRNA. The single-stranded antisense oligonucleotides can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. et al., (2002)Mol Cancer Ther 1: 347-355. The single-stranded antisense RNA molecule may be about 15 to about 30 nucleotides in length and have a sequence that is complementary to a target sequence. For example, the single-stranded antisense RNA molecule may comprise a sequence that is at least about 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from any one of the antisense sequences described herein.


In one embodiment, at least partial suppression of the expression of an ATXN2 gene, is assessed by a reduction of the amount of ATXN2 mRNA which can be isolated from or detected in a first cell or group of cells in which an ATXN2 gene is transcribed and which has or have been treated such that the expression of an ATXN2 gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition may be expressed in terms of:









(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)



•100

%




The phrase “contacting a cell with an RNAi agent,” such as a dsRNA, as used herein, includes contacting a cell by any possible means. Contacting a cell with an RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or alternatively, the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell.


Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., the central nervous system (CNS), optionally via intrathecal, intravitreal or other injection, or to the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the RNAi agent may contain or be coupled to a ligand, e.g., a lipophilic moiety or moieties as described below and further detailed, e.g., in PCT/US2019/031170, which is incorporated herein by reference, that directs or otherwise stabilizes the RNAi agent at a site of interest, e.g., the CNS. In some embodiments, the RNAi agent may contain or be coupled to a ligand, e.g., one or more GalNAc derivatives as described below, that directs or otherwise stabilizes the RNAi agent at a site of interest, e.g., the liver. In other embodiments, the RNAi agent may contain or be coupled to a lipophilic moiety or moieties and one or more GalNAc derivatives. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


In one embodiment, contacting a cell with an RNAi agent includes “introducing” or “delivering the RNAi agent into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an RNAi agent can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. Introducing an RNAi agent into a cell may be in vitro or in vivo. For example, for in vivo introduction, an RNAi agent can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or are known in the art.


The term “lipophile” or “lipophilic moiety” broadly refers to any compound or chemical moiety having an affinity for lipids. One way to characterize the lipophilicity of the lipophilic moiety is by the octanol-water partition coefficient, logKow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf Comput. Sci. 41: 1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its logKow exceeds 0. Typically, the lipophilic moiety possesses a logKow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the logKow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the logKow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a lipophilic moiety can increase or decrease the partition coefficient (e.g., logKow) value of the lipophilic moiety.


Alternatively, the hydrophobicity of the double-stranded RNAi agent, conjugated to one or more lipophilic moieties, can be measured by its protein binding characteristics. For instance, in certain embodiments, the unbound fraction in the plasma protein binding assay of the double-stranded RNAi agent could be determined to positively correlate to the relative hydrophobicity of the double-stranded RNAi agent, which could then positively correlate to the silencing activity of the double-stranded RNAi agent.


In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. An exemplary protocol of this binding assay is illustrated in detail in, e.g., PCT/US2019/031170. The hydrophobicity of the double-stranded RNAi agent, measured by fraction of unbound siRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


Accordingly, conjugating the lipophilic moieties to the internal position(s) of the double-stranded RNAi agent provides optimal hydrophobicity for the enhanced in vivo delivery of siRNA.


The term “lipid nanoparticle” or “LNP” refers to a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., an RNAi agent or a plasmid from which an RNAi agent is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, a “subject” is an animal, such as a mammal, including a primate (such as a human, a non-human primate, e.g., a monkey, and a chimpanzee), or a non-primate (such as a a rat, or a mouse). In a preferred embodiment, the subject is a human, such as a human being treated or assessed for a disease, disorder, or condition that would benefit from reduction in ATXN2 expression; a human at risk for a disease, disorder, or condition that would benefit from reduction in ATXN2 expression; a human having a disease, disorder, or condition that would benefit from reduction in ATXN2 expression; or human being treated for a disease, disorder, or condition that would benefit from reduction in ATXN2 expression as described herein.


As used herein, the terms “treating” or “treatment” refer to a beneficial or desired result including, but not limited to, alleviation or amelioration of one or more signs or symptoms associated with ATXN2 gene expression or ATXN2 protein production, e.g., ATXN2-associated neurodegenerative disease, e.g., spinocerebellar ataxias (SCAs, e.g., SCA2), Amyotrophic Lateral Sclerosis (ALS), and frontotemporal dementia (FTD), decreased expression or activity of ATXN2 in regions of increased neuronal dysfunction or death, in subjects having such neurodegenerative diseases. “Treatment” can also mean prolonging survival as compared to expected survival in the absence of treatment.


The term “lower” in the context of the level of ATXN2 in a subject or a disease marker or symptom refers to a statistically significant decrease in such level. The decrease can be, for example, at least 10%, 15%, 20%, 25%, 30%, %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In certain embodiments, a decrease is at least 20%. In certain embodiments, the decrease is at least 50% in a disease marker, e.g., protein or gene expression level. “Lower” in the context of the level of ATXN2 in a subject is optionally down to a level accepted as within the range of normal for an individual without such disorder. In certain embodiments, “lower” is the decrease in the difference between the level of a marker or symptom for a subject suffering from a disease and a level accepted within the range of normal for an individual, e.g., the level of decrease in ataxia between an individual having SCA and an individual not having SCA or having symptoms that are within the range of normal.


As used herein, “prevention” or “preventing,” when used in reference to a disease or disorder, that would benefit from a reduction in expression of an ATXN2 gene or production of ATXN2 protein, e.g., in a subject susceptible to an ATXN2-associated disorder due to, e.g., genetic factors or age, wherein the subject does not yet meet the diagnostic criteria for the ATXN2-associated disorder. As used herein, prevention can be understood as administration of an agent to a subject who does not yet meet the diagnostic criteria for the ATXN2-associated disorder to delay or reduce the likelihood that the subject will develop the ATXN2-associated disorder. As the agent is a pharmaceutical agent, it is understood that administration typically would be under the direction of a health care professional capable of identifying a subject who does not yet meet the diagnostic criteria for an ATXN2-associated disorder as being susceptible to developing an ATXN2-associated disorder. Diagnosic criteria for SCAs and ALS, and risk factors for these disorders are provided herein, and include identification of expansions of polyQ in ATXN2, among others. The likelihood of developing, e.g., SCA or ALS, is reduced, for example, when an individual having one or more risk factors for a SCA or for ALS either fails to develop SCA or ALS or develops SCA or ALS with less severity relative to a population having the same risk factors and not receiving treatment as described herein. The failure to develop an ATXN2-associated disorder, e.g., SCA or ALS, or a delay in the time to develop SCA or ALS by months or years is considered effective prevention. Prevention may require administration of more than one dose if the iRNA agent. Provided with appropriate methods to identify subjects at risk to develop any of the ATXN2-associated diseases above, the iRNA agents provided herein can be used as pharmaceutical agents for or in methods of prevention of ATXN2-associated diseases. Risk factors for various ATXN2-associated diseases are discussed herein.


As used herein, the term “ATXN2-associated disease” or “ATXN2-associated disorder” is understood as SCA (e.g., SCA2), ALS or frontotemporal dementia (FTD), or in certain embodiments, only SCA2. The average onset of SCA2 is in the fourth decade of life, with up to a quarter of patients having onset from 10 to 25 years of age. Clinical features include, but are not limited to, progressive gait ataxia, dysarthria, dysmetria, tremor, abnormal eye movements (slow saccades and supranuclear ophthalmoplegia), and peripheral neuropathy. Signs further include pyramidal tract impairment, autonomic dysfunctions including, but not limited to, postural hypotension, gastrointestinal alterations, sexual dysfunction, and increased salivation, sweating, and lacrimation; and progression through the use of the cane, walker, and wheelchair. Intermediate expansions of polyQ in ATXN2 (29-33 repeats) are associated with amyotrophic lateral sclerosis (ALS).


As used herein, the term “Spinocerebellar ataxias (SCAs)” refer to diseases or disorders that are caused by, or associated with, a mutation in an SCA gene (e.g., SCA2 is associated with mutations in the ATXN2/SCA2 gene). Spinocerebellar ataxias (SCAs) describe a large group of neurodegenerative disorders that affect movement, with more than 40 autosomal dominant SCAs described. The disorders are characterized by progressive degeneration of the cerebellum and spinal motor neurons; however, both the affected brain regions and the clinical features of SCAs vary depending on the subtype. In all types, ataxia is the key feature, manifested by signs including dysfunction of motor coordination affecting gait, balance, and speech. Signs and symptoms further include, but are not limited to, initially predominantly cerebellar neuronal degeneration, followed by neuronal degeneration in the brainstem, pyramidal and extrapyramidal neurons, oculomotor system, lower motor neurons, and peripheral nerves. Oculomotor symptoms include progressive external ophthalmoplegia (weakness of the eye muscles) and diplopia (double vision), the pyramidal symptoms include spasticity, hyperreflexia, and weakness, extrapyramidal symptoms include dystonia (continuous spasms and muscle contractions), tremors, bradykinesia (slowness of movement) and other symptoms that may resemble Parkinson's disease. Specifically noted symptoms of SCA2 include ataxia (a loss of coordinated movements), parkinsonism, and dementia.


In one embodiment, an ATXN2-associated disease is “Amyotrphic Lateral Sclerosis” (“ALS”). Amyotrophic lateral sclerosis (ALS) is a progressive nervous system (neurological) disease that destroys nerve cells (particularly motor neurons in the spinal cord and brain) and causes disability. In ALS, motor neurons die (atrophy) over time, leading to muscle weakness, a loss of muscle mass, and an inability to control movement. Most cases of ALS are sporadic, while about 5-10% are inherited. People with sporadic ALS usually first develop features of the condition in their late fifties or early sixties. The earliest symptoms of ALS include muscle twitching, cramping, stiffness, or weakness. Affected individuals may develop slurred speech (dysarthria) and, later, difficulty chewing or swallowing (dysphagia). More generally, symptoms of ALS include, but are not limited to, fasciculations (muscle twitches) in the arm, leg, shoulder, or tongue; muscle cramps; tight and stiff muscles (spasticity); muscle weakness affecting an arm, a leg, neck, or diaphragm; slurred and nasal speech; difficulty chewing or swallowing. Progressive muscle weakness results in inability to stand or walk, get in or out of bed on their own, or use their hands and arms; and eventually results in respiratory system weakness and loss of the ability to breathe independently. Many people with ALS experience malnutrition because of reduced food intake due to dysphagia and an increase in their body's energy demands (metabolism) due to prolonged illness. Muscles become weaker as the disease progresses, and arms and legs begin to look thinner as muscle tissue atrophies. Affected individuals eventually become wheelchair-dependent and increasingly require help with personal care and other activities of daily living. Over time, muscle weakness causes affected individuals to lose the use of their hands and arms. Most people with ALS die from respiratory failure within 2 to 10 years after the signs and symptoms of ALS first appear; however, disease progression varies widely among affected individuals.


“Therapeutically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having an ATXN2-associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating, or maintaining the existing disease or one or more symptoms of disease). The “therapeutically effective amount” may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the subject to be treated.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having an ATXN2-associated disorder, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


A “therapeutically-effective amount” or “prophylactically effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. An RNAi agent employed in the methods of the present disclosure may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human subjects and animal subjects without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject being treated. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium state, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.


The term “sample,” as used herein, includes a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from the brain (e.g., whole brain or certain segments of brain, e.g., striatum, or certain types of cells in the brain, such as, e.g., neurons and glial cells (astrocytes, oligodendrocytes, microglial cells)). In other embodiments, a “sample derived from a subject” refers to liver tissue (or subcomponents thereof) derived from the subject. In some embodiments, a “sample derived from a subject” refers to blood drawn from the subject or plasma or serum derived therefrom. In further embodiments, a “sample derived from a subject” refers to brain tissue (or subcomponents thereof) or retinal tissue (or subcomponents thereof) derived from the subject.


It will be understood that, although the sequences in Tables 2, 5, 9 and 10 are described as modified or conjugated sequences, the RNA of the RNAi agent of the disclosure e.g., a dsRNA of the disclosure, may comprise any one of the sequences set forth in any one of Tables 2, 3, 5, 6, 9 or 10 that is un-modified, un-conjugated, or modified or conjugated differently than described therein. That is, the modified sequences provided in Tables 2, 3, 5, 6, 9 and 10 do not require the L96 ligand, or any ligand. Similarly, the exemplary modified sequences provided in Tables 9 and 10 do not require the exemplary C16 lipophilic ligand shown, or a lipophilic ligand in the position shown. A lipophilic ligand can be included in any of the positions provided in the instant application.





BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description, given by way of example, but not intended to limit the disclosure solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:



FIG. 1 shows a schematic image of modified RNAi agents tested for in vivo hsATXN2 knockdown activity, noting 2′-Fluoro (F), 2′-O-methyl (OMe), 2′-C16, GNA, GalNAc, vinyl phosphonate (VP) and phosphorothioate internucleotide linkages (PS), where present. Respective sense and antisense strand sequences of AD-1040560 (SEQ ID NOs: 1369 and 1426, respectively), AD-1044729 (SEQ ID NOs: 1386 and 1443, respectively), AD-1040736 (SEQ ID NOs: 1371 and 1428, respectively), AD-1041737 (SEQ ID NOs: 1374 and 1431, respectively), AD-1041739 (SEQ ID NOs: 1376 and 1433, respectively), AD-1040559 (SEQ ID NOs: 1368 and 1425, respectively), AD-1040735 (SEQ ID NOs: 1370 and 1427, respectively), AD-1041872 (SEQ ID NOs: 1377 and 1434, respectively), AD-1037453 (SEQ ID NOs: 1359 and 1416, respectively), AD-1039956 (SEQ ID NOs: 1366 and 1423, respectively), AD-1037307 (SEQ ID NOs: 1358 and 1415, respectively), AD-1044730 (SEQ ID NOs: 1387 and 1444, respectively), AD-1069814 (SEQ ID NOs: 1396 and 1453, respectively), AD-1040054 (SEQ ID NOs: 1367 and 1424, respectively), AD-365144 (SEQ ID NOs: 18 and 283, respectively), and AD-64228 (SEQ ID NOs: 6319 and 6321, respectively) are shown.



FIGS. 2A and 2B show in vivo knockdown of Gaussia luciferase (gLuc) in mice AAV-transduced with a human ATXN2 (hATXN2)-IRES (internal ribosome entry site)-gLuc construct. gLuc in such mice is a secreted luciferase, separated by IRES from hATXN2 on the AAV construct, which therefore serves a quantitative reporter of human ATXN2 specifically in such mice. FIG. 2A shows that between two and four duplexes (AD-1044729.1 and AD-1044730.1, and possibly also AD-1040560.1 and AD-1041737.1) in addition to AD-365144.1 were newly identified as knocking down gLuc (and therefore human ATXN2) by at least 40% in livers of AAV-transduced mice (AAV administered at day 0 by intravenous (IV) injection) at day 14 (D14) post-subcutaneous siRNA injection (at 5 mg/kg). FIG. 2B shows quantitative PCR (qPCR) results in the same mice, which assessed aggregate ATXN2 levels (both endogenous mouse ATXN2 and transfected human ATXN2) in such siRNA-treated mice, as compared to PBS-treated, naïve and AD-64228.41-treated controls.



FIGS. 3A and 3B show results of in vivo evaluation of the pharamacodynamics (PD) of siRNA-mediated knockdown of endogenous mouse ATXN2. FIG. 3A demonstrates that RT-qPCR evaluation of endogenous mouse ATXN2 (mATXN2) revealed significant variability in certain siRNA-treated groups. FIG. 3B shows the same results as FIG. 3A, except with two “up-regulated groups” removed, which allows for improved discernment of results for siRNAs in which ATXN2-targeting siRNAs were consistently effective ATXN2 inhibitory agents.





The present invention is further illustrated by the following detailed description.


DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides RNAi compositions, which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of an ATXN2 gene. The ATXN2 gene may be within a cell, e.g., a cell within a subject, such as a human. The present disclosure also provides methods of using the RNAi compositions of the disclosure for inhibiting the expression of an ATXN2 gene or for treating a subject having a disorder that would benefit from inhibiting or reducing the expression of an ATXN2 gene, e.g., an ATXN2-associated disease, e.g., a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).


The RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 30 nucleotides or less in length, e.g., 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of an ATXN2 gene. In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 21-23 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of an ATXN2 gene.


In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) which can include longer lengths, for example up to 66 nucleotides, e.g., 36-66, 26-36, 25-36, 31-60, 22-43, 27-53 nucleotides in length with a region of at least 19 contiguous nucleotides that is substantially complementary to at least a part of an mRNA transcript of an ATXN2 gene. These RNAi agents with the longer length antisense strands optionally include a second RNA strand (the sense strand) of 20-60 nucleotides in length wherein the sense and antisense strands form a duplex of 18-30 contiguous nucleotides.


The use of these RNAi agents enables the targeted degradation of mRNAs of an ATXN2 gene in mammals. Thus, methods and compositions including these RNAi agents are useful for treating a subject who would benefit by a reduction in the levels or activity of an ATXN2 protein, such as a subject having an ATXN2-associated neurodegenerative disease, e.g. a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).


The following detailed description discloses how to make and use compositions containing RNAi agents to inhibit the expression of an ATXN2 gene, as well as compositions and methods for treating subjects having diseases and disorders that would benefit from inhibition or reduction of the expression of the genes.


I. RNAi Agents of the Disclosure

Described herein are RNAi agents which inhibit the expression of an ATXN2 gene. In one embodiment, the RNAi agent includes double stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of an ATXN2 gene in a cell, such as a cell within a subject, e.g., a mammal, such as a human having an ATXN2-associated neurodegenerative disease, e.g., a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS). The dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of an ATXN2 gene. In embodiments, the region of complementarity is about 15-30 nucleotides or less in length. Upon contact with a cell expressing the ATXN2 gene, the RNAi agent inhibits the expression of the ATXN2 gene (e.g., a human gene, a primate gene, a non-primate gene) by at least 50% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by immunofluorescence analysis, using, for example, western blotting or flowcytometric techniques.


A dsRNA includes two RNA strands that are complementary and hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of an ATXN2 gene. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


Generally, the duplex structure is 15 to 30 base pairs in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain preferred embodiments, the duplex structure is 18 to 25 base pairs in length, e.g., 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-25, 20-24,20-23, 20-22, 20-21, 21-25, 21-24, 21-23, 21-22, 22-25, 22-24, 22-23, 23-25, 23-24 or 24-25 base pairs in length, for example, 19-21 basepairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Similarly, the region of complementarity to the target sequence is 15 to 30 nucleotides in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, for example 19-23 nucleotides in length or 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


In some embodiments, the dsRNA is 15 to 23 nucleotides in length, or 24 to 30 nucleotides in length (optionally, 25 to 30 nucleotides in length). In general, the dsRNA can be long enough to serve as a substrate for the Dicer enzyme. For example, it is well known in the art that dsRNAs longer than about 21-23 nucleotides can serve as substrates for Dicer. As the ordinarily skilled person will also recognize, the region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to allow it to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway).


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of about 15 to 36 base pairs, e.g., 15-36, 15-35, 15-34, 15-33, 15-32, 15-31, 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs, for example, 19-21 base pairs. Thus, in one embodiment, to the extent that it becomes processed to a functional duplex, of e.g., 15-30 base pairs, that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in one embodiment, a miRNA is a dsRNA. In another embodiment, a dsRNA is not a naturally occurring miRNA. In another embodiment, an RNAi agent useful to target ATXN2 expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein can further include one or more single-stranded nucleotide overhangs e.g., 1, 2, 3, or 4 nucleotides. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA. In certain embodiments, longer, extended overhangs are possible.


A dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc.


iRNA compounds of the disclosure may be prepared using a two-step procedure. First, the individual strands of the double stranded RNA molecule are prepared separately. Then, the component strands are annealed. The individual strands of the siRNA compound can be prepared using solution-phase or solid-phase organic synthesis or both. Organic synthesis offers the advantage that the oligonucleotide strands comprising unnatural or modified nucleotides can be easily prepared. Single-stranded oligonucleotides of the disclosure can be prepared using solution-phase or solid-phase organic synthesis or both.


An siRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include: organic synthesis and RNA cleavage, e.g., in vitro cleavage.


An siRNA can be made by separately synthesizing a single stranded RNA molecule, or each respective strand of a double-stranded RNA molecule, after which the component strands can then be annealed.


A large bioreactor, e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given siRNA. The OligoPilotII reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide. To make an RNA strand, ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the siRNA. Typically, the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection.


Organic synthesis can be used to produce a discrete siRNA species. The complementary of the species to an ATXN2 gene can be precisely specified. For example, the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism. Further the location of the polymorphism can be precisely defined. In some embodiments, the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.


In one embodiment, RNA generated is carefully purified to remove ends. iRNA is cleaved in vitro into siRNAs, for example, using a Dicer or comparable RNAse III-based activity. For example, the dsiRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g., a purified RNAse or RISC (RNA-induced silencing complex). See, e.g., Ketting et al. Genes Dev 2001 Oct. 15; 15(20): 2654-9 and Hammond Science 2001 Aug. 10; 293(5532): 1146-50.


dsiRNA cleavage generally produces a plurality of siRNA species, each being a particular 21 to 23 nt fragment of a source dsiRNA molecule. For example, siRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsiRNA molecule may be present.


Regardless of the method of synthesis, the siRNA preparation can be prepared in a solution (e.g., an aqueous or organic solution) that is appropriate for formulation. For example, the siRNA preparation can be precipitated and redissolved in pure double-distilled water, and lyophilized. The dried siRNA can then be resuspended in a solution appropriate for the intended formulation process.


In one aspect, a dsRNA of the disclosure includes at least two nucleotide sequences, a sense sequence and an antisense sequence. The sense strand sequence for ATXN2 may be selected from the group of sequences provided in any one of Tables 2, 3, 5, 6, 9 or 10, and the corresponding nucleotide sequence of the antisense strand of the sense strand may be selected from the group of sequences of any one of Tables 2, 3, 5, 6, 9 or 10. In this aspect, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated in the expression of an ATXN2 gene. As such, in this aspect, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand (passenger strand) in any one of Tables 2, 3, 5, 6, 9 or 10, and the second oligonucleotide is described as the corresponding antisense strand (guide strand) of the sense strand in any one of Tables 2, 3, 5, 6, 9 or 10 for ATXN2.


In one embodiment, the substantially complementary sequences of the dsRNA are contained on separate oligonucleotides. In another embodiment, the substantially complementary sequences of the dsRNA are contained on a single oligonucleotide.


It will be understood that, although the sequences provided herein are described as modified or conjugated sequences, the RNA of the RNAi agent of the disclosure e.g., a dsRNA of the disclosure, may comprise any one of the sequences set forth in any one of Tables 2, 3, 5, 6, 9 or 10 that is un-modified, un-conjugated, or modified or conjugated differently than described therein. One or more lipophilic ligands or one or more GalNAc ligands can be included in any of the positions of the RNAi agents provided in the instant application.


The skilled person is well aware that dsRNAs having a duplex structure of about 20 to 23 base pairs, e.g., 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., (2001) EMBO J., 20: 6877-6888). However, others have found that shorter or longer RNA duplex structures can also be effective (Chu and Rana (2007) RNA 14: 1714-1719; Kim et al. (2005) Nat Biotech 23: 222-226). In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided herein, dsRNAs described herein can include at least one strand of a length of minimally 21 nucleotides. It can be reasonably expected that shorter duplexes minus only a few nucleotides on one or both ends can be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides derived from one of the sequences provided herein, and differing in their ability to inhibit the expression of an ATXN2 gene by not more than 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence using the in vitro assay with Be(2)-C cells and a 10 nM concentration of the RNA agent and the PCR assay as provided in the examples herein, are contemplated to be within the scope of the present disclosure.


One benchmark assay for inhibition of ATXN2 involves contacting human Be(2)-C cells with a dsRNA agent as disclosed herein, where sufficient or effective ATXN2 inhibition is identified if at least 5% reduction, at least 10% reduction, at least 15% reduction, at least 20% reduction, at least 25% reduction, at least 30% reduction, at least 35% reduction, at least 40% reduction, at least 45% reduction, at least 50% reduction, at least 55% reduction, at least 60% reduction, at least 65% reduction, at least 70% reduction, at least 75% reduction, at least 80% reduction, at least 85% reduction, at least 90% reduction, at least 95% reduction, at least 97% reduction, at least 98% reduction, at least 99% reduction, or more of ATXN2 transcript or protein is observed in contacted cells, as compared to an appropriate control (e.g., cells not contacted with ATXN2-targeting dsRNA). Optionally, a dsRNA agent of the disclosure is administered at 10 nM concentration, and the PCR assay is performed as provided in the examples herein (e.g., Example 2 below).


In addition, the RNAs described herein identify a site(s) in an ATXN2 transcript that is susceptible to RISC-mediated cleavage. As such, the present disclosure further features RNAi agents that target within this site(s). As used herein, an RNAi agent is said to target within a particular site of an RNA transcript if the RNAi agent promotes cleavage of the transcript anywhere within that particular site. Such an RNAi agent will generally include at least about 15 contiguous nucleotides, optionally at least 19 nucleotides, from one of the sequences provided herein coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in an ATXN2 gene.


An RNAi agent as described herein can contain one or more mismatches to the target sequence. In one embodiment, an RNAi agent as described herein contains no more than 3 mismatches (i.e., 3, 2, 1, or 0 mismatches). In one embodiment, an RNAi agent as described herein contains no more than 2 mismatches. In one embodiment, an RNAi agent as described herein contains no more than 1 mismatch. In one embodiment, an RNAi agent as described herein contains 0 mismatches. In certain embodiments, if the antisense strand of the RNAi agent contains mismatches to the target sequence, the mismatch can optionally be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, in such embodiments, for a 23 nucleotide RNAi agent, the strand which is complementary to a region of an ATXN2 gene generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an RNAi agent containing a mismatch to a target sequence is effective in inhibiting the expression of an ATXN2 gene. Consideration of the efficacy of RNAi agents with mismatches in inhibiting expression of an ATXN2 gene is important, especially if the particular region of complementarity in an ATXN2 gene is known to have polymorphic sequence variation within the population.


II. Modified RNAi Agents of the Disclosure

In one embodiment, the RNA of the RNAi agent of the disclosure e.g., a dsRNA, is un-modified, and does not comprise, e.g., chemical modifications or conjugations known in the art and described herein. In preferred embodiments, the RNA of an RNAi agent of the disclosure, e.g., a dsRNA, is chemically modified to enhance stability or other beneficial characteristics. In certain embodiments of the disclosure, substantially all of the nucleotides of an RNAi agent of the disclosure are modified. In other embodiments of the disclosure, all of the nucleotides of an RNAi agent of the disclosure are modified. RNAi agents of the disclosure in which “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or 1 unmodified nucleotides. In still other embodiments of the disclosure, RNAi agents of the disclosure can include not more than 5, 4, 3, 2 or 1 modified nucleotides.


The nucleic acids featured in the disclosure can be synthesized or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, NY, USA, which is hereby incorporated herein by reference. Modifications include, for example, end modifications, e.g., 5′-end modifications (phosphorylation, conjugation, inverted linkages) or 3′-end modifications (conjugation, DNA nucleotides, inverted linkages, etc.); base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases; sugar modifications (e.g., at the 2′-position or 4′-position) or replacement of the sugar; or backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNAi agents useful in the embodiments described herein include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In some embodiments, a modified RNAi agent will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′-linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, e.g., sodium salts, mixed salts and free acid forms are also included.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, the entire contents of each of which are hereby incorporated herein by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, the entire contents of each of which are hereby incorporated herein by reference.


In other embodiments, suitable RNA mimetics are contemplated for use in RNAi agents, in which both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, the entire contents of each of which are hereby incorporated herein by reference. Additional PNA compounds suitable for use in the RNAi agents of the disclosure are described in, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the disclosure include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2—[known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2—and —N(CH3)—CH2—CH2—[wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified RNAs can also contain one or more substituted sugar moieties. The RNAi agents, e.g., dsRNAs, featured herein can include one of the following at the 2′-position: OH; F; O—, S—, or N-alkyl; O—, S—, or N-alkenyl; O—, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include 0[(CH2)nO]mCH3, O(CH2nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an RNAi agent, or a group for improving the pharmacodynamic properties of an RNAi agent, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78: 486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)20N(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2. Further exemplary modifications include: 5′-Me-2′-F nucleotides, 5′-Me-2′-OMe nucleotides, 5′-Me-2′-deoxynucleotides, (both R and S isomers in these three families); 2′-alkoxyalkyl; and 2′-NMA (N-methylacetamide).


Other modifications include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-O-hexadecyl, and 2′-fluoro (2′-F). Similar modifications can also be made at other positions on the RNA of an RNAi agent, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. RNAi agents can also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application. The entire contents of each of the foregoing are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., (1991) Angewandte Chemie, International Edition, 30: 613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 5,750,692; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, the entire contents of each of which are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also be modified to include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1): 439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3): 833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12): 3185-3193).


An RNAi agent of the disclosure can also be modified to include one or more bicyclic sugar moities. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some embodiments an agent of the disclosure may include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. In other words, an LNA is a nucleotide comprising a bicyclic sugar moiety comprising a 4′-CH2-O-2′ bridge. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1): 439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3): 833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12): 3185-3193). Examples of bicyclic nucleosides for use in the polynucleotides of the disclosure include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, the antisense polynucleotide agents of the disclosure include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)-O-2′ (LNA); 4′-(CH2)S-2′; 4′-(CH2)2-O-2′ (ENA); 4′-CH(CH3) 0-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3) 0-2′ (and analogs thereof, see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3) 0-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2 —N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2-O—N(CH3)-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2-N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2-C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2-C(═CH2)-2′ (and analogs thereof, see, e.g., U.S. Pat. No. 8,278,426). The entire contents of each of the foregoing are hereby incorporated herein by reference.


Additional representative US Patents and US Patent Publications that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 6,998,484; 7,053,207; 7,034,133; 7,084,125; 7,399,845; 7,427,672; 7,569,686; 7,741,457; 8,022,193; 8,030,467; 8,278,425; 8,278,426; 8,278,283; US 2008/0039618; and US 2009/0012281, the entire contents of each of which are hereby incorporated herein by reference.


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and j-D-ribofuranose (see WO 99/14226).


An RNAi agent of the disclosure can also be modified to include one or more constrained ethyl nucleotides. As used herein, a “constrained ethyl nucleotide” or “cEt” is a locked nucleic acid comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)-O-2′ bridge. In one embodiment, a constrained ethyl nucleotide is in the S conformation referred to herein as “S-cEt.”


An RNAi agent of the disclosure may also include one or more “conformationally restricted nucleotides” (“CRN”). CRN are nucleotide analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3′ and C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US 2013/0190383; and WO 2013/036868, the entire contents of each of which are hereby incorporated herein by reference.


In some embodiments, an RNAi agent of the disclosure comprises one or more monomers that are UNA (unlocked nucleic acid) nucleotides. UNA is unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039 hereby incorporated by reference).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in WO 2011/005861.


Other modifications of an RNAi agent of the disclosure include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic on the antisense strand of an RNAi agent. Suitable phosphate mimics are disclosed in, for example US 2012/0157511, the entire contents of which are incorporated herein by reference.


A. Modified RNAi agents Comprising Motifs of the Disclosure

In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in WO 2013/075035, the entire contents of which are incorporated herein by reference. As shown herein and in WO 2013/075035, a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally conjugated with a lipophilic ligand, e.g., a C16 ligand, for instance on the sense strand. The RNAi agent may be optionally modified with a (S)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand. The resulting RNAi agents present superior gene silencing activity.


Accordingly, the disclosure provides double stranded RNAi agents capable of inhibiting the expression of a target gene (i.e., an ATXN2 gene) in vivo. The RNAi agent comprises a sense strand and an antisense strand. Each strand of the RNAi agent may be 15-30 nucleotides in length. For example, each strand may be 16-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-23 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length. In certain embodiments, each strand is 19-23 nucleotides in length.


The sense strand and antisense strand typically form a duplex double stranded RNA (“dsRNA”), also referred to herein as an “RNAi agent.” The duplex region of an RNAi agent may be 15-30 nucleotide pairs in length. For example, the duplex region can be 16-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17-23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 nucleotides in length. In preferred embodiments, the duplex region is 19-21 nucleotide pairs in length.


In one embodiment, the RNAi agent may contain one or more overhang regions or capping groups at the 3′-end, 5′-end, or both ends of one or both strands. The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 1-4 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. In preferred embodiments, the nucleotide overhang region is 2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence. The first and second strands can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.


In one embodiment, the nucleotides in the overhang region of the RNAi agent can each independently be a modified or unmodified nucleotide including, but no limited to 2′-sugar modified, such as, 2′-F, 2′-O-methyl, thymidine (T), and any combinations thereof.


For example, TT can be an overhang sequence for either end on either strand. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence.


The 5′- or 3′- overhangs at the sense strand, antisense strand or both strands of the RNAi agent may be phosphorylated. In some embodiments, the overhang region(s) contains two nucleotides having a phosphorothioate between the two nucleotides, where the two nucleotides can be the same or different. In one embodiment, the overhang is present at the 3′-end of the sense strand, antisense strand, or both strands. In one embodiment, this 3′-overhang is present in the antisense strand. In one embodiment, this 3′-overhang is present in the sense strand.


The RNAi agent may contain only a single overhang, which can strengthen the interference activity of the RNAi, without affecting its overall stability. For example, the single-stranded overhang may be located at the 3′-terminal end of the sense strand or, alternatively, at the 3′-terminal end of the antisense strand. The RNAi may also have a blunt end, located at the 5′-end of the antisense strand (or the 3′-end of the sense strand) or vice versa. Generally, the antisense strand of the RNAi has a nucleotide overhang at the 3′-end, and the 5′-end is blunt. While not wishing to be bound by theory, the asymmetric blunt end at the 5′-end of the antisense strand and 3′-end overhang of the antisense strand favor the guide strand loading into RISC process.


In one embodiment, the RNAi agent is a double ended bluntmer of 19 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 7, 8, 9 from the 5′ end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′ end.


In another embodiment, the RNAi agent is a double ended bluntmer of 20 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 8, 9, 10 from the 5′ end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′ end.


In yet another embodiment, the RNAi agent is a double ended bluntmer of 21 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′ end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′ end.


In one embodiment, the RNAi agent comprises a 21 nucleotide sense strand and a 23 nucleotide antisense strand, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′ end; the antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′ end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nucleotide overhang. Optionally, the 2 nucleotide overhang is at the 3′-end of the antisense strand. When the 2 nucleotide overhang is at the 3′-end of the antisense strand, there may be two phosphorothioate internucleotide linkages between the terminal three nucleotides, wherein two of the three nucleotides are the overhang nucleotides, and the third nucleotide is a paired nucleotide next to the overhang nucleotide. In one embodiment, the RNAi agent additionally has two phosphorothioate internucleotide linkages between the terminal three nucleotides at both the 5′-end of the sense strand and at the 5′-end of the antisense strand. In one embodiment, every nucleotide in the sense strand and the antisense strand of the RNAi agent, including the nucleotides that are part of the motifs are modified nucleotides. In one embodiment each residue is independently modified with a 2′-O-methyl or 3′-fluoro, e.g., in an alternating motif. Optionally, the RNAi agent further comprises a ligand (e.g., a lipophilic ligand, optionally a C16 ligand).


In one embodiment, the RNAi agent comprises a sense and an antisense strand, wherein the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1) positions 1 to 23 of the first strand comprise at least 8 ribonucleotides; the antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, comprises at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3′terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3′ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when the double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.


In one embodiment, the RNAi agent comprises sense and antisense strands, wherein the RNAi agent comprises a first strand having a length which is at least 25 and at most 29 nucleotides and a second strand having a length which is at most 30 nucleotides with at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at position 11, 12, 13 from the 5′ end; wherein the 3′ end of the first strand and the 5′ end of the second strand form a blunt end and the second strand is 1-4 nucleotides longer at its 3′ end than the first strand, wherein the duplex region which is at least 25 nucleotides in length, and the second strand is sufficiently complementary to a target mRNA along at least 19 nucleotide of the second strand length to reduce target gene expression when the RNAi agent is introduced into a mammalian cell, and wherein dicer cleavage of the RNAi agent preferentially results in an siRNA comprising the 3′ end of the second strand, thereby reducing expression of the target gene in the mammal. Optionally, the RNAi agent further comprises a ligand.


In one embodiment, the sense strand of the RNAi agent contains at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at the cleavage site in the sense strand.


In one embodiment, the antisense strand of the RNAi agent can also contain at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at or near the cleavage site in the antisense strand.


For an RNAi agent having a duplex region of 17-23 nucleotide in length, the cleavage site of the antisense strand is typically around the 10, 11 and 12 positions from the 5′-end. Thus the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11, 12 positions; 11, 12, 13 positions; 12, 13, 14 positions; or 13, 14, 15 positions of the antisense strand, the count starting from the 1st nucleotide from the 5′-end of the antisense strand, or, the count starting from the 1st paired nucleotide within the duplex region from the 5′- end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex region of the RNAi from the 5′-end.


The sense strand of the RNAi agent may contain at least one motif of three identical modifications on three consecutive nucleotides at the cleavage site of the strand; and the antisense strand may have at least one motif of three identical modifications on three consecutive nucleotides at or near the cleavage site of the strand. When the sense strand and the antisense strand form a dsRNA duplex, the sense strand and the antisense strand can be so aligned that one motif of the three nucleotides on the sense strand and one motif of the three nucleotides on the antisense strand have at least one nucleotide overlap, i.e., at least one of the three nucleotides of the motif in the sense strand forms a base pair with at least one of the three nucleotides of the motif in the antisense strand. Alternatively, at least two nucleotides may overlap, or all three nucleotides may overlap.


In one embodiment, the sense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides. The first motif may occur at or near the cleavage site of the strand and the other motifs may be a wing modification. The term “wing modification” herein refers to a motif occurring at another portion of the strand that is separated from the motif at or near the cleavage site of the same strand. The wing modification is either adjacent to the first motif or is separated by at least one or more nucleotides. When the motifs are immediately adjacent to each other, the chemistry of the motifs are distinct from each other; and when the motifs are separated by one or more nucleotide, the chemistries can be the same or different. Two or more wing modifications may be present. For instance, when two wing modifications are present, each wing modification may occur at one end relative to the first motif which is at or near cleavage site or on either side of the lead motif.


Like the sense strand, the antisense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides, with at least one of the motifs occurring at or near the cleavage site of the strand. This antisense strand may also contain one or more wing modifications in an alignment similar to the wing modifications that may be present on the sense strand.


In one embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two terminal nucleotides at the 3′-end, 5′-end or both ends of the strand.


In another embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two paired nucleotides within the duplex region at the 3′-end, 5′-end or both ends of the strand.


When the sense strand and the antisense strand of the RNAi agent each contain at least one wing modification, the wing modifications may fall on the same end of the duplex region, and have an overlap of one, two or three nucleotides.


When the sense strand and the antisense strand of the RNAi agent each contain at least two wing modifications, the sense strand and the antisense strand can be so aligned that two modifications each from one strand fall on one end of the duplex region, having an overlap of one, two or three nucleotides; two modifications each from one strand fall on the other end of the duplex region, having an overlap of one, two or three nucleotides; two modifications one strand fall on each side of the lead motif, having an overlap of one, two, or three nucleotides in the duplex region.


In one embodiment, the RNAi agent comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch may occur in the overhang region or the duplex region. The base pair may be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C (I=inosine) is preferred over G:C. Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In one embodiment, the RNAi agent comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′- end of the antisense strand independently selected from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In one embodiment, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′- end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′- end of the antisense strand is an AU base pair.


In another embodiment, the nucleotide at the 3′-end of the sense strand is deoxy-thymine (dT). In another embodiment, the nucleotide at the 3′-end of the antisense strand is deoxy-thymine (dT). In one embodiment, there is a short sequence of deoxy-thymine nucleotides, for example, two dT nucleotides on the 3′-end of the sense or antisense strand.


In one embodiment, the sense strand sequence may be represented by formula (I):











(I)



5′ np-Na-(X X X )i-Nb-Y Y Y-Nb-(Z Z Z )j-Na-nq 3′








    • wherein:

    • i and j are each independently 0 or 1;

    • p and q are each independently 0-6;

    • each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;

    • each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;

    • each np and nq independently represent an overhang nucleotide;

    • wherein Nb and Y do not have the same modification; and

    • XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. Optionally YYY is all 2′-F modified nucleotides.





In one embodiment, the Na or Nb comprise modifications of alternating pattern.


In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12 or 11, 12, 13) of—the sense strand, the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′- end.


In one embodiment, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:











(Ib)



5′ np-Na-YYY-Nb-ZZZ-Na-nq 3′;







(Ic)



5′ np-Na-XXX-Nb-YYY-Na-nq 3′;



or







(Id)



5′ np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3′.






When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides.


Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Optionally, Nb is 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:











(Ia)



5′ np-Na-YYY-Na-nq 3′.






When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In one embodiment, the antisense strand sequence of the RNAi may be represented by formula (II):









(II)


5′ nq′-Na′-(Z′Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)l-N′a-





np′ 3′








    • wherein:

    • k and 1 are each independently 0 or 1;

    • p‘ and q’ are each independently 0-6;


      each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides; each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


      each np′ and nq′independently represent an overhang nucleotide;


      wherein Nb‘ and Y’ do not have the same modification;


      and


      X′X′X′, Y′Y′Y′ and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


      In one embodiment, the Na‘ or Nb’ comprise modifications of alternating pattern.





The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23nucleotidein length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′- end. Optionally, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In one embodiment, Y′Y′Y′ motif is all 2′-OMe modified nucleotides.


In one embodiment, k is 1 and 1 is 0, or k is 0 and 1 is 1, or both k and 1 are 1.


The antisense strand can therefore be represented by the following formulas:









(IIb)


5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np′





(IIc)


5′ nq′-Na′-Y′Y′Y′-Nb′-X′X′X′-np′ 3′;


or





(IId)


5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Nb′-X′X′X′-Na′-np′ 3′.






When the antisense strand is represented by formula (IIb), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IIc), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Optionally, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and 1 is 0 and the antisense strand may be represented by the formula:











(Ia)



5′ np′-Na′-Y′Y′Y′-Na′-nq′ 3′.






When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′- end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In one embodiment the antisense strand may contain Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′- end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with an antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, the RNAi agents for use in the methods of the disclosure may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)t-Na′-





nq′ 5′








    • wherein:

    • i, j, k, and 1 are each independently 0 or 1;

    • p, p′, q, and q′ are each independently 0-6;

    • each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;

    • wherein

    • each np′, np, nq′, and nq, each of which may or may not be present, independently represents an overhang nucleotide; and

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.





In one embodiment, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In another embodiment, k is 0 and 1 is 0; or k is 1 and 1 is 0; k is 0 and 1 is 1; or both k and 1 are 0; or both k and 1 are 1.


Exemplary combinations of the sense strand and antisense strand forming an RNAi duplex include the formulas below:









(IIIa)


5′ np-Na-Y Y Y-Na-nq 3′


3′ np′-Na′-Y′Y′Y′-Na′nq 5′





(IIIb)


5′ np-Na-Y Y Y-Nb-ZZZ-Na-nq 3′


3′ np′-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′nq′ 5′





(IIIc)


5′ np-Na-X X X-Nb-Y Y Y-Na-nq 3′


3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Na′-nq′ 5′





(IIId)


5′ np-Na-XXX-Nb-Y Y Y-Nb-ZZZ-Na-nq 3′


3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na-nq′ 5′






When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nb′ independently comprises modifications of alternating pattern.


In one embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In yet another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more C16 (or related) moieties attached through a bivalent or trivalent branched linker (described below). In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties, optionally attached through a bivalent or trivalent branched linker.


In one embodiment, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties attached through a bivalent or trivalent branched linker.


In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


Various publications describe multimeric RNAi agents that can be used in the methods of the disclosure. Such publications include WO2007/091269, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520; and U.S. Pat. No. 7,858,769, the entire contents of each of which are hereby incorporated herein by reference.


In certain embodiments, the compositions and methods of the disclosure include a vinyl phosphonate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a vinyl phosphonate of the disclosure has the following structure:




embedded image


A vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain preferred embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure is:




embedded image


B. Thermally Destabilizing Modifications

In certain embodiments, a dsRNA molecule can be optimized for RNA interference by incorporating thermally destabilizing modifications in the seed region of the antisense strand (i.e., at positions 2-9 of the 5′-end of the antisense strand) to reduce or inhibit off-target gene silencing. It has been discovered that dsRNAs with an antisense strand comprising at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions, counting from the 5′ end, of the antisense strand have reduced off-target gene silencing activity. Accordingly, in some embodiments, the antisense strand comprises at least one (e.g., one, two, three, four, five or more) thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region of the antisense strand. In some embodiments, one or more thermally destabilizing modification(s) of the duplex is/are located in positions 2-9, or optionally positions 4-8, from the 5′-end of the antisense strand. In some further embodiments, the thermally destabilizing modification(s) of the duplex is/are located at position 6, 7 or 8 from the 5′-end of the antisense strand. In still some further embodiments, the thermally destabilizing modification of the duplex is located at position 7 from the 5′-end of the antisense strand. The term “thermally destabilizing modification(s)” includes modification(s) that would result with a dsRNA with a lower overall melting temperature (Tm) (optionally a Tm with one, two, three or four degrees lower than the Tm of the dsRNA without having such modification(s). In some embodiments, the thermally destabilizing modification of the duplex is located at position 2, 3, 4, 5 or 9 from the 5′-end of the antisense strand.


The thermally destabilizing modifications can include, but are not limited to, abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycol nucleic acid (GNA).


Exemplified abasic modifications include, but are not limited to the following:




embedded image


Wherein R═H, Me, Et or OMe; R′ ═H, Me, Et or OMe; R″═H, Me, Et or OMe



embedded image


wherein B is a modified or unmodified nucleobase.


Exemplified sugar modifications include, but are not limited to the following:




embedded image


wherein B is a modified or unmodified nucleobase.


In some embodiments the thermally destabilizing modification of the duplex is selected from the group consisting of:




embedded image


wherein B is a modified or unmodified nucleobase and the asterisk on each structure represents either R, S or racemic.


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-04′, or C1′-04′) is absent or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′ or 04′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar).


The term “UNA” refers to unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomers with bonds between C1′-C4′ being removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar is removed (see Mikhailov et. al., Tetrahedron Letters, 26 (17): 2059 (1985); and Fluiter et al., Mol. Biosyst., 10: 1039 (2009), which are hereby incorporated by reference in their entirety). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification of the duplex can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch base pairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present disclosure. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the dsRNA molecule contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes nucleotides with impaired W—C H-bonding to complementary base on the target mRNA, such as:




embedded image


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


In some embodiments, the thermally destabilizing modification of the duplex includes nucleotides with non-canonical bases such as, but not limited to, nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand. These nucleobase modifications have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes one or more α-nucleotide complementary to the base on the target mRNA, such as:




embedded image


wherein R is H, OH, OCH3, F, NH2, NHMe, NMe2 or O-alkyl.


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


The alkyl for the R group can be a C1-C6alkyl. Specific alkyls for the R group include, but are not limited to methyl, ethyl, propyl, isopropyl, butyl, pentyl and hexyl.


As the skilled artisan will recognize, in view of the functional role of nucleobases is defining specificity of an RNAi agent of the disclosure, while nucleobase modifications can be performed in the various manners as described herein, e.g., to introduce destabilizing modifications into an RNAi agent of the disclosure, e.g., for purpose of enhancing on-target effect relative to off-target effect, the range of modifications available and, in general, present upon RNAi agents of the disclosure tends to be much greater for non-nucleobase modifications, e.g., modifications to sugar groups or phosphate backbones of polyribonucleotides. Such modifications are described in greater detail in other sections of the instant disclosure and are expressly contemplated for RNAi agents of the disclosure, either possessing native nucleobases or modified nucleobases as described above or elsewhere herein.


In addition to the antisense strand comprising a thermally destabilizing modification, the dsRNA can also comprise one or more stabilizing modifications. For example, the dsRNA can comprise at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, the stabilizing modifications all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two stabilizing modifications. The stabilizing modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the stabilizing modification can occur on every nucleotide on the sense strand or antisense strand; each stabilizing modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both stabilizing modification in an alternating pattern. The alternating pattern of the stabilizing modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the stabilizing modifications on the sense strand can have a shift relative to the alternating pattern of the stabilizing modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises stabilizing modifications at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one stabilizing modification adjacent to the destabilizing modification. For example, the stabilizing modification can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a stabilizing modification at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two stabilizing modifications at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the sense strand can be present at any positions. In some embodiments, the sense strand comprises stabilizing modifications at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises stabilizing modifications at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four stabilizing modifications.


In some embodiments, the sense strand does not comprise a stabilizing modification in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


Exemplary thermally stabilizing modifications include, but are not limited to, 2′-fluoro modifications. Other thermally stabilizing modifications include, but are not limited to, LNA.


In some embodiments, the dsRNA of the disclosure comprises at least four (e.g., four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, the 2′-fluoro nucleotides all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two 2′-fluoro nucleotides. The 2′-fluoro modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the 2′-fluoro modification can occur on every nucleotide on the sense strand or antisense strand; each 2′-fluoro modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both 2′-fluoro modifications in an alternating pattern. The alternating pattern of the 2′-fluoro modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the 2′-fluoro modifications on the sense strand can have a shift relative to the alternating pattern of the 2′-fluoro modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one 2′-fluoro nucleotide adjacent to the destabilizing modification. For example, the 2′-fluoro nucleotide can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a 2′-fluoro nucleotide at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two 2′-fluoro nucleotides at the 3′-end of the destabilizing modification, i.e., at positions+1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the sense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three or four 2′-fluoro nucleotides.


In some embodiments, the sense strand does not comprise a 2′-fluoro nucleotide in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide occurs in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), wherein one end of the dsRNA is blunt, while the other end is comprises a 2 nt overhang, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a blunt end at 5′-end of the antisense strand. Optionally, the 2 nt overhang is at the 3′-end of the antisense.


In some embodiments, the dsRNA molecule of the disclosure comprising a sense and antisense strands, wherein: the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1), positions 1 to 23 of said sense strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3′terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3′ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when said double stranded nucleic acid is introduced into a mammalian cell; and wherein the antisense strand contains at least one thermally destabilizing nucleotide, where at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand). For example, the thermally destabilizing nucleotide occurs between positions opposite or complimentary to positions 14-17 of the 5′-end of the sense strand, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a duplex region of 12-30 nucleotide pairs in length.


In some embodiments, the dsRNA molecule of the disclosure comprises a sense and antisense strands, wherein said dsRNA molecule comprises a sense strand having a length which is at least 25 and at most 29 nucleotides and an antisense strand having a length which is at most 30 nucleotides with the sense strand comprises a modified nucleotide that is susceptible to enzymatic degradation at position 11 from the 5′ end, wherein the 3′ end of said sense strand and the 5′ end of said antisense strand form a blunt end and said antisense strand is 1-4 nucleotides longer at its 3′ end than the sense strand, wherein the duplex region which is at least 25 nucleotides in length, and said antisense strand is sufficiently complementary to a target mRNA along at least 19 nt of said antisense strand length to reduce target gene expression when said dsRNA molecule is introduced into a mammalian cell, and wherein dicer cleavage of said dsRNA preferentially results in an siRNA comprising said 3′ end of said antisense strand, thereby reducing expression of the target gene in the mammal, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA has a duplex region of 12-29 nucleotide pairs in length.


In some embodiments, every nucleotide in the sense strand and antisense strand of the dsRNA molecule may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases, the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3′ or 5′ terminal position, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5′ end or ends can be phosphorylated.


It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5′ or 3′ overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3′ or 5′ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2′ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, 2′-deoxy-2′-fluoro (2′-F) or 2′-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.


In some embodiments, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, or 2′-fluoro. The strands can contain more than one modification. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. It is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2′-deoxy, 2′-O-methyl or 2′-fluoro modifications, acyclic nucleotides or others. In some embodiments, the sense strand and antisense strand each comprises two differently modified nucleotides selected from 2′-O-methyl or 2′-deoxy. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl nucleotide, 2′-deoxy nucleotide, 2′-deoxy-2′-fluoro nucleotide, 2′-O—N-methylacetamido (2′-O-NMA) nucleotide, a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE) nucleotide, 2′-O-aminopropyl (2′-O-AP) nucleotide, or 2′-ara-F nucleotide. Again, it is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises modifications of an alternating pattern, particular in the B1, B2, B3, B1′, B2′, B3′, B4′ regions. The term “alternating motif” or “alternative pattern” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc.


The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In some embodiments, the dsRNA molecule of the disclosure comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with “ABABAB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BABABA” from 3′-5′ of the strand within the duplex region. As another example, the alternating motif in the sense strand may start with “AABBAABB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BBAABBAA” from 3′-5′ of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.


The dsRNA molecule of the disclosure may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In some embodiments, the dsRNA molecule comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region comprises two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. Optionally, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand of the dsRNA molecule comprises 1-10 blocks of two to ten phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said sense strand is paired with an antisense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of three phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of four phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of five phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of six phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of seven phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, or 8 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of eight phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, or 6 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of nine phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, or 4 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s) of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage at one end or both ends of the sense or antisense strand.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the internal region of the duplex of each of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate methylphosphonate internucleotide linkage at position 8-16 of the duplex region counting from the 5′-end of the sense strand; the dsRNA molecule can optionally further comprise one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s).


In some embodiments, the dsRNA molecule of the disclosure further comprises one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 1-5 and one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 18-23 of the sense strand (counting from the 5′-end), and one to five phosphorothioate or methylphosphonate internucleotide linkage modification at positions 1 and 2 and one to five within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate or methylphosphonate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate or methylphosphonate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 (counting from the 5′-end) of the sense strand, and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 (counting from the 5′-end) of the sense strand, and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 20 and 21 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 21 and 22 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 21 and 22 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 22 and 23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 23 and 23 the antisense strand (counting from the 5′-end).


In some embodiments, compound of the disclosure comprises a pattern of backbone chiral centers. In some embodiments, a common pattern of backbone chiral centers comprises at least 5 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 6 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 7 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 8 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 9 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 16 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 17 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 18 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 19 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages which are not chiral (as a non-limiting example, a phosphodiester). In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration, and no more than 8 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration, and no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration, and no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration, and no more than 4 internucleotidic linkages which are not chiral. In some embodiments, the internucleotidic linkages in the Sp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages in the Rp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages which are not chiral are optionally contiguous or not contiguous.


In some embodiments, compound of the disclosure comprises a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks. In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, compound of the disclosure comprises a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units. In some embodiments, a 5′-block comprises 5 or more nucleoside units. In some embodiments, a 5′-block comprises 6 or more nucleoside units. In some embodiments, a 5′-block comprises 7 or more nucleoside units. In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units. In some embodiments, a 3′-block comprises 5 or more nucleoside units. In some embodiments, a 3′-block comprises 6 or more nucleoside units. In some embodiments, a 3′-block comprises 7 or more nucleoside units.


In some embodiments, compound of the disclosure comprises a type of nucleoside in a region or an oligonucleotide is followed by a specific type of internucleotidic linkage, e.g., natural phosphate linkage, modified internucleotidic linkage, Rp chiral internucleotidic linkage, Sp chiral internucleotidic linkage, etc. In some embodiments, A is followed by Sp. In some embodiments, A is followed by Rp. In some embodiments, A is followed by natural phosphate linkage (PO). In some embodiments, U is followed by Sp. In some embodiments, U is followed by Rp. In some embodiments, U is followed by natural phosphate linkage (PO). In some embodiments, C is followed by Sp. In some embodiments, C is followed by Rp. In some embodiments, C is followed by natural phosphate linkage (PO). In some embodiments, G is followed by Sp. In some embodiments, G is followed by Rp. In some embodiments, G is followed by natural phosphate linkage (PO). In some embodiments, C and U are followed by Sp. In some embodiments, C and U are followed by Rp. In some embodiments, C and U are followed by natural phosphate linkage (PO). In some embodiments, A and G are followed by Sp. In some embodiments, A and G are followed by Rp.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (vii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In some embodiments, the dsRNA molecule of the disclosure comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′- end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In some embodiments, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′- end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′- end of the antisense strand is an AU base pair.


It was found that introducing 4′-modified or 5′-modified nucleotide to the 3′-end of a phosphodiester (PO), phosphorothioate (PS), or phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide can exert steric effect to the internucleotide linkage and, hence, protecting or stabilizing it against nucleases.


In some embodiments, 5′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 5′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 5′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 4′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 4′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer. Alternatively, a 4′-O-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The 4′-O-alkyl of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 5′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 4′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-O-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, the dsRNA molecule of the disclosure can comprise 2′-5′ linkages (with 2′-H, 2′-OH and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In another embodiment, the dsRNA molecule of the disclosure can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugars modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


Various publications describe multimeric siRNA which can all be used with the dsRNA of the disclosure. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520 which are hereby incorporated by their entirely.


As described in more detail below, the RNAi agent that contains conjugations of one or more carbohydrate moieties to an RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (optionally cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.


The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” optionally two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.


The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be a cyclic group or an acyclic group. Optionally, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and decalin. Optionally, the acyclic group is selected from serinol backbone and diethanolamine backbone.


In certain specific embodiments, the RNAi agent for use in the methods of the disclosure is an agent selected from the group of agents listed in any one of Tables 2, 3, 5, 6, 9 or 10. These agents may further comprise a ligand, such as one or more lipophilic moieties, one or more GalNAc derivatives, or both of one of more lipophilic moieties and one or more GalNAc derivatives.


III. iRNAs Conjugated to Ligands

Another modification of the RNA of an iRNA of the disclosure involves chemically linking to the iRNA one or more ligands, moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the iRNA, e.g., into a cell. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4: 1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660: 306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3: 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20: 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10: 1111-1118; Kabanov et al., FEBS Lett., 1990, 259: 327-330; Svinarchuk et al., Biochimie, 1993, 75: 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18: 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14: 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264: 229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277: 923-937).


In certain embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an α helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic. In certain embodiments, the ligand is a multivalent galactose, e.g., an N-acetyl-galactosamine.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, 03-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present disclosure as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated iRNAs of the disclosure may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present disclosure may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems® (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present disclosure, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present disclosure are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


A. Lipid Conjugates

In certain embodiments, the ligand or conjugate is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, naproxen or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid-based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In certain embodiments, the lipid-based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In certain embodiments, the lipid-based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid-based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).


B. Cell Permeation Agents

In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In certain embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp, or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO: 9). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO: 10)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO: 11)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 12)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354: 82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the disclosure may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidiomimemtics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Preferred conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62: 5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8: 783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing αvβ3 (Haubner et al., Jour. Nucl. Med., 42: 326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31: 2717-2724, 2003).


C. Carbohydrate Conjugates

In some embodiments of the compositions and methods of the disclosure, an iRNA further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and tri-saccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In certain embodiments, a carbohydrate conjugate comprises a monosaccharide.


In certain embodiments, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates, which comprise one or more N-acetylgalactosamine (GalNAc) derivatives, are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein. In some embodiments the GalNAc conjugate is conjugated to the 5′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 5′ end of the sense strand) via a linker, e.g., a linker as described herein.


In certain embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a bivalent linker. In yet other embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a trivalent linker. In other embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a tetravalent linker.


In certain embodiments, the double stranded RNAi agents of the disclosure comprise one GalNAc or GalNAc derivative attached to the iRNA agent. In certain embodiments, the double stranded RNAi agents of the disclosure comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the disclosure are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, for example, when the two strands of an iRNA agent of the disclosure are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the disclosure is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


wherein Y is O or S and n is 3-6 (Formula XXIV);




embedded image


wherein Y is O or S and n is 3-6 (Formula XXV);




embedded image


wherein X is O or S (Formula XXVII);




embedded image


embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the disclosure is a monosaccharide. In certain embodiments, the monosaccharide is an N-acetylgalactosamine, such as




embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image




    • when one of X or Y is an oligonucleotide, the other is a hydrogen.





In some embodiments, a suitable ligand is a ligand disclosed in WO 2019/055633, the entire contents of which are incorporated herein by reference. In one embodiment the ligand comprises the structure below:




embedded image


In certain embodiments, the RNAi agents of the disclosure may include GalNAc ligands, even if such GalNAc ligands are currently projected to be of limited value for the preferred intrathecal/CNS delivery route(s) of the instant disclosure.


In certain embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a bivalent linker. In yet other embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a trivalent linker. In other embodiments of the disclosure, the GalNAc or GalNAc derivative is attached to an iRNA agent of the disclosure via a tetravalent linker.


In certain embodiments, the double stranded RNAi agents of the disclosure comprise one GalNAc or GalNAc derivative attached to the iRNA agent, e.g., the 5′end of the sense strand of a dsRNA agent, or the 5′ end of one or both sense strands of a dual targeting RNAi agent as described herein. In certain embodiments, the double stranded RNAi agents of the disclosure comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the disclosure are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator or a cell permeation peptide.


Additional carbohydrate conjugates and linkers suitable for use in the present disclosure include those described in WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


D. Linkers

In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In certain embodiments, the linker is of a length of about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


i. Redox Cleavable Linking Groups

In certain embodiments, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


ii. Phosphate-Based Cleavable Linking Groups

In certain embodiments, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)-0, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


iii. Acid Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


iv. Ester-Based Cleavable Linking Groups

In certain embodiments, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


v. Peptide-Based Cleavable Linking Groups

In yet another embodiment, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide-based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


In some embodiments, an iRNA of the disclosure is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the disclosure include, but are not limited to,




embedded image


embedded image


embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In certain embodiments of the compositions and methods of the disclosure, a ligand is one or more “GalNAc” (N-acetylgalactosamine) derivatives attached through a bivalent or trivalent branched linker.


In certain embodiments, a dsRNA of the disclosure is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XLV)-(XLVI):




embedded image




    • wherein:

    • q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;

    • P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;

    • Q2A, Q2B, Q3A Q3B Q4A, Q4B, Q5A Q5B Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);

    • R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,







embedded image


or heterocyclyl;

    • L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XLIX):




embedded image




    • wherein L5A L5B and L5C represent a monosaccharide, such as GalNAc derivative.





Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


Representative U.S. Patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928; 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; and 8,106,022, the entire contents of each of which are hereby incorporated herein by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications can be incorporated in a single compound or even at a single nucleoside within an iRNA. The present disclosure also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds or “chimeras,” in the context of this disclosure, are iRNA compounds, optionally dsRNA agents, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, or increased binding affinity for the target nucleic acid. An additional region of the iRNA can serve as a substrate for enzymes capable of cleaving RNA: DNA or RNA: RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1): 54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86: 6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4: 1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660: 306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3: 2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20: 533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10: 111; Kabanov et al., FEBS Lett., 1990, 259: 327; Svinarchuk et al., Biochimie, 1993, 75: 49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651; Shea et al., Nucl. Acids Res., 1990, 18: 3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14: 969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264: 229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277: 923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of RNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction can be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


IV. In Vivo Testing of ATXN2 Knockdown

Mouse models of ATXN2-associated neurodegenerative disease have been generated and can further be used to demonstrate the in vivo efficacy of the RNAi agents provided herein. Such models may contain constitutive or inducible expression, e.g., overexpression, of, for example, human ATXN2, in some instances comprising a pathogenic mutation (e.g., a polyQ expansion). In one such model, transgenic mice expressing the human spinocerebellar ataxia 2 (SCA2, ATXN2, olivopontocerebellar ataxia 2, autosomal dominant, ataxin 2) gene under the direction of the mouse PcP2 promoter were constructed (Huynh et al. Nat Genet 26: 44-50). To establish PcP2-SCA2 (ATXN2) transgenic mice, a transgenic construct containing a full length SCA2 cDNA (with a 58 CAG repeat) as well as the mouse PcP2 (Purkinje cell protein 2) promoter, untranslated and poly(A) sequences, was injected into B6D2F1 pronuclei. Founder animals were then obtained and crossed with B6D2F1 mice. Homozygous B6D2-Tg(PcP2-SCA2)11Plt/J mice were found to be viable and fertile. ATXN2 transcripts and protein product were detected in the cerebellum. Immunohistochemical analysis demonstrated that the ATXN2 protein product was localized to the cytoplasm. Progressive functional deficits were evident in the ATXN2 transgenic mice as early as eight weeks of age, as measured by hind leg clasping and stride length. Also noted was a dramatic loss of Purkinje cell arbor, followed by a progressive decrease in Purkinje cell number. By 24-27 weeks, the number of Purkinje cells was reduced by approximately 50%. The mice were therefore established as a relevant model of spinocerebellar ataxia 2 (SCA2) disease.


V. Delivery of an RNAi Agent of the Disclosure

The delivery of an RNAi agent of the disclosure to a cell e.g., a cell within a subject, such as a human subject (e.g., a subject in need thereof, such as a subject having an ATXN2-associated disorder, e.g., a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS), can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with an RNAi agent of the disclosure either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising an RNAi agent, e.g., a dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors that encode and direct the expression of the RNAi agent. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with an RNAi agent of the disclosure (see e.g., Akhtar S. and Julian RL., (1992) Trends Cell. Biol. 2(5): 139-144 and WO94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider for delivering an RNAi agent include, for example, biological stability of the delivered agent, prevention of non-specific effects, and accumulation of the delivered agent in the target tissue. The non-specific effects of an RNAi agent can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the RNAi agent to be administered. Several studies have shown successful knockdown of gene products when an RNAi agent is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J. et al., (2004) Retina 24: 132-138) and subretinal injections in mice (Reich, S J. et al. (2003) Mol. Vis. 9: 210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J. et al. (2005)Mol. Ther. 11: 267-274) and can prolong survival of tumor-bearing mice (Kim, W J. et al., (2006) Mol. Ther. 14: 343-350; Li, S. et al., (2007) Mol. Ther. 15: 515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G. et al., (2004) Nucleic Acids 32: e49; Tan, P H. et al. (2005) Gene Ther. 12: 59-66; Makimura, H. et al. (2002) BMC Neurosci. 3: 18; Shishkina, G T., et al. (2004) Neuroscience 129: 521-528; Thakker, E R., et al. (2004)Proc. Natl. Acad. Sci. U.S.A. 101: 17270-17275; Akaneya, Y., et al. (2005) J. Neurophysiol. 93: 594-602) and to the lungs by intranasal administration (Howard, K A. et al., (2006) Mol. Ther. 14: 476-484; Zhang, X. et al., (2004) J. Biol. Chem. 279: 10677-10684; Bitko, V. et al., (2005) Nat. Med. 11: 50-55). For administering an RNAi agent systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo. Modification of the RNA or the pharmaceutical carrier can also permit targeting of the RNAi agent to the target tissue and avoid undesirable off-target effects (e.g., without wishing to be bound by theory, use of GNAs as described herein has been identified to destabilize the seed region of a dsRNA, resulting in enhanced preference of such dsRNAs for on-target effectiveness, relative to off-target effects, as such off-target effects are significantly weakened by such seed region destabilization). RNAi agents can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an RNAi agent directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J. et al., (2004) Nature 432: 173-178). Conjugation of an RNAi agent to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O. et al., (2006) Nat. Biotechnol. 24: 1005-1015). In an alternative embodiment, the RNAi agent can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of molecule RNAi agent (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an RNAi agent by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an RNAi agent, or induced to form a vesicle or micelle (see e.g., Kim SH. et al., (2008) Journal of Controlled Release 129(2): 107-116) that encases an RNAi agent. The formation of vesicles or micelles further prevents degradation of the RNAi agent when administered systemically. Methods for making and administering cationic-RNAi agent complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mol. Biol 327: 761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9: 1291-1300; Arnold, A S et al. (2007) J. Hypertens. 25: 197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of RNAi agents include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S. et al., (2006) Nature 441: 111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12: 321-328; Pal, A. et al., (2005) Int J. Oncol. 26: 1087-1091), polyethyleneimine (Bonnet ME. et al., (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3: 472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35: 61-67; Yoo, H. et al., (1999) Pharm. Res. 16: 1799-1804). In some embodiments, an RNAi agent forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of RNAi agents and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety.


Certain aspects of the instant disclosure relate to a method of reducing the expression of an ATXN2 target gene in a cell, comprising contacting said cell with the double-stranded RNAi agent of the disclosure. In one embodiment, the cell is a hepatic cell, optionally a hepatocyte. In one embodiment, the cell is an extrahepatic cell, optionally a CNS cell.


Another aspect of the disclosure relates to a method of reducing the expression of an ATXN2 target gene in a subject, comprising administering to the subject the double-stranded RNAi agent of the disclosure.


Another aspect of the disclosure relates to a method of treating a subject having an ATXN2-associated disorder, comprising administering to the subject a therapeutically effective amount of the double-stranded RNAi agent of the disclosure, thereby treating the subject. Exemplary CNS disorders that can be treated by the method of the disclosure include spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), and Amyotrophic Lateral Sclerosis (ALS).


In one embodiment, the double-stranded RNAi agent is administered subcutaneously.


In one embodiment, the double-stranded RNAi agent is administered intrathecally. By intrathecal administration of the double-stranded RNAi agent, the method can reduce the expression of an ATXN2 target gene in a brain (e.g., striatum) or spine tissue, for instance, cortex, cerebellum, cervical spine, lumbar spine, and thoracic spine.


For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to modified siRNA compounds. It may be understood, however, that these formulations, compositions and methods can be practiced with other siRNA compounds, e.g., unmodified siRNA compounds, and such practice is within the disclosure. A composition that includes an RNAi agent can be delivered to a subject by a variety of routes. Exemplary routes include: intrathecal, intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, and ocular.


The RNAi agents of the disclosure can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of RNAi agent and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral, or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.


The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the RNAi agent in aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the RNAi agent and mechanically introducing the RNA.


Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.


Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening or flavoring agents can be added.


Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives.


Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes may be controlled to render the preparation isotonic.


In one embodiment, the administration of the siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, composition is parenteral, e.g., intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral, or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.


Intrathecal Administration

In one embodiment, the double-stranded RNAi agent is delivered by intrathecal injection (i.e., injection into the spinal fluid which bathes the brain and spinal cord tissue). Intrathecal injection of RNAi agents into the spinal fluid can be performed as a bolus injection or via minipumps which can be implanted beneath the skin, providing a regular and constant delivery of siRNA into the spinal fluid. The circulation of the spinal fluid from the choroid plexus, where it is produced, down around the spinal cord and dorsal root ganglia and subsequently up past the cerebellum and over the cortex to the arachnoid granulations, where the fluid can exit the CNS, that, depending upon size, stability, and solubility of the compounds injected, molecules delivered intrathecally could hit targets throughout the entire CNS.


In some embodiments, the intrathecal administration is via a pump. The pump may be a surgically implanted osmotic pump. In one embodiment, the osmotic pump is implanted into the subarachnoid space of the spinal canal to facilitate intrathecal administration.


In some embodiments, the intrathecal administration is via an intrathecal delivery system for a pharmaceutical including a reservoir containing a volume of the pharmaceutical agent, and a pump configured to deliver a portion of the pharmaceutical agent contained in the reservoir. More details about this intrathecal delivery system may be found in WO 2015/116658, which is incorporated by reference in its entirety.


The amount of intrathecally injected RNAi agents may vary from one target gene to another target gene and the appropriate amount that has to be applied may have to be determined individually for each target gene. Typically, this amount ranges from 10 μg to 2 mg, optionally 50 g to 1500 μg, more optionally 100 μg to 1000 μg.


Vector-Encoded RNAi Agents of the Disclosure

RNAi agents targeting the ATXN2 gene can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12: 5-10; WO 00/22113, WO 00/22114, and U.S. Pat. No. 6,054,299). Expression is optionally sustained (months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., (1995) Proc. Natl. Acad. Sci. USA 92: 1292).


The individual strand or strands of an RNAi agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


RNAi agent expression vectors are generally DNA plasmids or viral vectors. Expression vectors compatible with eukaryotic cells, optionally those compatible with vertebrate cells, can be used to produce recombinant constructs for the expression of an RNAi agent as described herein. Delivery of RNAi agent expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus (AAV) vectors; (d) herpes simplex virus vectors; (e) SV 40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct can be incorporated into vectors capable of episomal replication, e.g. EPV and EBV vectors. Constructs for the recombinant expression of an RNAi agent will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the RNAi agent in target cells. Other aspects to consider for vectors and constructs are known in the art.


VI. Pharmaceutical Compositions of the Invention

The present disclosure also includes pharmaceutical compositions and formulations which include the RNAi agents of the disclosure. In one embodiment, provided herein are pharmaceutical compositions containing an RNAi agent, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical compositions containing the RNAi agent are useful for treating a disease or disorder associated with the expression or activity of ATXN2, e.g., an ATXN2-associated neurodegenerative disease, such as a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).


Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV), intramuscular (IM), or for subcutaneous (subQ) delivery. Another example is compositions that are formulated for direct delivery into the CNS, e.g., by intrathecal or intravitreal routes of injection, optionally by infusion into the brain (e.g., striatum), such as by continuous pump infusion.


In some embodiments, the pharmaceutical compositions of the disclosure are pyrogen free or non-pyrogenic.


The pharmaceutical compositions of the disclosure may be administered in dosages sufficient to inhibit expression of an ATXN2 gene. In general, a suitable dose of an RNAi agent of the disclosure will be in the range of about 0.001 to about 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of about 1 to 50 mg per kilogram body weight per day.


A repeat-dose regimen may include administration of a therapeutic amount of an RNAi agent on a regular basis, such as monthly to once every six months. In certain embodiments, the RNAi agent is administered about once per quarter (i.e., about once every three months) to about twice per year.


After an initial treatment regimen (e.g., loading dose), the treatments can be administered on a less frequent basis.


In other embodiments, a single dose of the pharmaceutical compositions can be long lasting, such that subsequent doses are administered at not more than 1, 2, 3, or 4 or more month intervals. In some embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per month. In other embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per quarter to twice per year.


The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.


Advances in mouse genetics have generated mouse models for the study of ATXN2-associated diseases that would benefit from reduction in the expression of ATXN2. Such models can be used for in vivo testing of RNAi agents, as well as for determining a therapeutically effective dose. Suitable mouse models are known in the art and include, for example, the mouse models described elsewhere herein.


The pharmaceutical compositions of the present disclosure can be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration can be topical (e.g., by a transdermal patch), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration.


The RNAi agents can be delivered in a manner to target a particular tissue, such as the liver, the CNS (e.g., neuronal, glial or vascular tissue of the brain), or both the liver and CNS.


Pharmaceutical compositions and formulations for topical administration can include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like can be necessary or desirable. Coated condoms, gloves and the like can also be useful. Suitable topical formulations include those in which the RNAi agents featured in the disclosure are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). RNAi agents featured in the disclosure can be encapsulated within liposomes or can form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi agents can be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-20 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


A. RNAi Agent Formulations Comprising Membranous Molecular Assemblies

An RNAi agent for use in the compositions and methods of the disclosure can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term “liposome” refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the RNAi agent composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the RNAi agent composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the RNAi agent are delivered into the cell where the RNAi agent can specifically bind to a target RNA and can mediate RNAi. In some cases, the liposomes are also specifically targeted, e.g., to direct the RNAi agent to particular cell types.


A liposome containing an RNAi agent can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The RNAi agent preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the RNAi agent and condense around the RNAi agent to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of RNAi agent.


If necessary, a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also be adjusted to favor condensation.


Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8: 7413-7417; U.S. Pat. Nos. 4,897,355; 5,171,678; Bangham et al., (1965) M Mol. Biol. 23: 238; Olson et al., (1979) Biochim. Biophys. Acta 557: 9; Szoka et al., (1978) Proc. Natl. Acad. Sci. 75: 4194; Mayhew et al., (1984) Biochim. Biophys. Acta 775: 169; Kim et al., (1983) Biochim. Biophys. Acta 728: 339; and Fukunaga et al., (1984) Endocrinol. 115: 757. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer et al., (1986) Biochim. Biophys. Acta 858: 161. Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew et al., (1984) Biochim. Biophys. Acta 775: 169. These methods are readily adapted to packaging RNAi agent preparations into liposomes.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged nucleic acid molecules to form a stable complex. The positively charged nucleic acid/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al. (1987) Biochem. Biophys. Res. Commun., 147: 980-985).


Liposomes, which are pH-sensitive or negatively charged, entrap nucleic acids rather than complex with them. Since both the nucleic acid and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid is entrapped within the aqueous interior of these liposomes. pH sensitive liposomes have been used to deliver nucleic acids encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al. (1992) Journal of Controlled Release, 19: 269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid or phosphatidylcholine or cholesterol.


Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. Nos. 5,283,185; 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, (1994) J. Biol. Chem. 269: 2550; Nabel, (1993) Proc. Natl. Acad. Sci. 90: 11307; Nabel, (1992) Human Gene Ther. 3: 649; Gershon, (1993) Biochem. 32: 7143; and Strauss, (1992) EMBO J. 11: 417.


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporine A into different layers of the skin (Hu et al., (1994) S.T.P. Pharma. Sci., 4(6): 466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., (1987) FEBS Letters, 223: 42; Wu et al., (1993) Cancer Research, 53: 3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., (1987), 507: 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., (1988), 85: 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver RNAi agents to macrophages.


Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated RNAi agents in their internal compartments from metabolism and degradation (Rosoff, in “Pharmaceutical Dosage Forms,” Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of RNAi agent (see, e.g., Felgner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8: 7413-7417, and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).


A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.


Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide (“DOGS”) (Transfectam™, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).


Another cationic lipid conjugate includes derivatization of the lipid with cholesterol (“DC-Chol”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., (1991) Biochim. Biophys. Res. Commun. 179: 280). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., (1991) Biochim. Biophys. Acta 1065: 8). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, California) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.


Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer RNAi agent into the skin. In some implementations, liposomes are used for delivering RNAi agent to epidermal cells and also to enhance the penetration of RNAi agent into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., (1992) Journal of Drug Targeting, vol. 2,405-410 and du Plessis et al., (1992) Antiviral Research, 18: 259-265; Mannino, R. J. and Fould-Fogerite, S., (1998) Biotechniques 6: 682-690; Itani, T. et al., (1987) Gene 56: 267-276; Nicolau, C. et al. (1987) Meth. Enzymol. 149: 157-176; Straubinger, R. M. and Papahadjopoulos, D. (1983) Meth. Enzymol. 101: 512-527; Wang, C. Y. and Huang, L., (1987) Proc. Natl. Acad. Sci. USA 84: 7851-7855).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with RNAi agent are useful for treating a dermatological disorder.


Liposomes that include RNAi agents can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes (highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles) are a type of deformable liposomes. Transfersomes can be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin. Transfersomes that include RNAi agent can be delivered, for example, subcutaneously by infection in order to deliver RNAi agent to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.


Other formulations amenable to the present disclosure are described in U.S. provisional application Ser. No. 61/018,616, filed Jan. 2, 2008; 61/018,611, filed Jan. 2, 2008; 61/039,748, filed Mar. 26, 2008; 61/047,087, filed Apr. 22, 2008 and 61/051,528, filed May 8, 2008. PCT application number PCT/US2007/080331, filed Oct. 3, 2007, also describes formulations that are amenable to the present disclosure.


Surfactants find wide application in formulations such as those described herein, particularly in emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


The RNAi agent for use in the methods of the disclosure can also be provided as micellar formulations. “Micelles” are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the siRNA composition, an alkali metal C8 to C22 alkyl sulphate, and a micelle forming compounds. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing in order to provide smaller size micelles.


In one method a first micellar composition is prepared which contains the siRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the siRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.


Phenol or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol or m-cresol may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.


For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, i.e., there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, e.g., through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.


Propellants may include hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. In certain embodiments, HFA 134a (1,1,1,2 tetrafluoroethane) may be used.


The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, e.g., at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.


Lipid Particles

RNAi agents, e.g., dsRNAs of in the disclosure may be fully encapsulated in a lipid formulation, e.g., a LNP, or other nucleic acid-lipid particle.


As used herein, the term “LNP” refers to a stable nucleic acid-lipid particle. LNPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). LNPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). LNPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; United States Patent publication No. 2010/0324120 and WO 96/40964.


In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


Certain specific LNP formulations for delivery of RNAi agents have been described in the art, including, e.g., “LNP01” formulations as described in, e.g., WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are identified in the table below.

















cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid




conjugate



Ionizable/Cationic Lipid
Lipid:siRNA ratio


















SNALP-1
1,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-



dimethylaminopropane (DLinDMA)
cDMA (57.1/7.1/34.4/1.4)




lipid:siRNA ~ 7:1


2-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DPPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
cDMA 57.1/7.1/34.4/1.4




lipid:siRNA ~ 7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
DMG 57.5/7.5/31.5/3.5




lipid:siRNA ~ 6:1


LNP06
2,2-Dilinoley1-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
DMG 57.5/7.5/31.5/3.5




lipid:siRNA ~ 11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
DMG 60/7.5/31/1.5,




lipid:siRNA ~ 6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
DMG 60/7.5/31/1.5,




lipid:siRNA ~ 11:1


LNP09
2,2-Dilinoley1-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-



[1,3]-dioxolane (XTC)
DMG 50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-
ALN100/DSPC/Cholesterol/PEG-



di((9Z,12Z)-octadeca-9,12-
DMG 50/10/38.5/1.5



dienyl)tetrahydro-3aH-
Lipid:siRNA 10:1



cyclopenta[d][1,3]dioxol-5-amine



(ALN100)


LNP11
(6Z,9Z,28Z,31Z)-heptatriaconta-
MC-3/DSPC/Cholesterol/PEG-



6,9,28,31-tetraen-19-yl
DMG 50/10/38.5/1.5



4-(dimethylamino)butanoate (MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
Tech G1/DSPC/Cholesterol/



hydroxydodecyl)amino)ethyl)(2-
PEG-DMG 50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)piperazin-
Lipid:siRNA 10:1



1-yl)ethylazanediyl)didodecan-2-ol



(Tech G1)


LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-




DSG/GalNAc-PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-




DSG 50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1











    • DSPC: distearoylphosphatidylcholine

    • DPPC: dipalmitoylphosphatidylcholine

    • PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)

    • PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)

    • PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)

    • SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in WO 2009/127060, which is hereby incorporated by reference.

    • XTC comprising formulations are described in WO 2010/088537, the entire contents of which are hereby incorporated herein by reference.

    • MC3 comprising formulations are described, e.g., in United States Patent Publication No. 2010/0324120, the entire contents of which are hereby incorporated by reference.

    • ALNY-100 comprising formulations are described in WO 2010/054406, the entire contents of which are hereby incorporated herein by reference.

    • C12-200 comprising formulations are described in WO 2010/129709, the entire contents of which are hereby incorporated herein by reference.





Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders can be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the disclosure are administered in conjunction with one or more penetration enhancer surfactants and chelators. Suitable surfactants include fatty acids or esters or salts thereof, bile acids or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the disclosure can be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, U.S. 2003/0027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration can include sterile aqueous solutions which can also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present disclosure include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions can be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids. Particularly preferred are formulations that target the brain when treating APP-associated diseases or disorders.


The pharmaceutical formulations of the present disclosure, which can conveniently be presented in unit dosage form, can be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present disclosure can be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present disclosure can also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions can further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


Additional Formulations
i. Emulsions

The compositions of the present disclosure can be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1p m in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions can be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions can contain additional components in addition to the dispersed phases, and the active drug which can be present as a solution in either aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants can also be present in emulsions as needed. Pharmaceutical emulsions can also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise, a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion can be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that can be incorporated into either phase of the emulsion. Emulsifiers can broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants can be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that can readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used can be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


ii. Microemulsions

In one embodiment of the present disclosure, the compositions of RNAi agents and nucleic acids are formulated as microemulsions. A microemulsion can be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically, microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used, and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich NG., and Ansel HC., 2004, Lippincott Williams & Wilkins (8th ed.), New York, NY; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions can, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase can typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase can include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions can form spontaneously when their components are brought together at ambient temperature. This can be particularly advantageous when formulating thermolabile drugs, peptides or RNAi agents. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present disclosure will facilitate the increased systemic absorption of RNAi agents and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of RNAi agents and nucleic acids.


Microemulsions of the present disclosure can also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the RNAi agents and nucleic acids of the present disclosure. Penetration enhancers used in the microemulsions of the present disclosure can be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


iii. Microparticles

An RNAi agent of the disclosure may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques.


iv. Penetration Enhancers


In one embodiment, the present disclosure employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly RNAi agents, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs can cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers can be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, NY, 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above-mentioned classes of penetration enhancers are described below in greater detail.


Surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of RNAi agents through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, NY, 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, M A, 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, NY, 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, NY, 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating agents, as used in connection with the present disclosure, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of RNAi agents through the mucosa is enhanced. With regards to their use as penetration enhancers in the present disclosure, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, M A, 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of RNAi agents through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers includes, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of RNAi agents at the cellular level can also be added to the pharmaceutical and other compositions of the present disclosure. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), are also known to enhance the cellular uptake of dsRNAs.


Other agents can be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


vi. Excipients

In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient can be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present disclosure. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids can include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions can also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


vii. Other Components

The compositions of the present disclosure can additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions can contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or can contain additional materials useful in physically formulating various dosage forms of the compositions of the present disclosure, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present disclosure. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions can contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the disclosure include (a) one or more RNAi agents and (b) one or more agents which function by a non-RNAi mechanism and which are useful in treating an ATXN2-associated neurodegenerative disorder. Examples of such agents include, but are not lmited to SSRIs, venlafaxine, bupropion, and atypical antipsychotics.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured herein in the disclosure lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the RNAi agents featured in the disclosure can be administered in combination with other known agents effective in treatment of pathological processes mediated by nucleotide repeat expression. In any event, the administering physician can adjust the amount and timing of RNAi agent administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


VII. Kits

In certain aspects, the instant disclosure provides kits that include a suitable container containing a pharmaceutical formulation of a siRNA compound, e.g., a double-stranded siRNA compound, or siRNA compound, (e.g., a precursor, e.g., a larger siRNA compound which can be processed into a siRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or siRNA compound, or precursor thereof). In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for a siRNA compound preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.


VIII. Methods for Inhibiting ATXN2 Expression

The present disclosure also provides methods of inhibiting expression of an ATXN2 gene in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression of ATXN2 in the cell, thereby inhibiting expression of ATXN2 in the cell. In certain embodiments of the disclosure, ATXN2 is inhibited preferentially in CNS (e.g., brain) cells. In other embodiments of the disclosure, ATXN2 is inhibited preferentially in the liver (e.g., hepatocytes). In certain embodiments of the disclosure, ATXN2 is inhibited in CNS (e.g., brain) cells and in liver (e.g., hepatocytes) cells.


Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done in vitro or in vivo. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible.


Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc ligand, or any other ligand that directs the RNAi agent to a site of interest.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition. In certain embodiments, a level of inhibition, e.g., for an RNAi agent of the instant disclosure, can be assessed in cell culture conditions, e.g., wherein cells in cell culture are transfected via Lipofectamine™-mediated transfection at a concentration in the vicinity of a cell of 10 nM or less, 1 nM or less, etc. Knockdown of a given RNAi agent can be determined via comparison of pre-treated levels in cell culture versus post-treated levels in cell culture, optionally also comparing against cells treated in parallel with a scrambled or other form of control RNAi agent. Knockdown in cell culture of, e.g., optionally 50% or more, can thereby be identified as indicative of “inhibiting” or “reducing”, “downregulating” or “suppressing”, etc. having occurred. It is expressly contemplated that assessment of targeted mRNA or encoded protein levels (and therefore an extent of “inhibiting”, etc. caused by an RNAi agent of the disclosure) can also be assessed in in vivo systems for the RNAi agents of the instant disclosure, under properly controlled conditions as described in the art.


The phrase “inhibiting expression of an ATXN2 gene” or “inhibiting expression of ATXN2,” as used herein, includes inhibition of expression of any ATXN2 gene (such as, e.g., a mouse ATXN2 gene, a rat ATXN2 gene, a monkey ATXN2 gene, or a human ATXN2 gene) as well as variants or mutants of an ATXN2 gene that encode an ATXN2 protein. Thus, the ATXN2 gene may be a wild-type ATXN2 gene, a mutant ATXN2 gene, or a transgenic ATXN2 gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of an ATXN2 gene” includes any level of inhibition of an ATXN2 gene, e.g., at least partial suppression of the expression of an ATXN2 gene, such as an inhibition by at least 20%. In certain embodiments, inhibition is by at least 30%, at least 40%, optionally at least 50%, at least about 60%, at least 70%, at least about 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%; or to below the level of detection of the assay method.


The expression of an ATXN2 gene may be assessed based on the level of any variable associated with ATXN2 gene expression, e.g., ATXN2 mRNA level or ATXN2 protein level, or, for example, the level of neuroinflammation, e.g., microglial and astrocyte activation, and ATXN2 deposition in areas of the brain associated with neuronal cell death.


Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


In some embodiments of the methods of the disclosure, expression of an ATXN2 gene is inhibited by at least 20%, 30%, 40%, optionally at least 50%, 60%, 70%, 80%, 85%, 90%, or 95%, or to below the level of detection of the assay. In certain embodiments, the methods include a clinically relevant inhibition of expression of ATXN2, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of ATXN2.


Inhibition of the expression of an ATXN2 gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which an ATXN2 gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an RNAi agent of the disclosure, or by administering an RNAi agent of the disclosure to a subject in which the cells are or were present) such that the expression of an ATXN2 gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with an RNAi agent or not treated with an RNAi agent targeted to the gene of interest). The degree of inhibition may be expressed in terms of:









(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)



•100

%




In other embodiments, inhibition of the expression of an ATXN2 gene may be assessed in terms of a reduction of a parameter that is functionally linked to an ATXN2 gene expression, e.g., ATXN2 protein expression. ATXN2 gene silencing may be determined in any cell expressing ATXN2, either endogenous or heterologous from an expression construct, and by any assay known in the art.


Inhibition of the expression of an ATXN2 protein may be manifested by a reduction in the level of the ATXN2 protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of mRNA suppression, the inhibiton of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.


A control cell or group of cells that may be used to assess the inhibition of the expression of an ATXN2 gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the disclosure. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.


The level of ATXN2 mRNA that is expressed by a cell or group of cells may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of ATXN2 in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the ATXN2 gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy™ RNA preparation kits (Qiagen®) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Circulating ATXN2 mRNA may be detected using methods the described in WO2012/177906, the entire contents of which are hereby incorporated herein by reference.


In some embodiments, the level of expression of ATXN2 is determined using a nucleic acid probe. The term “probe”, as used herein, refers to any molecule that is capable of selectively binding to a specific ATXN2 nucleic acid or protein, or fragment thereof. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to ATXN2 mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix© gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of ATXN2 mRNA.


An alternative method for determining the level of expression of ATXN2 in a sample involves the process of nucleic acid amplification or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88: 189-193), self-sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio Technology 6: 1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the disclosure, the level of expression of ATXN2 is determined by quantitative fluorogenic RT-PCR (i.e., the TaqMan™ System), by a Dual-Glo® Luciferase assay, or by other art-recognized method for measurement of ATXN2 expression or mRNA level.


The expression level of ATXN2 mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of ATXN2 expression level may also comprise using nucleic acid probes in solution.


In some embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of this PCR method is described and exemplified in the Examples presented herein. Such methods can also be used for the detection of ATXN2 nucleic acids.


The level of ATXN2 protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can also be used for the detection of proteins indicative of the presence or replication of ATXN2 proteins.


In some embodiments, the efficacy of the methods of the disclosure in the treatment of an ATXN2-related disease is assessed by a decrease in ATXN2 mRNA level (e.g, by assessment of a CSF sample for ATXN2 level, by brain biopsy, or otherwise).


In some embodiments, the efficacy of the methods of the disclosure in the treatment of an ATXN2-related disease is assessed by a decrease in ATXN2 mRNA level (e.g, by assessment of a liver sample for ATXN2 level, by biopsy, or otherwise).


In some embodiments of the methods of the disclosure, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of ATXN2 may be assessed using measurements of the level or change in the level of ATXN2 mRNA or ATXN2 protein in a sample derived from a specific site within the subject, e.g., CNS cells. In certain embodiments, the methods include a clinically relevant inhibition of expression of ATXN2, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of ATXN2.


As used herein, the terms detecting or determining a level of an analyte are understood to mean performing the steps to determine if a material, e.g., protein, RNA, is present. As used herein, methods of detecting or determining include detection or determination of an analyte level that is below the level of detection for the method used.


IX. Methods of Treating or Preventing ATXN2-Associated Neurodegenerative Diseases

The present disclosure also provides methods of using an RNAi agent of the disclosure or a composition containing an RNAi agent of the disclosure to reduce or inhibit ATXN2 expression in a cell. The methods include contacting the cell with a dsRNA of the disclosure and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcript of an ATXN2 gene, thereby inhibiting expression of the ATXN2 gene in the cell. Reduction in gene expression can be assessed by any methods known in the art. For example, a reduction in the expression of ATXN2 may be determined by determining the mRNA expression level of ATXN2 using methods routine to one of ordinary skill in the art, e.g., northern blotting, qRT-PCR; by determining the protein level of ATXN2 using methods routine to one of ordinary skill in the art, such as western blotting, immunological techniques.


In the methods of the disclosure the cell may be contacted in vitro or in vivo, i.e., the cell may be within a subject.


A cell suitable for treatment using the methods of the disclosure may be any cell that expresses an ATXN2 gene. A cell suitable for use in the methods of the disclosure may be a mammalian cell, e.g., a primate cell (such as a human cell or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), a non-primate cell (such as a a rat cell, or a mouse cell. In one embodiment, the cell is a human cell, e.g., a human CNS cell. In one embodiment, the cell is a human cell, e.g., a human liver cell. In one embodiment, the cell is a human cell, e.g., a human CNS cell and a human liver cell.


ATXN2 expression is inhibited in the cell by at least about 30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, or about 100%, i.e., to below the level of detection. In preferred embodiments, ATXN2 expression is inhibited by at least 50%.


The in vivo methods of the disclosure may include administering to a subject a composition containing an RNAi agent, where the RNAi agent includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the ATXN2 gene of the mammal to be treated. When the organism to be treated is a mammal such as a human, the composition can be administered by any means known in the art including, but not limited to oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal, and intrathecal), intravenous, intramuscular, intravitreal, subcutaneous, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration. In certain embodiments, the compositions are administered by intravenous infusion or injection. In certain embodiments, the compositions are administered by subcutaneous injection. In certain embodiments, the compositions are administered by intrathecal injection.


In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of ATXN2, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent serum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.


In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intracranial, intravenous, subcutaneous, arterial, or epidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the CNS.


The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.


In one aspect, the present disclosure also provides methods for inhibiting the expression of an ATXN2 gene in a mammal. The methods include administering to the mammal a composition comprising a dsRNA that targets an ATXN2 gene in a cell of the mammal and maintaining the mammal for a time sufficient to obtain degradation of the mRNA transcript of the ATXN2 gene, thereby inhibiting expression of the ATXN2 gene in the cell. Reduction in gene expression can be assessed by any methods known it the art and by methods, e.g. qRT-PCR, described herein. Reduction in protein production can be assessed by any methods known it the art and by methods, e.g. ELISA, described herein. In one embodiment, a CNS biopsy sample or a cerebrospinal fluid (CSF) sample serves as the tissue material for monitoring the reduction in ATXN2 gene or protein expression (or of a proxy therefore).


The present disclosure further provides methods of treatment of a subject in need thereof. The treatment methods of the disclosure include administering an RNAi agent of the disclosure to a subject, e.g., a subject that would benefit from inhibition of ATXN2 expression, in a therapeutically effective amount of an RNAi agent targeting an ATXN2 gene or a pharmaceutical composition comprising an RNAi agent targeting an ATXN2 gene.


In addition, the present disclosure provides methods of preventing, treating or inhibiting the progression of an ATXN2-associated neurodegenerative disease or disorder, such as a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).


The methods include administering to the subject a therapeutically effective amount of any of the RNAi agent, e.g., dsRNA agents, or the pharmaceutical composition provided herein, thereby preventing, treating or inhibiting the progression of the ATXN2-associated neurodegenerative disease or disorder in the subject.


An RNAi agent of the disclosure may be administered as a “free RNAi agent.” A free RNAi agent is administered in the absence of a pharmaceutical composition. The naked RNAi agent may be in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In one embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the RNAi agent can be adjusted such that it is suitable for administering to a subject.


Alternatively, an RNAi agent of the disclosure may be administered as a pharmaceutical composition, such as a dsRNA liposomal formulation.


Subjects that would benefit from a reduction or inhibition of ATXN2 gene expression are those having an ATXN2-associated neurodegenerative disease.


The disclosure further provides methods for the use of an RNAi agent or a pharmaceutical composition thereof, e.g., for treating a subject that would benefit from reduction or inhibition of ATXN2 expression, e.g., a subject having an ATXN2-associated neurodegenerative disorder, in combination with other pharmaceuticals or other therapeutic methods, e.g., with known pharmaceuticals or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, in certain embodiments, an RNAi agent targeting ATXN2 is administered in combination with, e.g., an agent useful in treating an ATXN2-associated neurodegenerative disorder as described elsewhere herein or as otherwise known in the art. For example, additional agents and treatments suitable for treating a subject that would benefit from reducton in ATXN2 expression, e.g., a subject having an ATXN2-associated neurodegenerative disorder, may include agents currently used to treat symptoms of ATXN2. The RNAi agent and additional therapeutic agents may be administered at the same time or in the same combination, e.g., intrathecally, or the additional therapeutic agent can be administered as part of a separate composition or at separate times or by another method known in the art or described herein.


Exemplary additional therapeutics and treatments include, for example, sedatives, antidepressants, clonazepam, sodium valproate, opiates, antiepileptic drugs, cholinesterase inhibitors, memantine, benzodiazepines, levodopa, COMT inhibitors (e.g., tolcapone and entacapone), dopamine agonists (e.g., bronocriptine, pergolide, pramipexole, ropinirole, piribedil, cabergoline, apomorphine and lisuride), MAO-B inhibitors (e.g., safinamide, selegiline and rasagiline), amantadine, an anticholinergic, modafinil, pirnavanserin, doxepin, rasagline, an antipsychotic, an atypical antipsychotic (e.g., amisuilpride, olanzapine, risperidone, and clozapine), riluzole, edaravone, deep brain stimulation, non-invasive ventilation (NIV), invasive ventilation physical therapy, occupational therapy, speech therapy, dietary changes and swallowing technique a feeding tube, a PEG tube, probiotics, and psychological therapy.


In one embodiment, the method includes administering a composition featured herein such that expression of the target ATXN2 gene is decreased, for at least one month. In certain embodiments, expression is decreased for at least 2 months, 3 months, or 6 months.


Optionally, the RNAi agents useful for the methods and compositions featured herein specifically target RNAs (primary or processed) of the target ATXN2 gene. Compositions and methods for inhibiting the expression of these genes using RNAi agents can be prepared and performed as described herein.


Administration of the dsRNA according to the methods of the disclosure may result in a reduction of the severity, signs, symptoms, or markers of such diseases or disorders in a patient with an ATXN2-associated neurodegenerative disorder. By “reduction” in this context is meant a statistically significant or clinically significant decrease in such level. The reduction can be, for example, at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or about 100%.


Efficacy of treatment or prevention of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. For example, efficacy of treatment of an ATXN2-associated neurodegenerative disorder may be assessed, for example, by periodic monitoring of a subject's cognition, learning, or memory. Comparisons of the later readings with the initial readings provide a physician an indication of whether the treatment is effective. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of an RNAi agent targeting ATXN2 or pharmaceutical composition thereof, “effective against” an ATXN2-associated neurodegenerative disorder indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating ATXN2-associated neurodegenerative disorders and the related causes.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and optionally at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given RNAi agent drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.


Alternatively, the efficacy can be measured by a reduction in the severity of disease as determined by one skilled in the art of diagnosis based on a clinically accepted disease severity grading scale. Any positive change resulting in e.g., lessening of severity of disease measured using the appropriate scale, represents adequate treatment using an RNAi agent or RNAi agent formulation as described herein.


Subjects can be administered a therapeutic amount of dsRNA, such as about 0.01 mg/kg to about 200 mg/kg.


The RNAi agent can be administered intrathecally, via intravitreal injection, or by intravenous infusion over a period of time, on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. Administration of the RNAi agent can reduce ATXN2 levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient by at least 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70,% 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or at least about 99% or more. In a preferred embodiment, administration of the RNAi agent can reduce ATXN2 levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient by at least 50%.


Before administration of a full dose of the RNAi agent, patients can be administered a smaller dose, such as a 5% infusion reaction, and monitored for adverse effects, such as an allergic reaction. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or INF-alpha) levels.


Alternatively, the RNAi agent can be administered subcutaneously, i.e., by subcutaneous injection. One or more injections may be used to deliver the desired, e.g., monthly dose of RNAi agent to a subject. The injections may be repeated over a period of time. The administration may be repeated on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. A repeat-dose regimine may include administration of a therapeutic amount of RNAi agent on a regular basis, such as monthly or extending to once a quarter, twice per year, once per year. In certain embodiments, the RNAi agent is administered about once per month to about once per quarter (i.e., about once every three months).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the RNAi agents and methods featured in the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


An informal Sequence Listing is also filed herewith and forms part of the specification as filed.


EXAMPLES
Example 1: Materials and Methods
Bioinformatics

A set of siRNAs targeting the human ataxin 2 gene (ATXN2; human NCBI refseqID NM_002973.3; NCBI GeneID: 6311; SEQ ID NO: 1) as well the toxicology-species ATXN2 (XM_005572266.1; SEQ ID NO: 3) orthologs from cynomolgus monkey were designed using custom R and Python scripts. All the siRNA were designed to have a perfect match to the human ATXN2 transcripts and a subset either perfect or near-perfect matches to the cynomolgus monkey ortholog. The human ATXN2 NM_002973 REFSEQ mRNA, version 3 (SEQ ID NO: 1), has a length of 4712 bases. The rationale and method for the set of siRNA designs follows. The predicted efficacy for every potential 23mer siRNA from position 10 through the end was determined with a random forest model derived from the direct measure of mRNA knockdown from several thousand distinct siRNA designs targeting a diverse set of vertebrate genes. For each strand of the siRNA, a custom Python script was used in a brute force search to measure the number and positions of mismatches between the siRNA and all potential alignments in the human transcriptome. Extra weight was given to mismatches in the seed region, defined here as positions 2-9 of the antisense oligonucleotide, as well the cleavage site of the siRNA, defined here as positions 10-11 of the antisense oligonucleotide. The relative weight of the mismatches was 2.8, 1.2, 1 for seed mismatches, cleavage site, and other positions up through antisense position 19. Mismatches in the first position were ignored. A specificity score was calculated for each strand by summing the value of each weighted mismatch. Preference was given to siRNAs whose antisense score in human and cynomolgus monkey was >=2 and predicted efficacy was >=50% knockdown.


In Vitro Screening—Dual-Glo® Luciferase Assay

Cos-7 cells (ATCC, Manassas, VA) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in DMEM (ATCC) supplemented with 10% FBS, before being released from the plate by trypsinization. Multi-dose experiments were performed at 10 nM and 0.1 nM. siRNA and psiCHECK2-ATXN2 (NM_002973) plasmid transfections were carried out with a plasmid containing the 3′ untranslated region (UTR). Transfection was carried out by adding 5 μL of siRNA duplexes and 5 μL (5 ng) of psiCHECK2 plasmid per well along with 4.9 μL of Opti-MEM plus 0.1 μL of Lipofectamine 2000 per well (Invitrogen, Carlsbad CA. cat #13778-150) and then incubated at room temperature for 15 minutes. The mixture was then added to the cells which were re-suspended in 35 μL of fresh complete media. The transfected cells were incubated at 37° C. in an atmosphere of 5% CO2.


Forty-eight hours after the siRNAs and psiCHECK2 plasmid were transfected, Firefly (transfection control) and Renilla (fused to ATXN2 target sequence) luciferase were measured. First, media was removed from cells. Then Firefly luciferase activity was measured by adding a mixture of 20 μL Dual-Glo® Luciferase Reagent and 20 μL DMEM to each well. The mixture was incubated at room temperature for 30 minutes before luminescense (500 nm) was measured on a Spectramax (Molecular Devices) to detect the Firefly luciferase signal. Renilla luciferase activity was measured by adding a mixture of 20 μL of room temperature of Dual-Glo® Stop & Glo® Buffer and 0.1 μL Dual-Glo® Stop & Glo® Substrate to each well and the plates were incubated for 10-15 minutes before luminescence was again measured to determine the Renilla luciferase signal. The Dual-Glo® Stop & Glo® mixture quenches the firefly luciferase signal and sustained luminescence for the Renilla luciferase reaction. siRNA activity was determined by normalizing the Renilla (ATXN2) signal to the Firefly (control) signal within each well. The magnitude of siRNA activity was then assessed relative to cells that were transfected with the same vector but were not treated with siRNA or were treated with a non-targeting siRNA. All transfections were done with n=4.


In Vitro Screening—Cell Culture and Transfections

Cells were transfected by adding 4.9 μL of Opti-MEM plus 0.1 μL of RNAiMAX per well (Invitrogen, Carlsbad CA. cat #13778-150) to 5 μL of siRNA duplexes per well, with 4 replicates of each siRNA duplex, into a 384-well plate, and incubated at room temperature for 15 minutes. 40 μL of MEDIA containing ˜5×103 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Experiments were performed at 10 nM and 0.1 nM. Transfection experiments were performed in human hepatoma HeP3B cells (ATCC HB-8064) with EMEM (ATCC catalog no. 30-2003), human neuroblastoma BE(2)-C cells (ATCC CRL-2268) with EMEM:F12 media (Gibco catalog no. 11765054) and mouse neuroblastoma Neuro-2A cells (ATCC CCL-131) with EMEM media.


In Vitro Screening—Total RNA Isolation Using DYNABEADS mRNA Isolation Kit


RNA was isolated using an automated protocol on a BioTek-EL406 platform using DYNABEADs (Invitrogen, cat #61012). Briefly, 70 μL of Lysis/Binding Buffer and 10 μL of lysis buffer containing 3 μL of magnetic beads were added to the plate with cells. Plates were incubated on an electromagnetic shaker for 10 minutes at room temperature and then magnetic beads were captured and the supernatant was removed. Bead-bound RNA was then washed 2 times with 150 μL Wash Buffer A and once with Wash Buffer B. Beads were then washed with 150 μL Elution Buffer, re-captured and supernatant removed.


In Vitro Screening—cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, Cat #4368813)

12 μL of a master mix containing 1.2 μL 10× Buffer, 0.48 μL 25× dNTPs, 1.2 μL 10× Random primers, 0.6 μL Reverse Transcriptase, 0.6 μL RNase inhibitor and 7.92 μL of H2O per reaction was added to the bead bound RNA isolated above. Plates were sealed, mixed, and incubated on an electromagnetic shaker for 10 minutes at room temperature, followed by 2 h incubation at 37° C.


In Vitro Screening—Real Time PCR

2 μL of cDNA were added to a master mix containing 0.5 μL of human or mouse GAPDH TaqMan Probe (ThermoFisher cat 4352934 E or 4351309) and 0.5 μL of appropriate ATXN2 probe (Thermo Fisher Taqman human: Hs00268077, mouse: Mm00485946) and 5 μL Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche). Each duplex was tested with N=4 and data were normalized to cells transfected with a non-targeting control siRNA. To calculate relative fold change, real time data were analyzed using the AACt method and normalized to assays performed with cells transfected with a non-targeting control siRNA.


In Vivo Evaluation of ATXN2 RNAi Agents in hATXN2-IRES-gLuc-Expressing Mice

Female 6-8 week old C57BL/6 mice were injected intravenously with AAV harboring a Homo sapiens ATHX2 (hATXN2)-IRES (internal ribosome entry site)—Gaussia luciferase (gLuc) construct. Viral titer was 1.2 E+13 VP/mL (viral particles per mL), and total dose was 2 E+11 VP/mouse. 5 mg/kg siRNAs were injected subcutaneously (SC, at DO) two weeks after injection of virus, and serum was sampled at DO and at day 14 (D14), while mice were sacrificed and livers harvested at D14. gLuc assessment and qPCR were performed upon D14 liver samples. A Hs00268077_m1 ATXN2 Taqman probe was used for qPCR evaluation, while a Mm99999915_g1 control probe was also employed.


ATXN2 Endogenous Mouse Pharamacodynamics (PD) Study

Mouse ATXN2 (mATXN2) knockdown potency of various siRNA duplexes was evaluated. Animals (C57BL/6 females, 20-25 g weight) were dosed with a single SC injection on day 0. On day 14, animals were euthanized. Liver was collected (flash frozen in 15 ml grinding vials with 2 metal balls) for mRNA analysis via RT-qPCR for relative expression of mATXN2 in treated groups (1-12) vs a PBS control group (13). Three mice were dosed per group.


Example 2: Knockdown of ATXN2 in Human BE(2)-C Cells, Mouse nuro2A Cells and ATXN2 Expressed Via Dual-Luciferase psiCHECK2 Vector in Cos-7 Cells

A series of ATXN2 iRNA agents—for which modified (based on key in Table 1) and unmodified sequences are listed in Tables 2, 3, 5, and 6—were used to screen for transcript suppression in neuronal cell lines, with Cos-7 cells (a green monkey fibroblast cell line) employing a dual-luciferase reporter system. Human neuronal cell line BE(2)-C, mouse neuronal cell line Neuro-2A and psiCHECK2 ATXN2-expressing Cos-7 cells were transfected with siRNA at 10 nM and 0.1 nM. The observed levels of ATXN2 transcript or luciferase reporter appear in Tables 4 and 7.


Example 3: Design, Construction, and Preparation of ATXN2 Adeno-Associated Virus (AAV)

Adeno-associated virus (AAV) encoding human ATXN2 was generated through the design of a cis vector that carried parts of the human transcript NM_002973.3 and the transcript of the Gaussia princeps luciferase (EU372000.1). Human transcript NM_002973.3 was used for generation ATXN2 AAV. Co-transfection of packaging cells with the cis vector, Rep/Cap vector and Ad helper vector led to production of AAV viral particles, followed by gradient purification, desalting and viral titer quantification.


Example 4: In Vivo Evaluation of ATXN2 RNAi Agents

Selected ATXN2-targeting RNAi agents were evaluated for in vivo efficacy and lead identification, by screening for human ATXN2 knockdown in AAV mice. The selected RNAi agents for such studies included AD-365144, AD-366366, AD-367794, AD-367809, AD-367815, AD-367816, AD-367818, AD-367850, AD-367853, AD-367878, AD-367917, AD-367967, and AD-387779, having chemically modified sequences and L96 GalNAc ligands (Table 2) as indicated in Table 1 below, and corresponding unmodified sequences as shown in Table 3.


In such studies, an AAV vector harboring Homo sapiens ATXN2 was intravenously injected to 6-8 week old C57BL/6 female mice, and at 14 days post-AAV administration, a selected RNAi agent or a control agent were subcutaneously injected at 3 mg/kg to mice (n=3 per group), with mice sacrificed and livers assessed for ATXN2 mRNA levels at 14 days post-subcutaneous injection of RNAi agent or control. Mice injected with ATXN2 iRNA AD-365144 and AD-367816 showed the highest decrease of human ATXN2 in the liver. Mice injected with AD-365144, AD-367815, AD-367816, AD-367809, and AD-367818 showed as strong decrease of Gaussia luciferase (gLuc) reporter protein in the serum. Results are shown in Table 8.


Example 5: Further In Vivo Evaluation of ATXN2 RNAi Agents in hATXN2-IRES-gLuc-Expressing Mice

ATXN2-targeting siRNAs were further evaluated, specifically for in vivo knockdown of Gaussia luciferase (gLuc) in mice AAV-transduced with a human ATXN2-IRES-gLuc construct. gLuc in such mice is a secreted luciferase, separated by IRES from hATXN2 on the AAV construct, and gLuc therefore serves a quantitative reporter of human ATXN2 in such mice (n=3 per group). Between two and four duplexes (AD-1044729.1 and AD-1044730.1, and possibly also AD-1040560.1 and AD-1041737.1), in addition to AD-365144.1, were thereby identified as knocking down gLuc (and therefore human ATXN2) by at least 40% in livers of AAV-transduced mice at day 14 (D14) after subcutaneous siRNA injection (at 5 mg/kg) (FIG. 2A). Quantitative PCR (qPCR) was also performed upon liver samples harvested from the same mice, which assessed aggregate ATXN2 levels (both endogenous mouse ATXN2 and transfected human ATXN2) in such siRNA-treated mice, as compared to PBS-treated, naïve and AD-64228.41-treated controls (FIG. 2B). As shown in Table 12, in many cases, gLuc (proxy for hATXN2) and ATXN2 qPCR (which assesses endogenous ATXN2) results diverged.


Example 6: In Vivo Evaluation of Endogenous Mouse ATXN2 Pharamacodynamics (PD)

Mouse ATXN2 (mATXN2) knockdown potency of various siRNA duplexes was evaluated following 1 mg/kg SC injections of siRNAs (FIGS. 3A and 3B). RT-qPCR evaluation of endogenous mouse mATXN2 revealed significant variability in certain treated groups (FIG. 3A), and removal of two “up-regulated groups” allowed for improved discernment of groups in which ATXN2-targeting siRNAs were consistently effective ATXN2 inhibitory agents (FIG. 3B). 5 mg/kg and/or 10 mg/kg dosing is expected to increase the extent of mATXN2 knockdown observed.


Example 7: Knockdown of ATXN2 Expression in Mice That Express Human ATXN2 With a Single Dose ATXN2 siRNA Treatment

A series of iRNA agents targeting human ATXN2 are selected and tested for the ability to knockdown expression of ATXN2 mRNA in 6- to 8-week-old human ATXN2 transgenic of knock-in (KI) female mice. Examples of ATXN2 transgenic mouse strains include Q58 (Huynh et al. Nat Genet 26: 44-50), Q75 (Aguiar et al. Neurosci Lett 392: 202-206), Q127 (Hansen et al. Hum Mol Genet 22: 271-283), and BAC-Q72 (Dansithong et al. PLoS Genet 11: e1005182). Mouse strains that carry human ATXN2 knock-in (KI) into the mouse ATXN2 locus include Q42KI (Damrath et al. PLoS Genet 8: e1002920) and Q100KI. A single dose of iRNA agents selected from Tables 9 and 10 at 25 μg, 50 μg, 100 μg, or 200 μg, or artificial CSF control, are administered intracerebroventricularly (n=3, n=4 or n=5 per group). Two to four weeks after, the mice are sacrificed to assess knockdown of ATXN2 mRNA in the brain. Mice that are injected with ATXN2 iRNA show significant decrease in human ATXN2 transcript in the brain and spinal cord.


Example 8: Resolution of SCA2 Phenotypes in Human Mutant ATXN2-Expressing Mice After a Single Injection of siRNA

One to five iRNAs are selected from Tables 9 and 10 and injected intracerebroventricularly into early symptomatic human mutant ATXN2-expressing mice at approximately 8 weeks of age. The pathological features and SCA2 behavior are evaluated at intervals between 16 and 32 weeks of age. Both brain pathology and behavior are significantly ameliorated at one or more timepoints between 16 and 32 weeks of age.


The “mRNA” sequences of the Informal Sequence Listing and certain of the “mRNA target” sequences listed herein (see at least Tables 9 and 10 below) may be noted as reciting thymine (T) residues rather than uracil (U) residues. As is apparent to one of ordinary skill in the art, such sequences reciting “T” residues rather than “U” residues can be derived from NCBI accession records that list, as “mRNA” sequences, the DNA sequences (not RNA sequences) that directly correspond to mRNA sequences. Such DNA sequences that directly correspond to mRNA sequences technically constitute the DNA sequence that is the complement of the cDNA (complementary DNA) sequence for an indicated mRNA. Thus, while the mRNA target sequence does, in fact, actually include uracil (U) rather than thymine (T), the NCBI record-derived “mRNA” sequence includes thymine (T) residues rather than uracil (U) residues.









TABLE 1







Abbreviations of nucleotide monomers used in


nucleic acid sequence representation.


It will be understood that these monomers, when present in an


oligonucleotide, are mutually linked by 5′-3′-phosphodiester bonds.








Abbreviation
Nucleotide(s)





A
Adenosine-3′-phosphate


Ab
beta-L-adenosine-3′-phosphate


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-fluoroadenosine-3′-phosphate


Afs
2′-fluoroadenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


C
cytidine-3′-phosphate


Cb
beta-L-cytidine-3′-phosphate


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-fluorocytidine-3′-phosphate


Cfs
2′-fluorocytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


G
guanosine-3′-phosphate


Gb
beta-L-guanosine-3′-phosphate


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-fluoroguanosine-3′-phosphate


Gfs
2′-fluoroguanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


T
5′-methyluridine-3′-phosphate


Tf
2′-fluoro-5-methyluridine-3′-phosphate


Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate


Ts
5-methyluridine-3′-phosphorothioate


U
Uridine-3′-phosphate


Uf
2′-fluorouridine-3′-phosphate


Ufs
2′-fluorouridine-3′-phosphorothioate


Us
uridine-3′-phosphorothioate


N
any nucleotide, modified or unmodified


a
2′-O-methyladenosine-3′-phosphate


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate


ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate


u
2′-O-methyluridine-3′-phosphate


us
2′-O-methyluridine-3′-phosphorothioate


s
phosphorothioate linkage


L96
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-



hydroxyprolinol Hyp-(GalNAc-alkyl)3 (Hyp-



(GalNAc-alkyl)3)


Y34
2-hydroxymethyl-tetrahydrofurane-4-methoxy-



3-phosphate (abasic 2′-OMe furanose)


Y44
inverted abasic DNA (2-hydroxymethyl-



tetrahydrofurane-5-phosphate)


(Agn)
Adenosine-glycol nucleic acid (GNA)


(Cgn)
Cytidine-glycol nucleic acid (GNA)


(Ggn)
Guanosine-glycol nucleic acid (GNA)


(Tgn)
Thymidine-glycol nucleic acid (GNA) S-Isomer


P
Phosphate


VP
Vinyl-phosphate


(Aam)
2′-O-(N-methylacetamide)adenosine-3′-phosphate


(Aams)
2′-O-(N-methylacetamide)adenosine-3′-phosphorothioate


(Gam)
2′-O-(N-methylacetamide)guanosine-3′-phosphate


(Gams)
2′-O-(N-methylacetamide)guanosine-3′-phosphorothioate


(Tam)
2′-O-(N-methylacetamide)thymidine-3′-phosphate


(Tams)
2′-O-(N-methylacetamide)thymidine-3′-phosphorothioate


dA
2′-deoxyadenosine-3′-phosphate


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate


dGs
2′-deoxyguanosine-3′-phosphorothioate


dT
2′-deoxythymidine-3′-phosphate


dTs
2′-deoxythymidine-3′-phosphorothioate


dU
2′-deoxyuridine


dUs
2′-deoxyuridine-3′-phosphorothioate


(Aeo)
2′-O-methoxyethyladenosine-3′-phosphate


(Aeos)
2′-O-methoxyethyladenosine-3′-phosphorothioate


(Geo)
2′-O-methoxyethylguanosine-3′-phosphate


(Geos)
2′-O-methoxyethylguanosine-3′-phosphorothioate


(Teo)
2′-O-methoxyethyl-5-methyluridine-3′-phosphate


(Teos)
2′-O-methoxyethyl-5-methyluridine-3′-phosphorothioate


(m5Ceo)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphate


(m5Ceos)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphorothioate


(A3m)
3′-O-methyladenosine-2′-phosphate


(A3mx)
3′-O-methyl-xylofuranosyladenosine-2′-phosphate


(G3m)
3′-O-methylguanosine-2′-phosphate


(G3mx)
3′-O-methyl-xylofuranosylguanosine-2′-phosphate


(C3m)
3′-O-methylcytidine-2′-phosphate


(C3mx)
3′-O-methyl-xylofuranosylcytidine-2′-phosphate


(U3m)
3′-O-methyluridine-2′-phosphate


U3mx)
3′-O-methyl-xylofuranosyluridine-2′-phosphate


(m5Cam)
2′-O-(N-methylacetamide)-5-methylcytidine-3′-phosphate


(m5Cams)
2′-O-(N-methylacetamide)-5-methylcytidine-



3′-phosphorothioate


(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate


(Ahds)
2′-O-hexadecyl-adenosine-3′-phosphorothioate


(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate


(Ghds)
2′-O-hexadecyl-guanosine-3′-phosphorothioate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate


(Chds)
2′-O-hexadecyl-cytidine-3′-phosphorothioate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate


(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate


(pshe)
Hydroxyethylphosphorothioate
















TABLE 2







Modified Sense and Antisense Strand Sequences of Human and Rodent ATXN2 siRNAs.



















Antisense






Duplex Name
Sebse Oligo Name
Oligo Seq
SEQ
Oligo Name
Oligo Seq
SEQ
mRNA target sequence
SEQ


















AD-364136.1
A-706003.1
uscscgacUfuCdCfGfguaaagaguuL96
 13
A-706004.1
asAfscucu(Tgn)uaccggAfaGfucggasgcg
278
CCUCCGACUUCCGGUAAAGAGUC
543





AD-364137.1
A-706005.1
cscsgacuUfcCfGfGfuaaagagucuL96
 14
A-706006.1
asGfsacuc(Tgn)uuaccgGfaAfgucggsasg
279
CUCCGACUUCCGGUAAAGAGUCC
544





AD-364138.1
A-706007.1
csgsacuuCfcGfGfUfaaagaguccuL96
 15
A-706008.1
asGfsgacu(Cgn)uuuaccGfgAfagucgsgsa
280
UCCGACUUCCGGUAAAGAGUCCC
545





AD-365055.1
A-707841.1
asasugugAfaGfUfAfcaagugaaaaL96
 16
A-707842.1
usUfsuuca(Cgn)uuguacUfuCfacauususg
281
CAAAUGUGAAGUACAAGUGAAAA
546





AD-365056.1
A-707843.1
asusgugaAfgUfAfCfaagugaaaaaL96
 17
A-707844.1
usUfsuuuc(Agn)cuuguaCfuUfcacaususu
282
AAAUGUGAAGUACAAGUGAAAAA
547





AD-365144.1
A-708019.1
csasugagAfaAfAfGfuacagaaucuL96
 18
A-708020.1
asGfsauuc(Tgn)guacuuUfuCfucaugsusg
283
CACAUGAGAAAAGUACAGAAUCC
548





AD-365747.1
A-709225.1
csascuucUfcAfCfAfcuucagauuuL96
 19
A-709226.1
asAfsaucu(Ggn)aaguguGfaGfaagugsgsa
284
UCCACUUCUCACACUUCAGAUUU
549





AD-365748.1
A-709227.1
ascsuucuCfaCfAfCfuucagauuucL96
 20
A-709228.1
gsAfsaauc(Tgn)gaagugUfgAfgaagusgsg
285
CCACUUCUCACACUUCAGAUUUC
550





AD-365749.1
A-709229.1
csusucucAfcAfCfUfucagauuucaL96
 21
A-709230.1
usGfsaaau(Cgn)ugaaguGfuGfagaagsusg
286
CACUUCUCACACUUCAGAUUUCA
551





AD-365750.1
A-709231.1
ususcucaCfaCfUfUfcagauuucaaL96
 22
A-709232.1
usUfsgaaa(Tgn)cugaagUfgUfgagaasgsu
287
ACUUCUCACACUUCAGAUUUCAA
552





AD-365751.1
A-709233.1
uscsucacAfcUfUfCfagauuucaauL96
 23
A-709234.1
asUfsugaa(Agn)ucugaaGfuGfugagasasg
288
CUUCUCACACUUCAGAUUUCAAC
553





AD-365752.1
A-709235.1
csuscacaCfuUfCfAfgauuucaacuL96
 24
A-709236.1
asGfsuuga(Agn)aucugaAfgUfgugagsasa
289
UUCUCACACUUCAGAUUUCAACC
554





AD-365753.1
A-709237.1
uscsacacUfuCfAfGfauuucaaccuL96
 25
A-709238.1
asGfsguug(Agn)aaucugAfaGfugugasgsa
290
UCUCACACUUCAGAUUUCAACCC
555





AD-365754.1
A-709239.1
csascacuUfcAfGfAfuuucaacccuL96
 26
A-709240.1
asGfsgguu(Ggn)aaaucuGfaAfgugugsasg
291
CUCACACUUCAGAUUUCAACCCG
556





AD-365757.1
A-709245.1
ascsuucaGfaUfUfUfcaacccgaauL96
 27
A-709246.1
asUfsucgg(Ggn)uugaaaUfcUfgaagusgsu
292
ACACUUCAGAUUUCAACCCGAAU
557





AD-365784.1
A-709299.1
uscsagacCfaAfAfGfaguaguuaauL96
 28
A-709300.1
asUfsuaac(Tgn)acucuuUfgGfucugasasc
293
GUUCAGACCAAAGAGUAGUUAAU
558





AD-365785.1
A-709301.1
csasgaccAfaAfGfAfguaguuaauuL96
 29
A-709302.1
asAfsuuaa(Cgn)uacucuUfuGfgucugsasa
294
UUCAGACCAAAGAGUAGUUAAUG
559





AD-365915.1
A-709561.1
csuscuacUfaUfGfCfcuaaacgcauL96
 30
A-709562.1
asUfsgcgu(Tgn)uaggcaUfaGfuagagsasc
295
GUCUCUACUAUGCCUAAACGCAU
560





AD-365916.1
A-709563.1
uscsuacuAfuGfCfCfuaaacgcauuL96
 31
A-709564.1
asAfsugcg(Tgn)uuaggcAfuAfguagasgsa
296
UCUCUACUAUGCCUAAACGCAUG
561





AD-365918.1
A-709567.1
usascuauGfcCfUfAfaacgcauguuL96
 32
A-709568.1
asAfscaug(Cgn)guuuagGfcAfuaguasgsa
297
UCUACUAUGCCUAAACGCAUGUC
562





AD-366362.1
A-710455.1
csusucugAfaUfCfUfauggaucaauL96
 33
A-710456.1
asUfsugau(Cgn)cauagaUfuCfagaagsusa
298
UACUUCUGAAUCUAUGGAUCAAC
563





AD-366363.1
A-710457.1
ususcugaAfuCfUfAfuggaucaacuL96
 34
A-710458.1
asGfsuuga(Tgn)ccauagAfuUfcagaasgsu
299
ACUUCUGAAUCUAUGGAUCAACU
564





AD-366364.1
A-710459.1
uscsugaaUfcUfAfUfggaucaacuaL96
 35
A-710460.1
usAfsguug(Agn)uccauaGfaUfucagasasg
300
CUUCUGAAUCUAUGGAUCAACUA
565





AD-366365.1
A-710461.1
csusgaauCfuAfUfGfgaucaacuauL96
 36
A-710462.1
asUfsaguu(Ggn)auccauAfgAfuucagsasa
301
UUCUGAAUCUAUGGAUCAACUAC
566





AD-366366.1
A-710463.1
usgsaaucUfaUfGfGfaucaacuacuL96
 37
A-710464.1
asGfsuagu(Tgn)gauccaUfaGfauucasgsa
302
UCUGAAUCUAUGGAUCAACUACU
567





AD-366367.1
A-710465.1
gsasaucuAfuGfGfAfucaacuacuaL96
 38
A-710466.1
usAfsguag(Tgn)ugauccAfuAfgauucsasg
303
CUGAAUCUAUGGAUCAACUACUA
568





AD-366368.1
A-710467.1
asasucuaUfgGfAfUfcaacuacuaaL96
 39
A-710468.1
usUfsagua(Ggn)uugaucCfaUfagauuscsa
304
UGAAUCUAUGGAUCAACUACUAA
569





AD-366369.1
A-710469.1
asuscuauGfgAfUfCfaacuacuaaaL96
 40
A-710470.1
usUfsuagu(Agn)guugauCfcAfuagaususc
305
GAAUCUAUGGAUCAACUACUAAA
570





AD-366772.1
A-711275.1
usasuaccCfaAfUfAfccuaugacguL96
 41
A-711276.1
asCfsguca(Tgn)agguauUfgGfguauasasa
306
UUUAUACCCAAUACCUAUGACGC
571





AD-366815.1
A-711361.1
gsascauaUfaGfAfGfcaguaccaaaL96
 42
A-711362.1
usUfsuggu(Agn)cugcucUfaUfaugucsusu
307
AAGACAUAUAGAGCAGUACCAAA
572





AD-366818.1
A-711367.1
asusauagAfgCfAfGfuaccaaauauL96
 43
A-711368.1
asUfsauuu(Ggn)guacugCfuCfuauausgsu
308
ACAUAUAGAGCAGUACCAAAUAU
573





AD-366819.1
A-711369.1
usasuagaGfcAfGfUfaccaaauauuL96
 44
A-711370.1
asAfsuauu(Tgn)gguacuGfcUfcuauasusg
309
CAUAUAGAGCAGUACCAAAUAUG
574





AD-366820.1
A-711371.1
asusagagCfaGfUfAfccaaauauguL96
 45
A-711372.1
asCfsauau(Tgn)ugguacUfgCfucuausasu
310
AUAUAGAGCAGUACCAAAUAUGC
575





AD-366822.1
A-711375.1
asgsagcaGfuAfCfCfaaauaugccuL96
 46
A-711376.1
asGfsgcau(Agn)uuugguAfcUfgcucusasu
311
AUAGAGCAGUACCAAAUAUGCCC
576





AD-367069.1
A-711869.1
usgsucccAfaAfUfUfaccauacaauL96
 47
A-711870.1
asUfsugua(Tgn)gguaauUfuGfggacasusg
312
CAUGUCCCAAAUUACCAUACAAC
577





AD-367071.1
A-711873.1
uscsccaaAfuUfAfCfcauacaacaaL96
 48
A-711874.1
usUfsguug(Tgn)augguaAfuUfugggascsa
313
UGUCCCAAAUUACCAUACAACAA
578





AD-367098.1
A-711927.1
asasgcccUfuCfUfUfucuacuuuguL96
 49
A-711928.1
asCfsaaag(Tgn)agaaagAfaGfggcuusgsu
314
ACAAGCCCUUCUUUCUACUUUGC
579





AD-367101.1
A-711933.1
cscscuucUfuUfCfUfacuuugccauL96
 50
A-711934.1
asUfsggca(Agn)aguagaAfaGfaagggscsu
315
AGCCCUUCUUUCUACUUUGCCAU
580





AD-367102.1
A-711935.1
cscsuucuUfuCfUfAfcuuugccauuL96
 51
A-711936.1
asAfsuggc(Agn)aaguagAfaAfgaaggsgsc
316
GCCCUUCUUUCUACUUUGCCAUU
581





AD-367103.1
A-711937.1
csusucuuUfcUfAfCfuuugccauuuL96
 52
A-711938.1
asAfsaugg(Cgn)aaaguaGfaAfagaagsgsg
317
CCCUUCUUUCUACUUUGCCAUUU
582





AD-367104.1
A-711939.1
ususcuuuCfuAfCfUfuugccauuucL96
 53
A-711940.1
gsAfsaaug(Ggn)caaaguAfgAfaagaasgsg
318
CCUUCUUUCUACUUUGCCAUUUC
583





AD-367105.1
A-711941.1
uscsuuucUfaCfUfUfugccauuucuL96
 54
A-711942.1
asGfsaaau(Ggn)gcaaagUfaGfaaagasasg
319
CUUCUUUCUACUUUGCCAUUUCC
584





AD-367106.1
A-711943.1
csusuucuAfcUfUfUfgccauuuccaL96
 55
A-711944.1
usGfsgaaa(Tgn)ggcaaaGfuAfgaaagsasa
320
UUCUUUCUACUUUGCCAUUUCCA
585





AD-367107.1
A-711945.1
ususucuaCfuUfUfGfccauuuccauL96
 56
A-711946.1
asUfsggaa(Agn)uggcaaAfgUfagaaasgsa
321
UCUUUCUACUUUGCCAUUUCCAC
586





AD-367108.1
A-711947.1
ususcuacUfuUfGfCfcauuuccacuL96
 57
A-711948.1
asGfsugga(Agn)auggcaAfaGfuagaasasg
322
CUUUCUACUUUGCCAUUUCCACG
587





AD-367438.1
A-712607.1
csasuguaCfaGfUfCfaggaaugguuL96
 58
A-712608.1
asAfsccau(Tgn)ccugacUfgUfacaugsasg
323
CUCAUGUACAGUCAGGAAUGGUU
588





AD-367439.1
A-712609.1
asusguacAfgUfCfAfggaaugguuuL96
 59
A-712610.1
asAfsacca(Tgn)uccugaCfuGfuacausgsa
324
UCAUGUACAGUCAGGAAUGGUUC
589





AD-367440.1
A-712611.1
usgsuacaGfuCfAfGfgaaugguucuL96
 60
A-712612.1
asGfsaacc(Agn)uuccugAfcUfguacasusg
325
CAUGUACAGUCAGGAAUGGUUCC
590





AD-367448.1
A-712627.1
csasggaaUfgGfUfUfccuucucauuL96
 61
A-712628.1
asAfsugag(Agn)aggaacCfaUfuccugsasc
326
GUCAGGAAUGGUUCCUUCUCAUC
591





AD-367451.1
A-712633.1
gsasauggUfuCfCfUfucucauccaaL96
 62
A-712634.1
usUfsggau(Ggn)agaaggAfaCfcauucscsu
327
AGGAAUGGUUCCUUCUCAUCCAA
592





AD-367453.1
A-712637.1
asusgguuCfcUfUfCfucauccaacuL96
 63
A-712638.1
asGfsuugg(Agn)ugagaaGfgAfaccaususc
328
GAAUGGUUCCUUCUCAUCCAACU
593





AD-367454.1
A-712639.1
usgsguucCfuUfCfUfcauccaacuuL96
 64
A-712640.1
asAfsguug(Ggn)augagaAfgGfaaccasusu
329
AAUGGUUCCUUCUCAUCCAACUG
594





AD-367456.1
A-712643.1
gsusuccuUfcUfCfAfuccaacugcuL96
 65
A-712644.1
asGfscagu(Tgn)ggaugaGfaAfggaacscsa
330
UGGUUCCUUCUCAUCCAACUGCC
595





AD-367477.1
A-712685.1
csasugcgCfcAfAfUfgaugcuaauuL96
 66
A-712686.1
asAfsuuag(Cgn)aucauuGfgCfgcaugsgsg
331
CCCAUGCGCCAAUGAUGCUAAUG
596





AD-367480.1
A-712691.1
gscsgccaAfuGfAfUfgcuaaugacuL96
 67
A-712692.1
asGfsucau(Tgn)agcaucAfuUfggcgcsasu
332
AUGCGCCAAUGAUGCUAAUGACG
597





AD-367482.1
A-712695.1
gscscaauGfaUfGfCfuaaugacgauL96
 68
A-712696.1
asUfscguc(Agn)uuagcaUfcAfuuggcsgsc
333
GCGCCAAUGAUGCUAAUGACGAC
598





AD-367483.1
A-712697.1
cscsaaugAfuGfCfUfaaugacgacaL96
 69
A-712698.1
usGfsucgu(Cgn)auuagcAfuCfauuggscsg
334
CGCCAAUGAUGCUAAUGACGACA
599





AD-367486.1
A-712703.1
asusgaugCfuAfAfUfgacgacacauL96
 70
A-712704.1
asUfsgugu(Cgn)gucauuAfgCfaucaususg
335
CAAUGAUGCUAAUGACGACACAG
600





AD-367487.1
A-712705.1
usgsaugcUfaAfUfGfacgacacaguL96
 71
A-712706.1
asCfsugug(Tgn)cgucauUfaGfcaucasusu
336
AAUGAUGCUAAUGACGACACAGC
601





AD-367513.1
A-712757.1
csgscucaAfaGfUfGfcacuacagcuL96
 72
A-712758.1
asGfscugu(Agn)gugcacUfuUfgagcgsasg
337
CUCGCUCAAAGUGCACUACAGCC
602





AD-367530.1
A-712791.1
asgscccaUfuCfCfAfgucucgacaaL96
 73
A-712792.1
usUfsgucg(Agn)gacuggAfaUfgggcusgsu
338
ACAGCCCAUUCCAGUCUCGACAA
603





AD-367532.1
A-712795.1
cscscauuCfcAfGfUfcucgacaacaL96
 74
A-712796.1
usGfsuugu(Cgn)gagacuGfgAfaugggscsu
339
AGCCCAUUCCAGUCUCGACAACA
604





AD-367571.1
A-712873.1
csasccacCfaAfCfAfgcaguuguaaL96
 75
A-712874.1
usUfsacaa(Cgn)ugcuguUfgGfuggugsgsg
340
CCCACCACCAACAGCAGUUGUAA
605





AD-367572.1
A-712875.1
ascscaccAfaCfAfGfcaguuguaauL96
 76
A-712876.1
asUfsuaca(Agn)cugcugUfuGfguggusgsg
341
CCACCACCAACAGCAGUUGUAAG
606





AD-367573.1
A-712877.1
cscsaccaAfcAfGfCfaguuguaaguL96
 77
A-712878.1
asCfsuuac(Agn)acugcuGfuUfgguggsusg
342
CACCACCAACAGCAGUUGUAAGG
607





AD-367575.1
A-712881.1
ascscaacAfgCfAfGfuuguaaggcuL96
 78
A-712882.1
asGfsccuu(Agn)caacugCfuGfuuggusgsg
343
CCACCAACAGCAGUUGUAAGGCU
608





AD-367577.1
A-712885.1
csasacagCfaGfUfUfguaaggcuguL96
 79
A-712886.1
asCfsagcc(Tgn)uacaacUfgCfuguugsgsu
344
ACCAACAGCAGUUGUAAGGCUGC
609





AD-367630.1
A-712991.1
csusucuaCfuGfCfUfucuaccaacuL96
 80
A-712992.1
asGfsuugg(Tgn)agaagcAfgUfagaagsgsg
345
CCCUUCUACUGCUUCUACCAACU
610





AD-367632.1
A-712995.1
uscsuacuGfcUfUfCfuaccaacuguL96
 81
A-712996.1
asCfsaguu(Ggn)guagaaGfcAfguagasasg
346
CUUCUACUGCUUCUACCAACUGG
611





AD-367633.1
A-712997.1
csusacugCfuUfCfUfaccaacuggaL96
 82
A-712998.1
usCfscagu(Tgn)gguagaAfgCfaguagsasa
347
UUCUACUGCUUCUACCAACUGGA
612





AD-367636.1
A-713003.1
csusgcuuCfuAfCfCfaacuggaaguL96
 83
A-713004.1
asCfsuucc(Agn)guugguAfgAfagcagsusa
348
UACUGCUUCUACCAACUGGAAGC
613





AD-367646.1
A-713023.1
csasacugGfaAfGfCfacagaaaacuL96
 84
A-713024.1
asGfsuuuu(Cgn)ugugcuUfcCfaguugsgsu
349
ACCAACUGGAAGCACAGAAAACU
614





AD-367685.1
A-713101.1
ususgauuUfcUfUfGfuaacauccaaL96
 85
A-713102.1
usUfsggau(Ggn)uuacaaGfaAfaucaascsa
350
UGUUGAUUUCUUGUAACAUCCAA
615





AD-367688.1
A-713107.1
asusuucuUfgUfAfAfcauccaauauL96
 86
A-713108.1
asUfsauug(Ggn)auguuaCfaAfgaaauscsa
351
UGAUUUCUUGUAACAUCCAAUAG
616





AD-367690.1
A-713111.1
ususcuugUfaAfCfAfuccaauaggaL96
 87
A-713112.1
usCfscuau(Tgn)ggauguUfaCfaagaasasu
352
AUUUCUUGUAACAUCCAAUAGGA
617





AD-367691.1
A-713113.1
uscsuuguAfaCfAfUfccaauaggaaL96
 88
A-713114.1
usUfsccua(Tgn)uggaugUfuAfcaagasasa
353
UUUCUUGUAACAUCCAAUAGGAA
618





AD-367694.1
A-713119.1
usgsuaacAfuCfCfAfauaggaauguL96
 89
A-713120.1
asCfsauuc(Cgn)uauuggAfuGfuuacasasg
354
CUUGUAACAUCCAAUAGGAAUGC
619





AD-367696.1
A-713123.1
usasacauCfcAfAfUfaggaaugcuaL96
 90
A-713124.1
usAfsgcau(Tgn)ccuauuGfgAfuguuascsa
355
UGUAACAUCCAAUAGGAAUGCUA
620





AD-367697.1
A-713125.1
asascaucCfaAfUfAfggaaugcuaaL96
 91
A-713126.1
usUfsagca(Tgn)uccuauUfgGfauguusasc
356
GUAACAUCCAAUAGGAAUGCUAA
621





AD-367698.1
A-713127.1
ascsauccAfaUfAfGfgaaugcuaauL96
 92
A-713128.1
asUfsuagc(Agn)uuccuaUfuGfgaugususa
357
UAACAUCCAAUAGGAAUGCUAAC
622





AD-367699.1
A-713129.1
csasuccaAfuAfGfGfaaugcuaacaL96
 93
A-713130.1
usGfsuuag(Cgn)auuccuAfuUfggaugsusu
358
AACAUCCAAUAGGAAUGCUAACA
623





AD-367704.1
A-713139.1
asasuaggAfaUfGfCfuaacaguucaL96
 94
A-713140.1
usGfsaacu(Ggn)uuagcaUfuCfcuauusgsg
359
CCAAUAGGAAUGCUAACAGUUCA
624





AD-367705.1
A-713141.1
asusaggaAfuGfCfUfaacaguucauL96
 95
A-713142.1
asUfsgaac(Tgn)guuagcAfuUfccuaususg
360
CAAUAGGAAUGCUAACAGUUCAC
625





AD-367706.1
A-713143.1
usasggaaUfgCfUfAfacaguucacuL96
 96
A-713144.1
asGfsugaa(Cgn)uguuagCfaUfuccuasusu
361
AAUAGGAAUGCUAACAGUUCACU
626





AD-367707.1
A-713145.1
asgsgaauGfcUfAfAfcaguucacuuL96
 97
A-713146.1
asAfsguga(Agn)cuguuaGfcAfuuccusasu
362
AUAGGAAUGCUAACAGUUCACUU
627





AD-367708.1
A-713147.1
gsgsaaugCfuAfAfCfaguucacuuuL96
 98
A-713148.1
asAfsagug(Agn)acuguuAfgCfauuccsusa
363
UAGGAAUGCUAACAGUUCACUUG
628





AD-367709.1
A-713149.1
gsasaugcUfaAfCfAfguucacuuguL96
 99
A-713150.1
asCfsaagu(Ggn)aacuguUfaGfcauucscsu
364
AGGAAUGCUAACAGUUCACUUGC
629





AD-367713.1
A-713157.1
gscsuaacAfgUfUfCfacuugcaguuL96
100
A-713158.1
asAfscugc(Agn)agugaaCfuGfuuagcsasu
365
AUGCUAACAGUUCACUUGCAGUG
630





AD-367718.1
A-713167.1
csasguucAfcUfUfGfcaguggaagaL96
101
A-713168.1
usCfsuucc(Agn)cugcaaGfuGfaacugsusu
366
AACAGUUCACUUGCAGUGGAAGA
631





AD-367745.1
A-713221.1
gsasccgaGfuAfGfAfggcauuuaguL96
102
A-713222.1
asCfsuaaa(Tgn)gccucuAfcUfcggucscsa
367
UGGACCGAGUAGAGGCAUUUAGG
632





AD-367746.1
A-713223.1
ascscgagUfaGfAfGfgcauuuaggaL96
103
A-713224.1
usCfscuaa(Agn)ugccucUfaCfucgguscsc
368
GGACCGAGUAGAGGCAUUUAGGA
633





AD-367755.1
A-713241.1
gsgscuauUfcCfAfUfaauuccauauL96
104
A-713242.1
asUfsaugg(Agn)auuaugGfaAfuagccscsc
369
GGGGCUAUUCCAUAAUUCCAUAU
634





AD-367792.1
A-713315.1
usgsccgaAfaCfUfGfgaaguuauuuL96
105
A-713316.1
asAfsauaa(Cgn)uuccagUfuUfcggcasasg
370
CUUGCCGAAACUGGAAGUUAUUU
635





AD-367794.1
A-713319.1
cscsgaaaCfuGfGfAfaguuauuuauL96
106
A-713320.1
asUfsaaau(Agn)acuuccAfgUfuucggscsa
371
UGCCGAAACUGGAAGUUAUUUAU
636





AD-367795.1
A-713321.1
csgsaaacUfgGfAfAfguuauuuauuL96
107
A-713322.1
asAfsuaaa(Tgn)aacuucCfaGfuuucgsgsc
372
GCCGAAACUGGAAGUUAUUUAUU
637





AD-367796.1
A-713323.1
gsasaacuGfgAfAfGfuuauuuauuuL96
108
A-713324.1
asAfsauaa(Agn)uaacuuCfcAfguuucsgsg
373
CCGAAACUGGAAGUUAUUUAUUU
638





AD-367797.1
A-713325.1
asasacugGfaAfGfUfuauuuauuuuL96
109
A-713326.1
asAfsaaua(Agn)auaacuUfcCfaguuuscsg
374
CGAAACUGGAAGUUAUUUAUUUU
639





AD-367801.1
A-713333.1
usasauaaCfcCfUfUfgaaagucauuL96
110
A-713334.1
asAfsugac(Tgn)uucaagGfgUfuauuasasa
375
UUUAAUAACCCUUGAAAGUCAUG
640





AD-367802.1
A-713335.1
asasuaacCfcUfUfGfaaagucaugaL96
111
A-713336.1
usCfsauga(Cgn)uuucaaGfgGfuuauusasa
376
UUAAUAACCCUUGAAAGUCAUGA
641





AD-367805.1
A-713341.1
asascccuUfgAfAfAfgucaugaacaL96
112
A-713342.1
usGfsuuca(Tgn)gacuuuCfaAfggguusasu
377
AUAACCCUUGAAAGUCAUGAACA
642





AD-367809.1
A-713349.1
csusugaaAfgUfCfAfugaacacauuL96
113
A-713350.1
asAfsugug(Tgn)ucaugaCfuUfucaagsgsg
378
CCCUUGAAAGUCAUGAACACAUC
643





AD-367815.1
A-713361.1
asgsucauGfaAfCfAfcaucagcuauL96
114
A-713362.1
asUfsagcu(Ggn)auguguUfcAfugacususu
379
AAAGUCAUGAACACAUCAGCUAG
644





AD-367816.1
A-713363.1
gsuscaugAfaCfAfCfaucagcuaguL96
115
A-713364.1
asCfsuagc(Tgn)gaugugUfuCfaugacsusu
380
AAGUCAUGAACACAUCAGCUAGC
645





AD-367817.1
A-713365.1
uscsaugaAfcAfCfAfucagcuagcaL96
116
A-713366.1
usGfscuag(Cgn)ugauguGfuUfcaugascsu
381
AGUCAUGAACACAUCAGCUAGCA
646





AD-367818.1
A-713367.1
csasugaaCfaCfAfUfcagcuagcaaL96
117
A-713368.1
usUfsgcua(Ggn)cugaugUfgUfucaugsasc
382
GUCAUGAACACAUCAGCUAGCAA
647





AD-367819.1
A-713369.1
asusgaacAfcAfUfCfagcuagcaaaL96
118
A-713370.1
usUfsugcu(Agn)gcugauGfuGfuucausgsa
383
UCAUGAACACAUCAGCUAGCAAA
648





AD-367819.2
A-713369.1
asusgaacAfcAfUfCfagcuagcaaaL96
119
A-713370.1
usUfsugcu(Agn)gcugauGfuGfuucausgsa
384
UCAUGAACACAUCAGCUAGCAAA
649





AD-367820.1
A-713371.1
usgsaacaCfaUfCfAfgcuagcaaaaL96
120
A-713372.1
usUfsuugc(Tgn)agcugaUfgUfguucasusg
385
CAUGAACACAUCAGCUAGCAAAA
650





AD-367821.1
A-713373.1
gsasacacAfuCfAfGfcuagcaaaauL96
121
A-713374.1
asUfsuuug(Cgn)uagcugAfuGfuguucsasu
386
AUGAACACAUCAGCUAGCAAAAG
651





AD-367822.1
A-713375.1
asascacaUfcAfGfCfuagcaaaagaL96
122
A-713376.1
usCfsuuuu(Ggn)cuagcuGfaUfguguuscsa
387
UGAACACAUCAGCUAGCAAAAGA
652





AD-367826.1
A-713383.1
csasucagCfuAfGfCfaaaagaaguaL96
123
A-713384.1
usAfscuuc(Tgn)uuugcuAfgCfugaugsusg
388
CACAUCAGCUAGCAAAAGAAGUA
653





AD-367832.1
A-713395.1
csusagcaAfaAfGfAfaguaacaagaL96
124
A-713396.1
usCfsuugu(Tgn)acuucuUfuUfgcuagscsu
389
AGCUAGCAAAAGAAGUAACAAGA
654





AD-367844.1
A-713419.1
gsusaacaAfgAfGfUfgauucuugcuL96
125
A-713420.1
asGfscaag(Agn)aucacuCfuUfguuacsusu
390
AAGUAACAAGAGUGAUUCUUGCU
655





AD-367845.1
A-713421.1
usasacaaGfaGfUfGfauucuugcuuL96
126
A-713422.1
asAfsgcaa(Ggn)aaucacUfcUfuguuascsu
391
AGUAACAAGAGUGAUUCUUGCUG
656





AD-367846.1
A-713423.1
asascaagAfgUfGfAfuucuugcuguL96
127
A-713424.1
asCfsagca(Agn)gaaucaCfuCfuuguusasc
392
GUAACAAGAGUGAUUCUUGCUGC
657





AD-367850.1
A-713431.1
asgsagugAfuUfCfUfugcugcuauuL96
128
A-713432.1
asAfsuagc(Agn)gcaagaAfuCfacucususg
393
CAAGAGUGAUUCUUGCUGCUAUU
658





AD-367851.1
A-713433.1
gsasgugaUfuCfUfUfgcugcuauuaL96
129
A-713434.1
usAfsauag(Cgn)agcaagAfaUfcacucsusu
394
AAGAGUGAUUCUUGCUGCUAUUA
659





AD-367853.1
A-713437.1
gsusgauuCfuUfGfCfugcuauuacuL96
130
A-713438.1
asGfsuaau(Agn)gcagcaAfgAfaucacsusc
395
GAGUGAUUCUUGCUGCUAUUACU
660





AD-367872.1
A-713475.1
ususggaaCfgCfCfCfuuuuacuaaaL96
131
A-713476.1
usUfsuagu(Agn)aaagggCfgUfuccaasgsu
396
ACUUGGAACGCCCUUUUACUAAA
661





AD-367873.1
A-713477.1
usgsgaacGfcCfCfUfuuuacuaaauL96
132
A-713478.1
asUfsuuag(Tgn)aaaaggGfcGfuuccasasg
397
CUUGGAACGCCCUUUUACUAAAC
662





AD-367875.1
A-713481.1
gsasacgcCfcUfUfUfuacuaaacuuL96
133
A-713482.1
asAfsguuu(Agn)guaaaaGfgGfcguucscsa
398
UGGAACGCCCUUUUACUAAACUU
663





AD-367876.1
A-713483.1
asascgccCfuUfUfUfacuaaacuuuL96
134
A-713484.1
asAfsaguu(Tgn)aguaaaAfgGfgcguuscsc
399
GGAACGCCCUUUUACUAAACUUG
664





AD-367877.1
A-713485.1
ascsgcccUfuUfUfAfcuaaacuugaL96
135
A-713486.1
usCfsaagu(Tgn)uaguaaAfaGfggcgususc
400
GAACGCCCUUUUACUAAACUUGA
665





AD-367878.1
A-713487.1
csgscccuUfuUfAfCfuaaacuugauL96
136
A-713488.1
asUfscaag(Tgn)uuaguaAfaAfgggcgsusu
401
AACGCCCUUUUACUAAACUUGAC
666





AD-367902.1
A-713535.1
gsusuucaGfuAfAfAfuucuuaccguL96
137
A-713536.1
asCfsggua(Agn)gaauuuAfcUfgaaacsusu
402
AAGUUUCAGUAAAUUCUUACCGU
667





AD-367903.1
A-713537.1
ususucagUfaAfAfUfucuuaccguuL96
138
A-713538.1
asAfscggu(Agn)agaauuUfaCfugaaascsu
403
AGUUUCAGUAAAUUCUUACCGUC
668





AD-367904.1
A-713539.1
ususcaguAfaAfUfUfcuuaccgucaL96
139
A-713540.1
usGfsacgg(Tgn)aagaauUfuAfcugaasasc
404
GUUUCAGUAAAUUCUUACCGUCA
669





AD-367905.1
A-713541.1
uscsaguaAfaUfUfCfuuaccgucaaL96
140
A-713542.1
usUfsgacg(Ggn)uaagaaUfuUfacugasasa
405
UUUCAGUAAAUUCUUACCGUCAA
670





AD-367906.1
A-713543.1
csasguaaAfuUfCfUfuaccgucaaaL96
141
A-713544.1
usUfsugac(Ggn)guaagaAfuUfuacugsasa
406
UUCAGUAAAUUCUUACCGUCAAA
671





AD-367907.1
A-713545.1
asgsuaaaUfuCfUfUfaccgucaaauL96
142
A-713546.1
asUfsuuga(Cgn)gguaagAfaUfuuacusgsa
407
UCAGUAAAUUCUUACCGUCAAAC
672





AD-367908.1
A-713547.1
gsusaaauUfcUfUfAfccgucaaacuL96
143
A-713548.1
asGfsuuug(Agn)cgguaaGfaAfuuuacsusg
408
CAGUAAAUUCUUACCGUCAAACU
673





AD-367909.1
A-713549.1
usasaauuCfuUfAfCfcgucaaacuuL96
144
A-713550.1
asAfsguuu(Ggn)acgguaAfgAfauuuascsu
409
AGUAAAUUCUUACCGUCAAACUG
674





AD-367910.1
A-713551.1
asasauucUfuAfCfCfgucaaacugaL96
145
A-713552.1
usCfsaguu(Tgn)gacgguAfaGfaauuusasc
410
GUAAAUUCUUACCGUCAAACUGA
675





AD-367911.1
A-713553.1
asasuucuUfaCfCfGfucaaacugauL96
146
A-713554.1
asUfscagu(Tgn)ugacggUfaAfgaauususa
411
UAAAUUCUUACCGUCAAACUGAC
676





AD-367912.1
A-713555.1
asusucuuAfcCfGfUfcaaacugacuL96
147
A-713556.1
asGfsucag(Tgn)uugacgGfuAfagaaususu
412
AAAUUCUUACCGUCAAACUGACG
677





AD-367913.1
A-713557.1
ususcuuaCfcGfUfCfaaacugacguL96
148
A-713558.1
asCfsguca(Ggn)uuugacGfgUfaagaasusu
413
AAUUCUUACCGUCAAACUGACGG
678





AD-367914.1
A-713559.1
uscsuuacCfgUfCfAfaacugacggaL96
149
A-713560.1
usCfscguc(Agn)guuugaCfgGfuaagasasu
414
AUUCUUACCGUCAAACUGACGGA
679





AD-367915.1
A-713561.1
csusuaccGfuCfAfAfacugacggauL96
150
A-713562.1
asUfsccgu(Cgn)aguuugAfcGfguaagsasa
415
UUCUUACCGUCAAACUGACGGAU
680





AD-367916.1
A-713563.1
ususaccgUfcAfAfAfcugacggauuL96
151
A-713564.1
asAfsuccg(Tgn)caguuuGfaCfgguaasgsa
416
UCUUACCGUCAAACUGACGGAUU
681





AD-367917.1
A-713565.1
usasccguCfaAfAfCfugacggauuaL96
152
A-713566.1
usAfsaucc(Ggn)ucaguuUfgAfcgguasasg
417
CUUACCGUCAAACUGACGGAUUA
682





AD-367918.1
A-713567.1
ascscgucAfaAfCfUfgacggauuauL96
153
A-713568.1
asUfsaauc(Cgn)gucaguUfuGfacggusasa
418
UUACCGUCAAACUGACGGAUUAU
683





AD-367925.1
A-713581.1
asascugaCfgGfAfUfuauuauuuauL96
154
A-713582.1
asUfsaaau(Agn)auaaucCfgUfcaguususg
419
CAAACUGACGGAUUAUUAUUUAU
684





AD-367950.1
A-713631.1
asgsuuugAfuGfAfGfgugaucacuuL96
155
A-713632.1
asAfsguga(Tgn)caccucAfuCfaaacususg
420
CAAGUUUGAUGAGGUGAUCACUG
685





AD-367967.1
A-713665.1
ascsugucUfaCfAfGfugguucaacuL96
156
A-713666.1
asGfsuuga(Agn)ccacugUfaGfacagusgsa
421
UCACUGUCUACAGUGGUUCAACU
686





AD-367968.1
A-713667.1
csusgucuAfcAfGfUfgguucaacuuL96
157
A-713668.1
asAfsguug(Agn)accacuGfuAfgacagsusg
422
CACUGUCUACAGUGGUUCAACUU
687





AD-367972.1
A-713675.1
csusacagUfgGfUfUfcaacuuuuaaL96
158
A-713676.1
usUfsaaaa(Ggn)uugaacCfaCfuguagsasc
423
GUCUACAGUGGUUCAACUUUUAA
688





AD-367973.1
A-713677.1
usascaguGfgUfUfCfaacuuuuaauL96
159
A-713678.1
asUfsuaaa(Agn)guugaaCfcAfcuguasgsa
424
UCUACAGUGGUUCAACUUUUAAG
689





AD-367982.1
A-713695.1
uscsaacuUfuUfAfAfguuaagggaaL96
160
A-713696.1
usUfscccu(Tgn)aacuuaAfaAfguugasasc
425
GUUCAACUUUUAAGUUAAGGGAA
690





AD-367984.1
A-713699.1
asascuuuUfaAfGfUfuaagggaaaaL96
161
A-713700.1
usUfsuucc(Cgn)uuaacuUfaAfaaguusgsa
426
UCAACUUUUAAGUUAAGGGAAAA
691





AD-368001.1
A-713733.1
asasaaacUfuUfUfAfcuuuguagauL96
162
A-713734.1
asUfscuac(Agn)aaguaaAfaGfuuuuuscsc
427
GGAAAAACUUUUACUUUGUAGAU
692





AD-385489.1
A-748537.1
cscsucagCfcUfAfCfgauuucuuuuL96
163
A-748538.1
asAfsaaga(Agn)aucguaGfgCfugaggscsa
428
UGCCUCAGCCUACGAUUUCUUUU
693





AD-385490.1
A-748539.1
csuscagcCfuAfCfGfauuucuuuugL96
164
A-748540.1
csAfsaaag(Agn)aaucguAfgGfcugagsgsc
429
GCCUCAGCCUACGAUUUCUUUUG
694





AD-385491.1
A-748541.1
uscsagccUfaCfGfAfuuucuuuugaL96
165
A-748542.1
usCfsaaaa(Ggn)aaaucgUfaGfgcugasgsg
430
CCUCAGCCUACGAUUUCUUUUGA
695





AD-385513.1
A-707765.1
gsasggauGfgUfUfCfauauacuuauL96
166
A-748584.1
asUfsaagu(Agn)uaugaaCfcAfuccucsasc
431
ATGAGGATGGTTCATATACTTAC
696





AD-385515.1
A-707841.1
asasugugAfaGfUfAfcaagugaaaaL96
167
A-748586.1
usUfsuuca(Cgn)uuguacUfuCfacauususc
432
CAAATGTGAAGTACAAGTGAAAA
697





AD-385521.1
A-748597.1
asgsgaugGfuUfCfAfuauacuuacuL96
168
A-748598.1
asGfsuaag(Tgn)auaugaAfcCfauccuscsa
433
UGAGGAUGGUUCAUAUACUUACG
698





AD-385557.1
A-748669.1
gsusgaagUfaCfAfAfgugaaaaacuL96
169
A-748670.1
asGfsuuuu(Tgn)cacuugUfaCfuucacsasu
434
AUGUGAAGUACAAGUGAAAAACG
699





AD-385589.1
A-748731.1
asasggagUfuUfUfUfaaaacauacaL96
170
A-748732.1
usGfsuaug(Tgn)uuuaaaAfaCfuccuuscsa
435
UGAAGGAGUUUUUAAAACAUACA
700





AD-385590.1
A-748733.1
asgsgaguUfuUfUfAfaaacauacauL96
171
A-748734.1
asUfsguau(Ggn)uuuuaaAfaAfcuccususc
436
GAAGGAGUUUUUAAAACAUACAG
701





AD-385601.1
A-748755.1
asasacauAfcAfGfUfccuaaguguuL96
172
A-748756.1
asAfscacu(Tgn)aggacuGfuAfuguuususa
437
UAAAACAUACAGUCCUAAGUGUG
702





AD-385602.1
A-748757.1
asascauaCfaGfUfCfcuaagugugaL96
173
A-748758.1
usCfsacac(Tgn)uaggacUfgUfauguususu
438
AAAACAUACAGUCCUAAGUGUGA
703





AD-385603.1
A-748759.1
ascsauacAfgUfCfCfuaagugugauL96
174
A-748760.1
asUfscaca(Cgn)uuaggaCfuGfuaugususu
439
AAACAUACAGUCCUAAGUGUGAC
704





AD-385640.1
A-748829.1
gscsugcaCfaUfGfAfgaaaaguacaL96
175
A-748830.1
usGfsuacu(Tgn)uucucaUfgUfgcagcsasu
440
AUGCUGCACAUGAGAAAAGUACA
705





AD-385641.1
A-748831.1
csusgcacAfuGfAfGfaaaaguacauL96
176
A-748832.1
asUfsguac(Tgn)uuucucAfuGfugcagscsa
441
UGCUGCACAUGAGAAAAGUACAG
706





AD-385660.1
A-748869.1
asusggagAfgUfGfUfuuuguucaaaL96
177
A-748870.1
usUfsugaa(Cgn)aaaacaCfuCfuccaususa
442
UAAUGGAGAGUGUUUUGUUCAAA
707





AD-385662.1
A-748873.1
gsgsagagUfgUfUfUfuguucaaauuL96
178
A-748874.1
asAfsuuug(Agn)acaaaaCfaCfucuccsasu
443
AUGGAGAGUGUUUUGUUCAAAUG
708





AD-385671.1
A-748891.1
ususuguuCfaAfAfUfgcucagacuuL96
179
A-748892.1
asAfsgucu(Ggn)agcauuUfgAfacaaasasc
444
GUUUUGUUCAAAUGCUCAGACUU
709





AD-385675.1
A-748897.1
usgsuucaAfaUfGfCfucagacuucuL96
180
A-748898.1
asGfsaagu(Cgn)ugagcaUfuUfgaacasasa
445
UUUGUUCAAAUGCUCAGACUUCG
710





AD-385676.1
A-748899.1
gsusucaaAfuGfCfUfcagacuucguL96
181
A-748900.1
asCfsgaag(Tgn)cugagcAfuUfugaacsasa
446
UUGUUCAAAUGCUCAGACUUCGU
711





AD-385677.1
A-748901.1
ususcaaaUfgCfUfCfagacuucguuL96
182
A-748902.1
asAfscgaa(Ggn)ucugagCfaUfuugaascsa
447
UGUUCAAAUGCUCAGACUUCGUU
712





AD-385678.1
A-748903.1
uscsaaauGfcUfCfAfgacuucguuuL96
183
A-748904.1
asAfsacga(Agn)gucugaGfcAfuuugasasc
448
GUUCAAAUGCUCAGACUUCGUUG
713





AD-385679.1
A-748905.1
csasaaugCfuCfAfGfacuucguuguL96
184
A-748906.1
asCfsaacg(Agn)agucugAfgCfauuugsasa
449
UUCAAAUGCUCAGACUUCGUUGU
714





AD-385680.1
A-748907.1
asasaugcUfcAfGfAfcuucguuguuL96
185
A-748908.1
asAfscaac(Ggn)aagucuGfaGfcauuusgsa
450
UCAAAUGCUCAGACUUCGUUGUG
715





AD-385681.1
A-748909.1
asasugcuCfaGfAfCfuucguuguguL96
186
A-748910.1
asCfsacaa(Cgn)gaagucUfgAfgcauususg
451
CAAAUGCUCAGACUUCGUUGUGG
716





AD-385834.1
A-749211.1
ascsauguUfuCfGfAfuauaaugaauL96
187
A-749212.1
asUfsucau(Tgn)auaucgAfaAfcauguscsa
452
UGACAUGUUUCGAUAUAAUGAAG
717





AD-385889.1
A-749321.1
ususuaucUfuCfAfUfauacgguucuL96
188
A-749322.1
asGfsaacc(Ggn)uauaugAfaGfauaaascsu
453
AGUUUAUCUUCAUAUACGGUUCC
718





AD-385917.1
A-749377.1
asgsggacAfaCfUfCfagaagaauuuL96
189
A-749378.1
asAfsauuc(Tgn)ucugagUfuGfucccususu
454
AAAGGGACAACUCAGAAGAAUUU
719





AD-385918.1
A-749379.1
gsgsgacaAfcUfCfAfgaagaauuucL96
190
A-749380.1
gsAfsaauu(Cgn)uucugaGfuUfgucccsusu
455
AAGGGACAACUCAGAAGAAUUUC
720





AD-385919.1
A-749381.1
gsgsacaaCfuCfAfGfaagaauuucuL96
191
A-749382.1
asGfsaaau(Tgn)cuucugAfgUfuguccscsu
456
AGGGACAACUCAGAAGAAUUUCU
721





AD-385920.1
A-749383.1
gsascaacUfcAfGfAfagaauuucuuL96
192
A-749384.1
asAfsgaaa(Tgn)ucuucuGfaGfuugucscsc
457
GGGACAACUCAGAAGAAUUUCUU
722





AD-386134.1
A-709229.1
csusucucAfcAfCfUfucagauuucaL96
193
A-749805.1
usGfsaaau(Cgn)ugaaguGfuGfagaagscsa
458
CACTTCTCACACTTCAGATTTCA
723





AD-386135.1
A-709231.1
ususcucaCfaCfUfUfcagauuucaaL96
194
A-749806.1
usUfsgaaa(Tgn)cugaagUfgUfgagaasgsc
459
ACTTCTCACACTTCAGATTTCAA
724





AD-386136.1
A-709299.1
uscsagacCfaAfAfGfaguaguuaauL96
195
A-749807.1
asUfsuaac(Tgn)acucuuUfgGfucugasgsc
460
GTTCAGACCAAAGAGTAGTTAAT
725





AD-386137.1
A-709301.1
csasgaccAfaAfGfAfguaguuaauuL96
196
A-749808.1
asAfsuuaa(Cgn)uacucuUfuGfgucugsasg
461
TTCAGACCAAAGAGTAGTTAATG
726





AD-386149.1
A-749831.1
usgscuucUfcAfCfAfcuucagauuuL96
197
A-749832.1
asAfsaucu(Ggn)aaguguGfaGfaagcasgsc
462
GCUGCUUCUCACACUUCAGAUUU
727





AD-386150.1
A-749833.1
gscsuucuCfaCfAfCfuucagauuucL96
198
A-749834.1
gsAfsaauc(Tgn)gaagugUfgAfgaagcsasg
463
CUGCUUCUCACACUUCAGAUUUC
728





AD-386254.1
A-750039.1
usasgaauUfuGfUfAfucccacaauuL96
199
A-750040.1
asAfsuugu(Ggn)ggauacAfaAfuucuasgsg
464
CCUAGAAUUUGUAUCCCACAAUC
729





AD-386255.1
A-750041.1
asgsaauuUfgUfAfUfcccacaaucuL96
200
A-750042.1
asGfsauug(Tgn)gggauaCfaAfauucusasg
465
CUAGAAUUUGUAUCCCACAAUCC
730





AD-386256.1
A-750043.1
gsasauuuGfuAfUfCfccacaauccuL96
201
A-750044.1
asGfsgauu(Ggn)ugggauAfcAfaauucsusa
466
UAGAAUUUGUAUCCCACAAUCCC
731





AD-386498.1
A-750524.1
gsusgaaaCfaUfCfAfccuagcuuuuL96
202
A-750525.1
asAfsaagc(Tgn)aggugaUfgUfuucacsusu
467
AAGUGAAACAUCACCUAGCUUUU
732





AD-386499.1
A-750526.1
usgsaaacAfuCfAfCfcuagcuuuucL96
203
A-750527.1
gsAfsaaag(Cgn)uaggugAfuGfuuucascsu
468
AGUGAAACAUCACCUAGCUUUUC
733





AD-386500.1
A-750528.1
gsasaacaUfcAfCfCfuagcuuuucaL96
204
A-750529.1
usGfsaaaa(Ggn)cuagguGfaUfguuucsasc
469
GUGAAACAUCACCUAGCUUUUCA
734





AD-386501.1
A-750530.1
asasacauCfaCfCfUfagcuuuucaaL96
205
A-750531.1
usUfsgaaa(Agn)gcuaggUfgAfuguuuscsa
470
UGAAACAUCACCUAGCUUUUCAA
735





AD-386502.1
A-750532.1
asascaucAfcCfUfAfgcuuuucaaaL96
206
A-750533.1
usUfsugaa(Agn)agcuagGfuGfauguususc
471
GAAACAUCACCUAGCUUUUCAAA
736





AD-386503.1
A-750534.1
ascsaucaCfcUfAfGfcuuuucaaaaL96
207
A-750535.1
usUfsuuga(Agn)aagcuaGfgUfgaugususu
472
AAACAUCACCUAGCUUUUCAAAA
737





AD-386504.1
A-750536.1
csasucacCfuAfGfCfuuuucaaaauL96
208
A-750537.1
asUfsuuug(Agn)aaagcuAfgGfugaugsusu
473
AACAUCACCUAGCUUUUCAAAAG
738





AD-386505.1
A-750538.1
asuscaccUfaGfCfUfuuucaaaaguL96
209
A-750539.1
asCfsuuuu(Ggn)aaaagcUfaGfgugausgsu
474
ACAUCACCUAGCUUUUCAAAAGC
739





AD-386506.1
A-750540.1
uscsaccuAfgCfUfUfuucaaaagcuL96
210
A-750541.1
asGfscuuu(Tgn)gaaaagCfuAfggugasusg
475
CAUCACCUAGCUUUUCAAAAGCU
740





AD-386507.1
A-750542.1
csasccuaGfcUfUfUfucaaaagcuuL96
211
A-750543.1
asAfsgcuu(Tgn)ugaaaaGfcUfaggugsasu
476
AUCACCUAGCUUUUCAAAAGCUG
741





AD-386508.1
A-750544.1
ascscuagCfuUfUfUfcaaaagcugaL96
212
A-750545.1
usCfsagcu(Tgn)uugaaaAfgCfuaggusgsa
477
UCACCUAGCUUUUCAAAAGCUGA
742





AD-386509.1
A-750546.1
cscsuagcUfuUfUfCfaaaagcugauL96
213
A-750547.1
asUfscagc(Tgn)uuugaaAfaGfcuaggsusg
478
CACCUAGCUUUUCAAAAGCUGAC
743





AD-386595.1
A-710459.1
uscsugaaUfcUfAfUfggaucaacuaL96
214
A-750716.1
usAfsguug(Agn)uccauaGfaUfucagasusg
479
CTTCTGAATCTATGGATCAACTA
744





AD-386596.1
A-710461.1
csusgaauCfuAfUfGfgaucaacuauL96
215
A-750717.1
asUfsaguu(Ggn)auccauAfgAfuucagsasu
480
TTCTGAATCTATGGATCAACTAC
745





AD-386617.1
A-750758.1
csasucugAfaUfCfUfauggaucaauL96
216
A-750759.1
asUfsugau(Cgn)cauagaUfuCfagaugsusa
481
UACAUCUGAAUCUAUGGAUCAAC
746





AD-386618.1
A-750760.1
asuscugaAfuCfUfAfuggaucaacuL96
217
A-750761.1
asGfsuuga(Tgn)ccauagAfuUfcagausgsu
482
ACAUCUGAAUCUAUGGAUCAACU
747





AD-386619.1
A-750762.1
asuscuauGfgAfUfCfaacuacuaauL96
218
A-750763.1
asUfsuagu(Agn)guugauCfcAfuagaususc
483
GAAUCUAUGGAUCAACUACUAAG
748





AD-386620.1
A-750764.1
uscsuaugGfaUfCfAfacuacuaaguL96
219
A-750765.1
asCfsuuag(Tgn)aguugaUfcCfauagasusu
484
AAUCUAUGGAUCAACUACUAAGC
749





AD-386621.1
A-750766.1
csusauggAfuCfAfAfcuacuaagcaL96
220
A-750767.1
usGfscuua(Ggn)uaguugAfuCfcauagsasu
485
AUCUAUGGAUCAACUACUAAGCA
750





AD-386622.1
A-750768.1
usasuggaUfcAfAfCfuacuaagcaaL96
221
A-750769.1
usUfsgcuu(Agn)guaguuGfaUfccauasgsa
486
UCUAUGGAUCAACUACUAAGCAA
751





AD-386623.1
A-750770.1
asusggauCfaAfCfUfacuaagcaaaL96
222
A-750771.1
usUfsugcu(Tgn)aguaguUfgAfuccausasg
487
CUAUGGAUCAACUACUAAGCAAA
752





AD-386624.1
A-750772.1
usgsgaucAfaCfUfAfcuaagcaaaaL96
223
A-750773.1
usUfsuugc(Tgn)uaguagUfuGfauccasusa
488
UAUGGAUCAACUACUAAGCAAAA
753





AD-386625.1
A-750774.1
gsgsaucaAfcUfAfCfuaagcaaaaaL96
224
A-750775.1
usUfsuuug(Cgn)uuaguaGfuUfgauccsasu
489
AUGGAUCAACUACUAAGCAAAAA
754





AD-386626.1
A-750776.1
gsasucaaCfuAfCfUfaagcaaaaauL96
225
A-750777.1
asUfsuuuu(Ggn)cuuaguAfgUfugaucscsa
490
UGGAUCAACUACUAAGCAAAAAU
755





AD-386647.1
A-750818.1
asasggagAfaAfAfGfucacgagauuL96
226
A-750819.1
asAfsucuc(Ggn)ugacuuUfuCfuccuuscsu
491
AGAAGGAGAAAAGUCACGAGAUU
756





AD-386848.1
A-751213.1
gsgsaguuCfaAfCfCfcucguucuuuL96
227
A-751214.1
asAfsagaa(Cgn)gaggguUfgAfacuccsusu
492
AAGGAGUUCAACCCUCGUUCUUU
757





AD-386851.1
A-751219.1
gsusucaaCfcCfUfCfguucuuucuuL96
228
A-751220.1
asAfsgaaa(Ggn)aacgagGfgUfugaacsusc
493
GAGUUCAACCCUCGUUCUUUCUC
758





AD-386852.1
A-751221.1
ususcaacCfcUfCfGfuucuuucucuL96
229
A-751222.1
asGfsagaa(Agn)gaacgaGfgGfuugaascsu
494
AGUUCAACCCUCGUUCUUUCUCU
759





AD-386853.1
A-751223.1
uscsaaccCfuCfGfUfucuuucucuuL96
230
A-751224.1
asAfsgaga(Agn)agaacgAfgGfguugasasc
495
GUUCAACCCUCGUUCUUUCUCUC
760





AD-386860.1
A-751231.1
csasacccUfcGfUfUfcuuucucucaL96
231
A-751232.1
usGfsagag(Agn)aagaacGfaGfgguugsasa
496
UUCAACCCUCGUUCUUUCUCUCA
761





AD-386861.1
A-751233.1
asascccuCfgUfUfCfuuucucucauL96
232
A-751234.1
asUfsgaga(Ggn)aaagaaCfgAfggguusgsa
497
UCAACCCUCGUUCUUUCUCUCAG
762





AD-386867.1
A-751245.1
csgsuucuUfuCfUfCfucagccaaauL96
233
A-751246.1
asUfsuugg(Cgn)ugagagAfaAfgaacgsasg
498
CUCGUUCUUUCUCUCAGCCAAAG
763





AD-386868.1
A-751247.1
gsusucuuUfcUfCfUfcagccaaaguL96
234
A-751248.1
asCfsuuug(Ggn)cugagaGfaAfagaacsgsa
499
UCGUUCUUUCUCUCAGCCAAAGC
764





AD-387208.1
A-751921.1
asgsuccuGfuCfAfUfacaagguaauL96
235
A-751922.1
asUfsuacc(Tgn)uguaugAfcAfggacusgsu
500
ACAGUCCUGUCAUACAAGGUAAU
765





AD-387209.1
A-751923.1
gsusccugUfcAfUfAfcaagguaauuL96
236
A-751924.1
asAfsuuac(Cgn)uuguauGfaCfaggacsusg
501
CAGUCCUGUCAUACAAGGUAAUG
766





AD-387213.1
A-751931.1
usgsucauAfcAfAfGfguaaugccauL96
237
A-751932.1
asUfsggca(Tgn)uaccuuGfuAfugacasgsg
502
CCUGUCAUACAAGGUAAUGCCAG
767





AD-387214.1
A-751933.1
gsuscauaCfaAfGfGfuaaugccaguL96
238
A-751934.1
asCfsuggc(Agn)uuaccuUfgUfaugacsasg
503
CUGUCAUACAAGGUAAUGCCAGG
768





AD-387303.1
A-752109.1
uscsuacuUfuGfCfCfauuuccaccuL96
239
A-752110.1
asGfsgugg(Agn)aauggcAfaAfguagasasa
504
UUUCUACUUUGCCAUUUCCACCG
769





AD-387636.1
A-752766.1
asasgcacAfgAfAfAfacuagaacuuL96
240
A-752767.1
asAfsguuc(Tgn)aguuuuCfuGfugcuuscsc
505
GGAAGCACAGAAAACUAGAACUU
770





AD-387638.1
A-752770.1
gscsacagAfaAfAfCfuagaacuucaL96
241
A-752771.1
usGfsaagu(Tgn)cuaguuUfuCfugugcsusu
506
AAGCACAGAAAACUAGAACUUCA
771





AD-387640.1
A-752774.1
ascsagaaAfaCfUfAfgaacuucauuL96
242
A-752775.1
asAfsugaa(Ggn)uucuagUfuUfucugusgsc
507
GCACAGAAAACUAGAACUUCAUU
772





AD-387641.1
A-752776.1
csasgaaaAfcUfAfGfaacuucauuuL96
243
A-752777.1
asAfsauga(Agn)guucuaGfuUfuucugsusg
508
CACAGAAAACUAGAACUUCAUUG
773





AD-387777.1
A-713323.1
gsasaacuGfgAfAfGfuuauuuauuuL96
244
A-753048.1
asAfsauaa(Agn)uaacuuCfcAfguuucsasg
509
CCGAAACTGGAAGTTATTTATTT
774





AD-387779.1
A-713361.1
asgsucauGfaAfCfAfcaucagcuauL96
245
A-753050.1
asUfsagcu(Ggn)auguguUfcAfugacuscsu
510
AAAGTCATGAACACATCAGCTAG
775





AD-387780.1
A-713363.1
gsuscaugAfaCfAfCfaucagcuaguL96
246
A-753051.1
asCfsuagc(Tgn)gaugugUfuCfaugacsusc
511
AAGTCATGAACACATCAGCTAGC
776





AD-387806.1
A-753102.1
usgscuugCfuGfAfAfacuggaaguuL96
247
A-753103.1
asAfscuuc(Cgn)aguuucAfgCfaagcasgsa
512
UCUGCUUGCUGAAACUGGAAGUU
777





AD-387812.1
A-753114.1
csusgaaaCfuGfGfAfaguuauuuauL96
248
A-753115.1
asUfsaaau(Agn)acuuccAfgUfuucagscsa
513
UGCUGAAACUGGAAGUUAUUUAU
778





AD-387813.1
A-753116.1
usgsaaacUfgGfAfAfguuauuuauuL96
249
A-753117.1
asAfsuaaa(Tgn)aacuucCfaGfuuucasgsc
514
GCUGAAACUGGAAGUUAUUUAUU
779





AD-387825.1
A-753140.1
ususgagaGfuCfAfUfgaacacaucaL96
250
A-753141.1
usGfsaugu(Ggn)uucaugAfcUfcucaasgsg
515
CCUUGAGAGUCAUGAACACAUCA
780





AD-387830.1
A-753150.1
asusgaacAfcAfUfCfagcuagcaauL96
251
A-753151.1
asUfsugcu(Agn)gcugauGfuGfuucausgsa
516
UCAUGAACACAUCAGCUAGCAAC
781





AD-387831.1
A-713411.1
asgsaaguAfaCfAfAfgagugauucuL96
252
A-753152.1
asGfsaauc(Agn)cucuugUfuAfcuucusgsu
517
AAAGAAGTAACAAGAGTGATTCT
782





AD-387833.1
A-753154.1
usgsaacaCfaUfCfAfgcuagcaacaL96
253
A-753155.1
usGfsuugc(Tgn)agcugaUfgUfguucasusg
518
CAUGAACACAUCAGCUAGCAACA
783





AD-387840.1
A-753168.1
asuscagcUfaGfCfAfacagaaguaaL96
254
A-753169.1
usUfsacuu(Cgn)uguugcUfaGfcugausgsu
519
ACAUCAGCUAGCAACAGAAGUAA
784





AD-387842.1
A-753172.1
csasgcuaGfcAfAfCfagaaguaacaL96
255
A-753173.1
usGfsuuac(Tgn)ucuguuGfcUfagcugsasu
520
AUCAGCUAGCAACAGAAGUAACA
785





AD-387845.1
A-753178.1
csusagcaAfcAfGfAfaguaacaagaL96
256
A-753179.1
usCfsuugu(Tgn)acuucuGfuUfgcuagscsu
521
AGCUAGCAACAGAAGUAACAAGA
786





AD-387846.1
A-753180.1
usasgcaaCfaGfAfAfguaacaagauL96
257
A-753181.1
asUfscuug(Tgn)uacuucUfgUfugcuasgsc
522
GCUAGCAACAGAAGUAACAAGAG
787





AD-387858.1
A-753204.1
csusugcuGfcUfAfUfuaccgcuuuaL96
258
A-753205.1
usAfsaagc(Ggn)guaauaGfcAfgcaagsasa
523
UUCUUGCUGCUAUUACCGCUUUA
788





AD-387861.1
A-753210.1
gscsugcuAfuUfAfCfcgcuuuaaaaL96
259
A-753211.1
usUfsuuaa(Agn)gcgguaAfuAfgcagcsasa
524
UUGCUGCUAUUACCGCUUUAAAA
789





AD-387863.1
A-753214.1
cscscuuuUfaCfUfAfaacuugacauL96
260
A-753215.1
asUfsguca(Agn)guuuagUfaAfaagggscsg
525
CGCCCUUUUACUAAACUUGACAG
790





AD-387865.1
A-753218.1
csusuuuaCfuAfAfAfcuugacagaaL96
261
A-753219.1
usUfscugu(Cgn)aaguuuAfgUfaaaagsgsg
526
CCCUUUUACUAAACUUGACAGAA
791





AD-387866.1
A-753220.1
ususuuacUfaAfAfCfuugacagaauL96
262
A-753221.1
asUfsucug(Tgn)caaguuUfaGfuaaaasgsg
527
CCUUUUACUAAACUUGACAGAAG
792





AD-387869.1
A-753226.1
usascuaaAfcUfUfGfacagaaguuuL96
263
A-753227.1
asAfsacuu(Cgn)ugucaaGfuUfuaguasasa
528
UUUACUAAACUUGACAGAAGUUC
793





AD-387871.1
A-753230.1
csusaaacUfuGfAfCfagaaguucauL96
264
A-753231.1
asUfsgaac(Tgn)ucugucAfaGfuuuagsusa
529
UACUAAACUUGACAGAAGUUCAG
794





AD-387875.1
A-753238.1
ascsuugaCfaGfAfAfguucaguaaaL96
265
A-753239.1
usUfsuacu(Ggn)aacuucUfgUfcaagususu
530
AAACUUGACAGAAGUUCAGUAAA
795





AD-387878.1
A-753244.1
usgsacagAfaGfUfUfcaguaaauuuL96
266
A-753245.1
asAfsauuu(Agn)cugaacUfuCfugucasasg
531
CUUGACAGAAGUUCAGUAAAUUC
796





AD-387880.1
A-753248.1
ascsagaaGfuUfCfAfguaaauucuuL96
267
A-753249.1
asAfsgaau(Tgn)uacugaAfcUfucuguscsa
532
UGACAGAAGUUCAGUAAAUUCUU
797





AD-387881.1
A-753250.1
csasgaagUfuCfAfGfuaaauucuuaL96
268
A-753251.1
usAfsagaa(Tgn)uuacugAfaCfuucugsusc
533
GACAGAAGUUCAGUAAAUUCUUA
798





AD-387882.1
A-753252.1
asgsaaguUfcAfGfUfaaauucuuauL96
269
A-753253.1
asUfsaaga(Agn)uuuacuGfaAfcuucusgsu
534
ACAGAAGUUCAGUAAAUUCUUAC
799





AD-387909.1
A-753302.1
cscsaaacUfgAfCfGfgauuauuauuL96
270
A-753303.1
asAfsuaau(Agn)auccguCfaGfuuuggscsg
535
CGCCAAACUGACGGAUUAUUAUU
800





AD-387937.1
A-713735.1
asasaacuUfuUfAfCfuuuguagauaL96
271
A-753358.1
usAfsucua(Cgn)aaaguaAfaAfguuuuscsc
536
GAAAAACTTTTACTTTGTAGATA
801





AD-387940.1
A-753362.1
gsusuaagGfgAfAfAfacuuuuacuuL96
272
A-753363.1
asAfsguaa(Agn)aguuuuCfcCfuuaacsusu
537
AAGUUAAGGGAAAACUUUUACUU
802





AD-387941.1
A-753364.1
ususaaggGfaAfAfAfcuuuuacuuuL96
273
A-753365.1
asAfsagua(Agn)aaguuuUfcCfcuuaascsu
538
AGUUAAGGGAAAACUUUUACUUU
803





AD-387942.1
A-753366.1
usasagggAfaAfAfCfuuuuacuuugL96
274
A-753367.1
csAfsaagu(Agn)aaaguuUfuCfccuuasasc
539
GUUAAGGGAAAACUUUUACUUUG
804





AD-387944.1
A-753370.1
asgsggaaAfaCfUfUfuuacuuuguaL96
275
A-753371.1
usAfscaaa(Ggn)uaaaagUfuUfucccususa
540
UAAGGGAAAACUUUUACUUUGUA
805





AD-387945.1
A-753372.1
gsgsgaaaAfcUfUfUfuacuuuguauL96
276
A-753373.1
asUfsacaa(Agn)guaaaaGfuUfuucccsusu
541
AAGGGAAAACUUUUACUUUGUAG
806





AD-387947.1
A-753376.1
gsasaaacUfuUfUfAfcuuuguagauL96
277
A-753377.1
asUfscuac(Agn)aaguaaAfaGfuuuucscsc
542
GGGAAAACUUUUACUUUGUAGAU
807
















TABLE 3







Unmodified Sense and Antisense Strand Sequences of Human and Rodent ATXN2 siRNAs.


















Sense




Antisense






Duplex
Oligo




Oligo






Name
Name
transSeq
Seq
Source Name
Range
Name
transSeq
Seq
Source Name
Range




















AD-
A-
UCCGACUUCCGGUAAAGAGUU
808
NM_002973.3_
  92-
A-
AACUCUTUACCGGAAGUCGGAGG
1083
NM_002973.3_
  90-


364136.1
706003.1


92-112_C21U_s
112
706004.1


90-112_G1A_as
112





AD-
A-
CCGACUUCCGGUAAAGAGUCU
809
NM_002973.3_
  93-
A-
AGACUCTUUACCGGAAGUCGGAG
1084
NM_002973.3_
  91-


364137.1
706005.1


93-113_C21U_s
113
706006.1


91-113_G1A_as
113





AD-
A-
CGACUUCCGGUAAAGAGUCCU
810
NM_002973.3_
  94-
A-
AGGACUCUUUACCGGAAGUCGGA
1085
NM_002973.3_
  92-


364138.1
706007.1


94-114_C21U_s
114
706008.1


92-114_G1A_as
114





AD-
A-
AAUGUGAAGUACAAGUGAAAA
811
NM_002973.3_
 998-
A-
UUUUCACUUGUACUUCACAUUUG
1086
NM_002973.3_
 996-


365055.1
707841.1


998-1018_s
1018
707842.1


996-1018_as
1018





AD-
A-
AUGUGAAGUACAAGUGAAAAA
812
NM_002973.3_
 999-
A-
UUUUUCACUUGUACUUCACAUUU
1087
NM_002973.3_
 997-


365056.1
707843.1


999-1019_s
1019
707844.1


997-1019_as
1019





AD-
A-
CAUGAGAAAAGUACAGAAUCU
813
NM_002973.3_
1087-
A-
AGAUUCTGUACUUUUCUCAUGUG
1088
NM_002973.3_
1085-


365144.1
708019.1


1087-
1107
708020.1


1085-1107_G1A_as
1107






1107_C21U_s











AD-
A-
CACUUCUCACACUUCAGAUUU
814
NM_002973.3_
1746-
A-
AAAUCUGAAGUGUGAGAAGUGGA
1089
NM_002973.3_1744-
1744-


365747.1
709225.1


1746-1766_s
1766
709226.1


1766_as
1766





AD-
A-
ACUUCUCACACUUCAGAUUUC
815
NM_002973.3_
1747-
A-
GAAAUCTGAAGUGUGAGAAGUGG
1090
NM_002973.3_1745-
1745-


365748.1
709227.1


1747-1767_s
1767
709228.1


1767_as
1767





AD-
A-
CUUCUCACACUUCAGAUUUCA
816
NM_002973.3_
1748-
A-
UGAAAUCUGAAGUGUGAGAAGUG
1091
NM_002973.3_1746-
1746-


365749.1
709229.1


1748-1768_s
1768
709230.1


1768_as
1768





AD-
A-
UUCUCACACUUCAGAUUUCAA
817
NM_002973.3_
1749-
A-
UUGAAATCUGAAGUGUGAGAAGU
1092
NM_002973.3_1747-
1747-


365750.1
709231.1


1749-1769_s
1769
709232.1


1769_as
1769





AD-
A-
UCUCACACUUCAGAUUUCAAU
818
NM_002973.3_
1750-
A-
AUUGAAAUCUGAAGUGUGAGAAG
1093
NM_002973.3_1748-
1748-


365751.1
709233.1


1750-
1770
709234.1


1770_G1A_as
1770






1770_C21U_s











AD-
A-
CUCACACUUCAGAUUUCAACU
819
NM_002973.3_
1751-
A-
AGUUGAAAUCUGAAGUGUGAGAA
1094
NM_002973.3_1749-
1749-


365752.1
709235.1


1751-
1771
709236.1


1771_G1A_as
1771






1771_C21U_s











AD-
A-
UCACACUUCAGAUUUCAACCU
820
NM_002973.3_
1752-
A-
AGGUUGAAAUCUGAAGUGUGAGA
1095
NM_002973.3_1750-
1750-


365753.1
709237.1


1752-
1772
709238.1


1772_G1A_as
1772






1772_C21U_s











AD-
A-
CACACUUCAGAUUUCAACCCU
821
NM_002973.3_
1753-
A-
AGGGUUGAAAUCUGAAGUGUGAG
1096
NM_002973.3_1751-
1751-


365754.1
709239.1


1753-
1773
709240.1


1773_C1A_as
1773






1773_G21U_s











AD-
A-
ACUUCAGAUUUCAACCCGAAU
822
NM_002973.3_
1756-
A-
AUUCGGGUUGAAAUCUGAAGUGU
1097
NM_002973.3_1754-
1754-


365757.1
709245.1


1756-1776_s
1776
709246.1


1776_as
1776





AD-
A-
UCAGACCAAAGAGUAGUUAAU
823
NM_002973.3_
1783-
A-
AUUAACTACUCUUUGGUCUGAAC
1098
NM_002973.3_1781-
1781-


365784.1
709299.1


1783-1803_s
1803
709300.1


1803_as
1803





AD-
A-
CAGACCAAAGAGUAGUUAAUU
824
NM_002973.3_
1784-
A-
AAUUAACUACUCUUUGGUCUGAA
1099
NM_002973.3_1782-
1782-


365785.1
709301.1


1784-
1804
709302.1


1804_C1A_as
1804






1804_G21U_s











AD-
A-
CUCUACUAUGCCUAAACGCAU
825
NM_002973.3_
1986-
A-
AUGCGUTUAGGCAUAGUAGAGAC
1100
NM_002973.3_1984-
1984-


365915.1
709561.1


1986-2006_s
2006
709562.1


2006_as
2006





AD-
A-
UCUACUAUGCCUAAACGCAUU
826
NM_002973.3_
1987-
A-
AAUGCGTUUAGGCAUAGUAGAGA
1101
NM_002973.3_1985-
1985-


365916.1
709563.1


1987-
2007
709564.1


2007_C1A_as
2007






2007_G21U_s











AD-
A-
UACUAUGCCUAAACGCAUGUU
827
NM_002973.3_
1989-
A-
AACAUGCGUUUAGGCAUAGUAGA
1102
NM_002973.3_1987-
1987-


365918.1
709567.1


1989-
2009
709568.1


2009_G1A_as
2009






2009_C21U_s











AD-
A-
CUUCUGAAUCUAUGGAUCAAU
828
NM_002973.3_
2594-
A-
AUUGAUCCAUAGAUUCAGAAGUA
1103
NM_002973.3_2592-
2592-


366362.1
710455.1


2594-
2614
710456.1


2614_G1A_as
2614






2614_C21U_s











AD-
A-
UUCUGAAUCUAUGGAUCAACU
829
NM_002973.3_
2595-
A-
AGUUGATCCAUAGAUUCAGAAGU
1104
NM_002973.3_2593-
2593-


366363.1
710457.1


2595-2615_s
2615
710458.1


2615_as
2615





AD-
A-
UCUGAAUCUAUGGAUCAACUA
830
NM_002973.3_
2596-
A-
UAGUUGAUCCAUAGAUUCAGAAG
1105
NM_002973.3_2594-
2594-


366364.1
710459.1


2596-2616_s
2616
710460.1


2616_as
2616





AD-
A-
CUGAAUCUAUGGAUCAACUAU
831
NM_002973.3_
2597-
A-
AUAGUUGAUCCAUAGAUUCAGAA
1106
NM_002973.3_2595-
2595-


366365.1
710461.1


2597-
2617
710462.1


2617_G1A_as
2617






2617_C21U_s











AD-
A-
UGAAUCUAUGGAUCAACUACU
832
NM_002973.3_
2598-
A-
AGUAGUTGAUCCAUAGAUUCAGA
1107
NM_002973.3_2596-
2596-


366366.1
710463.1


2598-2618_s
2618
710464.1


2618_as
2618





AD-
A-
GAAUCUAUGGAUCAACUACUA
833
NM_002973.3_
2599-
A-
UAGUAGTUGAUCCAUAGAUUCAG
1108
NM_002973.3_2597-
2597-


366367.1
710465.1


2599-2619_s
2619
710466.1


2619_as
2619





AD-
A-
AAUCUAUGGAUCAACUACUAA
834
NM_002973.3_
2600-
A-
UUAGUAGUUGAUCCAUAGAUUCA
1109
NM_002973.3_2598-
2598-


366368.1
710467.1


2600-2620_s
2620
710468.1


2620_as
2620





AD-
A-
AUCUAUGGAUCAACUACUAAA
835
NM_002973.3_
2601-
A-
UUUAGUAGUUGAUCCAUAGAUUC
1110
NM_002973.3_2599-
2599-


366369.1
710469.1


2601-2621_s
2621
710470.1


2621_as
2621





AD-
A-
UAUACCCAAUACCUAUGACGU
836
NM_002973.3_
3104-
A-
ACGUCATAGGUAUUGGGUAUAAA
1111
NM_002973.3_3102-
3102-


366772.1
711275.1


3104-
3124
711276.1


3124_G1A_as
3124






3124_C21U_s











AD-
A-
GACAUAUAGAGCAGUACCAAA
837
NM_002973.3_
3147-
A-
UUUGGUACUGCUCUAUAUGUCUU
1112
NM_002973.3_3145-
3145-


366815.1
711361.1


3147-3167_s
3167
711362.1


3167_as
3167





AD-
A-
AUAUAGAGCAGUACCAAAUAU
838
NM_002973.3_
3150-
A-
AUAUUUGGUACUGCUCUAUAUGU
1113
NM_002973.3_3148-
3148-


366818.1
711367.1


3150-3170_s
3170
711368.1


3170_as
3170





AD-
A-
UAUAGAGCAGUACCAAAUAUU
839
NM_002973.3_
3151-
A-
AAUAUUTGGUACUGCUCUAUAUG
1114
NM_002973.3_3149-
3149-


366819.1
711369.1


3151-
3171
711370.1


3171_C1A_as
3171






3171_G21U_s











AD-
A-
AUAGAGCAGUACCAAAUAUGU
840
NM_002973.3_
3152-
A-
ACAUAUTUGGUACUGCUCUAUAU
1115
NM_002973.3_3150-
3150-


366820.1
711371.1


3152-
3172
711372.1


3172_G1A_as
3172






3172_C21U_s











AD-
A-
AGAGCAGUACCAAAUAUGCCU
841
NM_002973.3_
3154-
A-
AGGCAUAUUUGGUACUGCUCUAU
1116
NM_002973.3_3152-
3152-


366822.1
711375.1


3154-
3174
711376.1


3174_G1A_as
3174






3174_C21U_s











AD-
A-
UGUCCCAAAUUACCAUACAAU
842
NM_002973.3_
3481-
A-
AUUGUATGGUAAUUUGGGACAUG
1117
NM_002973.3_3479-
3479-


367069.1
711869.1


3481-
3501
711870.1


3501_G1A_as
3501






3501_C21U_s











AD-
A-
UCCCAAAUUACCAUACAACAA
843
NM_002973.3_
3483-
A-
UUGUUGTAUGGUAAUUUGGGACA
1118
NM_002973.3_3481-
3481-


367071.1
711873.1


3483-3503_s
3503
711874.1


3503_as
3503





AD-
A-
AAGCCCUUCUUUCUACUUUGU
844
NM_002973.3_
3510-
A-
ACAAAGTAGAAAGAAGGGCUUGU
1119
NM_002973.3_3508-
3508-


367098.1
711927.1


3510-
3530
711928.1


3530_G1A_as
3530






3530_C21U_s











AD-
A-
CCCUUCUUUCUACUUUGCCAU
845
NM_002973.3_
3513-
A-
AUGGCAAAGUAGAAAGAAGGGCU
1120
NM_002973.3_3511-
3511-


367101.1
711933.1


3513-3533_s
3533
711934.1


3533_as
3533





AD-
A-
CCUUCUUUCUACUUUGCCAUU
846
NM_002973.3_
3514-
A-
AAUGGCAAAGUAGAAAGAAGGGC
1121
NM_002973.3_3512-
3512-


367102.1
711935.1


3514-3534_s
3534
711936.1


3534_as
3534





AD-
A-
CUUCUUUCUACUUUGCCAUUU
847
NM_002973.3_
3515-
A-
AAAUGGCAAAGUAGAAAGAAGGG
1122
NM_002973.3_3513-
3513-


367103.1
711937.1


3515-3535_s
3535
711938.1


3535_as
3535





AD-
A-
UUCUUUCUACUUUGCCAUUUC
848
NM_002973.3_
3516-
A-
GAAAUGGCAAAGUAGAAAGAAGG
1123
NM_002973.3_3514-
3514-


367104.1
711939.1


3516-3536_s
3536
711940.1


3536_as
3536





AD-
A-
UCUUUCUACUUUGCCAUUUCU
849
NM_002973.3_3
3517-
A-
AGAAAUGGCAAAGUAGAAAGAAG
1124
NM_002973.3_3515-
3515-


367105.1
711941.1


517-
3537
711942.1


3537_G1A_as
3537






3537_C21U_s











AD-
A-
CUUUCUACUUUGCCAUUUCCA
850
NM_002973.3_
3518-
A-
UGGAAATGGCAAAGUAGAAAGAA
1125
NM_002973.3_3516-
3516-


367106.1
711943.1


3518-3538_s
3538
711944.1


3538_as
3538





AD-
A-
UUUCUACUUUGCCAUUUCCAU
851
NM_002973.3_
3519-
A-
AUGGAAAUGGCAAAGUAGAAAGA
1126
NM_002973.3_3517-
3517-


367107.1
711945.1


3519-
3539
711946.1


3539_G1A_as
3539






3539_C21U_s











AD-
A-
UUCUACUUUGCCAUUUCCACU
852
NM_002973.3_
3520-
A-
AGUGGAAAUGGCAAAGUAGAAAG
1127
NM_002973.3_3518-
3518-


367108.1
711947.1


3520-
3540
711948.1


3540_C1A_as
3540






3540_G21U_s











AD-
A-
CAUGUACAGUCAGGAAUGGUU
853
NM_002973.3_
3910-
A-
AACCAUTCCUGACUGUACAUGAG
1128
NM_002973.3_3908-
3908-


367438.1
712607.1


3910-3930_s
3930
712608.1


3930_as
3930





AD-
A-
AUGUACAGUCAGGAAUGGUUU
854
NM_002973.3_
3911-
A-
AAACCATUCCUGACUGUACAUGA
1129
NM_002973.3_3909-
3909-


367439.1
712609.1


3911-
3931
712610.1


3931_G1A_as
3931






3931_C21U_s











AD-
A-
UGUACAGUCAGGAAUGGUUCU
855
NM_002973.3_
3912-
A-
AGAACCAUUCCUGACUGUACAUG
1130
NM_002973.3_3910-
3910-


367440.1
712611.1


3912-
3932
712612.1


3932_G1A_as
3932






3932_C21U_s











AD-
A-
CAGGAAUGGUUCCUUCUCAUU
856
NM_002973.3_
3920-
A-
AAUGAGAAGGAACCAUUCCUGAC
1131
NM_002973.3_3918-
3918-


367448.1
712627.1


3920-
3940
712628.1


3940_G1A_as
3940






3940_C21U_s











AD-
A-
GAAUGGUUCCUUCUCAUCCAA
857
NM_002973.3_
3923-
A-
UUGGAUGAGAAGGAACCAUUCCU
1132
NM_002973.3_3921-
3921-


367451.1
712633.1


3923-3943_s
3943
712634.1


3943_as
3943





AD-
A-
AUGGUUCCUUCUCAUCCAACU
858
NM_002973.3_
3925-
A-
AGUUGGAUGAGAAGGAACCAUUC
1133
NM_002973.3_3923-
3923-


367453.1
712637.1


3925-3945_s
3945
712638.1


3945_as
3945





AD-
A-
UGGUUCCUUCUCAUCCAACUU
859
NM_002973.3_
3926-
A-
AAGUUGGAUGAGAAGGAACCAUU
1134
NM_002973.3_3924-
3924-


367454.1
712639.1


3926-
3946
712640.1


3946_C1A_as
3946






3946_G21U_s











AD-
A-
GUUCCUUCUCAUCCAACUGCU
860
NM_002973.3_
3928-
A-
AGCAGUTGGAUGAGAAGGAACCA
1135
NM_002973.3_3926-
3926-


367456.1
712643.1


3928-
3948
712644.1


3948_G1A_as
3948






3948_C21U_s











AD-
A-
CAUGCGCCAAUGAUGCUAAUU
861
NM_002973.3_
3949-
A-
AAUUAGCAUCAUUGGCGCAUGGG
1136
NM_002973.3_3947-
3947-


367477.1
712685.1


3949-
3969
712686.1


3969_C1A_as
3969






3969_G21U_s











AD-
A-
GCGCCAAUGAUGCUAAUGACU
862
NM_002973.3_
3952-
A-
AGUCAUTAGCAUCAUUGGCGCAU
1137
NM_002973.3_3950-
3950-


367480.1
712691.1


3952-
3972
712692.1


3972_C1A_as
3972






3972_G21U_s











AD-
A-
GCCAAUGAUGCUAAUGACGAU
863
NM_002973.3_
3954-
A-
AUCGUCAUUAGCAUCAUUGGCGC
1138
NM_002973.3_3952-
3952-


367482.1
712695.1


3954-
3974
712696.1


3974_G1A_as
3974






3974_C21U_s











AD-
A-
CCAAUGAUGCUAAUGACGACA
864
NM_002973.3_
3955-
A-
UGUCGUCAUUAGCAUCAUUGGCG
1139
NM_002973.3_3953-
3953-


367483.1
712697.1


3955-3975_s
3975
712698.1


3975_as
3975





AD-
A-
AUGAUGCUAAUGACGACACAU
865
NM_002973.3_
3958-
A-
AUGUGUCGUCAUUAGCAUCAUUG
1140
NM_002973.3_3956-
3956-


367486.1
712703.1


3958-
3978
712704.1


3978_C1A_as
3978






3978_G21U_s











AD-
A-
UGAUGCUAAUGACGACACAGU
866
NM_002973.3_
3959-
A-
ACUGUGTCGUCAUUAGCAUCAUU
1141
NM_002973.3_3957-
3957-


367487.1
712705.1


3959-
3979
712706.1


3979_G1A_as
3979






3979_C21U_s











AD-
A-
CGCUCAAAGUGCACUACAGCU
867
NM_002973.3_
4005-
A-
AGCUGUAGUGCACUUUGAGCGAG
1142
NM_002973.3_4003-
4003-


367513.1
712757.1


4005-
4025
712758.1


4025_G1A_as
4025






4025_C21U_s











AD-
A-
AGCCCAUUCCAGUCUCGACAA
868
NM_002973.3_
4022-
A-
UUGUCGAGACUGGAAUGGGCUGU
1143
NM_002973.3_4020-
4020-


367530.1
712791.1


4022-4042_s
4042
712792.1


4042_as
4042





AD-
A-
CCCAUUCCAGUCUCGACAACA
869
NM_002973.3_
4024-
A-
UGUUGUCGAGACUGGAAUGGGCU
1144
NM_002973.3_4022-
4022-


367532.1
712795.1


4024-4044_s
4044
712796.1


4044_as
4044





AD-
A-
CACCACCAACAGCAGUUGUAA
870
NM_002973.3_
4084-
A-
UUACAACUGCUGUUGGUGGUGGG
1145
NM_002973.3_4082-
4082-


367571.1
712873.1


4084-4104_s
4104
712874.1


4104_as
4104





AD-
A-
ACCACCAACAGCAGUUGUAAU
871
NM_002973.3_
4085-
A-
AUUACAACUGCUGUUGGUGGUGG
1146
NM_002973.3_4083-
4083-


367572.1
712875.1


0485-
4105
712876.1


4105_C1A_as
4105






4105_G21U_s











AD-
A-
CCACCAACAGCAGUUGUAAGU
872
NM_002973.3_
4086-
A-
ACUUACAACUGCUGUUGGUGGUG
1147
NM_002973.3_4084-
4084-


367573.1
712877.1


4086-
4106
712878.1


4106_C1A_as
4106






4106_G21U_s











AD-
A-
ACCAACAGCAGUUGUAAGGCU
873
NM_002973.3_
4088-
A-
AGCCUUACAACUGCUGUUGGUGG
1148
NM_002973.3_4086-
4086-


367575.1
712881.1


4088-4108_s
4108
712882.1


4108_as
4108





AD-
A-
CAACAGCAGUUGUAAGGCUGU
874
NM_002973.3_
4090-
A-
ACAGCCTUACAACUGCUGUUGGU
1149
NM_002973.3_4088-
4088-


367577.1
712885.1


4090-
4110
712886.1


4110_G1A_as
4110






4110_C21U_s











AD-
A-
CUUCUACUGCUUCUACCAACU
875
NM_002973.3_
4145-
A-
AGUUGGTAGAAGCAGUAGAAGGG
1150
NM_002973.3_4143-
4143-


367630.1
712991.1


4145-4165_s
4165
712992.1


4165_as
4165





AD-
A-
UCUACUGCUUCUACCAACUGU
876
NM_002973.3_
4147-
A-
ACAGUUGGUAGAAGCAGUAGAAG
1151
NM_002973.3_4145-
4145-


367632.1
712995.1


4147-
4167
712996.1


4167_C1A_as
4167






4167_G21U_s











AD-
A-
CUACUGCUUCUACCAACUGGA
877
NM_002973.3_
4148-
A-
UCCAGUTGGUAGAAGCAGUAGAA
1152
NM_002973.3_4146-
4146-


367633.1
712997.1


4148-4168_s
4168
712998.1


4168_as
4168





AD-
A-
CUGCUUCUACCAACUGGAAGU
878
NM_002973.3_
4151-
A-
ACUUCCAGUUGGUAGAAGCAGUA
1153
NM_002973.3_4149-
4149-


367636.1
713003.1


4151-
4171
713004.1


4171_G1A_as
4171






4171_C21U_s











AD-
A-
CAACUGGAAGCACAGAAAACU
879
NM_002973.3_
4161-
A-
AGUUUUCUGUGCUUCCAGUUGGU
1154
NM_002973.3_4159-
4159-


367646.1
713023.1


4161-4181_s
4181
713024.1


4181_as
4181





AD-
A-
UUGAUUUCUUGUAACAUCCAA
880
NM_002973.3_
4217-
A-
UUGGAUGUUACAAGAAAUCAACA
1155
NM_002973.3_4215-
4215-


367685.1
713101.1


4217-4237_s
4237
713102.1


4237_as
4237





AD-
A-
AUUUCUUGUAACAUCCAAUAU
881
NM_002973.3_
4220-
A-
AUAUUGGAUGUUACAAGAAAUCA
1156
NM_002973.3_4218-
4218-


367688.1
713107.1


4220-
4240
713108.1


4240_C1A_as
4240






4240_G21U_s











AD-
A-
UUCUUGUAACAUCCAAUAGGA
882
NM_002973.3_
4222-
A-
UCCUAUTGGAUGUUACAAGAAAU
1157
NM_002973.3_4220-
4220-


367690.1
713111.1


4222-4242_s
4242
713112.1


4242_as
4242





AD-
A-
UCUUGUAACAUCCAAUAGGAA
883
NM_002973.3_
4223-
A-
UUCCUATUGGAUGUUACAAGAAA
1158
NM_002973.3_4221-
4221-


367691.1
713113.1


4223-4243_s
4243
713114.1


4243_as
4243





AD-
A-
UGUAACAUCCAAUAGGAAUGU
884
NM_002973.3_
4226-
A-
ACAUUCCUAUUGGAUGUUACAAG
1159
NM_002973.3_4224-
4224-


367694.1
713119.1


4226-
4246
713120.1


4246_G1A_as
4246






4246_C21U_s











AD-
A-
UAACAUCCAAUAGGAAUGCUA
885
NM_002973.3_
4228-
A-
UAGCAUTCCUAUUGGAUGUUACA
1160
NM_002973.3_4226-
4226-


367696.1
713123.1


4228-4248_s
4248
713124.1


4248_as
4248





AD-
A-
AACAUCCAAUAGGAAUGCUAA
886
NM_002973.3_
4229-
A-
UUAGCATUCCUAUUGGAUGUUAC
1161
NM_002973.3_4227-
4227-


367697.1
713125.1


4229-4249_s
4249
713126.1


4249_as
4249





AD-
A-
ACAUCCAAUAGGAAUGCUAAU
887
NM_002973.3_
4230-
A-
AUUAGCAUUCCUAUUGGAUGUUA
1162
NM_002973.3_4228-
4228-


367698.1
713127.1


4230-
4250
713128.1


4250 G1A_as
4250






4250_C21U_s











AD-
A-
CAUCCAAUAGGAAUGCUAACA
888
NM_002973.3_
4231-
A-
UGUUAGCAUUCCUAUUGGAUGUU
1163
NM_002973.3_4229-
4229-


367699.1
713129.1


4231-4251_s
4251
713130.1


4251_as
4251





AD-
A-
AAUAGGAAUGCUAACAGUUCA
889
NM_002973.3_
4236-
A-
UGAACUGUUAGCAUUCCUAUUGG
1164
NM_002973.3_4234-
4234-


367704.1
713139.1


4236-4256_s
4256
713140.1


4256_as
4256





AD-
A-
AUAGGAAUGCUAACAGUUCAU
890
NM_002973.3_
4237-
A-
AUGAACTGUUAGCAUUCCUAUUG
1165
NM_002973.3_4235-
4235-


367705.1
713141.1


4237-
4257
713142.1


4257_G1A_as
4257






4257_C21U_s











AD-
A-
UAGGAAUGCUAACAGUUCACU
891
NM_002973.3_
4238-
A-
AGUGAACUGUUAGCAUUCCUAUU
1166
NM_002973.3_4236-
4236-


367706.1
713143.1


4238-4258_s
4258
713144.1


4258_as
4258





AD-
A-
AGGAAUGCUAACAGUUCACUU
892
NM_002973.3_
4239-
A-
AAGUGAACUGUUAGCAUUCCUAU
1167
NM_002973.3_4237-
4237-


367707.1
713145.1


4239-4259_s
4259
713146.1


4259_as
4259





AD-
A-
GGAAUGCUAACAGUUCACUUU
893
NM_002973.3_
4240-
A-
AAAGUGAACUGUUAGCAUUCCUA
1168
NM_002973.3_4238-
4238-


367708.1
713147.1


4240-
4260
713148.1


4260 C1A_as
4260






4260_G21U_s











AD-
A-
GAAUGCUAACAGUUCACUUGU
894
NM_002973.3_
4241-
A-
ACAAGUGAACUGUUAGCAUUCCU
1169
NM_002973.3_4239-
4239-


367709.1
713149.1


4241-
4261
713150.1


4261_G1A_as
4261






4261_C21U_s











AD-
A-
GCUAACAGUUCACUUGCAGUU
895
NM_002973.3_
4245-
A-
AACUGCAAGUGAACUGUUAGCAU
1170
NM_002973.3_4243-
4243-


367713.1
713157.1


4245-
4265
713158.1


4265_C1A_as
4265






4265_G21U_s











AD-
A-
CAGUUCACUUGCAGUGGAAGA
896
NM_002973.3_
4250-
A-
UCUUCCACUGCAAGUGAACUGUU
1171
NM_002973.3_4248-
4248-


367718.1
713167.1


4250-4270_s
4270
713168.1


4270_as
4270





AD-
A-
GACCGAGUAGAGGCAUUUAGU
897
NM_002973.3_
4277-
A-
ACUAAATGCCUCUACUCGGUCCA
1172
NM_002973.3_4275-
4275-


367745.1
713221.1


4277-
4297
713222.1


4297_C1A_as
4297






4297_G21U_s











AD-
A-
ACCGAGUAGAGGCAUUUAGGA
898
NM_002973.3_
4278-
A-
UCCUAAAUGCCUCUACUCGGUCC
1173
NM_002973.3_4276-
4276-


367746.1
713223.1


4278-4298_s
4298
713224.1


4298_as
4298





AD-
A-
GGCUAUUCCAUAAUUCCAUAU
899
NM_002973.3_
4306-
A-
AUAUGGAAUUAUGGAAUAGCCCC
1174
NM_002973.3_4304-
4304-


367755.1
713241.1


4306-4326_s
4326
713242.1


4326_as
4326





AD-
A-
UGCCGAAACUGGAAGUUAUUU
900
NM_002973.3_
4363-
A-
AAAUAACUUCCAGUUUCGGCAAG
1175
NM_002973.3_4361-
4361-


367792.1
713315.1


4363-4383_s
4383
713316.1


4383_as
4383





AD-
A-
CCGAAACUGGAAGUUAUUUAU
901
NM_002973.3_
4365-
A-
AUAAAUAACUUCCAGUUUCGGCA
1176
NM_002973.3_4363-
4363-


367794.1
713319.1


4365-4385_s
4385
713320.1


4385_as
4385





AD-
A-
CGAAACUGGAAGUUAUUUAUU
902
NM_002973.3_
4366-
A-
AAUAAATAACUUCCAGUUUCGGC
1177
NM_002973.3_4364-
4364-


367795.1
713321.1


4366-4386_s
4386
713322.1


4386_as
4386





AD-
A-
GAAACUGGAAGUUAUUUAUUU
903
NM_002973.3_
4367-
A-
AAAUAAAUAACUUCCAGUUUCGG
1178
NM_002973.3_4365-
4365-


367796.1
713323.1


4367-4387_s
4387
713324.1


4387_as
4387





AD-
A-
AAACUGGAAGUUAUUUAUUUU
904
NM_002973.3_
4368-
A-
AAAAUAAAUAACUUCCAGUUUCG
1179
NM_002973.3_4366-
4366-


367797.1
713325.1


4368-4388_s
4388
713326.1


4388_as
4388





AD-
A-
UAAUAACCCUUGAAAGUCAUU
905
NM_002973.3_
4390-
A-
AAUGACTUUCAAGGGUUAUUAAA
1180
NM_002973.3_4388-
4388-


367801.1
713333.1


4390-
4410
713334.1


4410_C1A_as
4410






4410_G21U_s











AD-
A-
AAUAACCCUUGAAAGUCAUGA
906
NM_002973.3_
4391-
A-
UCAUGACUUUCAAGGGUUAUUAA
1181
NM_002973.3_4389-
4389-


367802.1
713335.1


4391-4411_s
4411
713336.1


4411_as
4411





AD-
A-
AACCCUUGAAAGUCAUGAACA
907
NM_002973.3_
4394-
A-
UGUUCATGACUUUCAAGGGUUAU
1182
NM_002973.3_4392-
4392-


367805.1
713341.1


4394-4414_s
4414
713342.1


4414_as
4414





AD-
A-
CUUGAAAGUCAUGAACACAUU
908
NM_002973.3_
4398-
A-
AAUGUGTUCAUGACUUUCAAGGG
1183
NM_002973.3_4396-
4396-


367809.1
713349.1


4398-
4418
713350.1


4418_G1A_as
4418






4418_C21U_s











AD-
A-
AGUCAUGAACACAUCAGCUAU
909
NM_002973.3_
4404-
A-
AUAGCUGAUGUGUUCAUGACUUU
1184
NM_002973.3_4402-
4402-


367815.1
713361.1


4404-
4424
713362.1


4424_C1A_as
4424






4424_G21U_s











AD-
A-
GUCAUGAACACAUCAGCUAGU
910
NM_002973.3_
4405-
A-
ACUAGCTGAUGUGUUCAUGACUU
1185
NM_002973.3_4403-
4403-


367816.1
713363.1


4405-
4425
713364.1


4425_G1A_as
4425






4425_C21U_s











AD-
A-
UCAUGAACACAUCAGCUAGCA
911
NM_002973.3_
4406-
A-
UGCUAGCUGAUGUGUUCAUGACU
1186
NM_002973.3_4404-
4404-


367817.1
713365.1


4406-4426_s
4426
713366.1


4426_as
4426





AD-
A-
CAUGAACACAUCAGCUAGCAA
912
NM_002973.3_
4407-
A-
UUGCUAGCUGAUGUGUUCAUGAC
1187
NM_002973.3_4405-
4405-


367818.1
713367.1


4407-4427_s
4427
713368.1


4427_as
4427





AD-
A-
AUGAACACAUCAGCUAGCAAA
913
NM_002973.3_
4408-
A-
UUUGCUAGCUGAUGUGUUCAUGA
1188
NM_002973.3_4406-
4406-


367819.1
713369.1


4408-4428_s
4428
713370.1


4428_as
4428





AD-
A-
AUGAACACAUCAGCUAGCAAA
914
NM_002973.3_
4408-
A-
UUUGCUAGCUGAUGUGUUCAUGA
1189
NM_002973.3_4406-
4406-


367819.2
713369.1


4408-4428_s
4428
713370.1


4428_as
4428





AD-
A-
UGAACACAUCAGCUAGCAAAA
915
NM_002973.3_
4409-
A-
UUUUGCTAGCUGAUGUGUUCAUG
1190
NM_002973.3_4407-
4407-


367820.1
713371.1


4409-4429_s
4429
713372.1


4429_as
4429





AD-
A-
GAACACAUCAGCUAGCAAAAU
916
NM_002973.3_
4410-
A-
AUUUUGCUAGCUGAUGUGUUCAU
1191
NM_002973.3_4408-
4408-


367821.1
713373.1


4410-
4430
713374.1


4430_C1A_as
4430






4430_G21U_s











AD-
A-
AACACAUCAGCUAGCAAAAGA
917
NM_002973.3_
4411-
A-
UCUUUUGCUAGCUGAUGUGUUCA
1192
NM_002973.3_4409-
4409-


367822.1
713375.1


4411-4431_s
4431
713376.1


4431_as
4431





AD-
A-
CAUCAGCUAGCAAAAGAAGUA
918
NM_002973.3_
4415-
A-
UACUUCTUUUGCUAGCUGAUGUG
1193
NM_002973.3_4413-
4413-


367826.1
713383.1


4415-4435_s
4435
713384.1


4435_as
4435





AD-
A-
CUAGCAAAAGAAGUAACAAGA
919
NM_002973.3_
4421-
A-
UCUUGUTACUUCUUUUGCUAGCU
1194
NM_002973.3_4419-
4419-


367832.1
713395.1


4421-4441_s
4441
713396.1


4441_as
4441





AD-
A-
GUAACAAGAGUGAUUCUUGCU
920
NM_002973.3_
4433-
A-
AGCAAGAAUCACUCUUGUUACUU
1195
NM_002973.3_4431-
4431-


367844.1
713419.1


4433-4453_s
4453
713420.1


4453_as
4453





AD-
A-
UAACAAGAGUGAUUCUUGCUU
921
NM_002973.3_
4434-
A-
AAGCAAGAAUCACUCUUGUUACU
1196
NM_002973.3_4432-
4432-


367845.1
713421.1


4434-
4454
713422.1


4454_C1A_as
4454






4454_G21U_s











AD-
A-
AACAAGAGUGAUUCUUGCUGU
922
NM_002973.3_
4435-
A-
ACAGCAAGAAUCACUCUUGUUAC
1197
NM_002973.3_4433-
4433-


367846.1
713423.1


4435-
4455
713424.1


4455_G1A_as
4455






4455_C21U_s











AD-
A-
AGAGUGAUUCUUGCUGCUAUU
923
NM_002973.3_
4439-
A-
AAUAGCAGCAAGAAUCACUCUUG
1198
NM_002973.3_4437-
4437-


367850.1
713431.1


4439-4459_s
4459
713432.1


4459_as
4459





AD-
A-
GAGUGAUUCUUGCUGCUAUUA
924
NM_002973.3_
4440-
A-
UAAUAGCAGCAAGAAUCACUCUU
1199
NM_002973.3_4438-
4438-


367851.1
713433.1


4440-4460_s
4460
713434.1


4460_as
4460





AD-
A-
GUGAUUCUUGCUGCUAUUACU
925
NM_002973.3_
4442-
A-
AGUAAUAGCAGCAAGAAUCACUC
1200
NM_002973.3_4440-
4440-


367853.1
713437.1


4442-4462_s
4462
713438.1


4462_as
4462





AD-
A-
UUGGAACGCCCUUUUACUAAA
926
NM_002973.3_
4494-
A-
UUUAGUAAAAGGGCGUUCCAAGU
1201
NM_002973.3_4492-
4492-


367872.1
713475.1


4494-4514_s
4514
713476.1


4514_as
4514





AD-
A-
UGGAACGCCCUUUUACUAAAU
927
NM_002973.3_
4495-
A-
AUUUAGTAAAAGGGCGUUCCAAG
1202
NM_002973.3_4493-
4493-


367873.1
713477.1


4495-
4515
713478.1


4515_G1A_as
4515






4515_C21U_s











AD-
A-
GAACGCCCUUUUACUAAACUU
928
NM_002973.3_
4497-
A-
AAGUUUAGUAAAAGGGCGUUCCA
1203
NM_002973.3_4495-
4495-


367875.1
713481.1


4497-4517_s
4517
713482.1


4517_as
4517





AD-
A-
AACGCCCUUUUACUAAACUUU
929
NM_002973.3_
4498-
A-
AAAGUUTAGUAAAAGGGCGUUCC
1204
NM_002973.3_4496-
4496-


367876.1
713483.1


4498-
4518
713484.1


4518_C1A_as
4518






4518_G21U_s











AD-
A-
ACGCCCUUUUACUAAACUUGA
930
NM_002973.3_
4499-
A-
UCAAGUTUAGUAAAAGGGCGUUC
1205
NM_002973.3_4497-
4497-


367877.1
713485.1


4499-4519_s
4519
713486.1


4519_as
4519





AD-
A-
CGCCCUUUUACUAAACUUGAU
931
NM_002973.3_
4500-
A-
AUCAAGTUUAGUAAAAGGGCGUU
1206
NM_002973.3_4498-
4498-


367878.1
713487.1


4500-
4520
713488.1


4520_G1A_as
4520






4520_C21U_s











AD-
A-
GUUUCAGUAAAUUCUUACCGU
932
NM_002973.3_
4524-
A-
ACGGUAAGAAUUUACUGAAACUU
1207
NM_002973.3_4522-
4522-


367902.1
713535.1


4524-4544_s
4544
713536.1


4544_as
4544





AD-
A-
UUUCAGUAAAUUCUUACCGUU
933
NM_002973.3_
4525-
A-
AACGGUAAGAAUUUACUGAAACU
1208
NM_002973.3_4523-
4523-


367903.1
713537.1


4525-
4545
713538.1


4545_G1A_as
4545






4545_C21U_s











AD-
A-
UUCAGUAAAUUCUUACCGUCA
934
NM_002973.3_
4526-
A-
UGACGGTAAGAAUUUACUGAAAC
1209
NM_002973.3_4524-
4524-


367904.1
713539.1


4526-4546_s
4546
713540.1


4546_as
4546





AD-
A-
UCAGUAAAUUCUUACCGUCAA
935
NM_002973.3_
4527-
A-
UUGACGGUAAGAAUUUACUGAAA
1210
NM_002973.3_4525-
4525-


367905.1
713541.1


4527-4547_s
4547
713542.1


4547_as
4547





AD-
A-
CAGUAAAUUCUUACCGUCAAA
936
NM_002973.3_
4528-
A-
UUUGACGGUAAGAAUUUACUGAA
1211
NM_002973.3_4526-
4526-


367906.1
713543.1


4528-4548_s
4548
713544.1


4548_as
4548





AD-
A-
AGUAAAUUCUUACCGUCAAAU
937
NM_002973.3_
4529-
A-
AUUUGACGGUAAGAAUUUACUGA
1212
NM_002973.3_4527-
4527-


367907.1
713545.1


4529-
4549
713546.1


4549_G1A_as
4549






4549_C21U_s











AD-
A-
GUAAAUUCUUACCGUCAAACU
938
NM_002973.3_
4530-
A-
AGUUUGACGGUAAGAAUUUACUG
1213
NM_002973.3_4528-
4528-


367908.1
713547.1


5430-4550_s
4550
713548.1


4550_as
4550





AD-
A-
UAAAUUCUUACCGUCAAACUU
939
NM_002973.3_
4531-
A-
AAGUUUGACGGUAAGAAUUUACU
1214
NM_002973.3_4529-
4529-


367909.1
713549.1


4531-
4551
713550.1


4551_C1A_as
4551






4551_G21U_s











AD-
A-
AAAUUCUUACCGUCAAACUGA
940
NM_002973.3_
4532-
A-
UCAGUUTGACGGUAAGAAUUUAC
1215
NM_002973.3_4530-
4530-


367910.1
713551.1


5432-4552_s
4552
713552.1


4552_as
4552





AD-
A-
AAUUCUUACCGUCAAACUGAU
941
NM_002973.3_
4533-
A-
AUCAGUTUGACGGUAAGAAUUUA
1216
NM_002973.3_4531-
4531-


367911.1
713553.1


4533-
4553
713554.1


4553_G1A_as
4553






4553_C21U_s











AD-
A-
AUUCUUACCGUCAAACUGACU
942
NM_002973.3_
4534-
A-
AGUCAGTUUGACGGUAAGAAUUU
1217
NM_002973.3_4532-
4532-


367912.1
713555.1


4534-
4554
713556.1


4554_C1A_as
4554






4554_G21U_s











AD-
A-
UUCUUACCGUCAAACUGACGU
943
NM_002973.3_
4535-
A-
ACGUCAGUUUGACGGUAAGAAUU
1218
NM_002973.3_4533-
4533-


367913.1
713557.1


4535-
4555
713558.1


4555_C1A_as
4555






4555_G21U_s











AD-
A-
UCUUACCGUCAAACUGACGGA
944
NM_002973.3_
4536-
A-
UCCGUCAGUUUGACGGUAAGAAU
1219
NM_002973.3_4534-
4534-


367914.1
713559.1


4536-4556_s
4556
713560.1


4556_as
4556





AD-
A-
CUUACCGUCAAACUGACGGAU
945
NM_002973.3_
4537-
A-
AUCCGUCAGUUUGACGGUAAGAA
1220
NM_002973.3_4535-
4535-


367915.1
713561.1


4537-4557_s
4557
713562.1


4557_as
4557





AD-
A-
UUACCGUCAAACUGACGGAUU
946
NM_002973.3_
4538-
A-
AAUCCGTCAGUUUGACGGUAAGA
1221
NM_002973.3_4536-
4536-


367916.1
713563.1


4538-4558_s
4558
713564.1


4558_as
4558





AD-
A-
UACCGUCAAACUGACGGAUUA
947
NM_002973.3_
4539-
A-
UAAUCCGUCAGUUUGACGGUAAG
1222
NM_002973.3_4537-
4537-


367917.1
713565.1


4539-4559_s
4559
713566.1


4559_as
4559





AD-
A-
ACCGUCAAACUGACGGAUUAU
948
NM_002973.3_
4540-
A-
AUAAUCCGUCAGUUUGACGGUAA
1223
NM_002973.3_4538-
4538-


367918.1
713567.1


4540-4560_s
4560
713568.1


4560_as
4560





AD-
A-
AACUGACGGAUUAUUAUUUAU
949
NM_002973.3_
4547-
A-
AUAAAUAAUAAUCCGUCAGUUUG
1224
NM_002973.3_4545-
4545-


367925.1
713581.1


4547-4567_s
4567
713582.1


4567_as
4567





AD-
A-
AGUUUGAUGAGGUGAUCACUU
950
NM_002973.3_
4574-
A-
AAGUGATCACCUCAUCAAACUUG
1225
NM_002973.3_4572-
4572-


367950.1
713631.1


4574-
4594
713632.1


4594_C1A_as
4594






4594_G21U_s











AD-
A-
ACUGUCUACAGUGGUUCAACU
951
NM_002973.3_
4591-
A-
AGUUGAACCACUGUAGACAGUGA
1226
NM_002973.3_4589-
4589-


367967.1
713665.1


4591-4611_s
4611
713666.1


4611_as
4611





AD-
A-
CUGUCUACAGUGGUUCAACUU
952
NM_002973.3_
4592-
A-
AAGUUGAACCACUGUAGACAGUG
1227
NM_002973.3_4590-
4590-


367968.1
713667.1


4592-4612_s
4612
713668.1


4612_as
4612





AD-
A-
CUACAGUGGUUCAACUUUUAA
953
NM_002973.3_
4596-
A-
UUAAAAGUUGAACCACUGUAGAC
1228
NM_002973.3_4594-
4594-


367972.1
713675.1


4596-4616_s
4616
713676.1


4616_as
4616








AD-
A-
UACAGUGGUUCAACUUUUAAU
954
NM_002973.3_
4597-
A-
AUUAAAAGUUGAACCACUGUAGA
1229
NM_002973.3_4595-
4595-


367973.1
713677.1


4597-
4617
713678.1


4617_C1A_as
4617






4617_G21U_s











AD-
A-
UCAACUUUUAAGUUAAGGGAA
955
NM_002973.3_
4606-
A-
UUCCCUTAACUUAAAAGUUGAAC
1230
NM_002973.3_4604-
4604-


367982.1
713695.1


4606-4626_s
4626
713696.1


4626_as
4626





AD-
A-
AACUUUUAAGUUAAGGGAAAA
956
NM_002973.3_
4608-
A-
UUUUCCCUUAACUUAAAAGUUGA
1231
NM_002973.3_4606-
4606-


367984.1
713699.1


4608-4628_s
4628
713700.1


4628_as
4628





AD-
A-
AAAAACUUUUACUUUGUAGAU
957
NM_002973.3_
4625-
A-
AUCUACAAAGUAAAAGUUUUUCC
1232
NM_002973.3_4623-
4623-


368001.1
713733.1


4625-4645_s
4645
713734.1


4645_as
4645





AD-
A-
CCUCAGCCUACGAUUUCUUUU
958
NM_009125.2_
 694-
A-
AAAAGAAAUCGUAGGCUGAGGCA
1233
NM_009125.2_692-
 692-


385489.1
748537.1


694-714_s
714
748538.1


714_as
714





AD-
A-
CUCAGCCUACGAUUUCUUUUG
959
NM_009125.2_
 695-
A-
CAAAAGAAAUCGUAGGCUGAGGC
1234
NM_009125.2_693-
 693-


385490.1
748539.1


695-715_s
715
748540.1


715_as
715





AD-
A-
UCAGCCUACGAUUUCUUUUGA
960
NM_009125.2_
 696-
A-
UCAAAAGAAAUCGUAGGCUGAGG
1235
NM_009125.2_694-
 694-


385491.1
748541.1


696-716_s
716
748542.1


716_as
716





AD-
A-
GAGGAUGGUUCAUAUACUUAU
961
NM_002973.3_
 960-
A-
AUAAGUAUAUGAACCAUCCUCAC
1236
NM_009125.2_733-



385513.1
707765.1


960-980_C21U_s
980
748584.1


755_G1A_as






AD-
A-
AAUGUGAAGUACAAGUGAAAA
962
NM_002973.3_
 998-
A-
UUUUCACUUGUACUUCACAUUUC
1237
NM_009125.2_771-



385515.1
707841.1


998-1018_s
1018
748586.1


793_as






AD-
A-
AGGAUGGUUCAUAUACUUACU
963
NM_009125.2_
 736-
A-
AGUAAGTAUAUGAACCAUCCUCA
1238
NM_009125.2_734-
 734-


385521.1
748597.1


736-756_G21U_s
756
748598.1


756_C1A_as
756





AD-
A-
GUGAAGUACAAGUGAAAAACU
964
NM_009125.2_
 776-
A-
AGUUUUTCACUUGUACUUCACAU
1239
NM_009125.2_774-
 774-


385557.1
748669.1


776-796_G21U_s
796
748670.1


796_C1A_as
796





AD-
A-
AAGGAGUUUUUAAAACAUACA
965
NM_009125.2_
 809-
A-
UGUAUGTUUUAAAAACUCCUUCA
1240
NM_009125.2_807-
 807-


385589.1
748731.1


809-829_s
829
748732.1


829_as
829





AD-
A-
AGGAGUUUUUAAAACAUACAU
966
NM_009125.2_
 810-
A-
AUGUAUGUUUUAAAAACUCCUUC
1241
NM_009125.2_808-
 808-


385590.1
748733.1


810-830_G21U_s
830
748734.1


830_C1A_as
830





AD-
A-
AAACAUACAGUCCUAAGUGUU
967
NM_009125.2_
 821-
A-
AACACUTAGGACUGUAUGUUUUA
1242
NM_009125.2_819-
 819-


385601.1
748755.1


821-841_G21U_s
841
748756.1


841_C1A_as
841





AD-
A-
AACAUACAGUCCUAAGUGUGA
968
NM_009125.2_
 822-
A-
UCACACTUAGGACUGUAUGUUUU
1243
NM_009125.2_820-
 820-


385602.1
748757.1


822-842_s
842
748758.1


842_as
842





AD-
A-
ACAUACAGUCCUAAGUGUGAU
969
NM_009125.2_
 823-
A-
AUCACACUUAGGACUGUAUGUUU
1244
NM_009125.2_821-
 821-


385603.1
748759.1


823-843_C21U_s
843
748760.1


843_G1A_as
843





AD-
A-
GCUGCACAUGAGAAAAGUACA
970
NM_009125.2_
 856-
A-
UGUACUTUUCUCAUGUGCAGCAU
1245
NM_009125.2_854-
 854-


385640.1
748829.1


856-876_s
876
748830.1


876_as
876





AD-
A-
CUGCACAUGAGAAAAGUACAU
971
NM_009125.2_
 857-
A-
AUGUACTUUUCUCAUGUGCAGCA
1246
NM_009125.2_855-
 855-


385641.1
748831.1


857-877_G21U_s
877
748832.1


877_C1A_as
877





AD-
A-
AUGGAGAGUGUUUUGUUCAAA
972
NM_009125.2_
 910-
A-
UUUGAACAAAACACUCUCCAUUA
1247
NM_009125.2_908-
 908-


385660.1
748869.1


910-930_s
930
748870.1


930_as
930





AD-
A-
GGAGAGUGUUUUGUUCAAAUU
973
NM_009125.2_
 912-
A-
AAUUUGAACAAAACACUCUCCAU
1248
NM_009125.2_910-
 910-


385662.1
748873.1


912-932_G21U_s
932
748874.1


932_C1A_as
932





AD-
A-
UUUGUUCAAAUGCUCAGACUU
974
NM_009125.2_
 921-
A-
AAGUCUGAGCAUUUGAACAAAAC
1249
NM_009125.2_919-
 919-


385671.1
748891.1


921-941_s
941
748892.1


941_as
941





AD-
A-
UGUUCAAAUGCUCAGACUUCU
975
NM_009125.2_
 923-
A-
AGAAGUCUGAGCAUUUGAACAAA
1250
NM_009125.2_921-
 921-


385675.1
748897.1


923-943_G21U_s
943
748898.1


943_C1A_as
943





AD-
A-
GUUCAAAUGCUCAGACUUCGU
976
NM_009125.2_
 924-
A-
ACGAAGTCUGAGCAUUUGAACAA
1251
NM_009125.2_922-
 922-


385676.1
748899.1


924-944_s
944
748900.1


944_as
944





AD-
A-
UUCAAAUGCUCAGACUUCGUU
977
NM_009125.2_
 925-
A-
AACGAAGUCUGAGCAUUUGAACA
1252
NM_009125.2_923-
 923-


385677.1
748901.1


925-945_s
945
748902.1


945_as
945





AD-
A-
UCAAAUGCUCAGACUUCGUUU
978
NM_009125.2_
 926-
A-
AAACGAAGUCUGAGCAUUUGAAC
1253
NM_009125.2_924-
 924-


385678.1
748903.1


926-946_G21U_s
946
748904.1


946_C1A_as
946





AD-
A-
CAAAUGCUCAGACUUCGUUGU
979
NM_009125.2_
 927-
A-
ACAACGAAGUCUGAGCAUUUGAA
1254
NM_009125.2_925-
 925-


385679.1
748905.1


927-947_s
947
748906.1


947_as
947





AD-
A-
AAAUGCUCAGACUUCGUUGUU
980
NM_009125.2_
 928-
A-
AACAACGAAGUCUGAGCAUUUGA
1255
NM_009125.2_926-
 926-


385680.1
748907.1


928-948_G21U_s
948
748908.1


948_C1A_as
948





AD-
A-
AAUGCUCAGACUUCGUUGUGU
981
NM_009125.2_
 929-
A-
ACACAACGAAGUCUGAGCAUUUG
1256
NM_009125.2_927-
 927-


385681.1
748909.1


929-949_G21U_s
949
748910.1


949_C1A_as
949





AD-
A-
ACAUGUUUCGAUAUAAUGAAU
982
NM_009125.2_
1133-
A-
AUUCAUTAUAUCGAAACAUGUCA
1257
NM_009125.2_1131-
1131-


385834.1
749211.1


1133-
1153
749212.1


1153_C1A_as
1153






1153_G21U_s











AD-
A-
UUUAUCUUCAUAUACGGUUCU
983
NM_009125.2_
1188-
A-
AGAACCGUAUAUGAAGAUAAACU
1258
NM_009125.2_1186-
1186-


385889.1
749321.1


1188-
1208
749322.1


1208_G1A_as
1208






1208_C21U_s











AD-
A-
AGGGACAACUCAGAAGAAUUU
984
NM_009125.2_
1216-
A-
AAAUUCTUCUGAGUUGUCCCUUU
1259
NM_009125.2_1214-
1214-


385917.1
749377.1


1216-1236_s
1236
749378.1


1236_as
1236





AD-
A-
GGGACAACUCAGAAGAAUUUC
985
NM_009125.2_
1217-
A-
GAAAUUCUUCUGAGUUGUCCCUU
1260
NM_009125.2_1215-
1215-


385918.1
749379.1


1217-1237_s
1237
749380.1


1237_as
1237





AD-
A-
GGACAACUCAGAAGAAUUUCU
986
NM_009125.2_
1218-
A-
AGAAAUTCUUCUGAGUUGUCCCU
1261
NM_009125.2_1216-
1216-


385919.1
749381.1


1218-1238_s
1238
749382.1


1238_as
1238





AD-
A-
GACAACUCAGAAGAAUUUCUU
987
NM_009125.2_
1219-
A-
AAGAAATUCUUCUGAGUUGUCCC
1262
NM_009125.2_1217-
1217-


385920.1
749383.1


1219-1239_s
1239
749384.1


1239_as
1239





AD-
A-
CUUCUCACACUUCAGAUUUCA
988
NM_002973.3_
1748-
A-
UGAAAUCUGAAGUGUGAGAAGCA
1263
NM_009125.2_1518-



386134.1
709229.1


1748-1768_s
1768
749805.1


1540_as






AD-
A-
UUCUCACACUUCAGAUUUCAA
989
NM_002973.3_
1749-
A-
UUGAAATCUGAAGUGUGAGAAGC
1264
NM_009125.2_1519-



386135.1
709231.1


1749-1769_s
1769
749806.1


1541_as






AD-
A-
UCAGACCAAAGAGUAGUUAAU
990
NM_002973.3_
1783-
A-
AUUAACTACUCUUUGGUCUGAGC
1265
NM_009125.2_1553-



386136.1
709299.1


1783-1803_s
1803
749807.1


1575_as






AD-
A-
CAGACCAAAGAGUAGUUAAUU
991
NM_002973.3_
1784-
A-
AAUUAACUACUCUUUGGUCUGAG
1266
NM_009125.2_1554-



386137.1
709301.1


1784-
1804
749808.1


1576_C1A_as







1804_G21U_s











AD-
A-
UGCUUCUCACACUUCAGAUUU
992
NM_009125.2_
1518-
A-
AAAUCUGAAGUGUGAGAAGCAGC
1267
NM_009125.2_1516-
1516-


386149.1
749831.1


1518-1538_s
1538
749832.1


1538_as
1538





AD-
A-
GCUUCUCACACUUCAGAUUUC
993
NM_009125.2_
1519-
A-
GAAAUCTGAAGUGUGAGAAGCAG
1268
NM_009125.2_1517-
1517-


386150.1
749833.1


1519-1539_s
1539
749834.1


1539_as
1539





AD-
A-
UAGAAUUUGUAUCCCACAAUU
994
NM_009125.2_
1874-
A-
AAUUGUGGGAUACAAAUUCUAGG
1269
NM_009125.2_1872-
1872-


386254.1
750039.1


1874-
1894
750040.1


1894_G1A_as
1894






1894_C21U_s











AD-
A-
AGAAUUUGUAUCCCACAAUCU
995
NM_009125.2_
1875-
A-
AGAUUGTGGGAUACAAAUUCUAG
1270
NM_009125.2_1873-
1873-


386255.1
750041.1


1875-
1895
750042.1


1895_G1A_as
1895






1895_C21U_s











AD-
A-
GAAUUUGUAUCCCACAAUCCU
996
NM_009125.2_
1876-
A-
AGGAUUGUGGGAUACAAAUUCUA
1271
NM_009125.2_1874-
1874-


386256.1
750043.1


1876-
1896
750044.1


1896_G1A_as
1896






1896_C21U_s











AD-
A-
GUGAAACAUCACCUAGCUUUU
997
NM_009125.2_
2240-
A-
AAAAGCTAGGUGAUGUUUCACUU
1272
NM_009125.2_2238-
2238-


386498.1
750524.1


2240-2260_s
2260
750525.1


2260_as
2260





AD-
A-
UGAAACAUCACCUAGCUUUUC
998
NM_009125.2_
2241-
A-
GAAAAGCUAGGUGAUGUUUCACU
1273
NM_009125.2_2239-
2239-


386499.1
750526.1


2241-2261_s
2261
750527.1


2261_as
2261





AD-
A-
GAAACAUCACCUAGCUUUUCA
999
NM_009125.2_
2242-
A-
UGAAAAGCUAGGUGAUGUUUCAC
1274
NM_009125.2_2240-
2240-


386500.1
750528.1


2242-2262_s
2262
750529.1


2262_as
2262





AD-
A-
AAACAUCACCUAGCUUUUCAA
1000
NM_009125.2_
2243-
A-
UUGAAAAGCUAGGUGAUGUUUCA
1275
NM_009125.2_2241-
2241-


386501.1
750530.1


2243-2263_s
2263
750531.1


2263_as
2263





AD-
A-
AACAUCACCUAGCUUUUCAAA
1001
NM_009125.2_
2244-
A-
UUUGAAAAGCUAGGUGAUGUUUC
1276
NM_009125.2_2242-
2242-


386502.1
750532.1


2244-2264_s
2264
750533.1


2264_as
2264





AD-
A-
ACAUCACCUAGCUUUUCAAAA
1002
NM_009125.2_
2245-
A-
UUUUGAAAAGCUAGGUGAUGUUU
1277
NM_009125.2_2243-
2243-


386503.1
750534.1


2245-2265_s
2265
750535.1


2265_as
2265





AD-
A-
CAUCACCUAGCUUUUCAAAAU
1003
NM_009125.2_
2246-
A-
AUUUUGAAAAGCUAGGUGAUGUU
1278
NM_009125.2_2244-
2244-


386504.1
750536.1


2246-
2266
750537.1


2266_C1A_as
2266






2266_G21U_s











AD-
A-
AUCACCUAGCUUUUCAAAAGU
1004
NM_009125.2_
2247-
A-
ACUUUUGAAAAGCUAGGUGAUGU
1279
NM_009125.2_2245-
2245-


386505.1
750538.1


2247-
2267
750539.1


2267_G1A_as
2267






2267_C21U_s











AD-
A-
UCACCUAGCUUUUCAAAAGCU
1005
NM_009125.2_
2248-
A-
AGCUUUTGAAAAGCUAGGUGAUG
1280
NM_009125.2_2246-
2246-


386506.1
750540.1


2248-2268_s
2268
750541.1


2268_as
2268





AD-
A-
CACCUAGCUUUUCAAAAGCUU
1006
NM_009125.2_
2249-
A-
AAGCUUTUGAAAAGCUAGGUGAU
1281
NM_009125.2_2247-
2247-


386507.1
750542.1


2249-
2269
750543.1


2269_C1A_as
2269






2269_G21U_s











AD-
A-
ACCUAGCUUUUCAAAAGCUGA
1007
NM_009125.2_
2250-
A-
UCAGCUTUUGAAAAGCUAGGUGA
1282
NM_009125.2_2248-
2248-


386508.1
750544.1


2250-2270_s
2270
750545.1


2270_as
2270





AD-
A-
CCUAGCUUUUCAAAAGCUGAU
1008
NM_009125.2_
2251-
A-
AUCAGCTUUUGAAAAGCUAGGUG
1283
NM_009125.2_2249-
2249-


386509.1
750546.1


2251-
2271
750547.1


2271_G1A_as
2271






2271_C21U_s











AD-
A-
UCUGAAUCUAUGGAUCAACUA
1009
NM_002973.3_
2596-
A-
UAGUUGAUCCAUAGAUUCAGAUG
1284
NM_009125.2_2366-



386595.1
710459.1


2596-2616_s
2616
750716.1


2388_as






AD-
A-
CUGAAUCUAUGGAUCAACUAU
1010
NM_002973.3_
2597-
A-
AUAGUUGAUCCAUAGAUUCAGAU
1285
NM_009125.2_2367-



386596.1
710461.1


2597-
2617
750717.1


2389_G1A_as







2617_C21U_s











AD-
A-
CAUCUGAAUCUAUGGAUCAAU
1011
NM_009125.2_
2366-
A-
AUUGAUCCAUAGAUUCAGAUGUA
1286
NM_009125.2_2364-
2364-


386617.1
750758.1


2366-
2386
750759.1


2386_G1A_as
2386






2386_C21U_s











AD-
A-
AUCUGAAUCUAUGGAUCAACU
1012
NM_009125.2_
2367-
A-
AGUUGATCCAUAGAUUCAGAUGU
1287
NM_009125.2_2365-
2365-


386618.1
750760.1


2367-2387_s
2387
750761.1


2387_as
2387





AD-
A-
AUCUAUGGAUCAACUACUAAU
1013
NM_009125.2_
2373-
A-
AUUAGUAGUUGAUCCAUAGAUUC
1288
NM_009125.2_2371-
2371-


386619.1
750762.1


2373-
2393
750763.1


2393_C1A_as
2393






2393_G21U_s











AD-
A-
UCUAUGGAUCAACUACUAAGU
1014
NM_009125.2_
2374-
A-
ACUUAGTAGUUGAUCCAUAGAUU
1289
NM_009125.2_2372-
2372-


386620.1
750764.1


2374-
2394
750765.1


2394_G1A_as
2394






2394_C21U_s











AD-
A-
CUAUGGAUCAACUACUAAGCA
1015
NM_009125.2_
2375-
A-
UGCUUAGUAGUUGAUCCAUAGAU
1290
NM_009125.2_2373-
2373-


386621.1
750766.1


2375-2395_s
2395
750767.1


2395_as
2395





AD-
A-
UAUGGAUCAACUACUAAGCAA
1016
NM_009125.2_
2376-
A-
UUGCUUAGUAGUUGAUCCAUAGA
1291
NM_009125.2_2374-
2374-


386622.1
750768.1


2376-2396_s
2396
750769.1


2396_as
2396





AD-
A-
AUGGAUCAACUACUAAGCAAA
1017
NM_009125.2_
2377-
A-
UUUGCUTAGUAGUUGAUCCAUAG
1292
NM_009125.2_2375-
2375-


386623.1
750770.1


2377-2397_s
2397
750771.1


2397_as
2397





AD-
A-
UGGAUCAACUACUAAGCAAAA
1018
NM_009125.2_
2378-
A-
UUUUGCTUAGUAGUUGAUCCAUA
1293
NM_009125.2_2376-
2376-


386624.1
750772.1


2378-2398_s
2398
750773.1


2398_as
2398





AD-
A-
GGAUCAACUACUAAGCAAAAA
1019
NM_009125.2_
2379-
A-
UUUUUGCUUAGUAGUUGAUCCAU
1294
NM_009125.2_2377-
2377-


386625.1
750774.1


2379-2399_s
2399
750775.1


2399_as
2399





AD-
A-
GAUCAACUACUAAGCAAAAAU
1020
NM_009125.2_
2380-
A-
AUUUUUGCUUAGUAGUUGAUCCA
1295
NM_009125.2_2378-
2378-


386626.1
750776.1


2380-2400_s
2400
750777.1


2400_as
2400





AD-
A-
AAGGAGAAAAGUCACGAGAUU
1021
NM_009125.2_
2405-
A-
AAUCUCGUGACUUUUCUCCUUCU
1296
NM_009125.2_2403-
2403-


386647.1
750818.1


2405-2425_s
2425
750819.1


2425_as
2425





AD-
A-
GGAGUUCAACCCUCGUUCUUU
1022
NM_009125.2_
2697-
A-
AAAGAACGAGGGUUGAACUCCUU
1297
NM_009125.2_2695-
2695-


386848.1
751213.1


2697-2717_s
2717
751214.1


2717_as
2717





AD-
A-
GUUCAACCCUCGUUCUUUCUU
1023
NM_009125.2_
2700-
A-
AAGAAAGAACGAGGGUUGAACUC
1298
NM_009125.2_2698-
2698-


386851.1
751219.1


2700-
2720
751220.1


2720_G1A_as
2720






2720_C21U_s











AD-
A-
UUCAACCCUCGUUCUUUCUCU
1024
NM_009125.2_
2701-
A-
AGAGAAAGAACGAGGGUUGAACU
1299
NM_009125.2_2699-
2699-


386852.1
751221.1


2701-2721_s
2721
751222.1


2721_as
2721





AD-
A-
UCAACCCUCGUUCUUUCUCUU
1025
NM_009125.2_
2702-
A-
AAGAGAAAGAACGAGGGUUGAAC
1300
NM_009125.2_2700-
2700-


386853.1
751223.1


2702-
2722
751224.1


2722_G1A_as
2722






2722_C21U_s











AD-
A-
CAACCCUCGUUCUUUCUCUCA
1026
NM_009125.2_
2703-
A-
UGAGAGAAAGAACGAGGGUUGAA
1301
NM_009125.2_2701-
2701-


386860.1
751231.1


2703-2723_s
2723
751232.1


2723_as
2723





AD-
A-
AACCCUCGUUCUUUCUCUCAU
1027
NM_009125.2_
2704-
A-
AUGAGAGAAAGAACGAGGGUUGA
1302
NM_009125.2_2702-
2702-


386861.1
751233.1


2704-
2724
751234.1


2724_C1A_as
2724






2724_G21U_s











AD-
A-
CGUUCUUUCUCUCAGCCAAAU
1028
NM_009125.2_
2710-
A-
AUUUGGCUGAGAGAAAGAACGAG
1303
NM_009125.2_2708-
2708-


386867.1
751245.1


2710-
2730
751246.1


2730_C1A_as
2730






2730_G21U_s











AD-
A-
GUUCUUUCUCUCAGCCAAAGU
1029
NM_009125.2_
2711-
A-
ACUUUGGCUGAGAGAAAGAACGA
1304
NM_009125.2_2709-
2709-


386868.1
751247.1


2711-
2731
751248.1


2731_G1A_as
2731






2731_C21U_s











AD-
A-
AGUCCUGUCAUACAAGGUAAU
1030
NM_009125.2_
3145-
A-
AUUACCTUGUAUGACAGGACUGU
1305
NM_009125.2_3143-
3143-


387208.1
751921.1


3145-3165_s
3165
751922.1


3165_as
3165





AD-
A-
GUCCUGUCAUACAAGGUAAUU
1031
NM_009125.2_
3146-
A-
AAUUACCUUGUAUGACAGGACUG
1306
NM_009125.2_3144-
3144-


387209.1
751923.1


3146-
3166
751924.1


3166_C1A_as
3166






3166_G21U_s











AD-
A-
UGUCAUACAAGGUAAUGCCAU
1032
NM_009125.2_
3150-
A-
AUGGCATUACCUUGUAUGACAGG
1307
NM_009125.2_3148-
3148-


387213.1
751931.1


3150-
3170
751932.1


3170_C1A_as
3170






3170_G21U_s











AD-
A-
GUCAUACAAGGUAAUGCCAGU
1033
NM_009125.2_
3151-
A-
ACUGGCAUUACCUUGUAUGACAG
1308
NM_009125.2_3149-
3149-


387214.1
751933.1


3151-
3171
751934.1


3171_C1A_as
3171






3171_G21U_s











AD-
A-
UCUACUUUGCCAUUUCCACCU
1034
NM_009125.2_
3305-
A-
AGGUGGAAAUGGCAAAGUAGAAA
1309
NM_009125.2_3303-
3303-


387303.1
752109.1


3305-
3325
752110.1


3325_C1A_as
3325






3325_G21U_s











AD-
A-
AAGCACAGAAAACUAGAACUU
1035
NM_009125.2_
3952-
A-
AAGUUCTAGUUUUCUGUGCUUCC
1310
NM_009125.2_3950-
3950-


387636.1
752766.1


3952-3972_s
3972
752767.1


3972_as
3972





AD-
A-
GCACAGAAAACUAGAACUUCA
1036
NM_009125.2_
3954-
A-
UGAAGUTCUAGUUUUCUGUGCUU
1311
NM_009125.2_3952-
3952-


387638.1
752770.1


3954-3974_s
3974
752771.1


3974_as
3974





AD-
A-
ACAGAAAACUAGAACUUCAUU
1037
NM_009125.2_
3956-
A-
AAUGAAGUUCUAGUUUUCUGUGC
1312
NM_009125.2_3954-
3954-


387640.1
752774.1


3956-3976_s
3976
752775.1


3976_as
3976





AD-
A-
CAGAAAACUAGAACUUCAUUU
1038
NM_009125.2_
3957-
A-
AAAUGAAGUUCUAGUUUUCUGUG
1313
NM_009125.2_3955-
3955-


387641.1
752776.1


3957-
3977
752777.1


3977_C1A_as
3977






3977_G21U_s











AD-
A-
GAAACUGGAAGUUAUUUAUUU
1039
NM_002973.3_
4367-
A-
AAAUAAAUAACUUCCAGUUUCAG
1314
NM_009125.2_4142-



387777.1
713323.1


4367-4387_s
4387
753048.1


4164_as






AD-
A-
AGUCAUGAACACAUCAGCUAU
1040
NM_002973.3_
4404-
A-
AUAGCUGAUGUGUUCAUGACUCU
1315
NM_009125.2_4179-



387779.1
713361.1


4404-
4424
753050.1


4201_C1A_as







4424_G21U_s











AD-
A-
GUCAUGAACACAUCAGCUAGU
1041
NM_002973.3_
4405-
A-
ACUAGCTGAUGUGUUCAUGACUC
1316
NM_009125.2_4180-



387780.1
713363.1


4405-
4425
753051.1


4202_G1A_as







4425_C21U_s











AD-
A-
UGCUUGCUGAAACUGGAAGUU
1042
NM_009125.2_
4136-
A-
AACUUCCAGUUUCAGCAAGCAGA
1317
NM_009125.2_4134-
4134-


387806.1
753102.1


4136-4156_s
4156
753103.1


4156_as
4156





AD-
A-
CUGAAACUGGAAGUUAUUUAU
1043
NM_009125.2_
4142-
A-
AUAAAUAACUUCCAGUUUCAGCA
1318
NM_009125.2_4140-
4140-


387812.1
753114.1


4142-4162_s
4162
753115.1


4162_as
4162





AD-
A-
UGAAACUGGAAGUUAUUUAUU
1044
NM_009125.2_
4143-
A-
AAUAAATAACUUCCAGUUUCAGC
1319
NM_009125.2_4141-
4141-


387813.1
753116.1


4143-4163_s
4163
753117.1


4163_as
4163





AD-
A-
UUGAGAGUCAUGAACACAUCA
1045
NM_009125.2_
4176-
A-
UGAUGUGUUCAUGACUCUCAAGG
1320
NM_009125.2_4174-
4174-


387825.1
753140.1


4176-4196_s
4196
753141.1


4196_as
4196





AD-
A-
AUGAACACAUCAGCUAGCAAU
1046
NM_009125.2_
4185-
A-
AUUGCUAGCUGAUGUGUUCAUGA
1321
NM_009125.2_4183-
4183-


387830.1
753150.1


4185-
4205
753151.1


4205_G1A_as
4205






4205_C21U_s











AD-
A-
AGAAGUAACAAGAGUGAUUCU
1047
NM_002973.3_
4429-
A-
AGAAUCACUCUUGUUACUUCUGU
1322
NM_009125.2_4204-



387831.1
713411.1


4429-4449_s
4449
753152.1


4226_as






AD-
A-
UGAACACAUCAGCUAGCAACA
1048
NM_009125.2_
4186-
A-
UGUUGCTAGCUGAUGUGUUCAUG
1323
NM_009125.2_4184-
4184-


387833.1
753154.1


4186-4206_s
4206
753155.1


4206_as
4206





AD-
A-
AUCAGCUAGCAACAGAAGUAA
1049
NM_009125.2_
4193-
A-
UUACUUCUGUUGCUAGCUGAUGU
1324
NM_009125.2_4191-
4191-


387840.1
753168.1


4193-4213_s
4213
753169.1


4213_as
4213





AD-
A-
CAGCUAGCAACAGAAGUAACA
1050
NM_009125.2_
4195-
A-
UGUUACTUCUGUUGCUAGCUGAU
1325
NM_009125.2_4193-
4193-


387842.1
753172.1


4195-4215_s
4215
753173.1


4215_as
4215





AD-
A-
CUAGCAACAGAAGUAACAAGA
1051
NM_009125.2_
4198-
A-
UCUUGUTACUUCUGUUGCUAGCU
1326
NM_009125.2_4196-
4196-


387845.1
753178.1


4198-4218_s
4218
753179.1


4218_as
4218





AD-
A-
UAGCAACAGAAGUAACAAGAU
1052
NM_009125.2_
4199-
A-
AUCUUGTUACUUCUGUUGCUAGC
1327
NM_009125.2_4197-
4197-


387846.1
753180.1


4199-
4219
753181.1


4219_C1A_as
4219






4219_G21U_s











AD-
A-
CUUGCUGCUAUUACCGCUUUA
1053
NM_009125.2_
4225-
A-
UAAAGCGGUAAUAGCAGCAAGAA
1328
NM_009125.2_4223-
4223-


387858.1
753204.1


4225-4245_s
4245
753205.1


4245_as
4245





AD-
A-
GCUGCUAUUACCGCUUUAAAA
1054
NM_009125.2_
4228-
A-
UUUUAAAGCGGUAAUAGCAGCAA
1329
NM_009125.2_4226-
4226-


387861.1
753210.1


4228-4248_s
4248
753211.1


4248_as
4248





AD-
A-
CCCUUUUACUAAACUUGACAU
1055
NM_009125.2_
4272-
A-
AUGUCAAGUUUAGUAAAAGGGCG
1330
NM_009125.2_4270-
4270-


387863.1
753214.1


4272-
4292
753215.1


4292_C1A_as
4292






4292_G21U_s











AD-
A-
CUUUUACUAAACUUGACAGAA
1056
NM_009125.2_
4274-
A-
UUCUGUCAAGUUUAGUAAAAGGG
1331
NM_009125.2_4272-
4272-


387865.1
753218.1


4274-4294_s
4294
753219.1


4294_as
4294





AD-
A-
UUUUACUAAACUUGACAGAAU
1057
NM_009125.2_
4275-
A-
AUUCUGTCAAGUUUAGUAAAAGG
1332
NM_009125.2_4273-
4273-


387866.1
753220.1


4275-
4295
753221.1


4295_C1A_as
4295






4295_G21U_s











AD-
A-
UACUAAACUUGACAGAAGUUU
1058
NM_009125.2_
4278-
A-
AAACUUCUGUCAAGUUUAGUAAA
1333
NM_009125.2_4276-
4276-


387869.1
753226.1


4278-
4298
753227.1


4298_G1A_as
4298






4298_C21U_s











AD-
A-
CUAAACUUGACAGAAGUUCAU
1059
NM_009125.2_
4280-
A-
AUGAACTUCUGUCAAGUUUAGUA
1334
NM_009125.2_4278-
4278-


387871.1
753230.1


4280-
4300
753231.1


4300_C1A_as
4300






4300_G21U_s











AD-
A-
ACUUGACAGAAGUUCAGUAAA
1060
NM_009125.2_
4284-
A-
UUUACUGAACUUCUGUCAAGUUU
1335
NM_009125.2_4282-
4282-


387875.1
753238.1


4284-4304_s
4304
753239.1


4304_as
4304





AD-
A-
UGACAGAAGUUCAGUAAAUUU
1061
NM_009125.2_
4287-
A-
AAAUUUACUGAACUUCUGUCAAG
1336
NM_009125.2_4285-
4285-


387878.1
753244.1


4287-
4307
753245.1


4307_G1A_as
4307






4307_C21U_s











AD-
A-
ACAGAAGUUCAGUAAAUUCUU
1062
NM_009125.2_
4289-
A-
AAGAAUTUACUGAACUUCUGUCA
1337
NM_009125.2_4287-
4287-


387880.1
753248.1


4289-4309_s
4309
753249.1


4309_as
4309





AD-
A-
CAGAAGUUCAGUAAAUUCUUA
1063
NM_009125.2_
4290-
A-
UAAGAATUUACUGAACUUCUGUC
1338
NM_009125.2_4288-
4288-


387881.1
753250.1


4290-4310_s
4310
753251.1


4310_as
4310





AD-
A-
AGAAGUUCAGUAAAUUCUUAU
1064
NM_009125.2_
4291-
A-
AUAAGAAUUUACUGAACUUCUGU
1339
NM_009125.2_4289-
4289-


387882.1
753252.1


4291-
4311
753253.1


4311_G1A_as
4311






4311_C21U_s











AD-
A-
CCAAACUGACGGAUUAUUAUU
1065
NM_009125.2_
4314-
A-
AAUAAUAAUCCGUCAGUUUGGCG
1340
NM_009125.2_4312-
4312-


387909.1
753302.1


4314-4334_s
4334
753303.1


4334_as
4334





AD-
A-
AAAACUUUUACUUUGUAGAUA
1066
NM_002973.3_
4626-
A-
UAUCUACAAAGUAAAAGUUUUCC
1341
NM_009125.2_4393-



387937.1
713735.1


4626-4646_s
4646
753358.1


4415_as






AD-
A-
GUUAAGGGAAAACUUUUACUU
1067
NM_009125.2_
4387-
A-
AAGUAAAAGUUUUCCCUUAACUU
1342
NM_009125.2_4385-
4385-


387940.1
753362.1


4387-4407_s
4407
753363.1


4407_as
4407





AD-
A-
UUAAGGGAAAACUUUUACUUU
1068
NM_009125.2_
4388-
A-
AAAGUAAAAGUUUUCCCUUAACU
1343
NM_009125.2_4386-
4386-


387941.1
753364.1


4388-4408_s
4408
753365.1


4408_as
4408





AD-
A-
UAAGGGAAAACUUUUACUUUG
1069
NM_009125.2_
4389-
A-
CAAAGUAAAAGUUUUCCCUUAAC
1344
NM_009125.2_4387-
4387-


387942.1
753366.1


4389-4409_s
4409
753367.1


4409_as
4409





AD-
A-
AGGGAAAACUUUUACUUUGUA
1070
NM_009125.2_
4391-
A-
UACAAAGUAAAAGUUUUCCCUUA
1345
NM_009125.2_4389-
4389-


387944.1
753370.1


4391-4411_s
4411
753371.1


4411_as
4411





AD-
A-
GGGAAAACUUUUACUUUGUAU
1071
NM_009125.2_
4392-
A-
AUACAAAGUAAAAGUUUUCCCUU
1346
NM_009125.2_4390-
4390-


387945.1
753372.1


4392-
4412
753373.1


4412_C1A_as
4412






4412_G21U_s











AD-
A-
GAAAACUUUUACUUUGUAGAU
1072
NM_009125.2_
4394-
A-
AUCUACAAAGUAAAAGUUUUCCC
1347
NM_009125.2_4392-
4392-


387947.1
753376.1


4394-4414_s
4414
753377.1


4414_as
4414





AD-
A-
UCCGACUUCCGGUAAAGAGUU
1073
NM_002973.3_
  92-
A-
AACUCUTUACCGGAAGUCGGAGG
1348
NM_002973.3_90-
  90-


364136.1
706003.1


92-112_C21U_s
112
706004.1


112_G1A_as
112





AD-
A-
CCGACUUCCGGUAAAGAGUCU
1074
NM_002973.3_
  93-
A-
AGACUCTUUACCGGAAGUCGGAG
1349
NM_002973.3_91-
  91-


364137.1
706005.1


93-113_C21U_s
113
706006.1


113_G1A_as
113





AD-
A-
CGACUUCCGGUAAAGAGUCCU
1075
NM_002973.3_
  94-
A-
AGGACUCUUUACCGGAAGUCGGA
1350
NM_002973.3_92-
  92-


364138.1
706007.1


94-114_C21U_s
114
706008.1


114_G1A_as
114





AD-
A-
AAUGUGAAGUACAAGUGAAAA
1076
NM_002973.3_
 998-
A-
UUUUCACUUGUACUUCACAUUUG
1351
NM_002973.3_996-
 996-


365055.1
707841.1


998-1018_s
1018
707842.1


1018_as
1018





AD-
A-
AUGUGAAGUACAAGUGAAAAA
1077
NM_002973.3_
 999-
A-
UUUUUCACUUGUACUUCACAUUU
1352
NM_002973.3_997-
 997-


365056.1
707843.1


999-1019_s
1019
707844.1


1019_as
1019





AD-
A-
CAUGAGAAAAGUACAGAAUCU
1078
NM_002973.3_
1087-
A-
AGAUUCTGUACUUUUCUCAUGUG
1353
NM_002973.3_1085-
1085-


365144.1
708019.1


1087-
1107
708020.1


1107_G1A_as
1107






1107_C21U_s











AD-
A-
CACUUCUCACACUUCAGAUUU
1079
NM_002973.3_
1746-
A-
AAAUCUGAAGUGUGAGAAGUGGA
1354
NM_002973.3_1744-
1744-


365747.1
709225.1


1746-1766_s
1766
709226.1


1766_as
1766





AD-
A-
ACUUCUCACACUUCAGAUUUC
1080
NM_002973.3_
1747-
A-
GAAAUCTGAAGUGUGAGAAGUGG
1355
NM_002973.3_1745-
1745-


365748.1
709227.1


1747-1767_s
1767
709228.1


1767_as
1767





AD-
A-
CUUCUCACACUUCAGAUUUCA
1081
NM_002973.3_
1748-
A-
UGAAAUCUGAAGUGUGAGAAGUG
1356
NM_002973.3_1746-
1746-


365749.1
709229.1


1748-1768_s
1768
709230.1


1768_as
1768





AD-
A-
UUCUCACACUUCAGAUUUCAA
1082
NM_002973.3_
1749-
A-
UUGAAATCUGAAGUGUGAGAAGU
1357
NM_002973.3_1747-
1747-


365750.1
709231.1


1749-1769_s
1769
709232.1


1769_as
1769
















TABLE 4





ATXN2 in vitro screen in Cos-7 (Human Dual-Luciferase (DL) psiCHECK2 vector) and Endogenous Cell Systems.


Data are expressed as percent transcript remaining, relative to AD-1955 non-targeting control.


























DL

DL 0.1

BE(2)-C

BE(2-C

Neuro-2A



Sample
10 nM
STDEV
nM
STDEV
10 nM
STDEV
0.1 nM
STDEV
10 nM
STDEV





AD-364136.1
35.2
16.3
100.9
10.2
110.4
14.4
104.8
5.8
94.7
34.4


AD-364137.1
19.7
9.6
95.8
31.2
118.3
26.2
119.0
29.9
105.2
21.1


AD-364138.1
62.6
6.4
69.1
2.5
91.9
28.9
128.7
20.8
114.1
13.1


AD-365055.1
11.4
5.7
83.8
20.9
64.9
15.4
61.2
9.0
36.1
3.9


AD-365056.1
11.1
8.2
73.4
25.2
60.6
8.7
79.2
10.1
36.1
3.9


AD-365144.1
15.4
9.1
55.4
9.0
62.5
11.7
82.4
16.7
27.1
2.1


AD-365747.1
44.9
17.9
97.3
48.1
47.0
8.9
74.3
11.5
47.4
11.2


AD-365748.1
59.2
25.3
89.8
17.8
60.0
19.6
95.5
22.4
39.1
6.1


AD-365749.1
51.0
17.0
96.0
25.7
56.3
5.5
109.2
28.5
54.8
8.1


AD-365750.1
48.5
2.2
71.2
16.0
90.1
21.6
93.8
19.6
57.9
11.4


AD-365751.1
68.3
30.4
100.9
7.8
80.4
8.0
123.1
17.2
91.5
22.8


AD-365752.1
52.3
19.1
79.4
0.9
56.5
5.3
72.7
15.0
50.7
6.5


AD-365753.1
58.5
11.4
89.2
9.4
97.5
35.5
113.8
38.9
60.2
8.7


AD-365754.1
68.9
24.4
72.6
16.7
81.3
16.9
104.4
8.2
54.5
8.2


AD-365757.1
26.2
12.3
59.9
16.0
55.1
9.6
133.1
25.3
32.6
6.7


AD-365784.1
43.3
14.4
78.8
26.2
53.7
13.0
104.7
22.5
44.9
5.4


AD-365785.1
64.6
2.8
89.2
19.8
73.7
5.8
93.1
16.1
85.8
8.4


AD-365915.1
25.9
7.6
84.8
31.0
47.1
10.0
81.4
13.3
34.8
5.2


AD-365916.1
23.2
7.3
77.8
25.2
41.6
10.1
76.3
12.1
38.4
7.5


AD-365918.1
60.3
19.4
87.7
10.7
101.4
14.0
134.1
37.8
94.1
8.1


AD-366362.1
41.1
4.8
72.2
42.8
84.5
25.1
111.2
36.0
93.0
18.6


AD-366363.1
21.3
4.5
67.3
25.0
40.3
12.6
107.0
33.5
36.8
7.3


AD-366364.1
48.5
24.6
81.1
17.2
50.4
7.3
79.6
13.2
44.6
7.2


AD-366365.1
43.8
22.5
96.4
16.8
63.9
7.5
56.8
6.0
40.2
7.6


AD-366366.1
17.4
4.7
78.8
12.4
39.3
13.4
76.3
14.5
20.7
5.7


AD-366367.1
44.8
29.3
78.6
8.7
67.4
22.0
82.0
12.2
35.9
6.4


AD-366368.1
56.5
12.5
87.5
45.8
84.7
13.0
75.0
6.6
49.7
3.2


AD-366369.1
22.8
12.8
48.6
9.0
56.1
2.4
82.3
5.1
36.6
10.2


AD-366772.1
56.8
16.6
62.4
26.4
72.2
13.3
96.3
38.2
77.7
16.0


AD-366815.1
34.1
5.0
94.5
5.6
70.8
11.2
122.1
8.1
54.6
12.1


AD-366818.1
33.6
2.5
84.5
43.5
64.6
7.9
109.9
4.6
59.7
20.4


AD-366819.1
72.6
3.4
75.0
25.9
128.5
42.4
87.0
15.1
101.5
20.7


AD-366820.1
52.7
20.1
69.6
12.5
67.0
7.9
76.2
5.5
58.8
12.1


AD-366822.1
63.2
20.0
97.5
23.7
88.2
26.2
83.6
10.2
82.8
7.6


AD-367069.1
52.1
18.5
76.6
8.2
89.6
30.4
69.9
10.3
73.5
15.8


AD-367071.1
44.6
16.6
94.4
15.8
71.7
18.7
67.8
4.2
65.5
15.6


AD-367098.1
65.9
25.6
79.0
11.0
70.7
11.1
90.8
3.0
78.4
10.6


AD-367101.1
62.1
22.6
110.9
28.1
85.0
26.5
80.1
9.3
81.7
16.6


AD-367102.1
52.8
27.2
97.6
30.5
98.3
25.2
71.0
24.3
85.3
6.1


AD-367103.1
38.2
2.6
88.5
6.4
87.7
31.7
107.9
26.0
104.4
17.9


AD-367104.1
31.2
14.4
93.7
39.8
72.1
5.2
115.0
17.9
93.7
13.1


AD-367105.1
35.5
6.9
89.1
9.3
80.0
22.7
87.8
18.4
79.6
6.1


AD-367106.1
64.8
27.7
71.9
7.0
111.6
28.8
75.1
22.3
97.5
17.1


AD-367107.1
57.6
0.9
68.5
21.0
85.1
9.7
83.2
15.0
93.8
21.3


AD-367108.1
38.8
16.3
74.9
4.0
94.0
24.8
77.8
19.0
88.2
19.1


AD-367438.1
58.6
9.7
106.6
52.1
92.6
31.3
90.4
9.6
31.5
9.9


AD-367439.1
41.0
21.1
88.1
11.1
52.8
4.1
57.1
13.5
16.1
7.9


AD-367440.1
31.7
11.9
77.9
24.8
56.8
12.2
65.2
20.2
34.0
2.6


AD-367448.1
55.9
10.3
92.2
1.0
102.6
16.6
55.0
7.9
63.0
8.9


AD-367448.2
60.5
0.6
78.6
5.3
83.3
14.8
70.1
13.8
55.0
9.4


AD-367451.1
33.7
3.7
105.3
34.6
47.0
10.2
67.1
6.9
27.3
5.5


AD-367453.1
54.1
21.1
63.1
14.8
81.0
14.2
53.9
12.2
34.3
11.2


AD-367453.2
33.8
13.7
87.0
31.7
53.8
5.0
69.1
17.9
17.1
4.0


AD-367454.1
44.9
23.4
72.5
16.5
51.2
8.4
51.8
8.6
17.0
6.7


AD-367456.1
53.5
21.5
72.0
4.6
74.2
9.7
96.4
30.2
51.7
6.0


AD-367477.1
59.7
37.7
95.9
36.2
89.5
17.9
118.9
31.7
94.3
18.6


AD-367480.1
17.9
22.1
63.7
7.9
78.0
7.0
133.6
9.6
68.4
21.3


AD-367482.1
21.2
19.0
81.9
26.0
54.1
1.7
110.1
11.6
22.0
8.6


AD-367483.1
32.1
8.9
105.0
18.2
91.3
27.6
91.6
7.0
36.7
15.5


AD-367486.1
31.9
18.4
53.9
13.3
69.3
16.9
56.3
6.9
15.3
8.0


AD-367487.1
38.8
21.8
75.4
11.0
83.9
11.2
101.8
28.0
49.4
8.6


AD-367513.1
44.4
10.3
79.6
38.7
96.4
6.6
114.1
13.0
68.0
5.4


AD-367530.1
53.4
18.3
68.0
9.8
67.9
4.8
132.8
10.5
49.4
16.1


AD-367532.1
45.0
5.7
91.5
13.5
95.6
10.3
121.2
29.3
66.6
11.5


AD-367571.1
46.5
12.1
70.3
29.8
101.5
27.9
81.7
11.4
99.0
23.7


AD-367572.1
60.7
11.1
90.1
41.6
89.2
9.0
84.3
13.0
99.1
19.4


AD-367573.1
75.4
13.8
75.8
35.2
71.5
4.3
49.2
11.9
71.3
17.6


AD-367575.1
65.1
11.7
68.3
30.6
93.7
13.9
118.3
27.5
63.5
8.3


AD-367577.1
51.2
16.1
87.9
24.4
62.1
2.5
100.7
15.0
73.0
11.0


AD-367630.1
37.4
14.5
104.4
39.0
68.1
5.7
49.3
11.7
42.1
13.1


AD-367632.1
76.0
29.4
85.4
11.6
74.5
23.2
33.3
7.4
76.1
12.5


AD-367633.1
59.0
33.1
93.0
42.6
75.7
13.9
75.7
11.3
94.8
13.1


AD-367636.1
91.5
30.8
95.0
28.2
81.7
17.8
104.3
23.5
105.6
15.0


AD-367646.1
37.8
3.1
86.7
9.5
60.8
15.5
88.0
23.5
39.4
4.7


AD-367685.1
40.6
3.0
68.3
32.9
65.6
22.3
48.6
4.3
93.0
18.1


AD-367688.1
53.2
12.6
83.4
33.0
40.4
6.1
36.0
8.8
70.4
9.3


AD-367690.1
43.9
5.9
94.1
35.4
61.4
18.1
52.9
9.3
36.3
6.3


AD-367691.1
44.4
20.3
81.3
3.2
78.8
9.3
62.1
13.4
83.4
5.7


AD-367694.1
31.6
13.5
95.8
8.7
78.8
22.1
52.5
7.1
94.7
31.9


AD-367696.1
39.4
19.8
105.0
17.2
62.9
13.9
94.9
17.6
72.3
16.2


AD-367697.1
18.0
1.8
107.9
23.1
58.0
12.7
42.5
4.0
62.3
11.4


AD-367698.1
48.4
20.2
97.4
19.3
72.9
18.4
51.0
12.2
81.0
11.3


AD-367699.1
53.5
21.9
87.6
8.8
70.9
11.4
45.6
11.5
72.0
12.3


AD-367704.1
21.2
7.0
87.6
4.4
50.8
12.1
37.9
3.9
49.8
10.8


AD-367705.1
21.5
10.4
55.7
1.4
42.9
9.4
58.6
13.3
38.3
13.1


AD-367706.1
43.2
14.7
69.1
12.4
64.9
23.4
78.6
12.2
56.2
12.9


AD-367707.1
24.7
8.8
88.3
12.4
40.9
7.0
45.1
13.5
19.9
3.2


AD-367708.1
23.6
8.7
83.5
24.5
66.7
9.8
37.5
7.1
23.0
3.2


AD-367709.1
30.0
9.4
85.8
28.3
59.5
11.9
41.2
7.4
17.9
1.1


AD-367713.1
41.1
21.0
67.6
18.2
63.7
6.6
35.2
13.1
39.1
5.1


AD-367718.1
63.4
20.7
89.9
15.6
122.9
19.1
83.1
18.0
80.3
10.5


AD-367745.1
67.1
32.5
72.0
53.9
84.4
18.9
108.2
24.7
89.5
7.9


AD-367746.1
75.1
19.2
78.0
18.3
90.0
16.6
109.3
39.7
95.3
15.5


AD-367755.1
42.9
1.2
73.4
15.7
68.0
8.4
44.6
6.6
76.9
14.5


AD-367792.1
53.9
33.4
89.0
2.8
69.2
20.7
49.2
10.0
60.5
5.2


AD-367794.1
22.7
6.9
75.8
21.5
50.9
12.7
51.8
21.5
18.6
3.5


AD-367795.1
41.9
8.4
76.9
2.8
57.7
8.3
84.1
N/A
37.2
2.2


AD-367796.1
19.1
4.3
76.3
36.2
55.5
12.5
93.2
14.4
26.9
4.3


AD-367797.1
28.1
21.1
90.5
24.6
36.1
6.5
67.7
12.4
21.9
5.3


AD-367801.1
39.9
14.6
91.9
2.0
64.5
16.8
87.1
19.7
72.3
8.5


AD-367802.1
66.7
19.8
89.1
35.1
78.7
24.6
72.0
26.3
66.1
17.2


AD-367805.1
29.6
9.8
68.1
26.2
56.9
8.2
115.8
22.4
62.9
11.4


AD-367809.1
26.1
11.5
73.1
33.6
33.7
4.6
67.5
26.2
24.9
10.7


AD-367815.1
3.9
10.6
62.5
20.9
61.1
17.4
70.1
10.2
21.8
3.5


AD-367816.1
32.0
5.2
78.8
12.9
47.1
10.0
34.3
10.0
16.3
4.9


AD-367816.2
15.6
7.2
82.6
18.7
43.5
9.5
142.0
44.0
25.5
1.9


AD-367817.1
34.5
3.8
73.0
26.6
66.5
8.1
109.8
31.2
34.3
7.9


AD-367818.1
23.1
14.0
82.8
7.9
47.3
7.1
101.2
22.4
22.9
4.6


AD-367819.1
61.8
13.5
79.9
40.8
76.7
18.4
38.3
9.4
35.1
2.5


AD-367819.2
68.7
23.2
82.6
22.0
65.1
9.2
90.9
30.2
52.9
5.1


AD-367820.1
20.1
4.9
79.0
35.1
58.7
13.5
46.7
15.3
23.6
6.4


AD-367821.1
32.8
18.9
69.4
39.1
77.9
21.1
40.7
7.5
52.5
6.5


AD-367822.1
38.6
15.9
125.9
8.7
64.1
1.4
92.5
19.7
55.4
15.2


AD-367826.1
30.0
16.8
81.5
51.3
86.9
20.0
92.5
24.0
50.9
13.2


AD-367832.1
16.2
4.2
70.3
18.2
64.7
7.5
77.6
20.1
40.2
8.9


AD-367844.1
70.6
8.3
77.2
36.0
113.5
28.4
120.0
17.9
82.0
16.7


AD-367845.1
27.1
13.2
69.2
10.4
62.9
7.4
115.2
36.3
20.5
7.3


AD-367846.1
39.9
22.0
66.9
16.2
53.2
10.0
98.7
21.1
32.0
11.3


AD-367850.1
8.8
3.7
78.2
20.7
54.2
12.0
69.6
7.4
16.1
2.4


AD-367851.1
19.3
2.4
71.6
40.7
61.7
24.3
81.7
15.9
26.9
3.4


AD-367853.1
16.3
7.1
66.9
3.9
43.8
9.0
72.6
10.9
21.5
4.7


AD-367872.1
33.5
15.1
75.7
36.4
38.4
9.8
101.3
21.3
31.2
1.4


AD-367873.1
30.0
2.3
115.1
62.5
73.0
22.6
97.6
23.7
52.9
12.5


AD-367875.1
45.1
38.0
94.8
17.9
83.9
12.7
91.0
4.6
49.8
9.5


AD-367876.1
34.6
14.3
107.4
28.9
93.1
22.3
91.1
11.4
55.2
12.3


AD-367877.1
38.4
24.3
58.9
6.5
57.0
3.3
110.8
38.2
32.9
7.4


AD-367878.1
23.9
5.7
121.7
6.6
64.5
9.1
52.0
9.5
20.6
5.2


AD-367878.2
16.6
15.1
53.5
4.7
43.9
9.5
110.5
46.4
27.1
6.5


AD-367902.1
64.0
14.4
69.1
2.7
123.1
36.4
97.7
8.3
91.4
6.1


AD-367903.1
48.1
16.8
91.6
27.9
109.0
33.6
116.2
21.7
71.2
10.3


AD-367904.1
51.5
2.6
89.6
18.3
105.1
26.9
51.8
9.4
98.8
16.7


AD-367905.1
34.1
8.1
93.2
17.8
69.3
15.3
29.2
6.6
24.9
4.1


AD-367906.1
20.7
9.5
99.4
34.7
59.3
3.1
35.8
4.3
21.8
2.7


AD-367907.1
62.7
3.8
98.2
42.0
74.8
21.0
40.2
5.0
39.3
7.2


AD-367908.1
62.1
29.5
114.0
36.7
79.0
21.8
56.8
10.8
28.9
6.8


AD-367909.1
67.6
20.4
70.1
44.9
96.8
24.5
57.7
9.5
45.9
8.7


AD-367910.1
58.4
14.2
70.5
36.0
108.3
16.3
53.7
11.0
30.4
8.4


AD-367911.1
29.3
2.0
95.8
2.3
89.5
10.6
41.9
10.2
56.7
7.4


AD-367912.1
83.7
32.5
81.6
13.6
98.8
26.1
51.4
5.7
57.2
14.5


AD-367913.1
59.4
16.0
66.7
10.5
108.3
32.7
35.9
6.3
65.1
5.5


AD-367914.1
62.5
8.4
100.1
19.5
96.7
18.1
128.8
12.2
50.3
9.7


AD-367915.1
60.6
19.2
99.7
8.1
86.0
12.3
128.7
28.3
67.0
11.7


AD-367916.1
41.8
3.9
79.8
26.8
71.3
26.3
105.0
8.0
26.9
3.3


AD-367917.1
19.6
6.5
41.7
10.0
69.3
11.6
75.8
13.0
20.7
4.5


AD-367918.1
15.6
4.2
93.6
19.4
48.9
11.3
86.3
14.7
19.7
4.1


AD-367925.1
48.1
30.2
86.0
51.1
65.0
6.6
76.3
11.1
45.5
8.8


AD-367950.1
25.6
9.5
92.6
23.1
50.4
10.4
119.5
26.7
45.0
10.0


AD-367967.1
11.3
5.8
68.8
1.7
56.4
20.4
33.2
6.9
14.4
3.6


AD-367968.1
64.3
39.9
81.6
6.9
72.5
17.2
33.5
8.3
32.4
6.9


AD-367972.1
62.5
22.4
96.6
6.1
76.8
23.4
52.8
11.7
52.3
7.4


AD-367973.1
47.3
14.7
56.8
19.7
86.2
23.8
58.0
9.6
31.8
11.6


AD-367982.1
25.6
15.9
87.4
19.9
45.6
10.0
132.5
23.4
36.7
16.1


AD-367984.1
14.8
3.5
83.3
18.7
45.8
8.8
88.7
16.8
22.1
4.0


AD-368001.1
29.4
4.5
61.2
16.5
48.7
11.6
68.7
11.5
64.4
20.2


AD-385489.1
83.9
37.1
106.9
4.8
72.9
8.4
43.1
6.7
68.8
5.1


AD-385490.1
98.4
16.6
79.4
2.5
107.3
15.3
70.8
10.2
41.9
16.4


AD-385491.1
31.9
17.0
84.7
32.0
78.7
24.4
73.3
26.9
24.5
11.9


AD-385513.1
18.9
0.5
60.1
10.2
45.6
10.9
46.7
6.7
32.3
7.7


AD-385515.1
18.9
10.1
66.3
43.1
64.6
22.6
93.5
19.1
27.3
7.9


AD-385521.1
15.4
2.1
65.7
28.4
60.1
10.7
81.4
19.1
21.1
10.5


AD-385557.1
7.0
2.6
65.0
15.2
53.8
17.8
39.6
8.3
20.3
4.8


AD-385589.1
43.0
7.7
75.9
5.9
96.6
38.9
73.2
9.8
37.5
5.4


AD-385590.1
20.9
1.0
107.6
40.8
70.6
12.4
48.3
4.2
27.3
7.6


AD-385601.1
88.7
28.6
86.4
20.9
91.9
16.3
77.1
11.3
91.3
9.9


AD-385602.1
66.8
15.6
95.5
16.9
107.7
28.1
88.7
16.2
57.2
9.1


AD-385603.1
71.0
34.0
87.1
3.3
93.4
9.0
45.8
8.9
27.6
9.0


AD-385640.1
48.1
10.2
80.8
25.0
68.7
21.9
80.5
28.7
40.8
11.5


AD-385641.1
30.0
11.9
57.9
11.7
82.5
12.3
72.7
11.4
33.2
3.7


AD-385641.2
22.9
2.8
76.4
2.0
87.5
17.9
97.5
27.8
32.0
5.5


AD-385660.1
63.4
19.9
98.0
21.6
91.1
5.3
45.0
10.3
49.4
13.5


AD-385662.1
66.3
6.0
85.5
34.7
80.3
18.7
52.2
11.5
21.0
1.4


AD-385671.1
58.7
8.8
100.8
21.3
57.8
11.0
45.2
10.0
21.3
7.5


AD-385675.1
63.0
33.3
85.2
28.2
96.8
21.3
69.2
17.0
37.1
6.7


AD-385676.1
59.1
0.4
93.0
29.2
96.8
29.2
72.9
13.4
56.9
10.8


AD-385677.1
119.4
18.1
115.6
39.4
95.9
24.4
39.7
3.9
48.2
8.5


AD-385678.1
56.8
5.9
102.3
10.5
73.5
17.3
113.6
15.6
26.0
4.8


AD-385679.1
49.2
20.0
75.5
22.0
93.1
29.6
76.2
11.0
51.9
11.2


AD-385680.1
86.6
27.5
93.3
23.8
77.8
14.1
37.5
6.8
38.9
8.1


AD-385681.1
47.5
18.4
80.7
5.6
93.0
16.4
81.8
13.1
23.3
2.8


AD-385834.1
48.1
24.1
78.1
29.3
61.8
10.2
111.0
30.4
32.0
8.5


AD-385889.1
68.8
29.9
86.4
16.9
94.8
25.0
76.7
11.0
32.8
2.0


AD-385917.1
72.5
33.0
80.4
17.9
81.5
21.5
48.4
9.7
24.7
5.2


AD-385918.1
99.9
14.4
87.6
28.5
58.8
4.4
49.9
12.7
56.6
3.6


AD-385919.1
67.7
21.8
80.1
16.8
87.3
35.3
78.8
26.2
17.3
2.4


AD-385920.1
54.8
28.4
103.1
2.3
92.0
26.7
74.6
28.9
31.6
3.7


AD-386134.1
51.0
16.3
67.7
18.5
68.0
3.0
92.7
23.8
40.6
8.1


AD-386135.1
49.4
9.9
74.7
22.1
63.0
11.7
93.6
30.4
35.4
6.7


AD-386136.1
30.2
9.0
75.8
10.9
48.0
13.0
86.2
8.3
23.8
5.8


AD-386136.2
44.5
6.4
77.3
2.6
51.8
8.3
121.7
17.9
35.7
1.9


AD-386137.1
58.5
2.4
106.9
28.9
63.1
5.9
62.7
9.9
57.9
10.0


AD-386137.2
70.7
3.6
74.0
5.2
66.0
14.0
83.5
5.4
66.6
5.9


AD-386149.1
61.7
35.8
74.6
14.1
64.3
7.1
121.2
14.5
33.6
3.0


AD-386150.1
66.0
23.4
76.0
2.2
83.9
23.7
114.3
33.0
35.3
6.1


AD-386254.1
58.3
9.9
77.3
28.1
47.7
13.7
43.4
2.9
20.5
3.6


AD-386255.1
69.8
11.6
66.4
10.9
81.6
25.6
91.6
11.0
64.2
11.7


AD-386256.1
104.2
24.5
76.7
18.0
44.0
15.3
41.4
11.9
50.0
9.9


AD-386498.1
44.6
11.2
116.4
38.3
92.1
36.4
82.3
22.2
26.4
6.3


AD-386499.1
62.9
7.6
118.1
31.2
61.6
16.2
102.9
13.3
45.5
3.4


AD-386500.1
49.5
2.1
80.2
18.3
87.5
20.7
81.6
6.8
35.5
6.3


AD-386501.1
46.2
25.0
80.4
33.1
48.3
20.9
71.4
16.2
24.9
2.6


AD-386502.1
64.9
14.8
122.2
17.9
76.4
23.0
69.7
16.1
85.5
7.3


AD-386503.1
70.6
13.4
74.8
13.5
127.4
41.8
70.6
6.8
103.7
13.6


AD-386504.1
51.8
26.6
92.5
20.7
50.2
7.5
59.5
22.5
18.2
3.2


AD-386505.1
32.3
1.0
64.9
15.3
75.8
14.1
63.6
16.6
25.2
5.6


AD-386506.1
49.4
13.7
91.9
17.5
88.9
15.1
69.4
6.6
44.2
8.1


AD-386507.1
73.9
19.8
81.4
22.6
104.4
13.3
82.6
29.6
55.3
6.2


AD-386508.1
57.5
20.7
79.7
31.0
86.2
15.7
49.7
11.9
30.9
6.1


AD-386509.1
31.0
6.8
71.5
11.8
68.3
17.0
63.0
7.0
24.2
3.9


AD-386595.1
47.9
18.6
83.8
26.7
62.3
6.0
122.8
32.8
33.0
5.2


AD-386596.1
77.6
28.2
81.0
6.0
75.7
13.9
80.0
19.6
44.2
6.2


AD-386617.1
68.1
22.4
100.4
28.8
91.9
10.7
149.3
33.4
52.0
11.3


AD-386618.1
38.5
7.7
64.2
17.2
50.9
19.1
95.8
33.2
23.6
1.6


AD-386619.1
20.3
4.1
105.5
45.9
54.0
23.4
70.2
16.7
31.1
5.7


AD-386619.2
38.1
8.5
73.1
22.4
71.4
24.2
127.8
40.5
43.3
3.1


AD-386620.1
41.8
12.1
96.8
21.5
52.3
4.1
75.0
25.0
23.4
2.9


AD-386621.1
67.4
3.7
65.9
23.6
92.7
20.0
51.6
17.6
23.2
4.7


AD-386622.1
46.3
10.6
79.9
22.6
64.1
14.6
57.4
7.6
52.9
6.4


AD-386623.1
26.0
5.5
69.7
6.2
36.0
7.6
61.6
2.6
10.5
1.1


AD-386624.1
34.3
9.2
87.1
13.5
56.8
19.0
78.1
12.1
25.2
3.5


AD-386625.1
35.5
12.6
85.3
22.6
80.8
55.7
70.4
7.4
32.0
4.1


AD-386626.1
68.9
14.2
70.9
11.0
81.1
15.9
70.7
10.1
32.8
5.9


AD-386647.1
70.0
19.5
97.7
31.3
118.1
21.9
75.3
15.6
19.5
4.2


AD-386848.1
105.1
14.6
105.7
53.6
48.2
15.4
44.7
9.6
32.3
8.8


AD-386851.1
73.1
18.1
114.8
13.6
96.9
7.6
89.6
12.3
67.7
8.7


AD-386852.1
114.7
42.8
85.9
41.8
53.7
16.3
40.7
11.4
24.6
3.5


AD-386853.1
53.2
22.0
119.7
7.4
137.3
43.7
85.5
10.8
35.3
8.3


AD-386860.1
86.5
29.3
78.4
14.7
137.7
27.0
90.2
10.8
82.6
11.9


AD-386861.1
75.9
5.7
108.9
19.4
66.8
8.2
39.8
5.6
26.2
2.4


AD-386867.1
59.2
8.0
59.4
12.4
116.0
66.6
79.3
26.3
25.6
5.4


AD-386868.1
73.0
4.1
78.7
19.0
68.8
8.3
46.1
13.4
41.7
3.5


AD-387208.1
66.5
16.1
87.3
13.4
98.0
30.6
94.0
20.8
51.2
14.8


AD-387209.1
48.6
2.4
82.9
7.1
87.4
20.1
66.1
14.6
83.8
9.9


AD-387213.1
113.2
20.6
73.8
16.9
78.4
15.7
54.1
2.5
72.9
19.6


AD-387214.1
89.8
39.2
83.3
15.5
68.6
14.5
53.4
3.0
58.9
8.1


AD-387303.1
79.9
25.9
71.8
16.2
154.8
34.6
93.7
16.7
102.5
16.2


AD-387636.1
66.0
30.9
109.0
20.2
53.3
12.7
45.6
15.9
14.0
4.5


AD-387638.1
20.5
16.4
119.6
48.8
41.7
4.6
54.4
25.2
15.3
4.5


AD-387640.1
52.5
1.7
99.8
23.5
81.4
11.9
81.7
26.5
35.7
5.0


AD-387641.1
62.1
5.2
102.2
32.0
76.0
17.0
72.8
14.7
20.3
5.4


AD-387777.1
43.4
17.4
93.8
22.6
47.5
6.9
107.9
18.8
25.1
7.2


AD-387779.1
15.0
6.1
77.5
28.8
43.0
8.3
57.6
15.9
18.7
6.0


AD-387780.1
16.9
1.5
60.1
39.4
63.2
17.3
84.1
12.5
21.8
5.9


AD-387780.2
18.0
22.2
59.6
9.5
73.5
22.9
58.6
15.3
24.1
1.4


AD-387806.1
87.6
5.1
130.7
20.4
47.1
7.6
39.6
9.3
19.9
1.2


AD-387812.1
26.1
5.9
64.2
19.1
53.5
8.5
52.4
6.7
19.7
2.6


AD-387812.2
34.2
7.1
76.7
3.0
85.2
27.8
85.5
25.2
24.9
1.8


AD-387813.1
43.4
12.1
111.2
0.4
65.6
19.9
71.5
21.9
35.1
9.8


AD-387825.1
19.0
1.6
72.0
25.9
64.7
10.5
83.3
33.5
26.3
3.6


AD-387830.1
70.4
24.7
83.0
5.7
47.2
11.3
107.6
33.3
35.4
6.1


AD-387831.1
18.7
5.9
117.2
21.8
46.1
8.9
42.9
3.9
20.1
3.9


AD-387833.1
39.3
0.8
75.4
19.3
47.2
22.5
75.3
5.1
23.4
5.2


AD-387840.1
44.1
8.5
101.9
23.7
37.9
10.2
46.6
8.4
13.3
3.2


AD-387842.1
50.8
12.8
89.3
18.3
84.5
14.8
98.1
13.0
40.1
7.7


AD-387845.1
40.7
15.1
98.0
20.5
79.2
23.0
46.2
7.8
42.2
3.4


AD-387846.1
19.6
2.3
99.7
27.6
58.2
20.7
110.5
20.7
25.7
5.1


AD-387858.1
52.2
5.2
108.0
44.2
56.2
11.9
40.7
4.9
23.4
5.4


AD-387861.1
75.9
13.6
95.5
12.2
92.3
21.2
74.5
18.0
46.5
4.0


AD-387863.1
31.3
15.2
49.8
9.1
57.9
9.8
86.4
26.4
27.4
2.6


AD-387865.1
48.5
11.2
102.0
9.9
84.4
20.4
42.1
3.4
30.8
5.3


AD-387866.1
13.4
3.3
80.4
39.4
46.9
11.7
68.0
11.4
11.1
4.8


AD-387869.1
59.4
48.3
90.2
5.4
67.1
9.7
41.3
6.8
68.5
7.5


AD-387871.1
88.1
35.5
97.3
33.7
82.1
12.6
40.4
5.8
12.9
3.6


AD-387875.1
79.9
9.3
95.4
26.2
80.7
18.3
54.2
7.8
19.0
3.6


AD-387878.1
41.3
22.1
86.3
39.4
106.0
35.1
68.3
10.6
25.5
3.6


AD-387880.1
62.9
2.4
92.7
12.3
80.6
15.0
90.7
21.9
16.4
4.1


AD-387881.1
49.6
24.2
118.0
22.0
112.2
35.3
86.8
22.7
22.6
3.7


AD-387882.1
54.2
35.2
110.6
5.1
84.4
20.2
86.9
21.7
24.3
3.7


AD-387909.1
43.3
11.4
111.7
35.0
63.8
16.6
39.7
5.9
18.0
3.5


AD-387937.1
69.1
32.4
79.6
23.7
78.6
13.9
80.3
22.0
35.1
7.2


AD-387940.1
84.8
18.9
92.7
5.3
85.4
23.4
93.1
13.1
30.6
9.5


AD-387941.1
62.2
19.8
68.4
19.4
73.0
15.5
86.8
9.8
19.4
2.4


AD-387942.1
61.3
2.8
58.2
9.1
97.8
15.0
71.0
25.1
35.0
6.6


AD-387944.1
48.0
9.4
67.7
2.2
70.3
22.1
60.0
1.6
24.4
5.9


AD-387945.1
69.3
0.1
66.6
8.2
83.0
14.4
52.3
3.5
38.7
10.1


AD-387947.1
59
16
80
31
63
17
94
8
37
7


















Sample
Neuro-2A 0.1 nM
STDEV
hep3B 10 nM
STDEV
hep3B 0.1 nM
STDEV







AD-364136.1
73.1
20.7
100.8
18.0
89.8
16.5



AD-364137.1
85.2
9.5
107.3
15.7
117.6
29.8



AD-364138.1
103.6
15.0
100.9
30.0
102.7
35.9



AD-365055.1
47.2
11.9
65.3
19.9
94.4
12.8



AD-365056.1
70.7
8.8
60.2
20.4
104.6
27.8



AD-365144.1
67.7
7.4
49.4
3.1
89.9
9.4



AD-365747.1
68.2
6.9
48.2
15.5
97.4
22.3



AD-365748.1
67.9
23.7
38.5
11.2
89.9
11.1



AD-365749.1
85.9
14.8
64.5
11.0
91.4
19.1



AD-365750.1
24.5
4.5
57.1
6.4
105.8
19.6



AD-365751.1
99.2
2.1
73.7
10.2
96.9
11.9



AD-365752.1
64.1
5.1
55.7
16.4
103.5
13.3



AD-365753.1
36.0
2.8
61.1
18.2
94.9
10.6



AD-365754.1
89.4
7.3
66.9
27.7
104.8
13.9



AD-365757.1
74.5
6.7
48.4
16.1
85.8
16.8



AD-365784.1
93.4
14.8
52.6
17.8
86.0
15.3



AD-365785.1
81.8
5.6
107.7
17.9
96.0
24.9



AD-365915.1
67.8
4.7
45.0
9.9
84.0
17.2



AD-365916.1
61.3
7.2
46.3
12.1
82.7
17.2



AD-365918.1
83.4
19.1
93.0
16.5
100.3
15.2



AD-366362.1
77.6
6.4
89.2
17.9
128.0
4.8



AD-366363.1
79.2
6.1
41.8
16.4
76.6
12.1



AD-366364.1
65.6
8.8
57.7
13.1
103.9
24.8



AD-366365.1
66.8
10.0
74.5
14.4
86.6
17.0



AD-366366.1
69.9
8.3
31.9
13.3
73.0
19.1



AD-366367.1
87.6
9.7
34.5
6.7
86.6
16.9



AD-366368.1
70.7
3.4
78.4
15.1
102.6
23.3



AD-366369.1
71.5
7.7
47.9
9.2
67.8
22.1



AD-366772.1
78.1
3.4
68.2
5.3
100.4
23.1



AD-366815.1
81.1
16.5
103.2
22.2
114.4
20.2



AD-366818.1
66.0
20.0
95.3
21.4
94.9
14.2



AD-366819.1
76.1
19.7
107.3
20.6
98.5
15.6



AD-366820.1
77.7
9.3
78.2
19.0
92.4
23.4



AD-366822.1
71.5
6.0
108.9
41.4
113.7
10.8



AD-367069.1
77.3
8.5
80.6
15.7
103.9
3.3



AD-367071.1
64.7
8.8
86.9
16.3
98.7
16.6



AD-367098.1
86.9
16.0
98.2
32.0
82.7
9.2



AD-367101.1
74.3
4.9
73.6
6.2
101.8
12.0



AD-367102.1
69.9
4.8
83.0
21.8
89.9
4.7



AD-367103.1
87.0
11.1
86.5
23.1
100.2
22.4



AD-367104.1
101.9
15.5
61.5
13.8
116.7
13.7



AD-367105.1
99.3
10.2
100.1
20.8
91.4
1.4



AD-367106.1
76.2
10.7
102.6
17.0
99.9
23.5



AD-367107.1
73.2
8.9
100.2
21.9
141.8
34.5



AD-367108.1
67.2
9.9
75.7
7.3
108.9
13.4



AD-367438.1
63.7
19.5
72.4
13.0
115.9
19.1



AD-367439.1
62.9
5.3
77.8
20.4
86.7
19.4



AD-367440.1
54.9
16.1
87.1
16.8
99.3
23.9



AD-367448.1
119.1
13.6
133.3
30.3
119.6
20.9



AD-367448.2
58.6
4.7
89.0
14.5
96.8
11.8



AD-367451.1
72.4
3.7
68.8
5.8
90.0
19.2



AD-367453.1
88.3
5.1
100.5
16.8
106.9
3.0



AD-367453.2
61.4
15.3
74.0
16.7
90.8
20.2



AD-367454.1
60.4
5.5
62.0
9.2
88.8
10.1



AD-367456.1
87.5
15.7
95.7
22.4
123.9
23.2



AD-367477.1
96.1
15.1
95.6
7.2
74.6
19.7



AD-367480.1
92.6
27.9
112.5
29.9
110.6
10.6



AD-367482.1
64.0
2.8
84.6
22.9
114.7
17.4



AD-367483.1
71.5
16.3
81.3
11.1
99.7
15.3



AD-367486.1
70.1
21.6
115.6
28.3
92.0
7.6



AD-367487.1
69.0
9.8
92.6
24.6
108.5
9.8



AD-367513.1
76.7
13.4
94.8
28.6
107.3
9.2



AD-367530.1
100.3
9.3
116.0
34.0
122.1
14.8



AD-367532.1
94.9
10.1
98.9
15.3
101.1
7.0



AD-367571.1
60.9
25.8
93.1
21.4
81.9
8.8



AD-367572.1
94.1
9.3
138.8
23.1
91.7
12.6



AD-367573.1
51.1
5.7
107.1
20.4
88.2
18.4



AD-367575.1
71.6
25.2
92.2
19.4
93.4
9.9



AD-367577.1
75.9
6.4
92.2
20.1
104.8
15.5



AD-367630.1
99.4
18.1
57.0
10.5
105.4
14.3



AD-367632.1
91.3
12.7
83.9
17.2
120.9
11.6



AD-367633.1
81.1
8.1
84.0
22.3
97.9
19.7



AD-367636.1
77.6
8.7
99.2
16.5
91.4
8.8



AD-367646.1
86.7
7.6
69.4
15.9
95.4
13.4



AD-367685.1
83.2
4.7
100.1
11.2
80.4
16.8



AD-367688.1
74.1
27.8
69.8
16.3
97.6
7.5



AD-367690.1
52.2
16.2
92.7
19.3
104.5
14.2



AD-367691.1
61.7
16.2
86.2
15.2
115.1
9.4



AD-367694.1
103.2
14.9
67.4
17.6
87.2
14.6



AD-367696.1
65.4
8.0
81.9
25.4
102.9
14.3



AD-367697.1
100.4
2.8
56.6
4.3
80.4
11.5



AD-367698.1
97.7
22.6
88.5
18.8
94.8
12.6



AD-367699.1
99.6
3.9
82.1
11.9
102.2
9.8



AD-367704.1
97.1
8.7
62.4
8.1
71.4
20.1



AD-367705.1
54.0
14.0
52.8
12.0
111.7
22.2



AD-367706.1
69.8
10.2
77.1
20.7
93.0
11.8



AD-367707.1
61.5
3.8
49.7
15.3
99.0
18.1



AD-367708.1
64.6
13.9
76.6
8.5
88.3
16.3



AD-367709.1
66.2
9.6
46.3
2.9
90.9
30.2



AD-367713.1
60.8
6.5
69.6
18.2
103.7
15.7



AD-367718.1
57.6
25.6
78.4
17.6
82.2
7.3



AD-367745.1
66.0
25.0
85.2
6.5
105.3
11.7



AD-367746.1
78.7
9.7
101.5
28.1
83.2
8.5



AD-367755.1
92.8
13.6
86.0
19.4
103.6
7.0



AD-367792.1
74.4
11.8
99.3
17.1
107.4
19.5



AD-367794.1
37.4
13.2
51.1
18.4
101.1
26.4



AD-367795.1
86.9
6.0
65.0
9.6
109.3
18.0



AD-367796.1
71.0
13.6
62.5
24.5
71.0
13.7



AD-367797.1
46.9
6.0
36.6
6.4
87.5
18.7



AD-367801.1
75.4
14.5
80.5
11.8
113.4
20.8



AD-367802.1
60.1
13.7
86.9
21.7
92.4
33.4



AD-367805.1
91.5
4.8
59.9
10.6
133.6
9.2



AD-367809.1
38.0
5.7
54.1
17.5
102.1
11.1



AD-367815.1
40.2
3.4
53.5
14.1
78.9
9.6



AD-367816.1
66.6
7.0
63.3
11.0
94.6
26.1



AD-367816.2
68.1
9.8
69.2
16.8
116.0
10.1



AD-367817.1
90.6
8.2
54.4
4.0
106.3
10.1



AD-367818.1
56.6
3.2
45.6
10.7
110.9
13.7



AD-367819.1
57.9
9.9
80.7
12.0
95.6
16.0



AD-367819.2
68.0
3.2
79.3
14.9
90.0
3.8



AD-367820.1
64.1
10.6
57.2
4.0
69.0
17.8



AD-367821.1
68.8
15.7
86.5
29.8
92.0
3.5



AD-367822.1
70.9
3.2
88.5
22.0
103.5
24.1



AD-367826.1
82.2
4.9
70.3
23.8
114.0
29.1



AD-367832.1
73.9
4.3
71.4
18.2
105.5
15.7



AD-367844.1
90.5
12.2
115.1
32.9
97.2
18.9



AD-367845.1
56.0
4.0
59.1
12.7
89.0
5.2



AD-367846.1
79.1
7.5
49.8
10.7
103.6
14.5



AD-367850.1
39.9
6.8
42.3
9.7
68.4
9.4



AD-367851.1
49.9
4.7
59.5
18.0
91.9
13.1



AD-367853.1
52.1
5.5
52.4
14.7
102.8
20.6



AD-367872.1
76.1
7.4
78.8
30.2
104.4
10.9



AD-367873.1
71.1
6.6
79.3
10.7
108.4
7.6



AD-367875.1
81.2
10.9
75.1
24.2
88.4
11.4



AD-367876.1
57.0
8.1
92.1
17.3
116.0
18.3



AD-367877.1
77.3
16.8
61.7
8.5
108.6
30.2



AD-367878.1
86.6
8.5
68.2
12.5
98.0
16.1



AD-367878.2
69.6
8.5
51.7
14.9
94.1
8.8



AD-367902.1
85.2
9.1
123.4
16.9
83.1
22.8



AD-367903.1
75.4
6.8
117.9
17.9
118.2
23.2



AD-367904.1
105.0
12.6
104.5
30.3
118.4
13.8



AD-367905.1
65.0
11.5
80.1
21.0
114.6
23.6



AD-367906.1
50.9
8.7
82.9
23.1
102.5
13.8



AD-367907.1
54.0
10.0
109.1
13.3
103.5
19.4



AD-367908.1
81.9
12.2
108.4
25.1
103.0
15.0



AD-367909.1
87.2
13.5
116.4
18.1
100.9
20.2



AD-367910.1
85.7
20.7
108.7
16.8
107.2
21.2



AD-367911.1
89.0
9.7
79.9
20.7
109.7
7.9



AD-367912.1
97.4
12.6
113.0
24.1
123.7
14.2



AD-367913.1
92.0
21.2
104.3
9.5
116.1
13.1



AD-367914.1
88.9
7.3
96.1
11.6
111.5
12.1



AD-367915.1
97.8
11.8
107.2
29.8
117.8
8.0



AD-367916.1
59.3
17.5
104.5
10.9
120.5
17.0



AD-367917.1
52.2
2.5
64.4
22.1
105.6
12.8



AD-367918.1
54.3
6.6
65.3
10.6
95.3
30.3



AD-367925.1
54.0
3.5
82.9
9.5
101.1
13.4



AD-367950.1
66.5
17.4
70.0
3.3
86.2
12.3



AD-367967.1
56.3
9.1
49.9
12.2
75.7
14.0



AD-367968.1
81.2
11.3
73.5
16.3
100.9
21.7



AD-367972.1
90.7
12.7
85.2
13.4
90.4
6.6



AD-367973.1
81.2
12.8
92.3
19.7
91.6
10.3



AD-367982.1
82.6
6.6
62.3
10.0
116.9
15.8



AD-367984.1
56.5
6.9
43.4
13.7
86.1
13.0



AD-368001.1
62.7
4.7
39.6
11.2
94.6
12.3



AD-385489.1
82.6
14.0
146.8
44.4
104.0
18.3



AD-385490.1
107.9
11.2
76.4
4.8
103.9
9.0



AD-385491.1
94.7
20.9
56.3
22.0
120.1
18.5



AD-385513.1
89.8
5.3
66.1
16.3
115.4
28.7



AD-385515.1
84.9
16.6
58.8
11.8
119.9
15.6



AD-385521.1
65.7
11.5
54.8
9.6
113.9
13.1



AD-385557.1
51.8
10.6
69.1
20.9
81.4
12.4



AD-385589.1
87.0
6.0
73.1
10.5
103.9
14.0



AD-385590.1
63.0
9.1
68.2
5.6
99.8
21.3



AD-385601.1
95.8
7.6
109.5
4.5
102.8
15.6



AD-385602.1
102.5
14.9
103.9
17.3
111.5
18.2



AD-385603.1
70.2
8.9
106.0
10.9
90.5
10.5



AD-385640.1
87.9
15.0
71.2
12.9
85.1
5.1



AD-385641.1
71.8
4.8
74.8
22.5
115.1
13.3



AD-385641.2
76.0
12.9
80.2
9.7
100.4
10.2



AD-385660.1
62.1
9.9
129.4
42.1
115.5
23.6



AD-385662.1
66.8
13.1
91.3
15.9
98.7
23.2



AD-385671.1
37.1
7.2
97.0
22.2
109.8
13.7



AD-385675.1
99.7
10.2
93.3
8.9
125.3
11.7



AD-385676.1
95.6
31.0
98.2
12.7
136.8
25.0



AD-385677.1
50.5
4.3
148.0
43.7
135.3
33.9



AD-385678.1
60.7
15.1
113.0
17.7
138.8
26.2



AD-385679.1
89.3
18.9
95.1
15.9
102.2
18.5



AD-385680.1
63.2
7.1
126.0
12.5
130.0
21.2



AD-385681.1
65.8
10.7
72.9
10.8
121.1
36.0



AD-385834.1
84.5
5.8
89.0
14.3
102.1
6.8



AD-385889.1
82.5
10.0
92.0
14.3
88.0
8.9



AD-385917.1
50.2
5.9
125.1
16.3
108.3
21.1



AD-385918.1
55.1
10.4
147.9
38.8
128.0
22.0



AD-385919.1
49.2
6.2
99.4
8.5
121.2
6.3



AD-385920.1
60.4
6.0
111.5
37.1
113.5
35.2



AD-386134.1
82.2
10.0
78.4
21.8
94.0
6.7



AD-386135.1
86.0
12.5
61.8
16.4
76.7
3.6



AD-386136.1
75.9
8.8
45.7
9.3
131.4
24.5



AD-386136.2
80.3
8.8
47.1
14.3
90.6
18.4



AD-386137.1
83.9
12.9
81.0
14.3
127.2
27.0



AD-386137.2
71.7
8.3
86.5
10.7
93.1
10.2



AD-386149.1
77.8
7.2
90.8
21.9
101.2
19.6



AD-386150.1
84.5
10.8
52.1
16.7
92.7
21.8



AD-386254.1
54.5
7.9
88.1
26.1
106.6
16.8



AD-386255.1
69.8
13.5
92.6
14.7
94.6
5.7



AD-386256.1
67.4
7.3
118.3
22.9
113.0
13.3



AD-386498.1
55.2
8.4
74.6
14.4
88.3
3.4



AD-386499.1
64.2
14.3
101.8
19.6
97.8
18.0



AD-386500.1
66.1
10.8
68.8
16.6
78.6
14.9



AD-386501.1
65.8
10.7
62.7
5.9
113.1
12.9



AD-386502.1
78.9
2.9
63.4
7.7
77.1
12.5



AD-386503.1
69.9
9.1
90.9
16.8
123.3
20.0



AD-386504.1
62.1
13.2
57.1
17.8
90.4
8.4



AD-386505.1
48.3
12.1
81.5
27.7
98.1
15.5



AD-386506.1
65.1
7.2
87.6
19.4
108.1
6.6



AD-386507.1
83.7
20.3
93.4
14.1
124.6
14.2



AD-386508.1
49.9
7.3
95.7
20.8
87.5
7.0



AD-386509.1
55.9
10.0
100.8
27.4
66.8
13.6



AD-386595.1
97.4
13.8
78.1
12.8
92.8
8.3



AD-386596.1
86.6
12.7
62.9
15.0
107.3
20.6



AD-386617.1
82.0
2.8
92.7
10.8
109.0
16.3



AD-386618.1
91.9
31.7
46.6
13.1
90.7
18.7



AD-386619.1
49.8
2.1
51.5
10.3
88.1
17.1



AD-386619.2
72.0
6.2
60.6
8.2
106.8
9.9



AD-386620.1
55.6
2.1
59.1
7.1
111.5
18.5



AD-386621.1
49.2
7.2
85.2
13.8
95.8
32.1



AD-386622.1
76.8
10.1
83.3
7.8
98.7
12.6



AD-386623.1
55.7
12.9
36.3
11.1
83.9
8.3



AD-386624.1
47.2
2.3
66.4
16.3
79.6
11.4



AD-386625.1
70.8
13.0
88.8
12.1
137.3
23.1



AD-386626.1
57.0
8.4
90.8
25.1
116.9
13.6



AD-386647.1
60.9
8.7
76.3
17.5
116.8
29.0



AD-386848.1
36.7
8.9
110.9
23.2
123.9
37.7



AD-386851.1
106.4
14.4
82.1
8.1
107.4
18.6



AD-386852.1
52.4
5.6
130.3
13.4
107.9
20.0



AD-386853.1
113.8
15.3
107.2
2.5
99.5
7.4



AD-386860.1
115.5
16.4
87.7
4.3
102.8
11.2



AD-386861.1
49.3
7.0
177.9
32.5
132.3
17.7



AD-386867.1
60.3
6.8
92.0
15.3
131.8
15.8



AD-386868.1
69.8
9.6
146.1
21.1
136.0
40.5



AD-387208.1
81.4
9.0
96.4
26.7
109.8
24.8



AD-387209.1
99.5
23.3
112.6
10.2
122.5
20.9



AD-387213.1
59.0
8.6
157.2
37.8
134.6
20.0



AD-387214.1
66.2
10.8
134.7
21.7
109.7
6.6



AD-387303.1
105.2
16.7
116.5
34.4
125.2
7.4



AD-387636.1
40.6
5.8
62.6
14.0
100.1
16.7



AD-387638.1
36.3
7.6
53.0
10.2
120.5
6.3



AD-387640.1
75.8
21.0
71.0
12.8
100.0
6.9



AD-387641.1
38.8
6.5
68.7
9.1
113.9
23.4



AD-387777.1
71.2
10.8
65.1
12.6
88.2
7.1



AD-387779.1
47.3
3.1
51.7
9.7
80.3
13.0



AD-387780.1
58.0
8.6
46.7
12.7
116.9
13.8



AD-387780.2
66.2
17.9
53.1
6.1
88.4
17.4



AD-387806.1
39.5
7.3
131.4
31.7
114.3
13.7



AD-387812.1
36.5
7.4
71.5
18.1
136.5
23.3



AD-387812.2
53.5
3.2
74.0
11.3
93.6
14.5



AD-387813.1
59.2
5.8
78.0
28.3
94.0
13.2



AD-387825.1
62.7
12.8
54.7
11.7
117.5
14.4



AD-387830.1
53.5
27.8
74.4
14.6
90.9
16.9



AD-387831.1
47.7
7.5
81.8
21.5
102.5
14.1



AD-387833.1
47.4
9.0
60.3
15.1
89.1
25.2



AD-387840.1
30.9
4.6
80.2
2.6
103.8
6.5



AD-387842.1
90.5
13.0
87.6
20.6
124.4
14.9



AD-387845.1
60.8
10.2
128.3
16.5
121.2
12.6



AD-387846.1
69.4
16.4
61.2
9.1
123.4
24.6



AD-387858.1
44.2
3.6
119.8
8.6
112.4
6.6



AD-387861.1
55.5
3.8
93.1
17.0
113.1
27.6



AD-387863.1
73.6
5.8
61.2
6.0
107.1
13.1



AD-387865.1
58.0
5.7
121.9
21.3
117.5
15.1



AD-387866.1
39.4
6.2
60.2
9.8
82.0
8.6



AD-387869.1
71.7
11.6
90.7
17.4
121.0
23.8



AD-387871.1
39.9
4.2
124.5
25.2
114.0
11.3



AD-387875.1
31.0
6.1
83.3
9.3
84.0
28.0



AD-387878.1
41.0
4.7
117.8
42.5
143.7
22.9



AD-387880.1
36.8
2.1
92.1
13.4
116.7
15.2



AD-387881.1
38.8
7.7
102.8
18.6
132.9
37.1



AD-387882.1
47.3
4.3
104.2
29.1
79.7
14.4



AD-387909.1
39.4
3.1
115.9
20.0
107.5
17.2



AD-387937.1
82.1
9.4
82.3
17.6
97.3
20.2



AD-387940.1
63.3
3.9
71.3
8.6
112.0
7.9



AD-387941.1
54.0
9.3
89.6
16.3
116.9
3.3



AD-387942.1
96.7
23.0
61.0
10.8
116.8
14.9



AD-387944.1
47.2
6.7
54.1
10.9
92.2
17.6



AD-387945.1
50.9
6.3
79.7
5.2
86.8
39.2



AD-387947.1
82
9
80
5
90
20







Standard deviation = STDEV













TABLE 5







Modified sense and antisense strand sequences of human and primate ATXN2 siRNAs.
















Sense


Antisense






Duplex
Oligo


Oligo






Name
Name
oligoSeq
Seq
Name
oligoSeq
Seq
mRNA target sequence
Seq





AD-
A-
uscsagucUfaCfGfAfuuucuuuugaL96
1358
A-
VPusCfsaaaAfgAfAfaucgUfaGfacugasgsg
1415
CCUCAGUCUACGAUUUCUUUUGA
1472


1037307.1
707687.1


1923523.1









AD-
A-
csuscaguCfuAfCfGfauuucuuuuaL96
1359
A-
VPusAfsaaaGfaAfAfucguAfgAfcugagsgsc
1416
GCCUCAGUCUACGAUUUCUUUUG
1473


1037453.1
1923811.1


1923812.1









AD-
A-
csasgucuAfcGfAfUfuucuuuugaaL96
1360
A-
VPusUfscaaAfaGfAfaaucGfuAfgacugsasg
1417
CUCAGUCUACGAUUUCUUUUGAU
1474


1037454.1
1923813.1


1923814.1









AD-
A-
asasauguUfcAfGfAfcuuuguuguaL96
1361
A-
VPusAfscaaCfaAfAfgucuGfaAfcauuusgsa
1418
UCAAAUGUUCAGACUUUGUUGUG
1475


1038221.1
1925274.1


1925275.1









AD-
A-
usgscuauCfaGfUfGfcuaaagugaaL96
1362
A-
VPusUfscacUfuUfAfgcacUfgAfuagcasgsa
1419
UCUGCUAUCAGUGCUAAAGUGAA
1476


1038402.1
708269.1


1925618.1









AD-
A-
gsasuaacUfcAfGfAfagaauuuuuaL96
1363
A-
VPusAfsaaaAfuUfCfuucuGfaGfuuaucsusc
1420
GAGAUAACUCAGAAGAAUUUUUA
1477


1039174.1
708701.1


1927090.1









AD-
A-
csgsuaugAfuAfGfCfaguuuaucuaL96
1364
A-
VPusAfsgauAfaAfCfugcuAfuCfauacgsusa
1421
UACGUAUGAUAGCAGUUUAUCUU
1478


1039346.1
1927415.1


1927416.1









AD-
A-
gsusaugaUfaGfCfAfguuuaucuuaL96
1365
A-
VPusAfsagaUfaAfAfcugcUfaUfcauacsgsu
1422
ACGUAUGAUAGCAGUUUAUCUUC
1479


1039347.1
1927417.1


1927418.1









AD-
A-
asusccacUfuCfUfCfacacuucagaL96
1366
A-
VPusCfsugaAfgUfGfugagAfaGfuggauscsu
1423
AGAUCCACUUCUCACACUUCAGA
1480


1039956.1
709219.1


1928560.1









AD-
A
uscsucacAfcUfUfCfagauuucaaaL96
1367
A-
VPusUfsugaAfaUfCfugaaGfuGfugagasasg
1424
CUUCUCACACUUCAGAUUUCAAC
1481


1040054.1
1928751.1


1928752.1









AD-
A-
csuscuacUfaUfGfCfcuaaacgcaaL96
1368
A-
VPusUfsgcgUfuUfAfggcaUfaGfuagagsasc
1425
GUCUCUACUAUGCCUAAACGCAU
1482


1040559.1
1929687.1


1929688.1









AD-
A-
uscsuacuAfuGfCfCfuaaacgcauaL96
1369
A-
VPusAfsugcGfuUfUfaggcAfuAfguagasgsa
1426
UCUCUACUAUGCCUAAACGCAUG
1483


1040560.1
1929689.1


1929690.1









AD-
A-
uscsgaaaUfcAfCfAfgaguuucugaL96
1370
A-
VPusCfsagaAfaCfUfcuguGfaUfuucgasgsg
1427
CCUCGAAAUCACAGAGUUUCUGC
1484


1040735.1
1929999.1


1930000.1









AD-
A-
csgsaaauCfaCfAfGfaguuucugcaL96
1371
A-
VPusGfscagAfaAfCfucugUfgAfuuucgsasg
1428
CUCGAAAUCACAGAGUUUCUGCU
1485


1040736.1
1930001.1


1930002.1









AD-
A-
ususcuacUfuCfUfGfaaucuauggaL96
1372
A-
VPusCfscauAfgAfUfucagAfaGfuagaascsu
1429
AGUUCUACUUCUGAAUCUAUGGA
1486


1041615.1
710445.1


1931560.1









AD-
A-
ascsuacuAfaAfCfAfaaaauagagaL96
1373
A-
VPusCfsucuAfuUfUfuuguUfuAfguagususg
1430
CAACUACUAAACAAAAAUAGAGA
1487


1041633.1
710485.1


1931578.1









AD-
A-
gsusucuaCfuUfCfUfgaaucuaugaL96
1374
A-
VPusCfsauaGfaUfUfcagaAfgUfagaacsusu
1431
AAGUUCUACUUCUGAAUCUAUGG
1488


1041737.1
1931750.1


1931751.1









AD-
A-
uscsuacuUfcUfGfAfaucuauggaaL96
1375
A-
VPusUfsccaUfaGfAfuucaGfaAfguagasasc
1432
GUUCUACUUCUGAAUCUAUGGAU
1489


1041738.1
1931752.1


1931753.1









AD-
A-
csusacuuCfuGfAfAfucuauggauaL96
1376
A-
VPusAfsuccAfuAfGfauucAfgAfaguagsasa
1433
UUCUACUUCUGAAUCUAUGGAUC
1490


1041739.1
1931754.1


1931755.1









AD-
A-
ascscaagUfgCfUfAfaggauucuuaL96
1377
A-
VPusAfsagaAfuCfCfuuagCfaCfuuggususc
1434
GAACCAAGUGCUAAGGAUUCUUU
1491


1041872.1
1931976.1


1931977.1









AD-
A-
ususaggaAfaUfCfAfacauugaauaL96
1378
A-
VPusAfsuucAfaUfGfuugaUfuUfccuaascsu
1435
AGUUAGGAAAUCAACAUUGAAUC
1492


1042122.1
1932406.1


1932407.1









AD-
A-
asgsccaaCfuCfCfAfguuuauacuaL96
1379
A-
VPusAfsguaUfaAfAfcuggAfgUfuggcusgsu
1436
ACAGCCAACUCCAGUUUAUACUC
1493


1042374.1
1932840.1


1932841.1









AD-
A-
ususcuucAfgCfAfAfcucaguacgaL96
1380
A-
VPusCfsguaCfuGfAfguugCfuGfaagaasgsa
1437
UCUUCUUCAGCAACUCAGUACGG
1494


1043031.1
1933944.1


1933945.1









AD-
A-
ususucuaCfuUfUfGfccauuuccaaL96
1381
A-
VPusUfsggaAfaUfGfgcaaAfgUfagaaasgsa
1438
UCUUUCUACUUUGCCAUUUCCAC
1495


1043150.1
1934166.1


1934167.1









AD-
A-
ususcuacUfuUfGfCfcauuuccacaL96
1382
A-
VPusGfsuggAfaAfUfggcaAfaGfuagaasasg
1439
CUUUCUACUUUGCCAUUUCCACG
1496


1043151.1
1934168.1


1934169.1









AD-
A-
uscsuuguAfaCfAfUfccaauaggaaL96
1383
A-
VPusUfsccuAfuUfGfgaugUfuAfcaagasasa
1440
UUUCUUGUAACAUCCAAUAGGAA
1497


1044184.1
713113.1


1935929.1









AD-
A-
cscsgaaaCfuGfGfAfaguuauuuaaL96
1384
A-
VPusUfsaaaUfaAfCfuuccAfgUfuucggscsa
1441
UGCCGAAACUGGAAGUUAUUUAU
1498


1044473.1
1936426.1


1936427.1









AD-
A-
asasacugGfaAfGfUfuauuuauuuaL96
1385
A-
VPusAfsaauAfaAfUfaacuUfcCfaguuuscsg
1442
CGAAACUGGAAGUUAUUUAUUUU
1499


1044476.1
1936432.1


1936433.1









AD-
A-
asgsugguUfcAfAfCfuuuuaaguuaL96
1386
A-
VPusAfsacuUfaAfAfaguuGfaAfccacusgsu
1443
ACAGUGGUUCAACUUUUAAGUUA
1500


1044729.1
713683.1


1936873.1









AD-
A-
gsusgguuCfaAfCfUfuuuaaguuaaL96
1387
A-
VPusUfsaacUfuAfAfaaguUfgAfaccacsusg
1444
CAGUGGUUCAACUUUUAAGUUAA
1501


1044730.1
713685.1


1936874.1









AD-
A-
usasagggAfaAfAfAfcuuuuacuuaL96
1388
A-
VPusAfsaguAfaAfAfguuuUfuCfccuuasasc
1445
GUUAAGGGAAAAACUUUUACUUU
1502


1044831.1
1937057.1


1937058.1









AD-
A-
csasuga(Ghd)AfaAfAfGfuacagaauca
1389
A-
VPusGfsauuCfuGfUfacuuUfuCfucaugsusg
1446
CACAUGAGAAAAGUACAGAAUCC
1503


1069807.1
1985500.1
L96

1925201.1









AD-
A-
usgsaau(Chd)UfaUfGfGfaucaacuaca
1390
A-
VPusGfsuagUfuGfAfuccaUfaGfauucasgsa
1447
UCUGAAUCUAUGGAUCAACUACU
1504


1069808.1
1985501.1
L96

1931763.1









AD-
A-
cscsgaa(Ahd)CfuGfGfAfaguuauuuaa
1391
A-
VPusUfsaaaUfaAfCfuuccAfgUfuucggscsa
1448
UGCCGAAACUGGAAGUUAUUUAU
1505


1069809.1
1985502.1
L96

1936427.1









AD-
A-
csusuga(Ahd)AfgUfCfAfugaacacaua
1392
A-
VPusAfsuguGfuUfCfaugaCfuUfucaagsgsg
1449
CCCUUGAAAGUCAUGAACACAUC
1506


1069810.1
1985503.1
L96

1936447.1









AD-
A-
asgsuca(Uhd)GfaAfCfAfcaucagcuaa
1393
A-
VPusUfsagcUfgAfUfguguUfcAfugacususu
1450
AAAGUCAUGAACACAUCAGUAG
1507


1069811.1
1985504.1
L96

1936455.1









AD-
A-
gsuscau(Ghd)AfaCfAfCfaucagcuaga
1394
A-
VPusCfsuagCfuGfAfugugUfuCfaugacsusu
1451
AAGUCAUGAACACAUCAGCUAGC
1508


1069812.1
1985505.1
L96

1936457.1









AD-
A-
csasuga(Ahd)CfaCfAfUfcagcuagcaa
1395
A-
VPusUfsgcuAfgCfUfgaugUfgUfucaugsasc
1452
GUCAUGAACACAUCAGCUAGCAA
1509


1069813.1
1985506.1
L96

1936390.1









AD-
A-
asgsagu(Ghd)AfuUfCfUfugcugcuaua
1396
A-
VPusAfsuagCfaGfCfaagaAfuCfacucususg
1453
CAAGAGUGAUUCUUGCUGCUAUU
1510


1069814.1
1985507.1
L96

1936499.1









AD-
A-
gsusgau(Uhd)CfuUfGfCfugcuauuaca
1397
A-
VPusGfsuaaUfaGfCfagcaAfgAfaucacsusc
1454
GAGUGAUUCUUGCUGCUAUUACU
1511


1069815.1
1985508.1
L96

1936503.1









AD-
A-
csgsccc(Uhd)UfuUfAfCfuaaacuugaa
1398
A-
VPusUfscaaGfuUfUfaguaAfaAfgggcgsusu
1455
AACGCCCUUUUACUAAACUUGAC
1512


1069816.1
1985509.1
L96

1936785.1









AD-
A-
usasccg(Uhd)CfaAfAfCfugacggauua
1399
A-
VPusAfsaucCfgUfCfaguuUfgAfcgguasasg
1456
CUUACCGUCAAACUGACGGAUUA
1513


1069817.1
1985510.1
L96

1936746.1









AD-
A-
ascsugu(Chd)UfaCfAfGfugguucaaca
1400
A-
VPusGfsuugAfaCfCfacugUfaGfacagusgsa
1457
UCACUGUCUACAGUGGUUCAACU
1514


1069818.1
1985511.1
L96

1937022.1









AD-
A-
csasugagAfaAfAfGfuacagaaucaL96
1401
A-
VPusGfsauuc(Tgn)guacuuUfuCfucaugsusg
1458
CACAUGAGAAAAGUACAGAAUCC
1515


1103822.1
1925200.1


2051801.1









AD-
A-
usgsaaucUfaUfGfGfaucaacuacaL96
1402
A-
VPusGfsuagu(Tgn)gauccaUfaGfauucasgsa
1459
UCUGAAUCUAUGGAUCAACUACU
1516


1103823.1
1931762.1


2051802.1









AD-
A-
cscsgaaaCfuGfGfAfaguuauuuaaL96
1403
A-
VPusUfsaaau(Agn)acuuccAfgUfuucggscsa
1460
UGCCGAAACUGGAAGUUAUUUAU
1517


1103824.1
1936426.1


2051803.1









AD-
A-
csusugaaAfgUfCfAfugaacacauaL96
1404
A-
VPusAfsugug(Tgn)ucaugaCfuUfucaagsgsg
1461
CCCUUGAAAGUCAUGAACACAUC
1518


1103825.1
1936446.1


2051804.1









AD-
A-
asgsucauGfaAfCfAfcaucagcuaaL96
1405
A-
VPusUfsagcu(Ggn)auguguUfcAfugacususu
1462
AAAGUCAUGAACACAUCAGCUAG
1519


1103826.1
1936454.1


2051805.1









AD-
A-
gsuscaugAfaCfAfCfaucagcuagaL96
1406
A-
VPusCfsuagc(Tgn)gaugugUfuCfaugacsusu
1463
AAGUCAUGAACACAUCAGCUAGC
1520


1103827.1
1936456.1


2051806.1









AD-
A-
csasugaaCfaCfAfUfcagcuagcaaL96
1407
A-
VPusUfsgcua(Ggn)cugaugUfgUfucaugsasc
1464
GUCAUGAACACAUCAGCUAGCAA
1521


1103828.1
713367.1


2051807.1









AD-
A-
asgsagugAfuUfCfUfugcugcuauaL96
1408
A-
VPusAfsuagc(Agn)gcaagaAfuCfacucususg
1465
CAAGAGUGAUUCUUGCUGCUAUU
1522


1103829.1
1936498.1


2051808.1









AD-
A-
gsusgauuCfuUfGfCfugcuauuacaL96
1409
A-
VPusGfsuaau(Agn)gcagcaAfgAfaucacsusc
1466
GAGUGAUUCUUGCUGCUAUUACU
1523


1103830.1
1936502.1


2051809.1









AD-
A-
csgscccuUfuUfAfCfuaaacuugaaL96
1410
A-
VPusUfscaag(Tgn)uuaguaAfaAfgggcgsusu
1467
AACGCCCUUUUACUAAACUUGAC
1524


1103831.1
1936784.1


2051810.1









AD-
A-
usasccguCfaAfAfCfugacggauuaL96
1411
A-
VPusAfsaucc(Ggn)ucaguuUfgAfcgguasasg
1468
CUUACCGUCAAACUGACGGAUUA
1525


1103832.1
713565.1


2051811.1









AD-
A-
ascsugucUfaCfAfGfugguucaacaL96
1412
A-
VPusGfsuuga(Agn)ccacugUfaGfacagusgsa
1469
UCACUGUCUACAGUGGUUCAACU
1526


1103833.1
1937021.1


2051812.1









AD-
A-
gsusgaagUfaCfAfAfgugaaaaacaL96
1413
A-
VPusGfsuuuu(Tgn)cacuugUfaCfuucacsasu
1470
AUGUGAAGUACAAGUGAAAAAUG
1527


1103834.1
2051813.1


2051814.1









AD-
A-
asgsucauGfaAfCfAfcaucagcuaaL96
1414
A-
VPusUfsagcu(Ggn)auguguUfcAfugacuscsu
1471
AAAGUCAUGAACACAUCAGCUAG
1528


1103835.1
1936454.1


2051815.1
















TABLE 6







Unmodified sense and antisense strand sequences of human and primate ATXN2 siRNAs.

















Duplex
senseOligo




antisOligo






Name
Name
transSeq
Seq
Source Name
Range
Name
transSeq
Seq
Source Name
Range





AD-
A-707687.1
UCAGUCUACGAUUUCUUUUGA
1529
NM_002973.4
 921-
A-1923523.1
UCAAAAGAAAUCGUAGACUGAGG
1586
NM_002973.4
 919-


1037307.1




941




 941





AD-
A-1923811.1
CUCAGUCUACGAUUUCUUUUA
1530
NM_002973.4
 559-
A-1923812.1
UAAAAGAAAUCGUAGACUGAGGC
1587
NM_002973.4
 557-


1037453.1




579




 579





AD-
A-1923813.1
CAGUCUACGAUUUCUUUUGAA
1531
NM_002973.4
 561-
A-1923814.1
UUCAAAAGAAAUCGUAGACUGAG
1588
NM_002973.4
 559-


1037454.1




581




 581





AD-
A-1925274.1
AAAUGUUCAGACUUUGUUGUA
1532
NM_002973.4
 792-
A-1925275.1
UACAACAAAGUCUGAACAUUUGA
1589
NM_002973.4
 790-


1038221.1




812




 812





AD-
A-708269.1
UGCUAUCAGUGCUAAAGUGAA
1533
NM_002973.4
1230-
A-1925618.1
UUCACUUUAGCACUGAUAGCAGA
1590
NM_002973.4
1228-


1038402.1




1250




1250





AD-
A-708701.1
GAUAACUCAGAAGAAUUUUUA
1534
NM_002973.4
1447-
A-1927090.1
UAAAAAUUCUUCUGAGUUAUCUC
1591
NM_002973.4
1445-


1039174.1




1467




1467





AD-
A-1927415.1
CGUAUGAUAGCAGUUUAUCUA
1535
NM_002973.4
1042-
A-1927416.1
UAGAUAAACUGCUAUCAUACGUA
1592
NM_002973.4
1040-


1039346.1




1062




1062





AD-
A-1927417.1
GUAUGAUAGCAGUUUAUCUUA
1536
NM_002973.4
1043-
A-1927418.1
UAAGAUAAACUGCUAUCAUACGU
1593
NM_002973.4
1041-


1039347.1




1063




1063





AD-
A-709219.1
AUCCACUUCUCACACUUCAGA
1537
NM_002973.4
1743-
A-1928560.1
UCUGAAGUGUGAGAAGUGGAUCU
1594
NM_002973.4
1741-


1039956.1




1763




1763





AD-
A-1928751.1
UCUCACACUUCAGAUUUCAAA
1538
NM_002973.4
1389-
A-1928752.1
UUUGAAAUCUGAAGUGUGAGAAG
1595
NM_002973.4
1387-


1040054.1




1409




1409





AD-
A-1929687.1
CUCUACUAUGCCUAAACGCAA
1539
NM_002973.4
1625-
A-1929688.1
UUGCGUUUAGGCAUAGUAGAGAC
1596
NM_002973.4
1623-


1040559.1




1645




1645





AD-
A-1929689.1
UCUACUAUGCCUAAACGCAUA
1540
NM_002973.4
1626-
A-1929690.1
UAUGCGUUUAGGCAUAGUAGAGA
1597
NM_002973.4
1624-


1040560.1




1646




1646





AD-
A-1929999.1
UCGAAAUCACAGAGUUUCUGA
1541
NM_002973.4
1694-
A-1930000.1
UCAGAAACUCUGUGAUUUCGAGG
1598
NM_002973.4
1692-


1040735.1




1714




1714





AD-
A-1930001.1
CGAAAUCACAGAGUUUCUGCA
1542
NM_002973.4
1695-
A-1930002.1
UGCAGAAACUCUGUGAUUUCGAG
1599
NM_002973.4
1693-


1040736.1




1715




1715





AD-
A-710445.1
UUCUACUUCUGAAUCUAUGGA
1543
NM_002973.4
2589-
A-1931560.1
UCCAUAGAUUCAGAAGUAGAACU
1600
NM_002973.4
2587-


1041615.1




2609




2609





AD-
A-710485.1
ACUACUAAACAAAAAUAGAGA
1544
NM_002973.4
2613-
A-1931578.1
UCUCUAUUUUUGUUUAGUAGUUG
1601
NM_002973.4
2611-


1041633.1




2633




2633





AD-
A-1931750.1
GUUCUACUUCUGAAUCUAUGA
1545
NM_002973.4
2227-
A-1931751.1
UCAUAGAUUCAGAAGUAGAACUU
1602
NM_002973.4
2225-


1041737.1




2247




2247





AD-
A-1931752.1
UCUACUUCUGAAUCUAUGGAA
1546
NM_002973.4
2229-
A-1931753.1
UUCCAUAGAUUCAGAAGUAGAAC
1603
NM_002973.4
2227-


1041738.1




2249




2249





AD-
A-1931754.1
CUACUUCUGAAUCUAUGGAUA
1547
NM_002973.4
2230-
A-1931755.1
UAUCCAUAGAUUCAGAAGUAGAA
1604
NM_002973.4
2228-


1041739.1




2250




2250





AD-
A-1931976.1
ACCAAGUGCUAAGGAUUCUUA
1548
NM_002973.4
2312-
A-1931977.1
UAAGAAUCCUUAGCACUUGGUUC
1605
NM_002973.4
2310-


1041872.1




2332




2332





AD-
A-1932406.1
UUAGGAAAUCAACAUUGAAUA
1549
NM_002973.4
2527-
A-1932407.1
UAUUCAAUGUUGAUUUCCUAACU
1606
NM_002973.4
2525-


1042122.1




2547




2547





AD-
A-1932840.1
AGCCAACUCCAGUUUAUACUA
1550
NM_002973.4
2659-
A-1932841.1
UAGUAUAAACUGGAGUUGGCUGU
1607
NM_002973.4
2657-


1042374.1




2679




2679





AD-
A-1933944.1
UUCUUCAGCAACUCAGUACGA
1551
NM_002973.4
3068-
A-1933945.1
UCGUACUGAGUUGCUGAAGAAGA
1608
NM_002973.4
3066-


1043031.1




3088




3088





AD-
A-1934166.1
UUUCUACUUUGCCAUUUCCAA
1552
NM_002973.4
3158-
A-1934167.1
UUGGAAAUGGCAAAGUAGAAAGA
1609
NM_002973.4
3156-


1043150.1




3178




3178





AD-
A-1934168.1
UUCUACUUUGCCAUUUCCACA
1553
NM_002973.4
3159-
A-1934169.1
UGUGGAAAUGGCAAAGUAGAAAG
1610
NM_002973.4
3157-


1043151.1




3179




3179





AD-
A-713113.1
UCUUGUAACAUCCAAUAGGAA
1554
NM_002973.4
4223-
A-1935929.1
UUCCUAUUGGAUGUUACAAGAAA
1611
NM_002973.4
4221-


1044184.1




4243




4243





AD-
A-1936426.1
CCGAAACUGGAAGUUAUUUAA
1555
NM_002973.4
4004-
A-1936427.1
UUAAAUAACUUCCAGUUUCGGCA
1612
NM_002973.4
4002-


1044473.1




4024




4024





AD-
A-1936432.1
AAACUGGAAGUUAUUUAUUUA
1556
NM_002973.4
4007-
A-1936433.1
UAAAUAAAUAACUUCCAGUUUCG
1613
NM_002973.4
4005-


1044476.1




4027




4027





AD-
A-713683.1
AGUGGUUCAACUUUUAAGUUA
1557
NM_002973.4
4600-
A-1936873.1
UAACUUAAAAGUUGAACCACUGU
1614
NM_002973.4
4598-


1044729.1




4620




4620





AD-
A-713685.1
GUGGUUCAACUUUUAAGUUAA
1558
NM_002973.4
4601-
A-1936874.1
UUAACUUAAAAGUUGAACCACUG
1615
NM_002973.4
4599-


1044730.1




4621




4621





AD-
A-1937057.1
UAAGGGAAAAACUUUUACUUA
1559
NM_002973.4
4258-
A-1937058.1
UAAGUAAAAGUUUUUCCCUUAAC
1616
NM_002973.4
4256-


1044831.1




4278




4278





AD-
A-1985500.1
CAUGAGAAAAGUACAGAAUCA
1560
NM_002973.4
 726-
A-1925201.1
UGAUUCUGUACUUUUCUCAUGUG
1617
NM_002973.4
 724-


1069807.1




746




746





AD-
A-1985501.1
UGAAUCUAUGGAUCAACUACA
1561
NM_002973.4
2237-
A-1931763.1
UGUAGUUGAUCCAUAGAUUCAGA
1618
NM_002973.4
2235-


1069808.1




2257




2257





AD-
A-1985502.1
CCGAAACUGGAAGUUAUUUAA
1562
NM_002973.4
4004-
A-1936427.1
UUAAAUAACUUCCAGUUUCGGCA
1619
NM_002973.4
4002-


1069809.1




4024




4024





AD-
A-1985503.1
CUUGAAAGUCAUGAACACAUA
1563
NM_002973.4
4037-
A-1936447.1
UAUGUGUUCAUGACUUUCAAGGG
1620
NM_002973.4
4035-


1069810.1




4057




4057





AD-
A-1985504.1
AGUCAUGAACACAUCAGCUAA
1564
NM_002973.4
4043-
A-1936455.1
UUAGCUGAUGUGUUCAUGACUUU
1621
NM_002973.4
4041-


1069811.1




4063




4063





AD-
A-1985505.1
GUCAUGAACACAUCAGCUAGA
1565
NM_002973.4
4044-
A-1936457.1
UCUAGCUGAUGUGUUCAUGACUU
1622
NM_002973.4
4042-


1069812.1




4064




4064





AD-
A-1985506.1
CAUGAACACAUCAGCUAGCAA
1566
NM_002973.4
4046-
A-1936390.1
UUGCUAGCUGAUGUGUUCAUGAC
1623
NM_002973.4
4044-


1069813.1




4066




4066





AD-
A-1985507.1
AGAGUGAUUCUUGCUGCUAUA
1567
NM_002973.4
4078-
A-1936499.1
UAUAGCAGCAAGAAUCACUCUUG
1624
NM_002973.4
4076-


1069814.1




4098




4098





AD-
A-1985508.1
GUGAUUCUUGCUGCUAUUACA
1568
NM_002973.4
4081-
A-1936503.1
UGUAAUAGCAGCAAGAAUCACUC
1625
NM_002973.4
4079-


1069815.1




4101




4101





AD-
A-1985509.1
CGCCCUUUUACUAAACUUGAA
1569
NM_002973.4
4139-
A-1936785.1
UUCAAGUUUAGUAAAAGGGCGUU
1626
NM_002973.4
4137-


1069816.1




4159




4159





AD-
A-1985510.1
UACCGUCAAACUGACGGAUUA
1570
NM_002973.4
4178-
A-1936746.1
UAAUCCGUCAGUUUGACGGUAAG
1627
NM_002973.4
4176-


1069817.1




4198




4198





AD-
A-1985511.1
ACUGUCUACAGUGGUUCAACA
1571
NM_002973.4
4230-
A-1937022.1
UGUUGAACCACUGUAGACAGUGA
1628
NM_002973.4
4228-


1069818.1




4250




4250





AD-
A-1925200.1
CAUGAGAAAAGUACAGAAUCA
1572
NM_002973.4
 726-
A-2051801.1
UGAUUCTGUACUUUUCUCAUGUG
1629
NM_002973.4
 724-


1103822.1




746




746





AD-
A-1931762.1
UGAAUCUAUGGAUCAACUACA
1573
NM_002973.4
2237-
A-2051802.1
UGUAGUTGAUCCAUAGAUUCAGA
1630
NM_002973.4
2235-


1103823.1




2257




2257





AD-
A-1936426.1
CCGAAACUGGAAGUUAUUUAA
1574
NM_002973.4
4004-
A-2051803.1
UUAAAUAACUUCCAGUUUCGGCA
1631
NM_002973.4
4002-


1103824.1




4024




4024





AD-
A-1936446.1
CUUGAAAGUCAUGAACACAUA
1575
NM_002973.4
4037-
A-2051804.1
UAUGUGTUCAUGACUUUCAAGGG
1632
NM_002973.4
4035-


1103825.1




4057




4057





AD-
A-1936454.1
AGUCAUGAACACAUCAGCUAA
1576
NM_002973.4
4043-
A-2051805.1
UUAGCUGAUGUGUUCAUGACUUU
1633
NM_002973.4
4041-


1103826.1




4063




4063





AD-
A-1936456.1
GUCAUGAACACAUCAGCUAGA
1577
NM_002973.4
4044-
A-2051806.1
UCUAGCTGAUGUGUUCAUGACUU
1634
NM_002973.4
4042-


1103827.1




4064




4064





AD-
A-713367.1
CAUGAACACAUCAGCUAGCAA
1578
NM_002973.4
4407-
A-2051807.1
UUGCUAGCUGAUGUGUUCAUGAC
1635
NM_002973.4
4405-


1103828.1




4427




4427





AD-
A-1936498.1
AGAGUGAUUCUUGCUGCUAUA
1579
NM_002973.4
4078-
A-2051808.1
UAUAGCAGCAAGAAUCACUCUUG
1636
NM_002973.4
4076-


1103829.1




4098




4098





AD-
A-1936502.1
GUGAUUCUUGCUGCUAUUACA
1580
NM_002973.4
4081-
A-2051809.1
UGUAAUAGCAGCAAGAAUCACUC
1637
NM_002973.4
4079-


1103830.1




4101




4101





AD-
A-1936784.1
CGCCCUUUUACUAAACUUGAA
1581
NM_002973.4
4139-
A-2051810.1
UUCAAGTUUAGUAAAAGGGCGUU
1638
NM_002973.4
4137-


1103831.1




4159




4159





AD-
A-713565.1
UACCGUCAAACUGACGGAUUA
1582
NM_002973.4
4539-
A-2051811.1
UAAUCCGUCAGUUUGACGGUAAG
1639
NM_002973.4
4537-


1103832.1




4559




4559





AD-
A-1937021.1
ACUGUCUACAGUGGUUCAACA
1583
NM_002973.4
4230-
A-2051812.1
UGUUGAACCACUGUAGACAGUGA
1640
NM_002973.4
4228-


1103833.1




4250




4250





AD-
A-2051813.1
GUGAAGUACAAGUGAAAAACA
1584
NM_002973.4
 640-
A-2051814.1
UGUUUUTCACUUGUACUUCACAU
1641
NM_002973.4
 638-


1103834.1




660




 660


AD-
A-1936454.1
AGUCAUGAACACAUCAGCUAA
1585
NM_002973.4
4043-
A-2051815.1
UUAGCUGAUGUGUUCAUGACUCU
1642
NM_002973.4
4041-


1103835.1




4063




4063
















TABLE 7







ATXN2 in vitro screen in Hep3B and BE(2)-C Cell Systems. Data are expressed


as average percent transcript remaining, relative to non-targeting control.








Hep3B
BE(2)-C





















Duplex ID
10 nM
SD
1 nM
SD
0.1 nM
SD
50 nM
SD
10 nM
SD
1 nM
SD
0.1 nM
SD
























AD-1037307.1
57.08
12.83
54.00
13.29
57.30
10.13
34.52
4.14
33.15
2.96
45.56
2.63
61.26
6.09


AD-1037453.1
44.32
18.73
44.23
8.50
65.76
14.07
36.48
12.89
25.45
3.20
36.25
7.18
51.50
7.85


AD-1037454.1
53.70
9.90
64.67
8.05
76.35
8.72
52.13
15.81
72.38
16.39
68.87
23.27
67.70
22.56


AD-1038221.1
53.68
4.37
76.38
7.91
89.65
13.69
58.97
11.30
70.35
9.58
83.63
2.14
98.19
10.75


AD-1038402.1
50.08
26.78
52.67
10.60
71.69
18.35
39.31
3.66
36.14
1.92
48.76
4.52
58.24
5.81


AD-1039174.1
43.31
16.52
53.07
11.55
47.29
15.06
45.39
8.15
49.01
5.45
63.93
6.16
85.40
5.67


AD-1039346.1
51.57
24.05
42.37
4.99
45.37
6.32
47.30
14.32
38.42
11.89
43.95
2.86
62.08
3.89


AD-1039347.1
47.02
5.56
76.41
14.07
80.09
22.07
47.30
5.35
58.20
3.11
67.88
9.19
95.96
9.82


AD-1039956.1
56.56
23.15
53.44
5.25
68.30
1.91
28.62
5.01
29.01
5.40
42.50
5.47
58.06
10.50


AD-1040054.1
76.80
20.96
69.30
4.98
88.10
15.41
27.40
4.11
30.55
4.47
39.18
7.05
52.29
6.05


AD-1040559.1
40.29
6.04
35.91
2.07
56.72
12.34
21.74
3.26
23.29
4.14
33.15
5.51
43.02
7.10


AD-1040560.1
38.65
15.74
34.16
3.96
75.69
48.49
49.31
26.72
27.84
1.95
39.01
0.81
48.83
3.82


AD-1040735.1
41.19
11.58
38.47
6.74
57.41
19.85
31.37
11.73
24.66
4.14
40.60
3.99
49.18
7.69


AD-1040736.1
29.90
11.37
35.26
4.27
51.06
7.12
27.40
9.63
22.02
1.32
33.07
5.33
39.55
3.35


AD-1041615.1
40.53
11.34
70.88
5.17
70.18
25.44
45.01
0.65
48.44
5.63
72.73
3.83
87.37
5.97


AD-1041633.1
41.36
16.11
60.40
9.54
56.55
15.65
33.56
1.75
41.03
5.54
51.89
5.74
70.49
7.02


AD-1041737.1
27.20
6.43
35.47
4.54
51.23
5.43
37.27
17.57
23.92
3.44
33.06
4.23
39.74
9.44


AD-1041738.1
61.11
15.14
83.09
9.61
114.49
19.31
40.03
7.08
67.85
15.28
74.38
25.04
73.33
11.12


AD-1041739.1
33.98
12.92
35.65
11.55
55.44
17.98
22.57
4.84
18.51
1.48
25.68
2.97
29.91
2.51


AD-1041872.1
29.35
14.77
43.54
6.81
39.10
4.22
29.16
4.17
27.64
5.59
40.44
6.06
44.63
6.34


AD-1042122.1
32.50
2.15
43.70
3.05
60.35
4.17
49.17
17.00
62.20
13.87
61.33
13.77
62.07
19.07


AD-1042374.1
50.21
7.41
74.04
18.91
71.15
4.96
45.65
11.15
81.57
16.70
74.41
16.28
87.26
6.73


AD-1043031.1
44.60
5.55
61.03
8.08
79.57
29.67
32.50
2.35
42.57
9.18
45.61
9.55
54.76
8.55


AD-1043150.1
115.99
43.81
99.02
17.65
76.74
4.51
62.64
7.07
50.46
8.59
58.61
13.66
62.14
8.85


AD-1043151.1
124.20
45.85
107.29
11.21
82.74
10.14
72.54
23.42
81.53
9.91
72.57
2.90
78.68
14.49


AD-1044184.1
42.78
4.51
57.55
5.55
65.90
11.91
39.95
6.22
47.34
7.50
57.50
5.59
76.50
6.19


AD-1044473.1
71.16
20.19
58.65
6.45
71.00
15.78
44.54
2.77
46.39
6.72
50.87
5.17
68.86
6.05


AD-1044476.1
46.27
13.28
45.28
6.42
78.37
29.34
46.82
7.21
36.97
4.07
42.62
1.39
58.04
5.72


AD-1044729.1
34.96
10.31
35.00
2.18
65.51
21.57
34.46
4.48
35.94
2.99
41.40
3.38
49.03
4.46


AD-1044730.1
63.76
38.61
55.42
5.69
55.77
8.28
27.75
2.62
28.24
3.85
34.01
7.17
43.34
9.41


AD-1044831.1
87.56
42.44
63.29
5.74
55.13
13.25
30.67
4.71
41.16
4.69
47.46
1.66
55.76
3.76


AD-1069807.1
74.17
3.87
102.33
25.98
90.59
6.13
27.26
2.21
75.90
21.36
63.05
10.63
32.66
5.77


AD-1069808.1
33.54
1.67
68.82
31.60
73.38
10.73
16.37
3.14
61.47
3.43
63.52
5.49
32.86
5.91


AD-1069809.1
51.16
1.71
63.31
14.02
111.23
16.09
28.19
5.69
71.66
2.03
79.73
10.42
36.41
3.89


AD-1069810.1
60.17
9.53
67.98
15.33
95.92
17.36
28.02
6.05
67.41
4.43
99.20
6.20
35.66
2.58


AD-1069811.1
47.27
2.41
56.11
6.60
116.58
21.58
28.80
7.06
61.39
4.08
103.83
7.71
32.19
3.13


AD-1069812.1
43.61
6.20
49.67
17.36
87.04
25.86
25.86
4.02
58.79
10.25
111.06
10.91
28.46
4.27


AD-1069813.1
44.95
5.84
60.73
18.08
88.51
25.52
28.67
3.05
56.61
4.20
124.60
9.93
27.90
3.99


AD-1069814.1
36.64
6.33
55.73
25.77
56.67
4.31
20.16
2.59
33.65
6.10
71.15
40.44
19.77
1.86


AD-1069815.1
70.89
13.72
72.15
12.54
75.63
17.94
27.43
4.50
57.44
15.10
47.86
7.44
35.90
4.23


AD-1069816.1
68.84
23.01
74.26
13.80
81.48
18.88
33.45
4.24
84.85
16.75
61.84
4.60
46.72
4.62


AD-1069817.1
76.40
18.09
95.92
31.29
84.26
8.15
49.51
3.15
93.84
10.72
79.35
13.94
44.25
14.02


AD-1069818.1
36.23
3.83
63.77
11.44
62.23
13.64
36.63
4.23
72.39
7.52
84.75
8.11
37.79
5.89


AD-1103822.1
55.37
3.47
65.10
13.49
72.14
16.09
65.20
8.57
87.42
20.62
84.74
7.78
106.68
13.63


AD-1103823.1
53.56
16.89
61.10
8.44
61.58
13.56
66.42
11.89
69.58
6.05
70.41
4.51
122.30
23.79


AD-1103824.1
52.94
1.49
77.35
8.32
80.89
18.65
69.44
17.89
67.03
9.12
78.71
5.74
113.62
14.26


AD-1103825.1
50.43
5.31
57.27
7.83
70.82
9.08
46.09
2.61
49.37
7.33
70.23
7.39
101.20
18.27


AD-1103826.1
50.20
8.88
71.15
2.79
79.17
15.27
42.68
1.80
51.37
5.50
69.39
8.85
78.74
11.92


AD-1103827.1
76.27
30.88
72.19
14.41
86.15
12.78
44.07
5.04
54.69
9.78
63.42
12.94
71.11
5.33


AD-1103828.1
74.45
9.41
62.10
5.72
69.31
23.21
44.20
11.18
39.49
7.07
46.63
14.73
50.20
6.10


AD-1103829.1
45.43
14.54
39.03
5.01
53.87
23.00
53.37
19.01
72.87
26.84
61.12
24.90
64.72
18.24


AD-1103830.1
41.04
3.28
56.53
8.23
62.35
6.61
77.15
10.88
65.10
35.52
79.24
36.78
100.25
14.24


AD-1103831.1
61.28
18.27
63.76
4.37
80.15
8.76
77.35
12.15
84.20
7.53
100.25
18.52
123.02
22.14


AD-1103832.1
57.50
6.54
70.86
9.49
66.10
5.79
78.90
11.86
73.71
4.88
94.45
7.55
129.96
18.58


AD-1103833.1
51.21
7.19
64.00
4.75
79.11
24.95
66.27
6.68
61.96
12.36
84.71
7.29
115.09
11.41


AD-1103834.1
79.61
38.12
59.29
8.69
54.68
3.99
50.97
9.98
61.75
7.03
86.53
5.52
108.81
6.23


AD-1103835.1
48.75
18.34
49.76
8.63
34.40
8.15
45.81
3.38
62.09
8.46
73.92
6.92
82.12
6.25





Standard deviation = SD













TABLE 8







In vivo efficacy of ATX2 iRNA. Average percent



Gaussia princeps luciferase (gLuc) protein remaining,



compared to pre-bleed and average percent transcript


remaining in the liver compared PBS controls.












gLuc (D14)

qPCR (D14)














Compound
Average
SD
Average
SD

















PBS
100
34.15
100.07
4.18



Naïve
101.17
17.75
111.34
20.1



AD-365144
30.84
4.43
46.63
11.43



AD-366366
72.24
4.31
64.9
9.12



AD-367794
73.26
7.84
130.65
24.99



AD-367809
45.03
5.16
70.89
8.26



AD-367815
34.02
7.52
75.52
0.66



AD-367816
37.49
13.25
50.64
8.16



AD-367818
49.12
2.89
76.82
8.23



AD-367850
60.91
2.06
91.18
5.34



AD-367853
92.05
22.48
107.71
39.84



AD-367878
61.5
13.7
67.71
18.43



AD-367917
83.68
43.06
123.66
13.31



AD-367967
73.69
9.74
115.73
37.65



AD-387779
76.67
23.79
125
21.5

















TABLE 9







ATXN2 C16-modified siRNA sequences also modified with 2′-O-hexadecyl-adenosine-3′-phosphate, 2′-O-hexadecyl-guanosine-3′-


phosphate, or 2′-O-hexadecyl-cytidine-3′-phosphate, or 2′-O-hexadecyl-uridine-3′-phosphate.






















accession.
mRNA








sense.

antisense.

mRNA.



version
range
Sense Oligo Seq
Seq
Antisense Oligo Seq
Seq
sense
Seq
antisense
Seq
transSeq
Seq
transSeq
Seq
target
Seq





NM_
  90-
uscscga(Chd)UfuCf
1643
VPusAfscucUfuUfAfcc
1977
UCCGACUU
2311
GACUCUUU
2645
UCCGACU
2979
UACUCUUU
3313
CCTCCGAC
3647


002973.3
112
CfGfguaaagagsusa

ggAfaGfucggasgsg

CCGGUAAA

ACCGGAAG

UCCGGUA

ACCGGAAG

TTCCGGTA









GAGUC

UCGGAGG

AAGAGUA

UCGGAGG

AAGAGTC






NM_
  91-
cscsgac(Uhd)UfcCf
1644
VPusGfsacuCfuUfUfac
1978
CCGACUUC
2312
GGACUCUU
2646
CCGACUU
2980
UGACUCUU
3314
CTCCGACT
3648


002973.3
113
GfGfuaaagaguscsa

cgGfaAfgucggsasg

CGGUAAAG

UACCGGAA

CCGGUAA

UACCGGAA

TCCGGTAA









AGUCC

GUCGGAG

AGAGUCA

GUCGGAG

AGAGTCC






NM_
  92-
csgsacu(Uhd)CfcGf
1645
VPusGfsgacUfcUfUfua
1979
CGACUUCC
2313
GGGACUCU
2647
CGACUUC
2981
UGGACUCU
3315
TCCGACTT
3649


002973.3
114
GfUfaaagagucscsa

ccGfgAfagucgsgsa

GGUAAAGA

UUACCGGA

CGGUAAA

UUACCGGA

CCGGTAAA









GUCCC

AGUCGGA

GAGUCCA

AGUCGGA

GAGTCCC






NM_
 996-
asasugu(Ghd)AfaG
1646
VPusUfsuucAfcUfUfgu
1980
AAUGUGAA
2314
UUUUCACU
2648
AAUGUGA
2982
UUUUCACU
3316
CAAATGTG
3650


002973.3
1018
fUfAfcaagugaasasa

acUfuCfacauususg

GUACAAGU

UGUACUUC

AGUACAA

UGUACUUC

AAGTACAA









GAAAA

ACAUUUG

GUGAAAA

ACAUUUG

GTGAAAA






NM_
 997-
asusgug(Ahd)AfgU
1647
VPusUfsuuuCfaCfUfug
1981
AUGUGAAG
2315
UUUUUCAC
2649
AUGUGAA
2983
UUUUUCAC
3317
AAATGTGA
3651


002973.3
1019
fAfCfaagugaaasasa

uaCfuUfcacaususu

UACAAGUG

UUGUACUU

GUACAAG

UUGUACUU

AGTACAAG









AAAAA

CACAUUU

UGAAAAA

CACAUUU

TGAAAAA






NM_
 999-
gsusgaa(Ghd)UfaCf
1648
VPusAfsuuuUfuCfAfcu
1982
GUGAAGUA
2316
CAUUUUUC
2650
GUGAAGU
2984
UAUUUUUC
3318
ATGTGAAG
3652


002973.3
1021
AfAfgugaaaaasusa

ugUfaCfuucacsasu

CAAGUGAA

ACUUGUAC

ACAAGUG

ACUUGUAC

TACAAGTG









AAAUG

UUCACAU

AAAAAUA

UUCACAU

AAAAATG






NM_
1085-
csasuga(Ghd)AfaAf
1649
VPusGfsauuCfuGfUfac
1983
CAUGAGAA
2317
GGAUUCUG
2651
CAUGAGA
2985
UGAUUCUG
3319
CACATGAG
3653


002973.3
1107
AfGfuacagaauscsa

uuUfuCfucaugsusg

AAGUACAG

UACUUUUC

AAAGUAC

UACUUUUC

AAAAGTAC









AAUCC

UCAUGUG

AGAAUCA

UCAUGUG

AGAATCC






NM_
1744-
csascuu(Chd)UfcAf
1650
VPusAfsaucUfgAfAfgu
1984
CACUUCUC
2318
AAAUCUGA
2652
CACUUCU
2986
UAAUCUGA
3320
TCCACTTCT
3654


002973.3
1766
CfAfcuucagaususa

guGfaGfaagugsgsa

ACACUUCA

AGUGUGAG

CACACUU

AGUGUGAG

CACACTTC









GAUUU

AAGUGGA

CAGAUUA

AAGUGGA

AGATTT






NM_
1745-
ascsuuc(Uhd)CfaCf
1651
VPusAfsaauCfuGfAfag
1985
ACUUCUCA
2319
GAAAUCUG
2653
ACUUCUC
2987
UAAAUCUG
3321
CCACTTCT
3655


002973.3
1767
AfCfuucagauususa

ugUfgAfgaagusgsg

CACUUCAG

AAGUGUGA

ACACUUC

AAGUGUGA

CACACTTC









AUUUC

GAAGUGG

AGAUUUA

GAAGUGG

AGATTTC






NM_
1746-
csusucu(Chd)AfcAf
1652
VPusGfsaaaUfcUfGfaa
1986
CUUCUCAC
2320
UGAAAUCU
2654
CUUCUCA
2988
UGAAAUCU
3322
CACTTCTC
3656


002973.3
1768
CfUfucagauuuscsa

guGfuGfagaagsusg

ACUUCAGA

GAAGUGUG

CACUUCA

GAAGUGUG

ACACTTCA









UUUCA

AGAAGUG

GAUUUCA

AGAAGUG

GATTTCA






NM_
1747-
ususcuc(Ahd)CfaCf
1653
VPusUfsgaaAfuCfUfga
1987
UUCUCACA
2321
UUGAAAUC
2655
UUCUCAC
2989
UUGAAAUC
3323
ACTTCTCA
3657


002973.3
1769
UfUfcagauuucsasa

agUfgUfgagaasgsu

CUUCAGAU

UGAAGUGU

ACUUCAG

UGAAGUGU

CACTTCAG









UUCAA

GAGAAGU

AUUUCAA

GAGAAGU

ATTTCAA






NM_
1748-
uscsuca(Chd)AfcUf
1654
VPusUfsugaAfaUfCfug
1988
UCUCACAC
2322
GUUGAAAU
2656
UCUCACA
2990
UUUGAAAU
3324
CTTCTCAC
3658


002973.3
1770
UfCfagauuucasasa

aaGfuGfugagasasg

UUCAGAUU

CUGAAGUG

CUUCAGA

CUGAAGUG

ACTTCAGA









UCAAC

UGAGAAG

UUUCAAA

UGAGAAG

TTTCAAC






NM_
1749-
csuscac(Ahd)CfuUf
1655
VPusGfsuugAfaAfUfcu
1989
CUCACACU
2323
GGUUGAAA
2657
CUCACAC
2991
UGUUGAAA
3325
TTCTCACA
3659


002973.3
1771
CfAfgauuucaascsa

gaAfgUfgugagsasa

UCAGAUUU

UCUGAAGU

UUCAGAU

UCUGAAGU

CTTCAGAT









CAACC

GUGAGAA

UUCAACA

GUGAGAA

TTCAACC






NM_
1750-
uscsaca(Chd)UfuCf
1656
VPusGfsguuGfaAfAfuc
1990
UCACACUU
2324
GGGUUGAA
2658
UCACACU
2992
UGGUUGAA
3326
TCTCACAC
3660


002973.3
1772
AfGfauuucaacscsa

ugAfaGfugugasgsa

CAGAUUUC

AUCUGAAG

UCAGAUU

AUCUGAAG

TTCAGATT









AACCC

UGUGAGA

UCAACCA

UGUGAGA

TCAACCC






NM_
1751-
csascac(Uhd)UfcAf
1657
VPusGfsgguUfgAfAfa
1991
CACACUUC
2325
CGGGUUGA
2659
CACACUU
2993
UGGGUUGA
3327
CTCACACT
3661


002973.3
1773
GfAfuuucaaccscsa

ucuGfaAfgugugsasg

AGAUUUCA

AAUCUGAA

CAGAUUU

AAUCUGAA

TCAGATTT









ACCCG

GUGUGAG

CAACCCA

GUGUGAG

CAACCCG






NM_
1754-
ascsuuc(Ahd)GfaUf
1658
VPusUfsucgGfgUfUfga
1992
ACUUCAGA
2326
AUUCGGGU
2660
ACUUCAG
2994
UUUCGGGU
3328
ACACTTCA
3662


002973.3
1776
UfUfcaacccgasasa

aaUfcUfgaagusgsu

UUUCAACC

UGAAAUCU

AUUUCAA

UGAAAUCU

GATTTCAA









CGAAU

GAAGUGU

CCCGAAA

GAAGUGU

CCCGAAT






NM_
1781-
uscsaga(Chd)CfaAf
1659
VPusUfsuaaCfuAfCfuc
1993
UCAGACCA
2327
AUUAACUA
2661
UCAGACC
2995
UUUAACUA
3329
GTTCAGAC
3663


002973.3
1803
AfGfaguaguuasasa

uuUfgGfucugasasc

AAGAGUAG

CUCUUUGG

AAAGAGU

CUCUUUGG

CAAAGAGT









UUAAU

UCUGAAC

AGUUAAA

UCUGAAC

AGTTAAT






NM_
1782-
csasgac(Chd)AfaAf
1660
VPusAfsuuaAfcUfAfcu
1994
CAGACCAA
2328
CAUUAACU
2662
CAGACCA
2996
UAUUAACU
3330
TTCAGACC
3664


002973.3
1804
GfAfguaguuaasusa

cuUfuGfgucugsasa

AGAGUAGU

ACUCUUUG

AAGAGUA

ACUCUUUG

AAAGAGTA









UAAUG

GUCUGAA

GUUAAUA

GUCUGAA

GTTAATG






NM_
1984-
csuscua(Chd)UfaUf
1661
VPusUfsgcgUfuUfAfg
1995
CUCUACUA
2329
AUGCGUUU
2663
CUCUACU
2997
UUGCGUUU
3331
GTCTCTAC
3665


002973.3
2006
GfCfcuaaacgcsasa

gcaUfaGfuagagsasc

UGCCUAAA

AGGCAUAG

AUGCCUA

AGGCAUAG

TATGCCTA









CGCAU

UAGAGAC

AACGCAA

UAGAGAC

AACGCAT






NM_
1985-
uscsuac(Uhd)AfuG
1662
VPusAfsugcGfuUfUfag
1996
UCUACUAU
2330
CAUGCGUU
2664
UCUACUA
2998
UAUGCGUU
3332
TCTCTACT
3666


002973.3
2007
fCfCfuaaacgcasusa

gcAfuAfguagasgsa

GCCUAAAC

UAGGCAUA

UGCCUAA

UAGGCAUA

ATGCCTAA









GCAUG

GUAGAGA

ACGCAUA

GUAGAGA

ACGCATG






NM_
1987-
usascua(Uhd)GfcCf
1663
VPusAfscauGfcGfUfuu
1997
UACUAUGC
2331
GACAUGCG
2665
UACUAUG
2999
UACAUGCG
3333
TCTACTAT
3667


002973.3
2009
UfAfaacgcaugsusa

agGfcAfuaguasgsa

CUAAACGC

UUUAGGCA

CCUAAAC

UUUAGGCA

GCCTAAAC









AUGUC

UAGUAGA

GCAUGUA

UAGUAGA

GCATGTC






NM_
2592-
csusucu(Ghd)AfaU
1664
VPusUfsugaUfcCfAfua
1998
CUUCUGAA
2332
GUUGAUCC
2666
CUUCUGA
3000
UUUGAUCC
3334
TACTTCTG
3668


002973.3
2614
fCfUfauggaucasasa

gaUfuCfagaagsusa

UCUAUGGA

AUAGAUUC

AUCUAUG

AUAGAUUC

AATCTATG









UCAAC

AGAAGUA

GAUCAAA

AGAAGUA

GATCAAC






NM_
2593-
ususcug(Ahd)AfuC
1665
VPusGfsuugAfuCfCfau
1999
UUCUGAAU
2333
AGUUGAUC
2667
UUCUGAA
3001
UGUUGAUC
3335
ACTTCTGA
3669


002973.3
2615
fUfAfuggaucaascsa

agAfuUfcagaasgsu

CUAUGGAU

CAUAGAUU

UCUAUGG

CAUAGAUU

ATCTATGG









CAACU

CAGAAGU

AUCAACA

CAGAAGU

ATCAACT






NM_
2594-
uscsuga(Ahd)UfcU
1666
VPusAfsguuGfaUfCfca
2000
UCUGAAUC
2334
UAGUUGAU
2668
UCUGAAU
3002
UAGUUGAU
3336
CTTCTGAA
3670


002973.3
2616
fAfUfggaucaacsusa

uaGfaUfucagasasg

UAUGGAUC

CCAUAGAU

CUAUGGA

CCAUAGAU

TCTATGGA









AACUA

UCAGAAG

UCAACUA

UCAGAAG

TCAACTA






NM_
2595-
csusgaa(Uhd)CfuAf
1667
VPusUfsaguUfgAfUfcc
2001
CUGAAUCU
2335
GUAGUUGA
2669
CUGAAUC
3003
UUAGUUGA
3337
TTCTGAAT
3671


002973.3
2617
UfGfgaucaacusasa

auAfgAfuucagsasa

AUGGAUCA

UCCAUAGA

UAUGGAU

UCCAUAGA

CTATGGAT









ACUAC

UUCAGAA

CAACUAA

UUCAGAA

CAACTAC






NM_
2596-
usgsaau(Chd)UfaUf
1668
VPusGfsuagUfuGfAfuc
2002
UGAAUCUA
2336
AGUAGUUG
2670
UGAAUCU
3004
UGUAGUUG
3338
TCTGAATC
3672


002973.3
2618
GfGfaucaacuascsa

caUfaGfauucasgsa

UGGAUCAA

AUCCAUAG

AUGGAUC

AUCCAUAG

TATGGATC









CUACU

AUUCAGA

AACUACA

AUUCAGA

AACTACT






NM_
2597-
gsasauc(Uhd)AfuG
1669
VPusAfsguaGfuUfGfau
2003
GAAUCUAU
2337
UAGUAGUU
2671
GAAUCUA
3005
UAGUAGUU
3339
CTGAATCT
3673


002973.3
2619
fGfAfucaacuacsusa

ccAfuAfgauucsasg

GGAUCAAC

GAUCCAUA

UGGAUCA

GAUCCAUA

ATGGATCA









UACUA

GAUUCAG

ACUACUA

GAUUCAG

ACTACTA






NM_
2598-
asasucu(Ahd)UfgG
1670
VPusUfsaguAfgUfUfga
2004
AAUCUAUG
2338
UUAGUAGU
2672
AAUCUAU
3006
UUAGUAGU
3340
TGAATCTA
3674


002973.3
2620
fAfUfcaacuacusasa

ucCfaUfagauuscsa

GAUCAACU

UGAUCCAU

GGAUCAA

UGAUCCAU

TGGATCAA









ACUAA

AGAUUCA

CUACUAA

AGAUUCA

CTACTAA






NM_
2599-
asuscua(Uhd)GfgA
1671
VPusUfsuagUfaGfUfug
2005
AUCUAUGG
2339
UUUAGUAG
2673
AUCUAUG
3007
UUUAGUAG
3341
GAATCTAT
3675


002973.3
2621
fUfCfaacuacuasasa

auCfcAfuagaususc

AUCAACUA

UUGAUCCA

GAUCAAC

UUGAUCCA

GGATCAAC









CUAAA

UAGAUUC

UACUAAA

UAGAUUC

TACTAAA






NM_
3102-
usasuac(Chd)CfaAf
1672
VPusCfsgucAfuAfGfgu
2006
UAUACCCA
2340
GCGUCAUA
2674
UAUACCC
3008
UCGUCAUA
3342
TTTATACC
3676


002973.3
3124
UfAfccuaugacsgsa

auUfgGfguauasasa

AUACCUAU

GGUAUUGG

AAUACCU

GGUAUUGG

CAATACCT









GACGC

GUAUAAA

AUGACGA

GUAUAAA

ATGACGC






NM_
3145-
gsascau(Ahd)UfaGf
1673
VPusUfsuggUfaCfUfgc
2007
GACAUAUA
2341
UUUGGUAC
2675
GACAUAU
3009
UUUGGUAC
3343
AAGACATA
3677


002973.3
3167
AfGfcaguaccasasa

ucUfaUfaugucsusu

GAGCAGUA

UGCUCUAU

AGAGCAG

UGCUCUAU

TAGAGCAG









CCAAA

AUGUCUU

UACCAAA

AUGUCUU

TACCAAA






NM_
3148-
asusaua(Ghd)AfgCf
1674
VPusUfsauuUfgGfUfac
2008
AUAUAGAG
2342
AUAUUUGG
2676
AUAUAGA
3010
UUAUUUGG
3344
ACATATAG
3678


002973.3
3170
AfGfuaccaaausasa

ugCfuCfuauausgsu

CAGUACCA

UACUGCUC

GCAGUAC

UACUGCUC

AGCAGTAC









AAUAU

UAUAUGU

CAAAUAA

UAUAUGU

CAAATAT






NM_
3149-
usasuag(Ahd)GfcA
1675
VPusAfsuauUfuGfGfua
2009
UAUAGAGC
2343
CAUAUUUG
2677
UAUAGAG
3011
UAUAUUUG
3345
CATATAGA
3679


002973.3
3171
fGfUfaccaaauasusa

cuGfcUfcuauasusg

AGUACCAA

GUACUGCU

CAGUACC

GUACUGCU

GCAGTACC









AUAUG

CUAUAUG

AAAUAUA

CUAUAUG

AAATATG






NM_
3150-
asusaga(Ghd)CfaGf
1676
VPusCfsauaUfuUfGfgu
2010
AUAGAGCA
2344
GCAUAUUU
2678
AUAGAGC
3012
UCAUAUUU
3346
ATATAGAG
3680


002973.3
3172
UfAfccaaauausgsa

acUfgCfucuausasu

GUACCAAA

GGUACUGC

AGUACCA

GGUACUGC

CAGTACCA









UAUGC

UCUAUAU

AAUAUGA

UCUAUAU

AATATGC






NM_
3152-
asgsagc(Ahd)GfuA
1677
VPusGfsgcaUfaUfUfug
2011
AGAGCAGU
2345
GGGCAUAU
2679
AGAGCAG
3013
UGGCAUAU
3347
ATAGAGCA
3681


002973.3
3174
fCfCfaaauaugcscsa

guAfcUfgcucusasu

ACCAAAUA

UUGGUACU

UACCAAA

UUGGUACU

GTACCAAA









UGCCC

GCUCUAU

UAUGCCA

GCUCUAU

TATGCCC






NM_
3479-
usgsucc(Chd)AfaAf
1678
VPusUfsuguAfuGfGfu
2012
UGUCCCAA
2346
GUUGUAUG
2680
UGUCCCA
3014
UUUGUAUG
3348
CATGTCCC
3682


002973.3
3501
UfUfaccauacasasa

aauUfuGfggacasusg

AUUACCAU

GUAAUUUG

AAUUACC

GUAAUUUG

AAATTACC









ACAAC

GGACAUG

AUACAAA

GGACAUG

ATACAAC






NM_
3481-
uscscca(Ahd)AfuUf
1679
VPusUfsguuGfuAfUfg
2013
UCCCAAAU
2347
UUGUUGUA
2681
UCCCAAA
3015
UUGUUGUA
3349
TGTCCCAA
3683


002973.3
3503
AfCfcauacaacsasa

guaAfuUfugggascsa

UACCAUAC

UGGUAAUU

UUACCAU

UGGUAAUU

ATTACCAT









AACAA

UGGGACA

ACAACAA

UGGGACA

ACAACAA






NM_
3508-
asasgcc(Chd)UfuCf
1680
VPusCfsaaaGfuAfGfaa
2014
AAGCCCUU
2348
GCAAAGUA
2682
AAGCCCU
3016
UCAAAGUA
3350
ACAAGCCC
3684


002973.3
3530
UfUfucuacuuusgsa

agAfaGfggcuusgsu

CUUUCUAC

GAAAGAAG

UCUUUCU

GAAAGAAG

TTCTTTCTA









UUUGC

GGCUUGU

ACUUUGA

GGCUUGU

CTTTGC






NM_
3511-
cscscuu(Chd)UfuUf
1681
VPusUfsggcAfaAfGfua
2015
CCCUUCUU
2349
AUGGCAAA
2683
CCCUUCU
3017
UUGGCAAA
3351
AGCCCTTC
3685


002973.3
3533
CfUfacuuugccsasa

gaAfaGfaagggscsu

UCUACUUU

GUAGAAAG

UUCUACU

GUAGAAAG

TTTCTACTT









GCCAU

AAGGGCU

UUGCCAA

AAGGGCU

TGCCAT






NM_
3512-
cscsuuc(Uhd)UfuCf
1682
VPusAfsuggCfaAfAfgu
2016
CCUUCUUU
2350
AAUGGCAA
2684
CCUUCUU
3018
UAUGGCAA
3352
GCCCTTCTT
3686


002973.3
3534
UfAfcuuugccasusa

agAfaAfgaaggsgsc

CUACUUUG

AGUAGAAA

UCUACUU

AGUAGAAA

TCTACTTTG









CCAUU

GAAGGGC

UGCCAUA

GAAGGGC

CCATT






NM_
3513-
csusucu(Uhd)UfcU
1683
VPusAfsaugGfcAfAfag
2017
CUUCUUUC
2351
AAAUGGCA
2685
CUUCUUU
3019
UAAUGGCA
3353
CCCTTCTTT
3687


002973.3
3535
fAfCfuuugccaususa

uaGfaAfagaagsgsg

UACUUUGC

AAGUAGAA

CUACUUU

AAGUAGAA

CTACTTTG









CAUUU

AGAAGGG

GCCAUUA

AGAAGGG

CCATTT






NM_
3514-
ususcuu(Uhd)CfuA
1684
VPusAfsaauGfgCfAfaa
2018
UUCUUUCU
2352
GAAAUGGC
2686
UUCUUUC
3020
UAAAUGGC
3354
CCTTCTTTC
3688


002973.3
3536
fCfUfuugccauususa

guAfgAfaagaasgsg

ACUUUGCC

AAAGUAGA

UACUUUG

AAAGUAGA

TACTTTGC









AUUUC

AAGAAGG

CCAUUUA

AAGAAGG

CATTTC






NM_
3515-
uscsuuu(Chd)UfaCf
1685
VPusGfsaaaUfgGfCfaa
2019
UCUUUCUA
2353
GGAAAUGG
2687
UCUUUCU
3021
UGAAAUGG
3355
CTTCTTTCT
3689


002973.3
3537
UfUfugccauuuscsa

agUfaGfaaagasasg

CUUUGCCA

CAAAGUAG

ACUUUGC

CAAAGUAG

ACTTTGCC









UUUCC

AAAGAAG

CAUUUCA

AAAGAAG

ATTTCC






NM_
3516-
csusuuc(Uhd)AfcU
1686
VPusGfsgaaAfuGfGfca
2020
CUUUCUAC
2354
UGGAAAUG
2688
CUUUCUA
3022
UGGAAAUG
3356
TTCTTTCTA
3690


002973.3
3538
fUfUfgccauuucscsa

aaGfuAfgaaagsasa

UUUGCCAU

GCAAAGUA

CUUUGCC

GCAAAGUA

CTTTGCCA









UUCCA

GAAAGAA

AUUUCCA

GAAAGAA

TTTCCA






NM_
3517-
ususucu(Ahd)CfuU
1687
VPusUfsggaAfaUfGfgc
2021
UUUCUACU
2355
GUGGAAAU
2689
UUUCUAC
3023
UUGGAAAU
3357
TCTTTCTAC
3691


002973.3
3539
fUfGfccauuuccsasa

aaAfgUfagaaasgsa

UUGCCAUU

GGCAAAGU

UUUGCCA

GGCAAAGU

TTTGCCATT









UCCAC

AGAAAGA

UUUCCAA

AGAAAGA

TCCAC






NM_
3518-
ususcua(Chd)UfuU
1688
VPusGfsuggAfaAfUfg
2022
UUCUACUU
2356
CGUGGAAA
2690
UUCUACU
3024
UGUGGAAA
3358
CTTTCTACT
3692


002973.3
3540
fGfCfcauuuccascsa

gcaAfaGfuagaasasg

UGCCAUUU

UGGCAAAG

UUGCCAU

UGGCAAAG

TTGCCATTT









CCACG

UAGAAAG

UUCCACA

UAGAAAG

CCACG






NM_
3908-
csasugu(Ahd)CfaGf
1689
VPusAfsccaUfuCfCfug
2023
CAUGUACA
2357
AACCAUUC
2691
CAUGUAC
3025
UACCAUUC
3359
CTCATGTA
3693


002973.3
3930
UfCfaggaauggsusa

acUfgUfacaugsasg

GUCAGGAA

CUGACUGU

AGUCAGG

CUGACUGU

CAGTCAGG









UGGUU

ACAUGAG

AAUGGUA

ACAUGAG

AATGGTT






NM_
3909-
asusgua(Chd)AfgU
1690
VPusAfsaccAfuUfCfcu
2024
AUGUACAG
2358
GAACCAUU
2692
AUGUACA
3026
UAACCAUU
3360
TCATGTAC
3694


002973.3
3931
fCfAfggaauggususa

gaCfuGfuacausgsa

UCAGGAAU

CCUGACUG

GUCAGGA

CCUGACUG

AGTCAGGA









GGUUC

UACAUGA

AUGGUUA

UACAUGA

ATGGTTC






NM_
3910-
usgsuac(Ahd)GfuC
1691
VPusGfsaacCfaUfUfcc
2025
UGUACAGU
2359
GGAACCAU
2693
UGUACAG
3027
UGAACCAU
3361
CATGTACA
3695


002973.3
3932
fAfGfgaaugguuscsa

ugAfcUfguacasusg

CAGGAAUG

UCCUGACU

UCAGGAA

UCCUGACU

GTCAGGAA









GUUCC

GUACAUG

UGGUUCA

GUACAUG

TGGTTCC






NM_
3918-
csasgga(Ahd)UfgG
1692
VPusAfsugaGfaAfGfga
2026
CAGGAAUG
2360
GAUGAGAA
2694
CAGGAAU
3028
UAUGAGAA
3362
GTCAGGAA
3696


002973.3
3940
fUfUfccuucucasusa

acCfaUfuccugsasc

GUUCCUUC

GGAACCAU

GGUUCCU

GGAACCAU

TGGTTCCTT









UCAUC

UCCUGAC

UCUCAUA

UCCUGAC

CTCATC






NM_
3921-
gsasaug(Ghd)UfuC
1693
VPusUfsggaUfgAfGfaa
2027
GAAUGGUU
2361
UUGGAUGA
2695
GAAUGGU
3029
UUGGAUGA
3363
AGGAATGG
3697


002973.3
3943
fCfUfucucauccsasa

ggAfaCfcauucscsu

CCUUCUCA

GAAGGAAC

UCCUUCU

GAAGGAAC

TTCCTTCTC









UCCAA

CAUUCCU

CAUCCAA

CAUUCCU

ATCCAA






NM_
3923-
asusggu(Uhd)CfcU
1694
VPusGfsuugGfaUfGfag
2028
AUGGUUCC
2362
AGUUGGAU
2696
AUGGUUC
3030
UGUUGGAU
3364
GAATGGTT
3698


002973.3
3945
fUfCfucauccaascsa

aaGfgAfaccaususc

UUCUCAUC

GAGAAGGA

CUUCUCA

GAGAAGGA

CCTTCTCAT









CAACU

ACCAUUC

UCCAACA

ACCAUUC

CCAACT






NM_
3924-
usgsguu(Chd)CfuU
1695
VPusAfsguuGfgAfUfg
2029
UGGUUCCU
2363
CAGUUGGA
2697
UGGUUCC
3031
UAGUUGGA
3365
AATGGTTC
3699


002973.3
3946
fCfUfcauccaacsusa

agaAfgGfaaccasusu

UCUCAUCC

UGAGAAGG

UUCUCAU

UGAGAAGG

CTTCTCATC









AACUG

AACCAUU

CCAACUA

AACCAUU

CAACTG






NM_
3926-
gsusucc(Uhd)UfcU
1696
VPusGfscagUfuGfGfau
2030
GUUCCUUC
2364
GGCAGUUG
2698
GUUCCUU
3032
UGCAGUUG
3366
TGGTTCCTT
3700


002973.3
3948
fCfAfuccaacugscsa

gaGfaAfggaacscsa

UCAUCCAA

GAUGAGAA

CUCAUCC

GAUGAGAA

CTCATCCA









CUGCC

GGAACCA

AACUGCA

GGAACCA

ACTGCC






NM_
3947-
csasugc(Ghd)CfcAf
1697
VPusAfsuuaGfcAfUfca
2031
CAUGCGCC
2365
CAUUAGCA
2699
CAUGCGC
3033
UAUUAGCA
3367
CCCATGCG
3701


002973.3
3969
AfUfgaugcuaasusa

uuGfgCfgcaugsgsg

AAUGAUGC

UCAUUGGC

CAAUGAU

UCAUUGGC

CCAATGAT









UAAUG

GCAUGGG

GCUAAUA

GCAUGGG

GCTAATG






NM_
3950-
gscsgcc(Ahd)AfuG
1698
VPusGfsucaUfuAfGfca
2032
GCGCCAAU
2366
CGUCAUUA
2700
GCGCCAA
3034
UGUCAUUA
3368
ATGCGCCA
3702


002973.3
3972
fAfUfgcuaaugascsa

ucAfuUfggcgcsasu

GAUGCUAA

GCAUCAUU

UGAUGCU

GCAUCAUU

ATGATGCT









UGACG

GGCGCAU

AAUGACA

GGCGCAU

AATGACG






NM_
3952-
gscscaa(Uhd)GfaUf
1699
VPusUfscguCfaUfUfag
2033
GCCAAUGA
2367
GUCGUCAU
2701
GCCAAUG
3035
UUCGUCAU
3369
GCGCCAAT
3703


002973.3
3974
GfCfuaaugacgsasa

caUfcAfuuggcsgsc

UGCUAAUG

UAGCAUCA

AUGCUAA

UAGCAUCA

GATGCTAA









ACGAC

UUGGCGC

UGACGAA

UUGGCGC

TGACGAC






NM_
3953-
cscsaau(Ghd)AfuGf
1700
VPusGfsucgUfcAfUfua
2034
CCAAUGAU
2368
UGUCGUCA
2702
CCAAUGA
3036
UGUCGUCA
3370
CGCCAATG
3704


002973.3
3975
CfUfaaugacgascsa

gcAfuCfauuggscsg

GCUAAUGA

UUAGCAUC

UGCUAAU

UUAGCAUC

ATGCTAAT









CGACA

AUUGGCG

GACGACA

AUUGGCG

GACGACA






NM_
3956-
asusgau(Ghd)CfuA
1701
VPusUfsgugUfcGfUfca
2035
AUGAUGCU
2369
CUGUGUCG
2703
AUGAUGC
3037
UUGUGUCG
3371
CAATGATG
3705


002973.3
3978
fAfUfgacgacacsasa

uuAfgCfaucaususg

AAUGACGA

UCAUUAGC

UAAUGAC

UCAUUAGC

CTAATGAC









CACAG

AUCAUUG

GACACAA

AUCAUUG

GACACAG






NM_
3957-
usgsaug(Chd)UfaA
1702
VPusCfsuguGfuCfGfuc
2036
UGAUGCUA
2370
GCUGUGUC
2704
UGAUGCU
3038
UCUGUGUC
3372
AATGATGC
3706


002973.3
3979
fUfGfacgacacasgsa

auUfaGfcaucasusu

AUGACGAC

GUCAUUAG

AAUGACG

GUCAUUAG

TAATGACG









ACAGC

CAUCAUU

ACACAGA

CAUCAUU

ACACAGC






NM_
4003-
csgscuc(Ahd)AfaGf
1703
VPusGfscugUfaGfUfgc
2037
CGCUCAAA
2371
GGCUGUAG
2705
CGCUCAA
3039
UGCUGUAG
3373
CTCGCTCA
3707


002973.3
4025
UfGfcacuacagscsa

acUfuUfgagcgsasg

GUGCACUA

UGCACUUU

AGUGCAC

UGCACUUU

AAGTGCAC









CAGCC

GAGCGAG

UACAGCA

GAGCGAG

TACAGCC






NM_
4020-
asgsccc(Ahd)UfuCf
1704
VPusUfsgucGfaGfAfcu
2038
AGCCCAUU
2372
UUGUCGAG
2706
AGCCCAU
3040
UUGUCGAG
3374
ACAGCCCA
3708


002973.3
4042
CfAfgucucgacsasa

ggAfaUfgggcusgsu

CCAGUCUC

ACUGGAAU

UCCAGUC

ACUGGAAU

TTCCAGTC









GACAA

GGGCUGU

UCGACAA

GGGCUGU

TCGACAA






NM_
4022-
cscscau(Uhd)CfcAf
1705
VPusGfsuugUfcGfAfga
2039
CCCAUUCC
2373
UGUUGUCG
2707
CCCAUUC
3041
UGUUGUCG
3375
AGCCCATT
3709


002973.3
4044
GfUfcucgacaascsa

cuGfgAfaugggscsu

AGUCUCGA

AGACUGGA

CAGUCUC

AGACUGGA

CCAGTCTC









CAACA

AUGGGCU

GACAACA

AUGGGCU

GACAACA






NM_
4082-
csascca(Chd)CfaAf
1706
VPusUfsacaAfcUfGfcu
2040
CACCACCA
2374
UUACAACU
2708
CACCACC
3042
UUACAACU
3376
CCCACCAC
3710


002973.3
4104
CfAfgcaguugusasa

guUfgGfuggugsgsg

ACAGCAGU

GCUGUUGG

AACAGCA

GCUGUUGG

CAACAGCA









UGUAA

UGGUGGG

GUUGUAA

UGGUGGG

GTTGTAA






NM_
4083-
ascscac(Chd)AfaCf
1707
VPusUfsuacAfaCfUfgc
2041
ACCACCAA
2375
CUUACAAC
2709
ACCACCA
3043
UUUACAAC
3377
CCACCACC
3711


002973.3
4105
AfGfcaguuguasasa

ugUfuGfguggusgsg

CAGCAGUU

UGCUGUUG

ACAGCAG

UGCUGUUG

AACAGCAG









GUAAG

GUGGUGG

UUGUAAA

GUGGUGG

TTGTAAG






NM_
4084-
cscsacc(Ahd)AfcAf
1708
VPusCfsuuaCfaAfCfug
2042
CCACCAAC
2376
CCUUACAA
2710
CCACCAA
3044
UCUUACAA
3378
CACCACCA
3712


002973.3
4106
GfCfaguuguaasgsa

cuGfuUfgguggsusg

AGCAGUUG

CUGCUGUU

CAGCAGU

CUGCUGUU

ACAGCAGT









UAAGG

GGUGGUG

UGUAAGA

GGUGGUG

TGTAAGG






NM_
4086-
ascscaa(Chd)AfgCf
1709
VPusGfsccuUfaCfAfac
2043
ACCAACAG
2377
AGCCUUAC
2711
ACCAACA
3045
UGCCUUAC
3379
CCACCAAC
3713


002973.3
4108
AfGfuuguaaggscsa

ugCfuGfuuggusgsg

CAGUUGUA

AACUGCUG

GCAGUUG

AACUGCUG

AGCAGTTG









AGGCU

UUGGUGG

UAAGGCA

UUGGUGG

TAAGGCT






NM_
4088-
csasaca(Ghd)CfaGf
1710
VPusCfsagcCfuUfAfca
2044
CAACAGCA
2378
GCAGCCUU
2712
CAACAGC
3046
UCAGCCUU
3380
ACCAACAG
3714


002973.3
4110
UfUfguaaggcusgsa

acUfgCfuguugsgsu

GUUGUAAG

ACAACUGC

AGUUGUA

ACAACUGC

CAGTTGTA









GCUGC

UGUUGGU

AGGCUGA

UGUUGGU

AGGCTGC






NM_
4143-
csusucu(Ahd)CfuG
1711
VPusGfsuugGfuAfGfaa
2045
CUUCUACU
2379
AGUUGGUA
2713
CUUCUAC
3047
UGUUGGUA
3381
CCCTTCTA
3715


002973.3
4165
fCfUfucuaccaascsa

gcAfgUfagaagsgsg

GCUUCUAC

GAAGCAGU

UGCUUCU

GAAGCAGU

CTGCTTCT









CAACU

AGAAGGG

ACCAACA

AGAAGGG

ACCAACT






NM_
4145-
uscsuac(Uhd)GfcUf
1712
VPusCfsaguUfgGfUfag
2046
UCUACUGC
2380
CCAGUUGG
2714
UCUACUG
3048
UCAGUUGG
3382
CTTCTACT
3716


002973.3
4167
UfCfuaccaacusgsa

aaGfcAfguagasasg

UUCUACCA

UAGAAGCA

CUUCUAC

UAGAAGCA

GCTTCTAC









ACUGG

GUAGAAG

CAACUGA

GUAGAAG

CAACTGG






NM_
4146-
csusacu(Ghd)CfuUf
1713
VPusCfscagUfuGfGfua
2047
CUACUGCU
2381
UCCAGUUG
2715
CUACUGC
3049
UCCAGUUG
3383
TTCTACTG
3717


002973.3
4168
CfUfaccaacugsgsa

gaAfgCfaguagsasa

UCUACCAA

GUAGAAGC

UUCUACC

GUAGAAGC

CTTCTACC









CUGGA

AGUAGAA

AACUGGA

AGUAGAA

AACTGGA






NM_
4149-
csusgcu(Uhd)CfuA
1714
VPusCfsuucCfaGfUfug
2048
CUGCUUCU
2382
GCUUCCAG
2716
CUGCUUC
3050
UCUUCCAG
3384
TACTGCTT
3718


002973.3
4171
fCfCfaacuggaasgsa

guAfgAfagcagsusa

ACCAACUG

UUGGUAGA

UACCAAC

UUGGUAGA

CTACCAAC









GAAGC

AGCAGUA

UGGAAGA

AGCAGUA

TGGAAGC






NM_
4159-
csasacu(Ghd)GfaAf
1715
VPusGfsuuuUfcUfGfu
2049
CAACUGGA
2383
AGUUUUCU
2717
CAACUGG
3051
UGUUUUCU
3385
ACCAACTG
3719


002973.3
4181
GfCfacagaaaascsa

gcuUfcCfaguugsgsu

AGCACAGA

GUGCUUCC

AAGCACA

GUGCUUCC

GAAGCACA









AAACU

AGUUGGU

GAAAACA

AGUUGGU

GAAAACT






NM_
4215-
ususgau(Uhd)UfcU
1716
VPusUfsggaUfgUfUfac
2050
UUGAUUUC
2384
UUGGAUGU
2718
UUGAUUU
3052
UUGGAUGU
3386
TGTTGATTT
3720


002973.3
4237
fUfGfuaacauccsasa

aaGfaAfaucaascsa

UUGUAACA

UACAAGAA

CUUGUAA

UACAAGAA

CTTGTAAC









UCCAA

AUCAACA

CAUCCAA

AUCAACA

ATCCAA






NM_
4218-
asusuuc(Uhd)UfgU
1717
VPusUfsauuGfgAfUfg
2051
AUUUCUUG
2385
CUAUUGGA
2719
AUUUCUU
3053
UUAUUGGA
3387
TGATTTCTT
3721


002973.3
4240
fAfAfcauccaausasa

uuaCfaAfgaaauscsa

UAACAUCC

UGUUACAA

GUAACAU

UGUUACAA

GTAACATC









AAUAG

GAAAUCA

CCAAUAA

GAAAUCA

CAATAG






NM_
4220-
ususcuu(Ghd)UfaA
1718
VPusCfscuaUfuGfGfau
2052
UUCUUGUA
2386
UCCUAUUG
2720
UUCUUGU
3054
UCCUAUUG
3388
ATTTCTTGT
3722


002973.3
4242
fCfAfuccaauagsgsa

guUfaCfaagaasasu

ACAUCCAA

GAUGUUAC

AACAUCC

GAUGUUAC

AACATCCA









UAGGA

AAGAAAU

AAUAGGA

AAGAAAU

ATAGGA






NM_
4221-
uscsuug(Uhd)AfaC
1719
VPusUfsccuAfuUfGfga
2053
UCUUGUAA
2387
UUCCUAUU
2721
UCUUGUA
3055
UUCCUAUU
3389
TTTCTTGTA
3723


002973.3
4243
fAfUfccaauaggsasa

ugUfuAfcaagasasa

CAUCCAAU

GGAUGUUA

ACAUCCA

GGAUGUUA

ACATCCAA









AGGAA

CAAGAAA

AUAGGAA

CAAGAAA

TAGGAA






NM_
4224-
usgsuaa(Chd)AfuCf
1720
VPusCfsauuCfcUfAfuu
2054
UGUAACAU
2388
GCAUUCCU
2722
UGUAACA
3056
UCAUUCCU
3390
CTTGTAAC
3724


002973.3
4246
CfAfauaggaausgsa

ggAfuGfuuacasasg

CCAAUAGG

AUUGGAUG

UCCAAUA

AUUGGAUG

ATCCAATA









AAUGC

UUACAAG

GGAAUGA

UUACAAG

GGAATGC






NM_
4226-
usasaca(Uhd)CfcAf
1721
VPusAfsgcaUfuCfCfua
2055
UAACAUCC
2389
UAGCAUUC
2723
UAACAUC
3057
UAGCAUUC
3391
TGTAACAT
3725


002973.3
4248
AfUfaggaaugcsusa

uuGfgAfuguuascsa

AAUAGGAA

CUAUUGGA

CAAUAGG

CUAUUGGA

CCAATAGG









UGCUA

UGUUACA

AAUGCUA

UGUUACA

AATGCTA






NM_
4227-
asascau(Chd)CfaAf
1722
VPusUfsagcAfuUfCfcu
2056
AACAUCCA
2390
UUAGCAUU
2724
AACAUCC
3058
UUAGCAUU
3392
GTAACATC
3726


002973.3
4249
UfAfggaaugcusasa

auUfgGfauguusasc

AUAGGAAU

CCUAUUGG

AAUAGGA

CCUAUUGG

CAATAGGA









GCUAA

AUGUUAC

AUGCUAA

AUGUUAC

ATGCTAA






NM_
4228-
ascsauc(Chd)AfaUf
1723
VPusUfsuagCfaUfUfcc
2057
ACAUCCAA
2391
GUUAGCAU
2725
ACAUCCA
3059
UUUAGCAU
3393
TAACATCC
3727


002973.3
4250
AfGfgaaugcuasasa

uaUfuGfgaugususa

UAGGAAUG

UCCUAUUG

AUAGGAA

UCCUAUUG

AATAGGAA









CUAAC

GAUGUUA

UGCUAAA

GAUGUUA

TGCTAAC






NM_
4229-
csasucc(Ahd)AfuAf
1724
VPusGfsuuaGfcAfUfuc
2058
CAUCCAAU
2392
UGUUAGCA
2726
CAUCCAA
3060
UGUUAGCA
3394
AACATCCA
3728


002973.3
4251
GfGfaaugcuaascsa

cuAfuUfggaugsusu

AGGAAUGC

UUCCUAUU

UAGGAAU

UUCCUAUU

ATAGGAAT









UAACA

GGAUGUU

GCUAACA

GGAUGUU

GCTAACA






NM_
4234-
asasuag(Ghd)AfaUf
1725
VPusGfsaacUfgUfUfag
2059
AAUAGGAA
2393
UGAACUGU
2727
AAUAGGA
3061
UGAACUGU
3395
CCAATAGG
3729


002973.3
4256
GfCfuaacaguuscsa

caUfuCfcuauusgsg

UGCUAACA

UAGCAUUC

AUGCUAA

UAGCAUUC

AATGCTAA









GUUCA

CUAUUGG

CAGUUCA

CUAUUGG

CAGTTCA






NM_
4235-
asusagg(Ahd)AfuG
1726
VPusUfsgaaCfuGfUfua
2060
AUAGGAAU
2394
GUGAACUG
2728
AUAGGAA
3062
UUGAACUG
3396
CAATAGGA
3730


002973.3
4257
fCfUfaacaguucsasa

gcAfuUfccuaususg

GCUAACAG

UUAGCAUU

UGCUAAC

UUAGCAUU

ATGCTAAC









UUCAC

CCUAUUG

AGUUCAA

CCUAUUG

AGTTCAC






NM_
4236-
usasgga(Ahd)UfgC
1727
VPusGfsugaAfcUfGfuu
2061
UAGGAAUG
2395
AGUGAACU
2729
UAGGAAU
3063
UGUGAACU
3397
AATAGGAA
3731


002973.3
4258
fUfAfacaguucascsa

agCfaUfuccuasusu

CUAACAGU

GUUAGCAU

GCUAACA

GUUAGCAU

TGCTAACA









UCACU

UCCUAUU

GUUCACA

UCCUAUU

GTTCACT






NM_
4237-
asgsgaa(Uhd)GfcUf
1728
VPusAfsgugAfaCfUfgu
2062
AGGAAUGC
2396
AAGUGAAC
2730
AGGAAUG
3064
UAGUGAAC
3398
ATAGGAAT
3732


002973.3
4259
AfAfcaguucacsusa

uaGfcAfuuccusasu

UAACAGUU

UGUUAGCA

CUAACAG

UGUUAGCA

GCTAACAG









CACUU

UUCCUAU

UUCACUA

UUCCUAU

TTCACTT






NM_
4238-
gsgsaau(Ghd)CfuA
1729
VPusAfsaguGfaAfCfug
2063
GGAAUGCU
2397
CAAGUGAA
2731
GGAAUGC
3065
UAAGUGAA
3399
TAGGAATG
3733


002973.3
4260
fAfCfaguucacususa

uuAfgCfauuccsusa

AACAGUUC

CUGUUAGC

UAACAGU

CUGUUAGC

CTAACAGT









ACUUG

AUUCCUA

UCACUUA

AUUCCUA

TCACTTG






NM_
4239-
gsasaug(Chd)UfaAf
1730
VPusCfsaagUfgAfAfcu
2064
GAAUGCUA
2398
GCAAGUGA
2732
GAAUGCU
3066
UCAAGUGA
3400
AGGAATGC
3734


002973.3
4261
CfAfguucacuusgsa

guUfaGfcauucscsu

ACAGUUCA

ACUGUUAG

AACAGUU

ACUGUUAG

TAACAGTT









CUUGC

CAUUCCU

CACUUGA

CAUUCCU

CACTTGC






NM_
4243-
gscsuaa(Chd)AfgUf
1731
VPusAfscugCfaAfGfug
2065
GCUAACAG
2399
CACUGCAA
2733
GCUAACA
3067
UACUGCAA
3401
ATGCTAAC
3735


002973.3
4265
UfCfacuugcagsusa

aaCfuGfuuagcsasu

UUCACUUG

GUGAACUG

GUUCACU

GUGAACUG

AGTTCACT









CAGUG

UUAGCAU

UGCAGUA

UUAGCAU

TGCAGTG






NM_
4248-
csasguu(Chd)AfcUf
1732
VPusCfsuucCfaCfUfgc
2066
CAGUUCAC
2400
UCUUCCAC
2734
CAGUUCA
3068
UCUUCCAC
3402
AACAGTTC
3736


002973.3
4270
UfGfcaguggaasgsa

aaGfuGfaacugsusu

UUGCAGUG

UGCAAGUG

CUUGCAG

UGCAAGUG

ACTTGCAG









GAAGA

AACUGUU

UGGAAGA

AACUGUU

TGGAAGA






NM_
4275-
gsasccg(Ahd)GfuA
1733
VPusCfsuaaAfuGfCfcu
2067
GACCGAGU
2401
CCUAAAUG
2735
GACCGAG
3069
UCUAAAUG
3403
TGGACCGA
3737


002973.3
4297
fGfAfggcauuuasgsa

cuAfcUfcggucscsa

AGAGGCAU

CCUCUACU

UAGAGGC

CCUCUACU

GTAGAGGC









UUAGG

CGGUCCA

AUUUAGA

CGGUCCA

ATTTAGG






NM_
4276-
ascscga(Ghd)UfaGf
1734
VPusCfscuaAfaUfGfcc
2068
ACCGAGUA
2402
UCCUAAAU
2736
ACCGAGU
3070
UCCUAAAU
3404
GGACCGAG
3738


002973.3
4298
AfGfgcauuuagsgsa

ucUfaCfucgguscsc

GAGGCAUU

GCCUCUAC

AGAGGCA

GCCUCUAC

TAGAGGCA









UAGGA

UCGGUCC

UUUAGGA

UCGGUCC

TTTAGGA






NM_
4304-
gsgscua(Uhd)UfcCf
1735
VPusUfsaugGfaAfUfua
2069
GGCUAUUC
2403
AUAUGGAA
2737
GGCUAUU
3071
UUAUGGAA
3405
GGGGCTAT
3739


002973.3
4326
AfUfaauuccausasa

ugGfaAfuagccscsc

CAUAAUUC

UUAUGGAA

CCAUAAU

UUAUGGAA

TCCATAAT









CAUAU

UAGCCCC

UCCAUAA

UAGCCCC

TCCATAT






NM_
4361-
usgsccg(Ahd)AfaCf
1736
VPusAfsauaAfcUfUfcc
2070
UGCCGAAA
2404
AAAUAACU
2738
UGCCGAA
3072
UAAUAACU
3406
CTTGCCGA
3740


002973.3
4383
UfGfgaaguuaususa

agUfuUfcggcasasg

CUGGAAGU

UCCAGUUU

ACUGGAA

UCCAGUUU

AACTGGAA









UAUUU

CGGCAAG

GUUAUUA

CGGCAAG

GTTATTT






NM_
4363-
cscsgaa(Ahd)CfuGf
1737
VPusUfsaaaUfaAfCfuu
2071
CCGAAACU
2405
AUAAAUAA
2739
CCGAAAC
3073
UUAAAUAA
3407
TGCCGAAA
3741


002973.3
4385
GfAfaguuauuusasa

ccAfgUfuucggscsa

GGAAGUUA

CUUCCAGU

UGGAAGU

CUUCCAGU

CTGGAAGT









UUUAU

UUCGGCA

UAUUUAA

UUCGGCA

TATTTAT






NM_
4364-
csgsaaa(Chd)UfgGf
1738
VPusAfsuaaAfuAfAfcu
2072
CGAAACUG
2406
AAUAAAUA
2740
CGAAACU
3074
UAUAAAUA
3408
GCCGAAAC
3742


002973.3
4386
AfAfguuauuuasusa

ucCfaGfuuucgsgsc

GAAGUUAU

ACUUCCAG

GGAAGUU

ACUUCCAG

TGGAAGTT









UUAUU

UUUCGGC

AUUUAUA

UUUCGGC

ATTTATT






NM_
4365-
gsasaac(Uhd)GfgAf
1739
VPusAfsauaAfaUfAfac
2073
GAAACUGG
2407
AAAUAAAU
2741
GAAACUG
3075
UAAUAAAU
3409
CCGAAACT
3743


002973.3
4387
AfGfuuauuuaususa

uuCfcAfguuucsgsg

AAGUUAUU

AACUUCCA

GAAGUUA

AACUUCCA

GGAAGTTA









UAUUU

GUUUCGG

UUUAUUA

GUUUCGG

TTTATTT






NM_
4366-
asasacu(Ghd)GfaAf
1740
VPusAfsaauAfaAfUfaa
2074
AAACUGGA
2408
AAAAUAAA
2742
AAACUGG
3076
UAAAUAAA
3410
CGAAACTG
3744


002973.3
4388
GfUfuauuuauususa

cuUfcCfaguuuscsg

AGUUAUUU

UAACUUCC

AAGUUAU

UAACUUCC

GAAGTTAT









AUUUU

AGUUUCG

UUAUUUA

AGUUUCG

TTATTTT






NM_
4388-
usasaua(Ahd)CfcCf
1741
VPusAfsugaCfuUfUfca
2075
UAAUAACC
2409
CAUGACUU
2743
UAAUAAC
3077
UAUGACUU
3411
TTTAATAA
3745


002973.3
4410
UfUfgaaagucasusa

agGfgUfuauuasasa

CUUGAAAG

UCAAGGGU

CCUUGAA

UCAAGGGU

CCCTTGAA









UCAUG

UAUUAAA

AGUCAUA

UAUUAAA

AGTCATG






NM_
4389-
asasuaa(Chd)CfcUf
1742
VPusCfsaugAfcUfUfuc
2076
AAUAACCC
2410
UCAUGACU
2744
AAUAACC
3078
UCAUGACU
3412
TTAATAAC
3746


002973.3
4411
UfGfaaagucausgsa

aaGfgGfuuauusasa

UUGAAAGU

UUCAAGGG

CUUGAAA

UUCAAGGG

CCTTGAAA









CAUGA

UUAUUAA

GUCAUGA

UUAUUAA

GTCATGA






NM_
4392-
asasccc(Uhd)UfgAf
1743
VPusGfsuucAfuGfAfcu
2077
AACCCUUG
2411
UGUUCAUG
2745
AACCCUU
3079
UGUUCAUG
3413
ATAACCCT
3747


002973.3
4414
AfAfgucaugaascsa

uuCfaAfggguusasu

AAAGUCAU

ACUUUCAA

GAAAGUC

ACUUUCAA

TGAAAGTC









GAACA

GGGUUAU

AUGAACA

GGGUUAU

ATGAACA






NM_
4396-
csusuga(Ahd)AfgU
1744
VPusAfsuguGfuUfCfau
2078
CUUGAAAG
2412
GAUGUGUU
2746
CUUGAAA
3080
UAUGUGUU
3414
CCCTTGAA
3748


002973.3
4418
fCfAfugaacacasusa

gaCfuUfucaagsgsg

UCAUGAAC

CAUGACUU

GUCAUGA

CAUGACUU

AGTCATGA









ACAUC

UCAAGGG

ACACAUA

UCAAGGG

ACACATC






NM_
4402-
asgsuca(Uhd)GfaAf
1745
VPusUfsagcUfgAfUfgu
2079
AGUCAUGA
2413
CUAGCUGA
2747
AGUCAUG
3081
UUAGCUGA
3415
AAAGTCAT
3749


002973.3
4424
CfAfcaucagcusasa

guUfcAfugacususu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAG

UGACUUU

CAGCUAA

UGACUUU

CAGCTAG






NM_
4403-
gsuscau(Ghd)AfaCf
1746
VPusCfsuagCfuGfAfug
2080
GUCAUGAA
2414
GCUAGCUG
2748
GUCAUGA
3082
UCUAGCUG
3416
AAGTCATG
3750


002973.3
4425
AfCfaucagcuasgsa

ugUfuCfaugacsusu

CACAUCAG

AUGUGUUC

ACACAUC

AUGUGUUC

AACACATC









CUAGC

AUGACUU

AGCUAGA

AUGACUU

AGCTAGC






NM_
4404-
uscsaug(Ahd)AfcA
1747
VPusGfscuaGfcUfGfau
2081
UCAUGAAC
2415
UGCUAGCU
2749
UCAUGAA
3083
UGCUAGCU
3417
AGTCATGA
3751


002973.3
4426
fCfAfucagcuagscsa

guGfuUfcaugascsu

ACAUCAGC

GAUGUGUU

CACAUCA

GAUGUGUU

ACACATCA









UAGCA

CAUGACU

GCUAGCA

CAUGACU

GCTAGCA






NM_
4405-
csasuga(Ahd)CfaCf
1748
VPusUfsgcuAfgCfUfga
2082
CAUGAACA
2416
UUGCUAGC
2750
CAUGAAC
3084
UUGCUAGC
3418
GTCATGAA
3752


002973.3
4427
AfUfcagcuagcsasa

ugUfgUfucaugsasc

CAUCAGCU

UGAUGUGU

ACAUCAG

UGAUGUGU

CACATCAG









AGCAA

UCAUGAC

CUAGCAA

UCAUGAC

CTAGCAA






NM_
4405-
csasuga(Ahd)CfaCf
1749
VPusUfsgcuAfgCfUfga
2083
CAUGAACA
2417
UUGCUAGC
2751
CAUGAAC
3085
UUGCUAGC
3419
GTCATGAA
3753


002973.3
4427
AfUfcagcuagcsasa

ugUfgUfucaugsasc

CAUCAGCU

UGAUGUGU

ACAUCAG

UGAUGUGU

CACATCAG









AGCAA

UCAUGAC

CUAGCAA

UCAUGAC

CTAGCAA






NM_
4406-
asusgaa(Chd)AfcAf
1750
VPusUfsugcUfaGfCfug
2084
AUGAACAC
2418
UUUGCUAG
2752
AUGAACA
3086
UUUGCUAG
3420
TCATGAAC
3754


002973.3
4428
UfCfagcuagcasasa

auGfuGfuucausgsa

AUCAGCUA

CUGAUGUG

CAUCAGC

CUGAUGUG

ACATCAGC









GCAAA

UUCAUGA

UAGCAAA

UUCAUGA

TAGCAAA






NM_
4407-
usgsaac(Ahd)CfaUf
1751
VPusUfsuugCfuAfGfcu
2085
UGAACACA
2419
UUUUGCUA
2753
UGAACAC
3087
UUUUGCUA
3421
CATGAACA
3755


002973.3
4429
CfAfgcuagcaasasa

gaUfgUfguucasusg

UCAGCUAG

GCUGAUGU

AUCAGCU

GCUGAUGU

CATCAGCT









CAAAA

GUUCAUG

AGCAAAA

GUUCAUG

AGCAAAA






NM_
4408-
gsasaca(Chd)AfuCf
1752
VPusUfsuuuGfcUfAfgc
2086
GAACACAU
2420
CUUUUGCU
2754
GAACACA
3088
UUUUUGCU
3422
ATGAACAC
3756


002973.3
4430
AfGfcuagcaaasasa

ugAfuGfuguucsasu

CAGCUAGC

AGCUGAUG

UCAGCUA

AGCUGAUG

ATCAGCTA









AAAAG

UGUUCAU

GCAAAAA

UGUUCAU

GCAAAAG






NM_
4409-
asascac(Ahd)UfcAf
1753
VPusCfsuuuUfgCfUfag
2087
AACACAUC
2421
UCUUUUGC
2755
AACACAU
3089
UCUUUUGC
3423
TGAACACA
3757


002973.3
4431
GfCfuagcaaaasgsa

cuGfaUfguguuscsa

AGCUAGCA

UAGCUGAU

CAGCUAG

UAGCUGAU

TCAGCTAG









AAAGA

GUGUUCA

CAAAAGA

GUGUUCA

CAAAAGA






NM_
4413-
csasuca(Ghd)CfuAf
1754
VPusAfscuuCfuUfUfug
2088
CAUCAGCU
2422
UACUUCUU
2756
CAUCAGC
3090
UACUUCUU
3424
CACATCAG
3758


002973.3
4435
GfCfaaaagaagsusa

cuAfgCfugaugsusg

AGCAAAAG

UUGCUAGC

UAGCAAA

UUGCUAGC

CTAGCAAA









AAGUA

UGAUGUG

AGAAGUA

UGAUGUG

AGAAGTA






NM_
4419-
csusagc(Ahd)AfaAf
1755
VPusCfsuugUfuAfCfuu
2089
CUAGCAAA
2423
UCUUGUUA
2757
CUAGCAA
3091
UCUUGUUA
3425
AGCTAGCA
3759


002973.3
4441
GfAfaguaacaasgsa

cuUfuUfgcuagscsu

AGAAGUAA

CUUCUUUU

AAGAAGU

CUUCUUUU

AAAGAAGT









CAAGA

GCUAGCU

AACAAGA

GCUAGCU

AACAAGA






NM_
4431-
gsusaac(Ahd)AfgA
1756
VPusGfscaaGfaAfUfca
2090
GUAACAAG
2424
AGCAAGAA
2758
GUAACAA
3092
UGCAAGAA
3426
AAGTAACA
3760


002973.3
4453
fGfUfgauucuugscsa

cuCfuUfguuacsusu

AGUGAUUC

UCACUCUU

GAGUGAU

UCACUCUU

AGAGTGAT









UUGCU

GUUACUU

UCUUGCA

GUUACUU

TCTTGCT






NM_
4432-
usasaca(Ahd)GfaGf
1757
VPusAfsgcaAfgAfAfuc
2091
UAACAAGA
2425
CAGCAAGA
2759
UAACAAG
3093
UAGCAAGA
3427
AGTAACAA
3761


002973.3
4454
UfGfauucuugcsusa

acUfcUfuguuascsu

GUGAUUCU

AUCACUCU

AGUGAUU

AUCACUCU

GAGTGATT









UGCUG

UGUUACU

CUUGCUA

UGUUACU

CTTGCTG






NM_
4433-
asascaa(Ghd)AfgUf
1758
VPusCfsagcAfaGfAfau
2092
AACAAGAG
2426
GCAGCAAG
2760
AACAAGA
3094
UCAGCAAG
3428
GTAACAAG
3762


002973.3
4455
GfAfuucuugcusgsa

caCfuCfuuguusasc

UGAUUCUU

AAUCACUC

GUGAUUC

AAUCACUC

AGTGATTC









GCUGC

UUGUUAC

UUGCUGA

UUGUUAC

TTGCTGC






NM_
4437-
asgsagu(Ghd)AfuU
1759
VPusAfsuagCfaGfCfaa
2093
AGAGUGAU
2427
AAUAGCAG
2761
AGAGUGA
3095
UAUAGCAG
3429
CAAGAGTG
3763


002973.3
4459
fCfUfugcugcuasusa

gaAfuCfacucususg

UCUUGCUG

CAAGAAUC

UUCUUGC

CAAGAAUC

ATTCTTGCT









CUAUU

ACUCUUG

UGCUAUA

ACUCUUG

GCTATT






NM_
4438-
gsasgug(Ahd)UfuC
1760
VPusAfsauaGfcAfGfca
2094
GAGUGAUU
2428
UAAUAGCA
2762
GAGUGAU
3096
UAAUAGCA
3430
AAGAGTGA
3764


002973.3
4460
fUfUfgcugcuaususa

agAfaUfcacucsusu

CUUGCUGC

GCAAGAAU

UCUUGCU

GCAAGAAU

TTCTTGCTG









UAUUA

CACUCUU

GCUAUUA

CACUCUU

CTATTA






NM_
4440-
gsusgau(Uhd)CfuU
1761
VPusGfsuaaUfaGfCfag
2095
GUGAUUCU
2429
AGUAAUAG
2763
GUGAUUC
3097
UGUAAUAG
3431
GAGTGATT
3765


002973.3
4462
fGfCfugcuauuascsa

caAfgAfaucacsusc

UGCUGCUA

CAGCAAGA

UUGCUGC

CAGCAAGA

CTTGCTGC









UUACU

AUCACUC

UAUUACA

AUCACUC

TATTACT






NM_
4492-
ususgga(Ahd)CfgC
1762
VPusUfsuagUfaAfAfag
2096
UUGGAACG
2430
UUUAGUAA
2764
UUGGAAC
3098
UUUAGUAA
3432
ACTTGGAA
3766


002973.3
4514
fCfCfuuuuacuasasa

ggCfgUfuccaasgsu

CCCUUUUA

AAGGGCGU

GCCCUUU

AAGGGCGU

CGCCCTTTT









CUAAA

UCCAAGU

UACUAAA

UCCAAGU

ACTAAA






NM_
4493-
usgsgaa(Chd)GfcCf
1763
VPusUfsuuaGfuAfAfaa
2097
UGGAACGC
2431
GUUUAGUA
2765
UGGAACG
3099
UUUUAGUA
3433
CTTGGAAC
3767


002973.3
4515
CfUfuuuacuaasasa

ggGfcGfuuccasasg

CCUUUUAC

AAAGGGCG

CCCUUUU

AAAGGGCG

GCCCTTTT









UAAAC

UUCCAAG

ACUAAAA

UUCCAAG

ACTAAAC






NM_
4495-
gsasacg(Chd)CfcUf
1764
VPusAfsguuUfaGfUfaa
2098
GAACGCCC
2432
AAGUUUAG
2766
GAACGCC
3100
UAGUUUAG
3434
TGGAACGC
3768


002973.3
4517
UfUfuacuaaacsusa

aaGfgGfcguucscsa

UUUUACUA

UAAAAGGG

CUUUUAC

UAAAAGGG

CCTTTTACT









AACUU

CGUUCCA

UAAACUA

CGUUCCA

AAACTT






NM_
4496-
asascgc(Chd)CfuUf
1765
VPusAfsaguUfuAfGfua
2099
AACGCCCU
2433
CAAGUUUA
2767
AACGCCC
3101
UAAGUUUA
3435
GGAACGCC
3769


002973.3
4518
UfUfacuaaacususa

aaAfgGfgcguuscsc

UUUACUAA

GUAAAAGG

UUUUACU

GUAAAAGG

CTTTTACTA









ACUUG

GCGUUCC

AAACUUA

GCGUUCC

AACTTG






NM_
4497-
ascsgcc(Chd)UfuUf
1766
VPusCfsaagUfuUfAfgu
2100
ACGCCCUU
2434
UCAAGUUU
2768
ACGCCCU
3102
UCAAGUUU
3436
GAACGCCC
3770


002973.3
4519
UfAfcuaaacuusgsa

aaAfaGfggcgususc

UUACUAAA

AGUAAAAG

UUUACUA

AGUAAAAG

TTTTACTA









CUUGA

GGCGUUC

AACUUGA

GGCGUUC

AACTTGA






NM_
4498-
csgsccc(Uhd)UfuUf
1767
VPusUfscaaGfuUfUfag
2101
CGCCCUUU
2435
GUCAAGUU
2769
CGCCCUU
3103
UUCAAGUU
3437
AACGCCCT
3771


002973.3
4520
AfCfuaaacuugsasa

uaAfaAfggggsusu

UACUAAAC

UAGUAAAA

UUACUAA

UAGUAAAA

TTTACTAA









UUGAC

GGGCGUU

ACUUGAA

GGGCGUU

ACTTGAC






NM_
4522-
gsusuuc(Ahd)GfuA
1768
VPusCfsgguAfaGfAfau
2102
GUUUCAGU
2436
ACGGUAAG
2770
GUUUCAG
3104
UCGGUAAG
3438
AAGTTTCA
3772


002973.3
4544
fAfAfuucuuaccsgsa

uuAfcUfgaaacsusu

AAAUUCUU

AAUUUACU

UAAAUUC

AAUUUACU

GTAAATTC









ACCGU

GAAACUU

UUACCGA

GAAACUU

TTACCGT






NM_
4523-
ususuca(Ghd)UfaA
1769
VPusAfscggUfaAfGfaa
2103
UUUCAGUA
2437
GACGGUAA
2771
UUUCAGU
3105
UACGGUAA
3439
AGTTTCAG
3773


002973.3
4545
fAfUfucuuaccgsusa

uuUfaCfugaaascsu

AAUUCUUA

GAAUUUAC

AAAUUCU

GAAUUUAC

TAAATTCT









CCGUC

UGAAACU

UACCGUA

UGAAACU

TACCGTC






NM_
4524-
ususcag(Uhd)AfaA
1770
VPusGfsacgGfuAfAfga
2104
UUCAGUAA
2438
UGACGGUA
2772
UUCAGUA
3106
UGACGGUA
3440
GTTTCAGT
3774


002973.3
4546
fUfUfcuuaccguscsa

auUfuAfcugaasasc

AUUCUUAC

AGAAUUUA

AAUUCUU

AGAAUUUA

AAATTCTT









CGUCA

CUGAAAC

ACCGUCA

CUGAAAC

ACCGTCA






NM_
4525-
uscsagu(Ahd)AfaU
1771
VPusUfsgacGfgUfAfag
2105
UCAGUAAA
2439
UUGACGGU
2773
UCAGUAA
3107
UUGACGGU
3441
TTTCAGTA
3775


002973.3
4547
fUfCfuuaccgucsasa

aaUfuUfacugasasa

UUCUUACC

AAGAAUUU

AUUCUUA

AAGAAUUU

AATTCTTA









GUCAA

ACUGAAA

CCGUCAA

ACUGAAA

CCGTCAA






NM_
4526-
csasgua(Ahd)AfuU
1772
VPusUfsugaCfgGfUfaa
2106
CAGUAAAU
2440
UUUGACGG
2774
CAGUAAA
3108
UUUGACGG
3442
TTCAGTAA
3776


002973.3
4548
fCfUfuaccgucasasa

gaAfuUfuacugsasa

UCUUACCG

UAAGAAUU

UUCUUAC

UAAGAAUU

ATTCTTAC









UCAAA

UACUGAA

CGUCAAA

UACUGAA

CGTCAAA






NM_
4527-
asgsuaa(Ahd)UfuCf
1773
VPusUfsuugAfcGfGfua
2107
AGUAAAUU
2441
GUUUGACG
2775
AGUAAAU
3109
UUUUGACG
3443
TCAGTAAA
3777


002973.3
4549
UfUfaccgucaasasa

agAfaUfuuacusgsa

CUUACCGU

GUAAGAAU

UCUUACC

GUAAGAAU

TTCTTACC









CAAAC

UUACUGA

GUCAAAA

UUACUGA

GTCAAAC






NM_
4528-
gsusaaa(Uhd)UfcUf
1774
VPusGfsuuuGfaCfGfgu
2108
GUAAAUUC
2442
AGUUUGAC
2776
GUAAAUU
3110
UGUUUGAC
3444
CAGTAAAT
3778


002973.3
4550
UfAfccgucaaascsa

aaGfaAfuuuacsusg

UUACCGUC

GGUAAGAA

CUUACCG

GGUAAGAA

TCTTACCG









AAACU

UUUACUG

UCAAACA

UUUACUG

TCAAACT






NM_
4529-
usasaau(Uhd)CfuUf
1775
VPusAfsguuUfgAfCfg
2109
UAAAUUCU
2443
CAGUUUGA
2777
UAAAUUC
3111
UAGUUUGA
3445
AGTAAATT
3779


002973.3
4551
AfCfcgucaaacsusa

guaAfgAfauuuascsu

UACCGUCA

CGGUAAGA

UUACCGU

CGGUAAGA

CTTACCGT









AACUG

AUUUACU

CAAACUA

AUUUACU

CAAACTG






NM_
4530-
asasauu(Chd)UfuAf
1776
VPusCfsaguUfuGfAfcg
2110
AAAUUCUU
2444
UCAGUUUG
2778
AAAUUCU
3112
UCAGUUUG
3446
GTAAATTC
3780


002973.3
4552
CfCfgucaaacusgsa

guAfaGfaauuusasc

ACCGUCAA

ACGGUAAG

UACCGUC

ACGGUAAG

TTACCGTC









ACUGA

AAUUUAC

AAACUGA

AAUUUAC

AAACTGA






NM_
4531-
asasuuc(Uhd)UfaCf
1777
VPusUfscagUfuUfGfac
2111
AAUUCUUA
2445
GUCAGUUU
2779
AAUUCUU
3113
UUCAGUUU
3447
TAAATTCT
3781


002973.3
4553
CfGfucaaacugsasa

ggUfaAfgaauususa

CCGUCAAA

GACGGUAA

ACCGUCA

GACGGUAA

TACCGTCA









CUGAC

GAAUUUA

AACUGAA

GAAUUUA

AACTGAC






NM_
4532-
asusucu(Uhd)AfcCf
1778
VPusGfsucaGfuUfUfga
2112
AUUCUUAC
2446
CGUCAGUU
2780
AUUCUUA
3114
UGUCAGUU
3448
AAATTCTT
3782


002973.3
4554
GfUfcaaacugascsa

cgGfuAfagaaususu

CGUCAAAC

UGACGGUA

CCGUCAA

UGACGGUA

ACCGTCAA









UGACG

AGAAUUU

ACUGACA

AGAAUUU

ACTGACG






NM_
4533-
ususcuu(Ahd)CfcG
1779
VPusCfsgucAfgUfUfug
2113
UUCUUACC
2447
CCGUCAGU
2781
UUCUUAC
3115
UCGUCAGU
3449
AATTCTTA
3783


002973.3
4555
fUfCfaaacugacsgsa

acGfgUfaagaasusu

GUCAAACU

UUGACGGU

CGUCAAA

UUGACGGU

CCGTCAAA









GACGG

AAGAAUU

CUGACGA

AAGAAUU

CTGACGG






NM_
4534-
uscsuua(Chd)CfgUf
1780
VPusCfscguCfaGfUfuu
2114
UCUUACCG
2448
UCCGUCAG
2782
UCUUACC
3116
UCCGUCAG
3450
ATTCTTAC
3784


002973.3
4556
CfAfaacugacgsgsa

gaCfgGfuaagasasu

UCAAACUG

UUUGACGG

GUCAAAC

UUUGACGG

CGTCAAAC









ACGGA

UAAGAAU

UGACGGA

UAAGAAU

TGACGGA






NM_
4535-
csusuac(Chd)GfuCf
1781
VPusUfsccgUfcAfGfuu
2115
CUUACCGU
2449
AUCCGUCA
2783
CUUACCG
3117
UUCCGUCA
3451
TTCTTACC
3785


002973.3
4557
AfAfacugacggsasa

ugAfcGfguaagsasa

CAAACUGA

GUUUGACG

UCAAACU

GUUUGACG

GTCAAACT









CGGAU

GUAAGAA

GACGGAA

GUAAGAA

GACGGAT






NM_
4536-
ususacc(Ghd)UfcAf
1782
VPusAfsuccGfuCfAfgu
2116
UUACCGUC
2450
AAUCCGUC
2784
UUACCGU
3118
UAUCCGUC
3452
TCTTACCG
3786


002973.3
4558
AfAfcugacggasusa

uuGfaCfgguaasgsa

AAACUGAC

AGUUUGAC

CAAACUG

AGUUUGAC

TCAAACTG









GGAUU

GGUAAGA

ACGGAUA

GGUAAGA

ACGGATT






NM_
4537-
usasccg(Uhd)CfaAf
1783
VPusAfsaucCfgUfCfag
2117
UACCGUCA
2451
UAAUCCGU
2785
UACCGUC
3119
UAAUCCGU
3453
CTTACCGT
3787


002973.3
4559
AfCfugacggaususa

uuUfgAfcgguasasg

AACUGACG

CAGUUUGA

AAACUGA

CAGUUUGA

CAAACTGA









GAUUA

CGGUAAG

CGGAUUA

CGGUAAG

CGGATTA






NM_
4537-
usasccg(Uhd)CfaAf
1784
VPusAfsaucCfgUfCfag
2118
UACCGUCA
2452
UAAUCCGU
2786
UACCGUC
3120
UAAUCCGU
3454
CTTACCGT
3788


002973.3
4559
AfCfugacggaususa

uuUfgAfcgguasasg

AACUGACG

CAGUUUGA

AAACUGA

CAGUUUGA

CAAACTGA









GAUUA

CGGUAAG

CGGAUUA

CGGUAAG

CGGATTA






NM_
4538-
ascscgu(Chd)AfaAf
1785
VPusUfsaauCfcGfUfca
2119
ACCGUCAA
2453
AUAAUCCG
2787
ACCGUCA
3121
UUAAUCCG
3455
TTACCGTC
3789


002973.3
4560
CfUfgacggauusasa

guUfuGfacggusasa

ACUGACGG

UCAGUUUG

AACUGAC

UCAGUUUG

AAACTGAC









AUUAU

ACGGUAA

GGAUUAA

ACGGUAA

GGATTAT






NM_
4545-
asascug(Ahd)CfgGf
1786
VPusUfsaaaUfaAfUfaa
2120
AACUGACG
2454
AUAAAUAA
2788
AACUGAC
3122
UUAAAUAA
3456
CAAACTGA
3790


002973.3
4567
AfUfuauuauuusasa

ucCfgUfcaguususg

GAUUAUUA

UAAUCCGU

GGAUUAU

UAAUCCGU

CGGATTAT









UUUAU

CAGUUUG

UAUUUAA

CAGUUUG

TATTTAT






NM_
4572-
asgsuuu(Ghd)AfuG
1787
VPusAfsgugAfuCfAfcc
2121
AGUUUGAU
2455
CAGUGAUC
2789
AGUUUGA
3123
UAGUGAUC
3457
CAAGTTTG
3791


002973.3
4594
fAfGfgugaucacsusa

ucAfuCfaaacususg

GAGGUGAU

ACCUCAUC

UGAGGUG

ACCUCAUC

ATGAGGTG









CACUG

AAACUUG

AUCACUA

AAACUUG

ATCACTG






NM_
4589-
ascsugu(Chd)UfaCf
1788
VPusGfsuugAfaCfCfac
2122
ACUGUCUA
2456
AGUUGAAC
2790
ACUGUCU
3124
UGUUGAAC
3458
TCACTGTC
3792


002973.3
4611
AfGfugguucaascsa

ugUfaGfacagusgsa

CAGUGGUU

CACUGUAG

ACAGUGG

CACUGUAG

TACAGTGG









CAACU

ACAGUGA

UUCAACA

ACAGUGA

TTCAACT






NM_
4590-
csusguc(Uhd)AfcA
1789
VPusAfsguuGfaAfCfca
2123
CUGUCUAC
2457
AAGUUGAA
2791
CUGUCUA
3125
UAGUUGAA
3459
CACTGTCT
3793


002973.3
4612
fGfUfgguucaacsusa

cuGfuAfgacagsusg

AGUGGUUC

CCACUGUA

CAGUGGU

CCACUGUA

ACAGTGGT









AACUU

GACAGUG

UCAACUA

GACAGUG

TCAACTT






NM_
4594-
csusaca(Ghd)UfgGf
1790
VPusUfsaaaAfgUfUfga
2124
CUACAGUG
2458
UUAAAAGU
2792
CUACAGU
3126
UUAAAAGU
3460
GTCTACAG
3794


002973.3
4616
UfUfcaacuuuusasa

acCfaCfuguagsasc

GUUCAACU

UGAACCAC

GGUUCAA

UGAACCAC

TGGTTCAA









UUUAA

UGUAGAC

CUUUUAA

UGUAGAC

CTTTTAA






NM_
4595-
usascag(Uhd)GfgU
1791
VPusUfsuaaAfaGfUfug
2125
UACAGUGG
2459
CUUAAAAG
2793
UACAGUG
3127
UUUAAAAG
3461
TCTACAGT
3795


002973.3
4617
fUfCfaacuuuuasasa

aaCfcAfcuguasgsa

UUCAACUU

UUGAACCA

GUUCAAC

UUGAACCA

GGTTCAAC









UUAAG

CUGUAGA

UUUUAAA

CUGUAGA

TTTTAAG






NM_
4604-
uscsaac(Uhd)UfuUf
1792
VPusUfscccUfuAfAfcu
2126
UCAACUUU
2460
UUCCCUUA
2794
UCAACUU
3128
UUCCCUUA
3462
GTTCAACT
3796


002973.3
4626
AfAfguuaagggsasa

uaAfaAfguugasasc

UAAGUUAA

ACUUAAAA

UUAAGUU

ACUUAAAA

TTTAAGTT









GGGAA

GUUGAAC

AAGGGAA

GUUGAAC

AAGGGAA






NM_
4606-
asascuu(Uhd)UfaAf
1793
VPusUfsuucCfcUfUfaa
2127
AACUUUUA
2461
UUUUCCCU
2795
AACUUUU
3129
UUUUCCCU
3463
TCAACTTTT
3797


002973.3
4628
GfUfuaagggaasasa

cuUfaAfaaguusgsa

AGUUAAGG

UAACUUAA

AAGUUAA

UAACUUAA

AAGTTAAG









GAAAA

AAGUUGA

GGGAAAA

AAGUUGA

GGAAAA






NM_
4623-
asasaaa(Chd)UfuUf
1794
VPusUfscuaCfaAfAfgu
2128
AAAAACUU
2462
AUCUACAA
2796
AAAAACU
3130
UUCUACAA
3464
GGAAAAAC
3798


002973.3
4645
UfAfcuuuguagsasa

aaAfaGfuuuuuscsc

UUACUUUG

AGUAAAAG

UUUACUU

AGUAAAAG

TTTTACTTT









UAGAU

UUUUUCC

UGUAGAA

UUUUUCC

GTAGAT






NM_
 557-
csuscag(Uhd)CfuAf
1795
VPusAfsaaaGfaAfAfuc
2129
CUCAGUCU
2463
CAAAAGAA
2797
CUCAGUC
3131
UAAAAGAA
3465
GCCTCAGT
3799


002973.4
579
CfGfauuucuuususa

guAfgAfcugagsgsc

ACGAUUUC

AUCGUAGA

UACGAUU

AUCGUAGA

CTACGATT









UUUUG

CUGAGGC

UCUUUUA

CUGAGGC

TCTTTTG






NM_
 558-
uscsagu(Chd)UfaCf
1796
VPusCfsaaaAfgAfAfau
2130
UCAGUCUA
2464
UCAAAAGA
2798
UCAGUCU
3132
UCAAAAGA
3466
CCTCAGTC
3800


002973.4
580
GfAfuuucuuuusgsa

cgUfaGfacugasgsg

CGAUUUCU

AAUCGUAG

ACGAUUU

AAUCGUAG

TACGATTT









UUUGA

ACUGAGG

CUUUUGA

ACUGAGG

CTTTTGA






NM_
 559-
csasguc(Uhd)AfcGf
1797
VPusUfscaaAfaGfAfaa
2131
CAGUCUAC
2465
AUCAAAAG
2799
CAGUCUA
3133
UUCAAAAG
3467
CTCAGTCT
3801


002973.4
581
AfUfuucuuuugsasa

ucGfuAfgacugsasg

GAUUUCUU

AAAUCGUA

CGAUUUC

AAAUCGUA

ACGATTTC









UUGAU

GACUGAG

UUUUGAA

GACUGAG

TTTTGAT






NM_
 724-
csasuga(Ghd)AfaAf
1798
VPusGfsauuCfuGfUfac
2132
CAUGAGAA
2466
GGAUUCUG
2800
CAUGAGA
3134
UGAUUCUG
3468
CACATGAG
3802


002973.4
746
AfGfuacagaauscsa

uuUfuCfucaugsusg

AAGUACAG

UACUUUUC

AAAGUAC

UACUUUUC

AAAAGTAC









AAUCC

UCAUGUG

AGAAUCA

UCAUGUG

AGAATCC






NM_
 724-
csasuga(Ghd)AfaAf
1799
VPusGfsauuCfuGfUfac
2133
CAUGAGAA
2467
GGAUUCUG
2801
CAUGAGA
3135
UGAUUCUG
3469
CACATGAG
3803


002973.4
746
AfGfuacagaauscsa

uuUfuCfucaugsusg

AAGUACAG

UACUUUUC

AAAGUAC

UACUUUUC

AAAAGTAC









AAUCC

UCAUGUG

AGAAUCA

UCAUGUG

AGAATCC






NM_
 790-
asasaug(Uhd)UfcAf
1800
VPusAfscaaCfaAfAfgu
2134
AAAUGUUC
2468
CACAACAA
2802
AAAUGUU
3136
UACAACAA
3470
TCAAATGT
3804


002973.4
812
GfAfcuuuguugsusa

cuGfaAfcauuusgsa

AGACUUUG

AGUCUGAA

CAGACUU

AGUCUGAA

TCAGACTT









UUGUG

CAUUUGA

UGUUGUA

CAUUUGA

TGTTGTG






NM_
 867-
usgscua(Uhd)CfaGf
1801
VPusUfscacUfuUfAfgc
2135
UGCUAUCA
2469
UUCACUUU
2803
UGCUAUC
3137
UUCACUUU
3471
TCTGCTAT
3805


002973.4
889
UfGfcuaaagugsasa

acUfgAfuagcasgsa

GUGCUAAA

AGCACUGA

AGUGCUA

AGCACUGA

CAGTGCTA









GUGAA

UAGCAGA

AAGUGAA

UAGCAGA

AAGTGAA






NM_
1040-
csgsuau(Ghd)AfuA
1802
VPusAfsgauAfaAfCfug
2136
CGUAUGAU
2470
AAGAUAAA
2804
CGUAUGA
3138
UAGAUAAA
3472
TACGTATG
3806


002973.4
1062
fGfCfaguuuaucsusa

cuAfuCfauacgsusa

AGCAGUUU

CUGCUAUC

UAGCAGU

CUGCUAUC

ATAGCAGT









AUCUU

AUACGUA

UUAUCUA

AUACGUA

TTATCTT






NM_
1041-
gsusaug(Ahd)UfaG
1803
VPusAfsagaUfaAfAfcu
2137
GUAUGAUA
2471
GAAGAUAA
2805
GUAUGAU
3139
UAAGAUAA
3473
ACGTATGA
3807


002973.4
1063
fCfAfguuuaucususa

gcUfaUfcauacsgsu

GCAGUUUA

ACUGCUAU

AGCAGUU

ACUGCUAU

TAGCAGTT









UCUUC

CAUACGU

UAUCUUA

CAUACGU

TATCTTC






NM_
1084-
gsasuaa(Chd)UfcAf
1804
VPusAfsaaaAfuUfCfuu
2138
GAUAACUC
2472
UAAAAAUU
2806
GAUAACU
3140
UAAAAAUU
3474
GAGATAAC
3808


002973.4
1106
GfAfagaauuuususa

cuGfaGfuuaucsusc

AGAAGAAU

CUUCUGAG

CAGAAGA

CUUCUGAG

TCAGAAGA









UUUUA

UUAUCUC

AUUUUUA

UUAUCUC

ATTTTTA






NM_
1380-
asuscca(Chd)UfuCf
1805
VPusCfsugaAfgUfGfug
2139
AUCCACUU
2473
UCUGAAGU
2807
AUCCACU
3141
UCUGAAGU
3475
AGATCCAC
3809


002973.4
1402
UfCfacacuucasgsa

agAfaGfuggauscsu

CUCACACU

GUGAGAAG

UCUCACA

GUGAGAAG

TTCTCACA









UCAGA

UGGAUCU

CUUCAGA

UGGAUCU

CTTCAGA






NM_
1387-
uscsuca(Chd)AfcUf
1806
VPusUfsugaAfaUfCfug
2140
UCUCACAC
2474
GUUGAAAU
2808
UCUCACA
3142
UUUGAAAU
3476
CTTCTCAC
3810


002973.4
1409
UfCfagauuucasasa

aaGfuGfugagasasg

UUCAGAUU

CUGAAGUG

CUUCAGA

CUGAAGUG

ACTTCAGA









UCAAC

UGAGAAG

UUUCAAA

UGAGAAG

TTTCAAC






NM_
1623-
csuscua(Chd)UfaUf
1807
VPusUfsgcgUfuUfAfg
2141
CUCUACUA
2475
AUGCGUUU
2809
CUCUACU
3143
UUGCGUUU
3477
GTCTCTAC
3811


002973.4
1645
GfCfcuaaacgcsasa

gcaUfaGfuagagsasc

UGCCUAAA

AGGCAUAG

AUGCCUA

AGGCAUAG

TATGCCTA









CGCAU

UAGAGAC

AACGCAA

UAGAGAC

AACGCAT






NM_
1624-
uscsuac(Uhd)AfuG
1808
VPusAfsugcGfuUfUfag
2142
UCUACUAU
2476
CAUGCGUU
2810
UCUACUA
3144
UAUGCGUU
3478
TCTCTACT
3812


002973.4
1646
fCfCfuaaacgcasusa

gcAfuAfguagasgsa

GCCUAAAC

UAGGCAUA

UGCCUAA

UAGGCAUA

ATGCCTAA









GCAUG

GUAGAGA

ACGCAUA

GUAGAGA

ACGCATG






NM_
1692-
uscsgaa(Ahd)UfcAf
1809
VPusCfsagaAfaCfUfcu
2143
UCGAAAUC
2477
GCAGAAAC
2811
UCGAAAU
3145
UCAGAAAC
3479
CCTCGAAA
3813


002973.4
1714
CfAfgaguuucusgsa

guGfaUfuucgasgsg

ACAGAGUU

UCUGUGAU

CACAGAG

UCUGUGAU

TCACAGAG









UCUGC

UUCGAGG

UUUCUGA

UUCGAGG

TTTCTGC






NM_
1693-
csgsaaa(Uhd)CfaCf
1810
VPusGfscagAfaAfCfuc
2144
CGAAAUCA
2478
AGCAGAAA
2812
CGAAAUC
3146
UGCAGAAA
3480
CTCGAAAT
3814


002973.4
1715
AfGfaguuucugscsa

ugUfgAfuuucgsasg

CAGAGUUU

CUCUGUGA

ACAGAGU

CUCUGUGA

CACAGAGT









CUGCU

UUUCGAG

UUCUGCA

UUUCGAG

TTCTGCT






NM_
2225-
gsusucu(Ahd)CfuU
1811
VPusCfsauaGfaUfUfca
2145
GUUCUACU
2479
CCAUAGAU
2813
GUUCUAC
3147
UCAUAGAU
3481
AAGTTCTA
3815


002973.4
2247
fCfUfgaaucuausgsa

gaAfgUfagaacsusu

UCUGAAUC

UCAGAAGU

UUCUGAA

UCAGAAGU

CTTCTGAA









UAUGG

AGAACUU

UCUAUGA

AGAACUU

TCTATGG






NM_
2226-
ususcua(Chd)UfuCf
1812
VPusCfscauAfgAfUfuc
2146
UUCUACUU
2480
UCCAUAGA
2814
UUCUACU
3148
UCCAUAGA
3482
AGTTCTAC
3816


002973.4
2248
UfGfaaucuaugsgsa

agAfaGfuagaascsu

CUGAAUCU

UUCAGAAG

UCUGAAU

UUCAGAAG

TTCTGAAT









AUGGA

UAGAACU

CUAUGGA

UAGAACU

CTATGGA






NM_
2227-
uscsuac(Uhd)UfcUf
1813
VPusUfsccaUfaGfAfuu
2147
UCUACUUC
2481
AUCCAUAG
2815
UCUACUU
3149
UUCCAUAG
3483
GTTCTACTT
3817


002973.4
2249
GfAfaucuauggsasa

caGfaAfguagasasc

UGAAUCUA

AUUCAGAA

CUGAAUC

AUUCAGAA

CTGAATCT









UGGAU

GUAGAAC

UAUGGAA

GUAGAAC

ATGGAT






NM_
2228-
csusacu(Uhd)CfuGf
1814
VPusAfsuccAfuAfGfau
2148
CUACUUCU
2482
GAUCCAUA
2816
CUACUUC
3150
UAUCCAUA
3484
TTCTACTTC
3818


002973.4
2250
AfAfucuauggasusa

ucAfgAfaguagsasa

GAAUCUAU

GAUUCAGA

UGAAUCU

GAUUCAGA

TGAATCTA









GGAUC

AGUAGAA

AUGGAUA

AGUAGAA

TGGATC






NM_
2235-
usgsaau(Chd)UfaUf
1815
VPusGfsuagUfuGfAfuc
2149
UGAAUCUA
2483
AGUAGUUG
2817
UGAAUCU
3151
UGUAGUUG
3485
TCTGAATC
3819


002973.4
2257
GfGfaucaacuascsa

caUfaGfauucasgsa

UGGAUCAA

AUCCAUAG

AUGGAUC

AUCCAUAG

TATGGATC









CUACU

AUUCAGA

AACUACA

AUUCAGA

AACTACT






NM_
2235-
usgsaau(Chd)UfaUf
1816
VPusGfsuagUfuGfAfuc
2150
UGAAUCUA
2484
AGUAGUUG
2818
UGAAUCU
3152
UGUAGUUG
3486
TCTGAATC
3820


002973.4
2257
GfGfaucaacuascsa

caUfaGfauucasgsa

UGGAUCAA

AUCCAUAG

AUGGAUC

AUCCAUAG

TATGGATC









CUACU

AUUCAGA

AACUACA

AUUCAGA

AACTACT






NM_
2250-
ascsuac(Uhd)AfaAf
1817
VPusCfsucuAfuUfUfuu
2151
ACUACUAA
2485
UCUCUAUU
2819
ACUACUA
3153
UCUCUAUU
3487
CAACTACT
3821


002973.4
2272
CfAfaaaauagasgsa

guUfuAfguagususg

ACAAAAAU

UUUGUUUA

AACAAAA

UUUGUUUA

AAACAAAA









AGAGA

GUAGUUG

AUAGAGA

GUAGUUG

ATAGAGA






NM_
2310-
ascscaa(Ghd)UfgCf
1818
VPusAfsagaAfuCfCfuu
2152
ACCAAGUG
2486
AAAGAAUC
2820
ACCAAGU
3154
UAAGAAUC
3488
GAACCAAG
3822


002973.4
2332
UfAfaggauucususa

agCfaCfuuggususc

CUAAGGAU

CUUAGCAC

GCUAAGG

CUUAGCAC

TGCTAAGG









UCUUU

UUGGUUC

AUUCUUA

UUGGUUC

ATTCTTT






NM_
2525-
ususagg(Ahd)AfaU
1819
VPusAfsuucAfaUfGfuu
2153
UUAGGAAA
2487
GAUUCAAU
2821
UUAGGAA
3155
UAUUCAAU
3489
AGTTAGGA
3823


002973.4
2547
fCfAfacauugaasusa

gaUfuUfccuaascsu

UCAACAUU

GUUGAUUU

AUCAACA

GUUGAUUU

AATCAACA









GAAUC

CCUAACU

UUGAAUA

CCUAACU

TTGAATC






NM_
2657-
asgscca(Ahd)CfuCf
1820
VPusAfsguaUfaAfAfcu
2154
AGCCAACU
2488
GAGUAUAA
2822
AGCCAAC
3156
UAGUAUAA
3490
ACAGCCAA
3824


002973.4
2679
CfAfguuuauacsusa

ggAfgUfuggcusgsu

CCAGUUUA

ACUGGAGU

UCCAGUU

ACUGGAGU

CTCCAGTT









UACUC

UGGCUGU

UAUACUA

UGGCUGU

TATACTC






NM_
3066-
ususcuu(Chd)AfgC
1821
VPusCfsguaCfuGfAfgu
2155
UUCUUCAG
2489
CCGUACUG
2823
UUCUUCA
3157
UCGUACUG
3491
TCTTCTTCA
3825


002973.4
3088
fAfAfcucaguacsgsa

ugCfuGfaagaasgsa

CAACUCAG

AGUUGCUG

GCAACUC

AGUUGCUG

GCAACTCA









UACGG

AAGAAGA

AGUACGA

AAGAAGA

GTACGG






NM_
3156-
ususucu(Ahd)CfuU
1822
VPusUfsggaAfaUfGfgc
2156
UUUCUACU
2490
GUGGAAAU
2824
UUUCUAC
3158
UUGGAAAU
3492
TCTTTCTAC
3826


002973.4
3178
fUfGfccauuuccsasa

aaAfgUfagaaasgsa

UUGCCAUU

GGCAAAGU

UUUGCCA

GGCAAAGU

TTTGCCATT









UCCAC

AGAAAGA

UUUCCAA

AGAAAGA

TCCAC






NM_
3157-
ususcua(Chd)UfuU
1823
VPusGfsuggAfaAfUfg
2157
UUCUACUU
2491
CGUGGAAA
2825
UUCUACU
3159
UGUGGAAA
3493
CTTTCTACT
3827


002973.4
3179
fGfCfcauuuccascsa

gcaAfaGfuagaasasg

UGCCAUUU

UGGCAAAG

UUGCCAU

UGGCAAAG

TTGCCATTT









CCACG

UAGAAAG

UUCCACA

UAGAAAG

CCACG






NM_
3860-
uscsuug(Uhd)AfaC
1824
VPusUfsccuAfuUfGfga
2158
UCUUGUAA
2492
UUCCUAUU
2826
UCUUGUA
3160
UUCCUAUU
3494
TTTCTTGTA
3828


002973.4
3882
fAfUfccaauaggsasa

ugUfuAfcaagasasa

CAUCCAAU

GGAUGUUA

ACAUCCA

GGAUGUUA

ACATCCAA









AGGAA

CAAGAAA

AUAGGAA

CAAGAAA

TAGGAA






NM_
4002-
cscsgaa(Ahd)CfuGf
1825
VPusUfsaaaUfaAfCfuu
2159
CCGAAACU
2493
AUAAAUAA
2827
CCGAAAC
3161
UUAAAUAA
3495
TGCCGAAA
3829


002973.4
4024
GfAfaguuauuusasa

ccAfgUfuucggscsa

GGAAGUUA

CUUCCAGU

UGGAAGU

CUUCCAGU

CTGGAAGT









UUUAU

UUCGGCA

UAUUUAA

UUCGGCA

TATTTAT






NM_
4002-
cscsgaa(Ahd)CfuGf
1826
VPusUfsaaaUfaAfCfuu
2160
CCGAAACU
2494
AUAAAUAA
2828
CCGAAAC
3162
UUAAAUAA
3496
TGCCGAAA
3830


002973.4
4024
GfAfaguuauuusasa

ccAfgUfuucggscsa

GGAAGUUA

CUUCCAGU

UGGAAGU

CUUCCAGU

CTGGAAGT









UUUAU

UUCGGCA

UAUUUAA

UUCGGCA

TATTTAT






NM_
4002-
cscsgaa(Ahd)CfuGf
1827
VPusUfsaaaUfaAfCfuu
2161
CCGAAACU
2495
AUAAAUAA
2829
CCGAAAC
3163
UUAAAUAA
3497
TGCCGAAA
3831


002973.4
4024
GfAfaguuauuusasa

ccAfgUfuucggscsa

GGAAGUUA

CUUCCAGU

UGGAAGU

CUUCCAGU

CTGGAAGT









UUUAU

UUCGGCA

UAUUUAA

UUCGGCA

TATTTAT






NM_
4005-
asasacu(Ghd)GfaAf
1828
VPusAfsaauAfaAfUfaa
2162
AAACUGGA
2496
AAAAUAAA
2830
AAACUGG
3164
UAAAUAAA
3498
CGAAACTG
3832


002973.4
4027
GfUfuauuuauususa

cuUfcCfaguuuscsg

AGUUAUUU

UAACUUCC

AAGUUAU

UAACUUCC

GAAGTTAT









AUUUU

AGUUUCG

UUAUUUA

AGUUUCG

TTATTTT






NM_
4035-
csusuga(Ahd)AfgU
1829
VPusAfsuguGfuUfCfau
2163
CUUGAAAG
2497
GAUGUGUU
2831
CUUGAAA
3165
UAUGUGUU
3499
CCCTTGAA
3833


002973.4
4057
fCfAfugaacacasusa

gaCfuUfucaagsgsg

UCAUGAAC

CAUGACUU

GUCAUGA

CAUGACUU

AGTCATGA









ACAUC

UCAAGGG

ACACAUA

UCAAGGG

ACACATC






NM_
4035-
csusuga(Ahd)AfgU
1830
VPusAfsuguGfuUfCfau
2164
CUUGAAAG
2498
GAUGUGUU
2832
CUUGAAA
3166
UAUGUGUU
3500
CCCTTGAA
3834


002973.4
4057
fCfAfugaacacasusa

gaCfuUfucaagsgsg

UCAUGAAC

CAUGACUU

GUCAUGA

CAUGACUU

AGTCATGA









ACAUC

UCAAGGG

ACACAUA

UCAAGGG

ACACATC






NM_
4041-
asgsuca(Uhd)GfaAf
1831
VPusUfsagcUfgAfUfgu
2165
AGUCAUGA
2499
CUAGCUGA
2833
AGUCAUG
3167
UUAGCUGA
3501
AAAGTCAT
3835


002973.4
4063
CfAfcaucagcusasa

guUfcAfugacususu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAG

UGACUUU

CAGCUAA

UGACUUU

CAGCTAG






NM_
4041-
asgsuca(Uhd)GfaAf
1832
VPusUfsagcUfgAfUfgu
2166
AGUCAUGA
2500
CUAGCUGA
2834
AGUCAUG
3168
UUAGCUGA
3502
AAAGTCAT
3836


002973.4
4063
CfAfcaucagcusasa

guUfcAfugacususu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAG

UGACUUU

CAGCUAA

UGACUUU

CAGCTAG






NM_
4041-
asgsuca(Uhd)GfaAf
1833
VPusUfsagcUfgAfUfgu
2167
AGUCAUGA
2501
CUAGCUGA
2835
AGUCAUG
3169
UUAGCUGA
3503
AAAGTCAT
3837


002973.4
4063
CfAfcaucagcusasa

guUfcAfugacususu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAG

UGACUUU

CAGCUAA

UGACUUU

CAGCTAG






NM_
4042-
gsuscau(Ghd)AfaCf
1834
VPusCfsuagCfuGfAfug
2168
GUCAUGAA
2502
GCUAGCUG
2836
GUCAUGA
3170
UCUAGCUG
3504
AAGTCATG
3838


002973.4
4064
AfCfaucagcuasgsa

ugUfuCfaugacsusu

CACAUCAG

AUGUGUUC

ACACAUC

AUGUGUUC

AACACATC









CUAGC

AUGACUU

AGCUAGA

AUGACUU

AGCTAGC






NM_
4042-
gsuscau(Ghd)AfaCf
1835
VPusCfsuagCfuGfAfug
2169
GUCAUGAA
2503
GCUAGCUG
2837
GUCAUGA
3171
UCUAGCUG
3505
AAGTCATG
3839


002973.4
4064
AfCfaucagcuasgsa

ugUfuCfaugacsusu

CACAUCAG

AUGUGUUC

ACACAUC

AUGUGUUC

AACACATC









CUAGC

AUGACUU

AGCUAGA

AUGACUU

AGCTAGC






NM_
4044-
csasuga(Ahd)CfaCf
1836
VPusUfsgcuAfgCfUfga
2170
CAUGAACA
2504
UUGCUAGC
2838
CAUGAAC
3172
UUGCUAGC
3506
GTCATGAA
3840


002973.4
4066
AfUfcagcuagcsasa

ugUfgUfucaugsasc

CAUCAGCU

UGAUGUGU

ACAUCAG

UGAUGUGU

CACATCAG









AGCAA

UCAUGAC

CUAGCAA

UCAUGAC

CTAGCAA






NM_
4076-
asgsagu(Ghd)AfuU
1837
VPusAfsuagCfaGfCfaa
2171
AGAGUGAU
2505
AAUAGCAG
2839
AGAGUGA
3173
UAUAGCAG
3507
CAAGAGTG
3841


002973.4
4098
fCfUfugcugcuasusa

gaAfuCfacucususg

UCUUGCUG

CAAGAAUC

UUCUUGC

CAAGAAUC

ATTCTTGCT









CUAUU

ACUCUUG

UGCUAUA

ACUCUUG

GCTATT






NM_
4076-
asgsagu(Ghd)AfuU
1838
VPusAfsuagCfaGfCfaa
2172
AGAGUGAU
2506
AAUAGCAG
2840
AGAGUGA
3174
UAUAGCAG
3508
CAAGAGTG
3842


002973.4
4098
fCfUfugcugcuasusa

gaAfuCfacucususg

UCUUGCUG

CAAGAAUC

UUCUUGC

CAAGAAUC

ATTCTTGCT









CUAUU

ACUCUUG

UGCUAUA

ACUCUUG

GCTATT






NM_
4079-
gsusgau(Uhd)CfuU
1839
VPusGfsuaaUfaGfCfag
2173
GUGAUUCU
2507
AGUAAUAG
2841
GUGAUUC
3175
UGUAAUAG
3509
GAGTGATT
3843


002973.4
4101
fGfCfugcuauuascsa

caAfgAfaucacsusc

UGCUGCUA

CAGCAAGA

UUGCUGC

CAGCAAGA

CTTGCTGC









UUACU

AUCACUC

UAUUACA

AUCACUC

TATTACT






NM_
4079-
gsusgau(Uhd)CfuU
1840
VPusGfsuaaUfaGfCfag
2174
GUGAUUCU
2508
AGUAAUAG
2842
GUGAUUC
3176
UGUAAUAG
3510
GAGTGATT
3844


002973.4
4101
fGfCfugcuauuascsa

caAfgAfaucacsusc

UGCUGCUA

CAGCAAGA

UUGCUGC

CAGCAAGA

CTTGCTGC









UUACU

AUCACUC

UAUUACA

AUCACUC

TATTACT






NM_
4137-
csgsccc(Uhd)UfuUf
1841
VPusUfscaaGfuUfUfag
2175
CGCCCUUU
2509
GUCAAGUU
2843
CGCCCUU
3177
UUCAAGUU
3511
AACGCCCT
3845


002973.4
4159
AfCfuaaacuugsasa

uaAfaAfgggcgsusu

UACUAAAC

UAGUAAAA

UUACUAA

UAGUAAAA

TTTACTAA









UUGAC

GGGCGUU

ACUUGAA

GGGCGUU

ACTTGAC






NM_
4137-
csgsccc(Uhd)UfuUf
1842
VPusUfscaaGfuUfUfag
2176
CGCCCUUU
2510
GUCAAGUU
2844
CGCCCUU
3178
UUCAAGUU
3512
AACGCCCT
3846


002973.4
4159
AfCfuaaacuugsasa

uaAfaAfgggcgsusu

UACUAAAC

UAGUAAAA

UUACUAA

UAGUAAAA

TTTACTAA









UUGAC

GGGCGUU

ACUUGAA

GGGCGUU

ACTTGAC






NM_
4176-
usasccg(Uhd)CfaAf
1843
VPusAfsaucCfgUfCfag
2177
UACCGUCA
2511
UAAUCCGU
2845
UACCGUC
3179
UAAUCCGU
3513
CTTACCGT
3847


002973.4
4198
AfCfugacggaususa

uuUfgAfcgguasasg

AACUGACG

CAGUUUGA

AAACUGA

CAGUUUGA

CAAACTGA









GAUUA

CGGUAAG

CGGAUUA

CGGUAAG

CGGATTA






NM_
4228-
ascsugu(Chd)UfaCf
1844
VPusGfsuugAfaCfCfac
2178
ACUGUCUA
2512
AGUUGAAC
2846
ACUGUCU
3180
UGUUGAAC
3514
TCACTGTC
3848


002973.4
4250
AfGfugguucaascsa

ugUfaGfacagusgsa

CAGUGGUU

CACUGUAG

ACAGUGG

CACUGUAG

TACAGTGG









CAACU

ACAGUGA

UUCAACA

ACAGUGA

TTCAACT






NM_
4228-
ascsugu(Chd)UfaCf
1845
VPusGfsuugAfaCfCfac
2179
ACUGUCUA
2513
AGUUGAAC
2847
ACUGUCU
3181
UGUUGAAC
3515
TCACTGTC
3849


002973.4
4250
AfGfugguucaascsa

ugUfaGfacagusgsa

CAGUGGUU

CACUGUAG

ACAGUGG

CACUGUAG

TACAGTGG









CAACU

ACAGUGA

UUCAACA

ACAGUGA

TTCAACT






NM_
4237-
asgsugg(Uhd)UfcA
1846
VPusAfsacuUfaAfAfag
2180
AGUGGUUC
2514
UAACUUAA
2848
AGUGGUU
3182
UAACUUAA
3516
ACAGTGGT
3850


002973.4
4259
fAfCfuuuuaagususa

uuGfaAfccacusgsu

AACUUUUA

AAGUUGAA

CAACUUU

AAGUUGAA

TCAACTTTT









AGUUA

CCACUGU

UAAGUUA

CCACUGU

AAGTTA






NM_
4238-
gsusggu(Uhd)CfaA
1847
VPusUfsaacUfuAfAfaa
2181
GUGGUUCA
2515
UUAACUUA
2849
GUGGUUC
3183
UUAACUUA
3517
CAGTGGTT
3851


002973.4
4260
fCfUfuuuaaguusasa

guUfgAfaccacsusg

ACUUUUAA

AAAGUUGA

AACUUUU

AAAGUUGA

CAACTTTT









GUUAA

ACCACUG

AAGUUAA

ACCACUG

AAGTTAA






NM_
4256-
usasagg(Ghd)AfaA
1848
VPusAfsaguAfaAfAfgu
2182
UAAGGGAA
2516
AAAGUAAA
2850
UAAGGGA
3184
UAAGUAAA
3518
GTTAAGGG
3852


002973.4
4278
fAfAfcuuuuacususa

uuUfuCfccuuasasc

AAACUUUU

AGUUUUUC

AAAACUU

AGUUUUUC

AAAAACTT









ACUUU

CCUUAAC

UUACUUA

CCUUAAC

TTACTTT






NM_
 692-
cscsuca(Ghd)CfcUf
1849
VPusAfsaagAfaAfUfcg
2183
CCUCAGCC
2517
AAAAGAAA
2851
CCUCAGC
3185
UAAAGAAA
3519
TGCCTCAG
3853


009125.2
714
AfCfgauuucuususa

uaGfgCfugaggscsa

UACGAUUU

UCGUAGGC

CUACGAU

UCGUAGGC

CCTACGAT









CUUUU

UGAGGCA

UUCUUUA

UGAGGCA

TTCTTTT






NM_
 693-
csuscag(Chd)CfuAf
1850
VPusAfsaaaGfaAfAfuc
2184
CUCAGCCU
2518
CAAAAGAA
2852
CUCAGCC
3186
UAAAAGAA
3520
GCCTCAGC
3854


009125.2
715
CfGfauuucuuususa

guAfgGfcugagsgsc

ACGAUUUC

AUCGUAGG

UACGAUU

AUCGUAGG

CTACGATT









UUUUG

CUGAGGC

UCUUUUA

CUGAGGC

TCTTTTG






NM_
 694-
uscsagc(Chd)UfaCf
1851
VPusCfsaaaAfgAfAfau
2185
UCAGCCUA
2519
UCAAAAGA
2853
UCAGCCU
3187
UCAAAAGA
3521
CCTCAGCC
3855


009125.2
716
GfAfuuucuuuusgsa

cgUfaGfgcugasgsg

CGAUUUCU

AAUCGUAG

ACGAUUU

AAUCGUAG

TACGATTT









UUUGA

GCUGAGG

CUUUUGA

GCUGAGG

CTTTTGA






NM_
 733-
gsasgga(Uhd)GfgU
1852
VPusUfsaagUfaUfAfug
2186
GAGGAUGG
2520
GUAAGUAU
2854
GAGGAUG
3188
UUAAGUAU
3522
GTGAGGAT
3856


009125.2
755
fUfCfauauacuusasa

aaCfcAfuccucsasc

UUCAUAUA

AUGAACCA

GUUCAUA

AUGAACCA

GGTTCATA









CUUAC

UCCUCAC

UACUUAA

UCCUCAC

TACTTAC






NM_
 733-
gsasgga(Uhd)GfgU
1853
VPusUfsaagUfaUfAfug
2187
GAGGAUGG
2521
AUAAGUAU
2855
GAGGAUG
3189
UUAAGUAU
3523
ATGAGGAT
3857


009125.2
755
fUfCfauauacuusasa

aaCfcAfuccucsasc

UUCAUAUA

AUGAACCA

GUUCAUA

AUGAACCA

GGTTCATA









CUUAU

UCCUCAC

UACUUAA

UCCUCAC

TACTTAC






NM_
 734-
asgsgau(Ghd)GfuU
1854
VPusGfsuaaGfuAfUfau
2188
AGGAUGGU
2522
CGUAAGUA
2856
AGGAUGG
3190
UGUAAGUA
3524
TGAGGATG
3858


009125.2
756
fCfAfuauacuuascsa

gaAfcCfauccuscsa

UCAUAUAC

UAUGAACC

UUCAUAU

UAUGAACC

GTTCATAT









UUACG

AUCCUCA

ACUUACA

AUCCUCA

ACTTACG






NM_
 771-
asasugu(Ghd)AfaG
1855
VPusUfsuucAfcUfUfgu
2189
AAUGUGAA
2523
UUUUCACU
2857
AAUGUGA
3191
UUUUCACU
3525
GAAATGTG
3859


009125.2
793
fUfAfcaagugaasasa

acUfuCfacauususc

GUACAAGU

UGUACUUC

AGUACAA

UGUACUUC

AAGTACAA









GAAAA

ACAUUUC

GUGAAAA

ACAUUUC

GTGAAAA






NM_
 771-
asasugu(Ghd)AfaG
1856
VPusUfsuucAfcUfUfgu
2190
AAUGUGAA
2524
UUUUCACU
2858
AAUGUGA
3192
UUUUCACU
3526
CAAATGTG
3860


009125.2
793
fUfAfcaagugaasasa

acUfuCfacauususc

GUACAAGU

UGUACUUC

AGUACAA

UGUACUUC

AAGTACAA









GAAAA

ACAUUUC

GUGAAAA

ACAUUUC

GTGAAAA






NM_
 774-
gsusgaa(Ghd)UfaCf
1857
VPusGfsuuuUfuCfAfcu
2191
GUGAAGUA
2525
CGUUUUUC
2859
GUGAAGU
3193
UGUUUUUC
3527
ATGTGAAG
3861


009125.2
796
AfAfgugaaaaascsa

ugUfaCfuucacsasu

CAAGUGAA

ACUUGUAC

ACAAGUG

ACUUGUAC

TACAAGTG









AAACG

UUCACAU

AAAAACA

UUCACAU

AAAAACG






NM_
 807-
asasgga(Ghd)UfuU
1858
VPusGfsuauGfuUfUfua
2192
AAGGAGUU
2526
UGUAUGUU
2860
AAGGAGU
3194
UGUAUGUU
3528
TGAAGGAG
3862


009125.2
829
fUfUfaaaacauascsa

aaAfaCfuccuuscsa

UUUAAAAC

UUAAAAAC

UUUUAAA

UUAAAAAC

TTTTTAAA









AUACA

UCCUUCA

ACAUACA

UCCUUCA

ACATACA






NM_
 808-
asgsgag(Uhd)UfuU
1859
VPusUfsguaUfgUfUfu
2193
AGGAGUUU
2527
CUGUAUGU
2861
AGGAGUU
3195
UUGUAUGU
3529
GAAGGAGT
3863


009125.2
830
fUfAfaaacauacsasa

uaaAfaAfcuccususc

UUAAAACA

UUUAAAAA

UUUAAAA

UUUAAAAA

TTTTAAAA









UACAG

CUCCUUC

CAUACAA

CUCCUUC

CATACAG






NM_
 819-
asasaca(Uhd)AfcAf
1860
VPusAfscacUfuAfGfga
2194
AAACAUAC
2528
CACACUUA
2862
AAACAUA
3196
UACACUUA
3530
TAAAACAT
3864


009125.2
841
GfUfccuaagugsusa

cuGfuAfuguuususa

AGUCCUAA

GGACUGUA

CAGUCCU

GGACUGUA

ACAGTCCT









GUGUG

UGUUUUA

AAGUGUA

UGUUUUA

AAGTGTG






NM_
 820-
asascau(Ahd)CfaGf
1861
VPusCfsacaCfuUfAfgg
2195
AACAUACA
2529
UCACACUU
2863
AACAUAC
3197
UCACACUU
3531
AAAACATA
3865


009125.2
842
UfCfcuaagugusgsa

acUfgUfauguususu

GUCCUAAG

AGGACUGU

AGUCCUA

AGGACUGU

CAGTCCTA









UGUGA

AUGUUUU

AGUGUGA

AUGUUUU

AGTGTGA






NM_
 821-
ascsaua(Chd)AfgUf
1862
VPusUfscacAfcUfUfag
2196
ACAUACAG
2530
GUCACACU
2864
ACAUACA
3198
UUCACACU
3532
AAACATAC
3866


009125.2
843
CfCfuaagugugsasa

gaCfuGfuaugususu

UCCUAAGU

UAGGACUG

GUCCUAA

UAGGACUG

AGTCCTAA









GUGAC

UAUGUUU

GUGUGAA

UAUGUUU

GTGTGAC






NM_
 854-
gscsugc(Ahd)CfaUf
1863
VPusGfsuacUfuUfUfcu
2197
GCUGCACA
2531
UGUACUUU
2865
GCUGCAC
3199
UGUACUUU
3533
ATGCTGCA
3867


009125.2
876
GfAfgaaaaguascsa

caUfgUfgcagcsasu

UGAGAAAA

UCUCAUGU

AUGAGAA

UCUCAUGU

CATGAGAA









GUACA

GCAGCAU

AAGUACA

GCAGCAU

AAGTACA






NM_
 855-
csusgca(Chd)AfuGf
1864
VPusUfsguaCfuUfUfuc
2198
CUGCACAU
2532
CUGUACUU
2866
CUGCACA
3200
UUGUACUU
3534
TGCTGCAC
3868


009125.2
877
AfGfaaaaguacsasa

ucAfuGfugcagscsa

GAGAAAAG

UUCUCAUG

UGAGAAA

UUCUCAUG

ATGAGAAA









UACAG

UGCAGCA

AGUACAA

UGCAGCA

AGTACAG






NM_
 908-
asusgga(Ghd)AfgU
1865
VPusUfsugaAfcAfAfaa
2199
AUGGAGAG
2533
UUUGAACA
2867
AUGGAGA
3201
UUUGAACA
3535
TAATGGAG
3869


009125.2
930
fGfUfuuuguucasasa

caCfuCfuccaususa

UGUUUUGU

AAACACUC

GUGUUUU

AAACACUC

AGTGTTTT









UCAAA

UCCAUUA

GUUCAAA

UCCAUUA

GTTCAAA






NM_
 910-
gsgsaga(Ghd)UfgU
1866
VPusAfsuuuGfaAfCfaa
2200
GGAGAGUG
2534
CAUUUGAA
2868
GGAGAGU
3202
UAUUUGAA
3536
ATGGAGAG
3870


009125.2
932
fUfUfuguucaaasusa

aaCfaCfucuccsasu

UUUUGUUC

CAAAACAC

GUUUUGU

CAAAACAC

TGTTTTGTT









AAAUG

UCUCCAU

UCAAAUA

UCUCCAU

CAAATG






NM_
 919-
ususugu(Uhd)CfaA
1867
VPusAfsgucUfgAfGfca
2201
UUUGUUCA
2535
AAGUCUGA
2869
UUUGUUC
3203
UAGUCUGA
3537
GTTTTGTTC
3871


009125.2
941
fAfUfgcucagacsusa

uuUfgAfacaaasasc

AAUGCUCA

GCAUUUGA

AAAUGCU

GCAUUUGA

AAATGCTC









GACUU

ACAAAAC

CAGACUA

ACAAAAC

AGACTT






NM_
 921-
usgsuuc(Ahd)AfaU
1868
VPusGfsaagUfcUfGfag
2202
UGUUCAAA
2536
CGAAGUCU
2870
UGUUCAA
3204
UGAAGUCU
3538
TTTGTTCA
3872


009125.2
943
fGfCfucagacuuscsa

caUfuUfgaacasasa

UGCUCAGA

GAGCAUUU

AUGCUCA

GAGCAUUU

AATGCTCA









CUUCG

GAACAAA

GACUUCA

GAACAAA

GACTTCG






NM_
 922-
gsusuca(Ahd)AfuG
1869
VPusCfsgaaGfuCfUfga
2203
GUUCAAAU
2537
ACGAAGUC
2871
GUUCAAA
3205
UCGAAGUC
3539
TTGTTCAA
3873


009125.2
944
fCfUfcagacuucsgsa

gcAfuUfugaacsasa

GCUCAGAC

UGAGCAUU

UGCUCAG

UGAGCAUU

ATGCTCAG









UUCGU

UGAACAA

ACUUCGA

UGAACAA

ACTTCGT






NM_
 923-
ususcaa(Ahd)UfgCf
1870
VPusAfscgaAfgUfCfug
2204
UUCAAAUG
2538
AACGAAGU
2872
UUCAAAU
3206
UACGAAGU
3540
TGTTCAAA
3874


009125.2
945
UfCfagacuucgsusa

agCfaUfuugaascsa

CUCAGACU

CUGAGCAU

GCUCAGA

CUGAGCAU

TGCTCAGA









UCGUU

UUGAACA

CUUCGUA

UUGAACA

CTTCGTT






NM_
 924-
uscsaaa(Uhd)GfcUf
1871
VPusAfsacgAfaGfUfcu
2205
UCAAAUGC
2539
CAACGAAG
2873
UCAAAUG
3207
UAACGAAG
3541
GTTCAAAT
3875


009125.2
946
CfAfgacuucgususa

gaGfcAfuuugasasc

UCAGACUU

UCUGAGCA

CUCAGAC

UCUGAGCA

GCTCAGAC









CGUUG

UUUGAAC

UUCGUUA

UUUGAAC

TTCGTTG






NM_
 925-
csasaau(Ghd)CfuCf
1872
VPusCfsaacGfaAfGfuc
2206
CAAAUGCU
2540
ACAACGAA
2874
CAAAUGC
3208
UCAACGAA
3542
TTCAAATG
3876


009125.2
947
AfGfacuucguusgsa

ugAfgCfauuugsasa

CAGACUUC

GUCUGAGC

UCAGACU

GUCUGAGC

CTCAGACT









GUUGU

AUUUGAA

UCGUUGA

AUUUGAA

TCGTTGT






NM_
 926-
asasaug(Chd)UfcAf
1873
VPusAfscaaCfgAfAfgu
2207
AAAUGCUC
2541
CACAACGA
2875
AAAUGCU
3209
UACAACGA
3543
TCAAATGC
3877


009125.2
948
GfAfcuucguugsusa

cuGfaGfcauuusgsa

AGACUUCG

AGUCUGAG

CAGACUU

AGUCUGAG

TCAGACTT









UUGUG

CAUUUGA

CGUUGUA

CAUUUGA

CGTTGTG






NM_
 927-
asasugc(Uhd)CfaGf
1874
VPusCfsacaAfcGfAfag
2208
AAUGCUCA
2542
CCACAACG
2876
AAUGCUC
3210
UCACAACG
3544
CAAATGCT
3878


009125.2
949
AfCfuucguugusgsa

ucUfgAfgcauususg

GACUUCGU

AAGUCUGA

AGACUUC

AAGUCUGA

CAGACTTC









UGUGG

GCAUUUG

GUUGUGA

GCAUUUG

GTTGTGG






NM_
1131-
ascsaug(Uhd)UfuCf
1875
VPusUfsucaUfuAfUfau
2209
ACAUGUUU
2543
CUUCAUUA
2877
ACAUGUU
3211
UUUCAUUA
3545
TGACATGT
3879


009125.2
1153
GfAfuauaaugasasa

cgAfaAfcauguscsa

CGAUAUAA

UAUCGAAA

UCGAUAU

UAUCGAAA

TTCGATAT









UGAAG

CAUGUCA

AAUGAAA

CAUGUCA

AATGAAG






NM_
1186-
ususuau(Chd)UfuC
1876
VPusGfsaacCfgUfAfua
2210
UUUAUCUU
2544
GGAACCGU
2878
UUUAUCU
3212
UGAACCGU
3546
AGTTTATC
3880


009125.2
1208
fAfUfauacgguuscsa

ugAfaGfauaaascsu

CAUAUACG

AUAUGAAG

UCAUAUA

AUAUGAAG

TTCATATA









GUUCC

AUAAACU

CGGUUCA

AUAAACU

CGGTTCC






NM_
1214-
asgsgga(Chd)AfaCf
1877
VPusAfsauuCfuUfCfug
2211
AGGGACAA
2545
AAAUUCUU
2879
AGGGACA
3213
UAAUUCUU
3547
AAAGGGAC
3881


009125.2
1236
UfCfagaagaaususa

agUfuGfucccususu

CUCAGAAG

CUGAGUUG

ACUCAGA

CUGAGUUG

AACTCAGA









AAUUU

UCCCUUU

AGAAUUA

UCCCUUU

AGAATTT






NM_
1215-
gsgsgac(Ahd)AfcU
1878
VPusAfsaauUfcUfUfcu
2212
GGGACAAC
2546
GAAAUUCU
2880
GGGACAA
3214
UAAAUUCU
3548
AAGGGACA
3882


009125.2
1237
fCfAfgaagaauususa

gaGfuUfgucccsusu

UCAGAAGA

UCUGAGUU

CUCAGAA

UCUGAGUU

ACTCAGAA









AUUUC

GUCCCUU

GAAUUUA

GUCCCUU

GAATTTC






NM_
1216-
gsgsaca(Ahd)CfuCf
1879
VPusGfsaaaUfuCfUfuc
2213
GGACAACU
2547
AGAAAUUC
2881
GGACAAC
3215
UGAAAUUC
3549
AGGGACAA
3883


009125.2
1238
AfGfaagaauuuscsa

ugAfgUfuguccscsu

CAGAAGAA

UUCUGAGU

UCAGAAG

UUCUGAGU

CTCAGAAG









UUUCU

UGUCCCU

AAUUUCA

UGUCCCU

AATTTCT






NM_
1217-
gsascaa(Chd)UfcAf
1880
VPusAfsgaaAfuUfCfuu
2214
GACAACUC
2548
AAGAAAUU
2882
GACAACU
3216
UAGAAAUU
3550
GGGACAAC
3884


009125.2
1239
GfAfagaauuucsusa

cuGfaGfuuguescsc

AGAAGAAU

CUUCUGAG

CAGAAGA

CUUCUGAG

TCAGAAGA









UUCUU

UUGUCCC

AUUUCUA

UUGUCCC

ATTTCTT






NM_
1516-
usgscuu(Chd)UfcA
1881
VPusAfsaucUfgAfAfgu
2215
UGCUUCUC
2549
AAAUCUGA
2883
UGCUUCU
3217
UAAUCUGA
3551
GCTGCTTC
3885


009125.2
1538
fCfAfcuucagaususa

guGfaGfaagcasgsc

ACACUUCA

AGUGUGAG

CACACUU

AGUGUGAG

TCACACTT









GAUUU

AAGCAGC

CAGAUUA

AAGCAGC

CAGATTT






NM_
1517-
gscsuuc(Uhd)CfaCf
1882
VPusAfsaauCfuGfAfag
2216
GCUUCUCA
2550
GAAAUCUG
2884
GCUUCUC
3218
UAAAUCUG
3552
CTGCTTCTC
3886


009125.2
1539
AfCfuucagauususa

ugUfgAfgaagcsasg

CACUUCAG

AAGUGUGA

ACACUUC

AAGUGUGA

ACACTTCA









AUUUC

GAAGCAG

AGAUUUA

GAAGCAG

GATTTC






NM_
1518-
csusucu(Chd)AfcAf
1883
VPusGfsaaaUfcUfGfaa
2217
CUUCUCAC
2551
UGAAAUCU
2885
CUUCUCA
3219
UGAAAUCU
3553
TGCTTCTC
3887


009125.2
1540
CfUfucagauuuscsa

guGfuGfagaagscsa

ACUUCAGA

GAAGUGUG

CACUUCA

GAAGUGUG

ACACTTCA









UUUCA

AGAAGCA

GAUUUCA

AGAAGCA

GATTTCA






NM_
1518-
csusucu(Chd)AfcAf
1884
VPusGfsaaaUfcUfGfaa
2218
CUUCUCAC
2552
UGAAAUCU
2886
CUUCUCA
3220
UGAAAUCU
3554
CACTTCTC
3888


009125.2
1540
CfUfucagauuuscsa

guGfuGfagaagscsa

ACUUCAGA

GAAGUGUG

CACUUCA

GAAGUGUG

ACACTTCA









UUUCA

AGAAGCA

GAUUUCA

AGAAGCA

GATTTCA






NM_
1519-
ususcuc(Ahd)CfaCf
1885
VPusUfsgaaAfuCfUfga
2219
UUCUCACA
2553
UUGAAAUC
2887
UUCUCAC
3221
UUGAAAUC
3555
GCTTCTCA
3889


009125.2
1541
UfUfcagauuucsasa

agUfgUfgagaasgsc

CUUCAGAU

UGAAGUGU

ACUUCAG

UGAAGUGU

CACTTCAG









UUCAA

GAGAAGC

AUUUCAA

GAGAAGC

ATTTCAA






NM_
1519-
ususcuc(Ahd)CfaCf
1886
VPusUfsgaaAfuCfUfga
2220
UUCUCACA
2554
UUGAAATC
2888
UUCUCAC
3222
UUGAAAUC
3556
ACTTCTCA
3890


009125.2
1541
UfUfcagauuucsasa

agUfgUfgagaasgsc

CUUCAGAU

UGAAGUGU

ACUUCAG

UGAAGUGU

CACTTCAG









UUCAA

GAGAAGC

AUUUCAA

GAGAAGC

ATTTCAA






NM_
1553-
uscsaga(Chd)CfaAf
1887
VPusUfsuaaCfuAfCfuc
2221
UCAGACCA
2555
AUUAACUA
2889
UCAGACC
3223
UUUAACUA
3557
GCTCAGAC
3891


009125.2
1575
AfGfaguaguuasasa

uuUfgGfucugasgsc

AAGAGUAG

CUCUUUGG

AAAGAGU

CUCUUUGG

CAAAGAGT









UUAAU

UCUGAGC

AGUUAAA

UCUGAGC

AGTTAAT






NM_
1553-
uscsaga(Chd)CfaAf
1888
VPusUfsuaaCfuAfCfuc
2222
UCAGACCA
2556
AUUAACTA
2890
UCAGACC
3224
UUUAACUA
3558
GTTCAGAC
3892


009125.2
1575
AfGfaguaguuasasa

uuUfgGfucugasgsc

AAGAGUAG

CUCUUUGG

AAAGAGU

CUCUUUGG

CAAAGAGT









UUAAU

UCUGAGC

AGUUAAA

UCUGAGC

AGTTAAT






NM_
1554-
csasgac(Chd)AfaAf
1889
VPusAfsuuaAfcUfAfcu
2223
CAGACCAA
2557
CAUUAACU
2891
CAGACCA
3225
UAUUAACU
3559
CTCAGACC
3893


009125.2
1576
GfAfguaguuaasusa

cuUfuGfgucugsasg

AGAGUAGU

ACUCUUUG

AAGAGUA

ACUCUUUG

AAAGAGTA









UAAUG

GUCUGAG

GUUAAUA

GUCUGAG

GTTAATG






NM_
1554-
csasgac(Chd)AfaAf
1890
VPusAfsuuaAfcUfAfcu
2224
CAGACCAA
2558
AAUUAACU
2892
CAGACCA
3226
UAUUAACU
3560
TTCAGACC
3894


009125.2
1576
GfAfguaguuaasusa

cuUfuGfgucugsasg

AGAGUAGU

ACUCUUUG

AAGAGUA

ACUCUUUG

AAAGAGTA









UAAUU

GUCUGAG

GUUAAUA

GUCUGAG

GTTAATG






NM_
1872-
usasgaa(Uhd)UfuG
1891
VPusAfsuugUfgGfGfa
2225
UAGAAUUU
2559
GAUUGUGG
2893
UAGAAUU
3227
UAUUGUGG
3561
CCTAGAAT
3895


009125.2
1894
fUfAfucccacaasusa

uacAfaAfuucuasgsg

GUAUCCCA

GAUACAAA

UGUAUCC

GAUACAAA

TTGTATCC









CAAUC

UUCUAGG

CACAAUA

UUCUAGG

CACAATC






NM_
1873-
asgsaau(Uhd)UfgU
1892
VPusGfsauuGfuGfGfga
2226
AGAAUUUG
2560
GGAUUGUG
2894
AGAAUUU
3228
UGAUUGUG
3562
CTAGAATT
3896


009125.2
1895
fAfUfcccacaauscsa

uaCfaAfauucusasg

UAUCCCAC

GGAUACAA

GUAUCCC

GGAUACAA

TGTATCCC









AAUCC

AUUCUAG

ACAAUCA

AUUCUAG

ACAATCC






NM_
1874-
gsasauu(Uhd)GfuA
1893
VPusGfsgauUfgUfGfg
2227
GAAUUUGU
2561
GGGAUUGU
2895
GAAUUUG
3229
UGGAUUGU
3563
TAGAATTT
3897


009125.2
1896
fUfCfccacaaucscsa

gauAfcAfaauucsusa

AUCCCACA

GGGAUACA

UAUCCCA

GGGAUACA

GTATCCCA









AUCCC

AAUUCUA

CAAUCCA

AAUUCUA

CAATCCC






NM_
2238-
gsusgaa(Ahd)CfaUf
1894
VPusAfsaagCfuAfGfgu
2228
GUGAAACA
2562
AAAAGCUA
2896
GUGAAAC
3230
UAAAGCUA
3564
AAGTGAAA
3898


009125.2
2260
CfAfccuagcuususa

gaUfgUfuucacsusu

UCACCUAG

GGUGAUGU

AUCACCU

GGUGAUGU

CATCACCT









CUUUU

UUCACUU

AGCUUUA

UUCACUU

AGCTTTT






NM_
2239-
usgsaaa(Chd)AfuCf
1895
VPusAfsaaaGfcUfAfgg
2229
UGAAACAU
2563
GAAAAGCU
2897
UGAAACA
3231
UAAAAGCU
3565
AGTGAAAC
3899


009125.2
2261
AfCfcuagcuuususa

ugAfuGfuuucascsu

CACCUAGC

AGGUGAUG

UCACCUA

AGGUGAUG

ATCACCTA









UUUUC

UUUCACU

GCUUUUA

UUUCACU

GCTTTTC






NM_
2240-
gsasaac(Ahd)UfcAf
1896
VPusGfsaaaAfgCfUfag
2230
GAAACAUC
2564
UGAAAAGC
2898
GAAACAU
3232
UGAAAAGC
3566
GTGAAACA
3900


009125.2
2262
CfCfuagcuuuuscsa

guGfaUfguuucsasc

ACCUAGCU

UAGGUGAU

CACCUAG

UAGGUGAU

TCACCTAG









UUUCA

GUUUCAC

CUUUUCA

GUUUCAC

CTTTTCA






NM_
2241-
asasaca(Uhd)CfaCf
1897
VPusUfsgaaAfaGfCfua
2231
AAACAUCA
2565
UUGAAAAG
2899
AAACAUC
3233
UUGAAAAG
3567
TGAAACAT
3901


009125.2
2263
CfUfagcuuuucsasa

ggUfgAfuguuuscsa

CCUAGCUU

CUAGGUGA

ACCUAGC

CUAGGUGA

CACCTAGC









UUCAA

UGUUUCA

UUUUCAA

UGUUUCA

TTTTCAA






NM_
2242-
asascau(Chd)AfcCf
1898
VPusUfsugaAfaAfGfcu
2232
AACAUCAC
2566
UUUGAAAA
2900
AACAUCA
3234
UUUGAAAA
3568
GAAACATC
3902


009125.2
2264
UfAfgcuuuucasasa

agGfuGfauguususc

CUAGCUUU

GCUAGGUG

CCUAGCU

GCUAGGUG

ACCTAGCT









UCAAA

AUGUUUC

UUUCAAA

AUGUUUC

TTTCAAA






NM_
2243-
ascsauc(Ahd)CfcUf
1899
VPusUfsuugAfaAfAfgc
2233
ACAUCACC
2567
UUUUGAAA
2901
ACAUCAC
3235
UUUUGAAA
3569
AAACATCA
3903


009125.2
2265
AfGfcuuuucaasasa

uaGfgUfgaugususu

UAGCUUUU

AGCUAGGU

CUAGCUU

AGCUAGGU

CCTAGCTT









CAAAA

GAUGUUU

UUCAAAA

GAUGUUU

TTCAAAA






NM_
2244-
csasuca(Chd)CfuAf
1900
VPusUfsuuuGfaAfAfag
2234
CAUCACCU
2568
CUUUUGAA
2902
CAUCACC
3236
UUUUUGAA
3570
AACATCAC
3904


009125.2
2266
GfCfuuuucaaasasa

cuAfgGfugaugsusu

AGCUUUUC

AAGCUAGG

UAGCUUU

AAGCUAGG

CTAGCTTTT









AAAAG

UGAUGUU

UCAAAAA

UGAUGUU

CAAAAG






NM_
2245-
asuscac(Chd)UfaGf
1901
VPusCfsuuuUfgAfAfaa
2235
AUCACCUA
2569
GCUUUUGA
2903
AUCACCU
3237
UCUUUUGA
3571
ACATCACC
3905


009125.2
2267
CfUfuuucaaaasgsa

gcUfaGfgugausgsu

GCUUUUCA

AAAGCUAG

AGCUUUU

AAAGCUAG

TAGCTTTTC









AAAGC

GUGAUGU

CAAAAGA

GUGAUGU

AAAAGC






NM_
2246-
uscsacc(Uhd)AfgCf
1902
VPusGfscuuUfuGfAfaa
2236
UCACCUAG
2570
AGCUUUUG
2904
UCACCUA
3238
UGCUUUUG
3572
CATCACCT
3906


009125.2
2268
UfUfuucaaaagscsa

agCfuAfggugasusg

CUUUUCAA

AAAAGCUA

GCUUUUC

AAAAGCUA

AGCTTTTC









AAGCU

GGUGAUG

AAAAGCA

GGUGAUG

AAAAGCT






NM_
2247-
csasccu(Ahd)GfcUf
1903
VPusAfsgcuUfuUfGfaa
2237
CACCUAGC
2571
CAGCUUUU
2905
CACCUAG
3239
UAGCUUUU
3573
ATCACCTA
3907


009125.2
2269
UfUfucaaaagcsusa

aaGfcUfaggugsasu

UUUUCAAA

GAAAAGCU

CUUUUCA

GAAAAGCU

GCTTTTCA









AGCUG

AGGUGAU

AAAGCUA

AGGUGAU

AAAGCTG






NM_
2248-
ascscua(Ghd)CfuUf
1904
VPusCfsagcUfuUfUfga
2238
ACCUAGCU
2572
UCAGCUUU
2906
ACCUAGC
3240
UCAGCUUU
3574
TCACCTAG
3908


009125.2
2270
UfUfcaaaagcusgsa

aaAfgCfuaggusgsa

UUUCAAAA

UGAAAAGC

UUUUCAA

UGAAAAGC

CTTTTCAA









GCUGA

UAGGUGA

AAGCUGA

UAGGUGA

AAGCTGA






NM_
2249-
cscsuag(Chd)UfuUf
1905
VPusUfscagCfuUfUfug
2239
CCUAGCUU
2573
GUCAGCUU
2907
CCUAGCU
3241
UUCAGCUU
3575
CACCTAGC
3909


009125.2
2271
UfCfaaaagcugsasa

aaAfaGfcuaggsusg

UUCAAAAG

UUGAAAAG

UUUCAAA

UUGAAAAG

TTTTCAAA









CUGAC

CUAGGUG

AGCUGAA

CUAGGUG

AGCTGAC






NM_
2364-
csasucu(Ghd)AfaUf
1906
VPusUfsugaUfcCfAfua
2240
CAUCUGAA
2574
GUUGAUCC
2908
CAUCUGA
3242
UUUGAUCC
3576
TACATCTG
3910


009125.2
2386
CfUfauggaucasasa

gaUfuCfagaugsusa

UCUAUGGA

AUAGAUUC

AUCUAUG

AUAGAUUC

AATCTATG









UCAAC

AGAUGUA

GAUCAAA

AGAUGUA

GATCAAC






NM_
2365-
asuscug(Ahd)AfuC
1907
VPusGfsuugAfuCfCfau
2241
AUCUGAAU
2575
AGUUGAUC
2909
AUCUGAA
3243
UGUUGAUC
3577
ACATCTGA
3911


009125.2
2387
fUfAfuggaucaascsa

agAfuUfcagausgsu

CUAUGGAU

CAUAGAUU

UCUAUGG

CAUAGAUU

ATCTATGG









CAACU

CAGAUGU

AUCAACA

CAGAUGU

ATCAACT






NM_
2366-
uscsuga(Ahd)UfcU
1908
VPusAfsguuGfaUfCfca
2242
UCUGAAUC
2576
UAGUUGAU
2910
UCUGAAU
3244
UAGUUGAU
3578
CATCTGAA
3912


009125.2
2388
fAfUfggaucaacsusa

uaGfaUfucagasusg

UAUGGAUC

CCAUAGAU

CUAUGGA

CCAUAGAU

TCTATGGA









AACUA

UCAGAUG

UCAACUA

UCAGAUG

TCAACTA






NM_
2366-
uscsuga(Ahd)UfcU
1909
VPusAfsguuGfaUfCfca
2243
UCUGAAUC
2577
UAGUUGAU
2911
UCUGAAU
3245
UAGUUGAU
3579
CTTCTGAA
3913


009125.2
2388
fAfUfggaucaacsusa

uaGfaUfucagasusg

UAUGGAUC

CCAUAGAU

CUAUGGA

CCAUAGAU

TCTATGGA









AACUA

UCAGAUG

UCAACUA

UCAGAUG

TCAACTA






NM_
2367-
csusgaa(Uhd)CfuAf
1910
VPusUfsaguUfgAfUfcc
2244
CUGAAUCU
2578
GUAGUUGA
2912
CUGAAUC
3246
UUAGUUGA
3580
ATCTGAAT
3914


009125.2
2389
UfGfgaucaacusasa

auAfgAfuucagsasu

AUGGAUCA

UCCAUAGA

UAUGGAU

UCCAUAGA

CTATGGAT









ACUAC

UUCAGAU

CAACUAA

UUCAGAU

CAACTAC






NM_
2367-
csusgaa(Uhd)CfuAf
1911
VPusUfsaguUfgAfUfcc
2245
CUGAAUCU
2579
AUAGUUGA
2913
CUGAAUC
3247
UUAGUUGA
3581
TTCTGAAT
3915


009125.2
2389
UfGfgaucaacusasa

auAfgAfuucagsasu

AUGGAUCA

UCCAUAGA

UAUGGAU

UCCAUAGA

CTATGGAT









ACUAU

UUCAGAU

CAACUAA

UUCAGAU

CAACTAC






NM_
2371-
asuscua(Uhd)GfgA
1912
VPusUfsuagUfaGfUfug
2246
AUCUAUGG
2580
CUUAGUAG
2914
AUCUAUG
3248
UUUAGUAG
3582
GAATCTAT
3916


009125.2
2393
fUfCfaacuacuasasa

auCfcAfuagaususc

AUCAACUA

UUGAUCCA

GAUCAAC

UUGAUCCA

GGATCAAC









CUAAG

UAGAUUC

UACUAAA

UAGAUUC

TACTAAG






NM_
2372-
uscsuau(Ghd)GfaU
1913
VPusCfsuuaGfuAfGfuu
2247
UCUAUGGA
2581
GCUUAGUA
2915
UCUAUGG
3249
UCUUAGUA
3583
AATCTATG
3917


009125.2
2394
fCfAfacuacuaasgsa

gaUfcCfauagasusu

UCAACUAC

GUUGAUCC

AUCAACU

GUUGAUCC

GATCAACT









UAAGC

AUAGAUU

ACUAAGA

AUAGAUU

ACTAAGC






NM_
2373-
csusaug(Ghd)AfuC
1914
VPusGfscuuAfgUfAfg
2248
CUAUGGAU
2582
UGCUUAGU
2916
CUAUGGA
3250
UGCUUAGU
3584
ATCTATGG
3918


009125.2
2395
fAfAfcuacuaagscsa

uugAfuCfcauagsasu

CAACUACU

AGUUGAUC

UCAACUA

AGUUGAUC

ATCAACTA









AAGCA

CAUAGAU

CUAAGCA

CAUAGAU

CTAAGCA






NM_
2374-
usasugg(Ahd)UfcA
1915
VPusUfsgcuUfaGfUfag
2249
UAUGGAUC
2583
UUGCUUAG
2917
UAUGGAU
3251
UUGCUUAG
3585
TCTATGGA
3919


009125.2
2396
fAfCfuacuaagcsasa

uuGfaUfccauasgsa

AACUACUA

UAGUUGAU

CAACUAC

UAGUUGAU

TCAACTAC









AGCAA

CCAUAGA

UAAGCAA

CCAUAGA

TAAGCAA






NM_
2375-
asusgga(Uhd)CfaAf
1916
VPusUfsugcUfuAfGfua
2250
AUGGAUCA
2584
UUUGCUUA
2918
AUGGAUC
3252
UUUGCUUA
3586
CTATGGAT
3920


009125.2
2397
CfUfacuaagcasasa

guUfgAfuccausasg

ACUACUAA

GUAGUUGA

AACUACU

GUAGUUGA

CAACTACT









GCAAA

UCCAUAG

AAGCAAA

UCCAUAG

AAGCAAA






NM_
2376-
usgsgau(Chd)AfaCf
1917
VPusUfsuugCfuUfAfg
2251
UGGAUCAA
2585
UUUUGCUU
2919
UGGAUCA
3253
UUUUGCUU
3587
TATGGATC
3921


009125.2
2398
UfAfcuaagcaasasa

uagUfuGfauccasusa

CUACUAAG

AGUAGUUG

ACUACUA

AGUAGUUG

AACTACTA









CAAAA

AUCCAUA

AGCAAAA

AUCCAUA

AGCAAAA






NM_
2377-
gsgsauc(Ahd)AfcU
1918
VPusUfsuuuGfcUfUfag
2252
GGAUCAAC
2586
UUUUUGCU
2920
GGAUCAA
3254
UUUUUGCU
3588
ATGGATCA
3922


009125.2
2399
fAfCfuaagcaaasasa

uaGfuUfgauccsasu

UACUAAGC

UAGUAGUU

CUACUAA

UAGUAGUU

ACTACTAA









AAAAA

GAUCCAU

GCAAAAA

GAUCCAU

GCAAAAA






NM_
2378-
gsasuca(Ahd)CfuAf
1919
VPusUfsuuuUfgCfUfua
2253
GAUCAACU
2587
AUUUUUGC
2921
GAUCAAC
3255
UUUUUUGC
3589
TGGATCAA
3923


009125.2
2400
CfUfaagcaaaasasa

guAfgUfugaucscsa

ACUAAGCA

UUAGUAGU

UACUAAG

UUAGUAGU

CTACTAAG









AAAAU

UGAUCCA

CAAAAAA

UGAUCCA

CAAAAAT






NM_
2403-
asasgga(Ghd)AfaAf
1920
VPusAfsucuCfgUfGfac
2254
AAGGAGAA
2588
AAUCUCGU
2922
AAGGAGA
3256
UAUCUCGU
3590
AGAAGGAG
3924


009125.2
2425
AfGfucacgagasusa

uuUfuCfuccuuscsu

AAGUCACG

GACUUUUC

AAAGUCA

GACUUUUC

AAAAGTCA









AGAUU

UCCUUCU

CGAGAUA

UCCUUCU

CGAGATT






NM_
2695-
gsgsagu(Uhd)CfaA
1921
VPusAfsagaAfcGfAfgg
2255
GGAGUUCA
2589
AAAGAACG
2923
GGAGUUC
3257
UAAGAACG
3591
AAGGAGTT
3925


009125.2
2717
fCfCfcucguucususa

guUfgAfacuccsusu

ACCCUCGU

AGGGUUGA

AACCCUC

AGGGUUGA

CAACCCTC









UCUUU

ACUCCUU

GUUCUUA

ACUCCUU

GTTCTTT






NM_
2698-
gsusuca(Ahd)CfcCf
1922
VPusAfsgaaAfgAfAfcg
2256
GUUCAACC
2590
GAGAAAGA
2924
GUUCAAC
3258
UAGAAAGA
3592
GAGTTCAA
3926


009125.2
2720
UfCfguucuuucsusa

agGfgUfugaacsusc

CUCGUUCU

ACGAGGGU

CCUCGUU

ACGAGGGU

CCCTCGTT









UUCUC

UGAACUC

CUUUCUA

UGAACUC

CTTTCTC






NM_
2699-
ususcaa(Chd)CfcUf
1923
VPusGfsagaAfaGfAfac
2257
UUCAACCC
2591
AGAGAAAG
2925
UUCAACC
3259
UGAGAAAG
3593
AGTTCAAC
3927


009125.2
2721
CfGfuucuuucuscsa

gaGfgGfuugaascsu

UCGUUCUU

AACGAGGG

CUCGUUC

AACGAGGG

CCTCGTTCT









UCUCU

UUGAACU

UUUCUCA

UUGAACU

TTCTCT






NM_
2700-
uscsaac(Chd)CfuCf
1924
VPusAfsgagAfaAfGfaa
2258
UCAACCCU
2592
GAGAGAAA
2926
UCAACCC
3260
UAGAGAAA
3594
GTTCAACC
3928


009125.2
2722
GfUfucuuucucsusa

cgAfgGfguugasasc

CGUUCUUU

GAACGAGG

UCGUUCU

GAACGAGG

CTCGTTCTT









CUCUC

GUUGAAC

UUCUCUA

GUUGAAC

TCTCTC






NM_
2701-
csasacc(Chd)UfcGf
1925
VPusGfsagaGfaAfAfga
2259
CAACCCUC
2593
UGAGAGAA
2927
CAACCCU
3261
UGAGAGAA
3595
TTCAACCC
3929


009125.2
2723
UfUfcuuucucuscsa

acGfaGfgguugsasa

GUUCUUUC

AGAACGAG

CGUUCUU

AGAACGAG

TCGTTCTTT









UCUCA

GGUUGAA

UCUCUCA

GGUUGAA

CTCTCA






NM_
2702-
asasccc(Uhd)CfgUf
1926
VPusUfsgagAfgAfAfag
2260
AACCCUCG
2594
CUGAGAGA
2928
AACCCUC
3262
UUGAGAGA
3596
TCAACCCT
3930


009125.2
2724
UfCfuuucucucsasa

aaCfgAfggguusgsa

UUCUUUCU

AAGAACGA

GUUCUUU

AAGAACGA

CGTTCTTTC









CUCAG

GGGUUGA

CUCUCAA

GGGUUGA

TCTCAG






NM_
2708-
csgsuuc(Uhd)UfuC
1927
VPusUfsuugGfcUfGfag
2261
CGUUCUUU
2595
CUUUGGCU
2929
CGUUCUU
3263
UUUUGGCU
3597
CTCGTTCTT
3931


009125.2
2730
fUfCfucagccaasasa

agAfaAfgaacgsasg

CUCUCAGC

GAGAGAAA

UCUCUCA

GAGAGAAA

TCTCTCAG









CAAAG

GAACGAG

GCCAAAA

GAACGAG

CCAAAG






NM_
2709-
gsusucu(Uhd)UfcU
1928
VPusCfsuuuGfgCfUfga
2262
GUUCUUUC
2596
GCUUUGGC
2930
GUUCUUU
3264
UCUUUGGC
3598
TCGTTCTTT
3932


009125.2
2731
fCfUfcagccaaasgsa

gaGfaAfagaacsgsa

UCUCAGCC

UGAGAGAA

CUCUCAG

UGAGAGAA

CTCTCAGC









AAAGC

AGAACGA

CCAAAGA

AGAACGA

CAAAGC






NM_
3143-
asgsucc(Uhd)GfuCf
1929
VPusUfsuacCfuUfGfua
2263
AGUCCUGU
2597
AUUACCUU
2931
AGUCCUG
3265
UUUACCUU
3599
ACAGTCCT
3933


009125.2
3165
AfUfacaagguasasa

ugAfcAfggacusgsu

CAUACAAG

GUAUGACA

UCAUACA

GUAUGACA

GTCATACA









GUAAU

GGACUGU

AGGUAAA

GGACUGU

AGGTAAT






NM_
3144-
gsusccu(Ghd)UfcA
1930
VPusAfsuuaCfcUfUfgu
2264
GUCCUGUC
2598
CAUUACCU
2932
GUCCUGU
3266
UAUUACCU
3600
CAGTCCTG
3934


009125.2
3166
fUfAfcaagguaasusa

auGfaCfaggacsusg

AUACAAGG

UGUAUGAC

CAUACAA

UGUAUGAC

TCATACAA









UAAUG

AGGACUG

GGUAAUA

AGGACUG

GGTAATG






NM_
3148-
usgsuca(Uhd)AfcA
1931
VPusUfsggcAfuUfAfcc
2265
UGUCAUAC
2599
CUGGCAUU
2933
UGUCAUA
3267
UUGGCAUU
3601
CCTGTCAT
3935


009125.2
3170
fAfGfguaaugccsasa

uuGfuAfugacasgsg

AAGGUAAU

ACCUUGUA

CAAGGUA

ACCUUGUA

ACAAGGTA









GCCAG

UGACAGG

AUGCCAA

UGACAGG

ATGCCAG






NM_
3149-
gsuscau(Ahd)CfaAf
1932
VPusCfsuggCfaUfUfac
2266
GUCAUACA
2600
CCUGGCAU
2934
GUCAUAC
3268
UCUGGCAU
3602
CTGTCATA
3936


009125.2
3171
GfGfuaaugccasgsa

cuUfgUfaugacsasg

AGGUAAUG

UACCUUGU

AAGGUAA

UACCUUGU

CAAGGTAA









CCAGG

AUGACAG

UGCCAGA

AUGACAG

TGCCAGG






NM_
3303-
uscsuac(Uhd)UfuG
1933
VPusGfsgugGfaAfAfu
2267
UCUACUUU
2601
CGGUGGAA
2935
UCUACUU
3269
UGGUGGAA
3603
TTTCTACTT
3937


009125.2
3325
fCfCfauuuccacscsa

ggcAfaAfguagasasa

GCCAUUUC

AUGGCAAA

UGCCAUU

AUGGCAAA

TGCCATTT









CACCG

GUAGAAA

UCCACCA

GUAGAAA

CCACCG






NM_
3950-
asasgca(Chd)AfgAf
1934
VPusAfsguuCfuAfGfu
2268
AAGCACAG
2602
AAGUUCUA
2936
AAGCACA
3270
UAGUUCUA
3604
GGAAGCAC
3938


009125.2
3972
AfAfacuagaacsusa

uuuCfuGfugcuuscsc

AAAACUAG

GUUUUCUG

GAAAACU

GUUUUCUG

AGAAAACT









AACUU

UGCUUCC

AGAACUA

UGCUUCC

AGAACTT






NM_
3952-
gscsaca(Ghd)AfaAf
1935
VPusGfsaagUfuCfUfag
2269
GCACAGAA
2603
UGAAGUUC
2937
GCACAGA
3271
UGAAGUUC
3605
AAGCACAG
3939


009125.2
3974
AfCfuagaacuuscsa

uuUfuCfugugcsusu

AACUAGAA

UAGUUUUC

AAACUAG

UAGUUUUC

AAAACTAG









CUUCA

UGUGCUU

AACUUCA

UGUGCUU

AACTTCA






NM_
3954-
ascsaga(Ahd)AfaCf
1936
VPusAfsugaAfgUfUfcu
2270
ACAGAAAA
2604
AAUGAAGU
2938
ACAGAAA
3272
UAUGAAGU
3606
GCACAGAA
3940


009125.2
3976
UfAfgaacuucasusa

agUfuUfucugusgsc

CUAGAACU

UCUAGUUU

ACUAGAA

UCUAGUUU

AACTAGAA









UCAUU

UCUGUGC

CUUCAUA

UCUGUGC

CTTCATT






NM_
3955-
csasgaa(Ahd)AfcUf
1937
VPusAfsaugAfaGfUfuc
2271
CAGAAAAC
2605
CAAUGAAG
2939
CAGAAAA
3273
UAAUGAAG
3607
CACAGAAA
3941


009125.2
3977
AfGfaacuucaususa

uaGfuUfuucugsusg

UAGAACUU

UUCUAGUU

CUAGAAC

UUCUAGUU

ACTAGAAC









CAUUG

UUCUGUG

UUCAUUA

UUCUGUG

TTCATTG






NM_
4134-
usgscuu(Ghd)CfuG
1938
VPusAfscuuCfcAfGfuu
2272
UGCUUGCU
2606
AACUUCCA
2940
UGCUUGC
3274
UACUUCCA
3608
TCTGCTTG
3942


009125.2
4156
fAfAfacuggaagsusa

ucAfgCfaagcasgsa

GAAACUGG

GUUUCAGC

UGAAACU

GUUUCAGC

CTGAAACT









AAGUU

AAGCAGA

GGAAGUA

AAGCAGA

GGAAGTT






NM_
4140-
csusgaa(Ahd)CfuGf
1939
VPusUfsaaaUfaAfCfuu
2273
CUGAAACU
2607
AUAAAUAA
2941
CUGAAAC
3275
UUAAAUAA
3609
TGCTGAAA
3943


009125.2
4162
GfAfaguuauuusasa

ccAfgUfuucagscsa

GGAAGUUA

CUUCCAGU

UGGAAGU

CUUCCAGU

CTGGAAGT









UUUAU

UUCAGCA

UAUUUAA

UUCAGCA

TATTTAT






NM_
4141-
usgsaaa(Chd)UfgGf
1940
VPusAfsuaaAfuAfAfcu
2274
UGAAACUG
2608
AAUAAAUA
2942
UGAAACU
3276
UAUAAAUA
3610
GCTGAAAC
3944


009125.2
4163
AfAfguuauuuasusa

ucCfaGfuuucasgsc

GAAGUUAU

ACUUCCAG

GGAAGUU

ACUUCCAG

TGGAAGTT









UUAUU

UUUCAGC

AUUUAUA

UUUCAGC

ATTTATT






NM_
4142-
gsasaac(Uhd)GfgAf
1941
VPusAfsauaAfaUfAfac
2275
GAAACUGG
2609
AAAUAAAU
2943
GAAACUG
3277
UAAUAAAU
3611
CTGAAACT
3945


009125.2
4164
AfGfuuauuuaususa

uuCfcAfguuucsasg

AAGUUAUU

AACUUCCA

GAAGUUA

AACUUCCA

GGAAGTTA









UAUUU

GUUUCAG

UUUAUUA

GUUUCAG

TTTATTT






NM_
4142-
gsasaac(Uhd)GfgAf
1942
VPusAfsauaAfaUfAfac
2276
GAAACUGG
2610
AAAUAAAU
2944
GAAACUG
3278
UAAUAAAU
3612
CCGAAACT
3946


009125.2
4164
AfGfuuauuuaususa

uuCfcAfguuucsasg

AAGUUAUU

AACUUCCA

GAAGUUA

AACUUCCA

GGAAGTTA









UAUUU

GUUUCAG

UUUAUUA

GUUUCAG

TTTATTT






NM_
4174-
ususgag(Ahd)GfuC
1943
VPusGfsaugUfgUfUfca
2277
UUGAGAGU
2611
UGAUGUGU
2945
UUGAGAG
3279
UGAUGUGU
3613
CCTTGAGA
3947


009125.2
4196
fAfUfgaacacauscsa

ugAfcUfcucaasgsg

CAUGAACA

UCAUGACU

UCAUGAA

UCAUGACU

GTCATGAA









CAUCA

CUCAAGG

CACAUCA

CUCAAGG

CACATCA






NM_
4179-
asgsuca(Uhd)GfaAf
1944
VPusUfsagcUfgAfUfgu
2278
AGUCAUGA
2612
CUAGCUGA
2946
AGUCAUG
3280
UUAGCUGA
3614
AGAGTCAT
3948


009125.2
4201
CfAfcaucagcusasa

guUfcAfugacuscsu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAG

UGACUCU

CAGCUAA

UGACUCU

CAGCTAG






NM_
4179-
asgsuca(Uhd)GfaAf
1945
VPusUfsagcUfgAfUfgu
2279
AGUCAUGA
2613
AUAGCUGA
2947
AGUCAUG
3281
UUAGCUGA
3615
AAAGTCAT
3949


009125.2
4201
CfAfcaucagcusasa

guUfcAfugacuscsu

ACACAUCA

UGUGUUCA

AACACAU

UGUGUUCA

GAACACAT









GCUAU

UGACUCU

CAGCUAA

UGACUCU

CAGCTAG






NM_
4180-
gsuscau(Ghd)AfaCf
1946
VPusCfsuagCfuGfAfug
2280
GUCAUGAA
2614
GCUAGCUG
2948
GUCAUGA
3282
UCUAGCUG
3616
GAGTCATG
3950


009125.2
4202
AfCfaucagcuasgsa

ugUfuCfaugacsusc

CACAUCAG

AUGUGUUC

ACACAUC

AUGUGUUC

AACACATC









CUAGC

AUGACUC

AGCUAGA

AUGACUC

AGCTAGC






NM_
4180-
gsuscau(Ghd)AfaCf
1947
VPusCfsuagCfuGfAfug
2281
GUCAUGAA
2615
ACUAGCTG
2949
GUCAUGA
3283
UCUAGCUG
3617
AAGTCATG
3951


009125.2
4202
AfCfaucagcuasgsa

ugUfuCfaugacsusc

CACAUCAG

AUGUGUUC

ACACAUC

AUGUGUUC

AACACATC









CUAGU

AUGACUC

AGCUAGA

AUGACUC

AGCTAGC






NM_
4183-
asusgaa(Chd)AfcAf
1948
VPusUfsugcUfaGfCfug
2282
AUGAACAC
2616
GUUGCUAG
2950
AUGAACA
3284
UUUGCUAG
3618
TCATGAAC
3952


009125.2
4205
UfCfagcuagcasasa

auGfuGfuucausgsa

AUCAGCUA

CUGAUGUG

CAUCAGC

CUGAUGUG

ACATCAGC









GCAAC

UUCAUGA

UAGCAAA

UUCAUGA

TAGCAAC






NM_
4184-
usgsaac(Ahd)CfaUf
1949
VPusGfsuugCfuAfGfcu
2283
UGAACACA
2617
UGUUGCUA
2951
UGAACAC
3285
UGUUGCUA
3619
CATGAACA
3953


009125.2
4206
CfAfgcuagcaascsa

gaUfgUfguucasusg

UCAGCUAG

GCUGAUGU

AUCAGCU

GCUGAUGU

CATCAGCT









CAACA

GUUCAUG

AGCAACA

GUUCAUG

AGCAACA






NM_
4191-
asuscag(Chd)UfaGf
1950
VPusUfsacuUfcUfGfuu
2284
AUCAGCUA
2618
UUACUUCU
2952
AUCAGCU
3286
UUACUUCU
3620
ACATCAGC
3954


009125.2
4213
CfAfacagaagusasa

gcUfaGfcugausgsu

GCAACAGA

GUUGCUAG

AGCAACA

GUUGCUAG

TAGCAACA









AGUAA

CUGAUGU

GAAGUAA

CUGAUGU

GAAGTAA






NM_
4193-
csasgcu(Ahd)GfcAf
1951
VPusGfsuuaCfuUfCfug
2285
CAGCUAGC
2619
UGUUACUU
2953
CAGCUAG
3287
UGUUACUU
3621
ATCAGCTA
3955


009125.2
4215
AfCfagaaguaascsa

uuGfcUfagcugsasu

AACAGAAG

CUGUUGCU

CAACAGA

CUGUUGCU

GCAACAGA









UAACA

AGCUGAU

AGUAACA

AGCUGAU

AGTAACA






NM_
4196-
csusagc(Ahd)AfcAf
1952
VPusCfsuugUfuAfCfuu
2286
CUAGCAAC
2620
UCUUGUUA
2954
CUAGCAA
3288
UCUUGUUA
3622
AGCTAGCA
3956


009125.2
4218
GfAfaguaacaasgsa

cuGfuUfgcuagscsu

AGAAGUAA

CUUCUGUU

CAGAAGU

CUUCUGUU

ACAGAAGT









CAAGA

GCUAGCU

AACAAGA

GCUAGCU

AACAAGA






NM_
4197-
usasgca(Ahd)CfaGf
1953
VPusUfscuuGfuUfAfcu
2287
UAGCAACA
2621
CUCUUGUU
2955
UAGCAAC
3289
UUCUUGUU
3623
GCTAGCAA
3957


009125.2
4219
AfAfguaacaagsasa

ucUfgUfugcuasgsc

GAAGUAAC

ACUUCUGU

AGAAGUA

ACUUCUGU

CAGAAGTA









AAGAG

UGCUAGC

ACAAGAA

UGCUAGC

ACAAGAG






NM_
4204-
asgsaag(Uhd)AfaCf
1954
VPusGfsaauCfaCfUfcu
2288
AGAAGUAA
2622
AGAAUCAC
2956
AGAAGUA
3290
UGAAUCAC
3624
ACAGAAGT
3958


009125.2
4226
AfAfgagugauuscsa

ugUfuAfcuucusgsu

CAAGAGUG

UCUUGUUA

ACAAGAG

UCUUGUUA

AACAAGAG









AUUCU

CUUCUGU

UGAUUCA

CUUCUGU

TGATTCT






NM_
4204-
asgsaag(Uhd)AfaCf
1955
VPusGfsaauCfaCfUfcu
2289
AGAAGUAA
2623
AGAAUCAC
2957
AGAAGUA
3291
UGAAUCAC
3625
AAAGAAGT
3959


009125.2
4226
AfAfgagugauuscsa

ugUfuAfcuucusgsu

CAAGAGUG

UCUUGUUA

ACAAGAG

UCUUGUUA

AACAAGAG









AUUCU

CUUCUGU

UGAUUCA

CUUCUGU

TGATTCT






NM_
4223-
csusugc(Uhd)GfcU
1956
VPusAfsaagCfgGfUfaa
2290
CUUGCUGC
2624
UAAAGCGG
2958
CUUGCUG
3292
UAAAGCGG
3626
TTCTTGCTG
3960


009125.2
4245
fAfUfuaccgcuususa

uaGfcAfgcaagsasa

UAUUACCG

UAAUAGCA

CUAUUAC

UAAUAGCA

CTATTACC









CUUUA

GCAAGAA

CGCUUUA

GCAAGAA

GCTTTA






NM_
4226-
gscsugc(Uhd)AfuU
1957
VPusUfsuuaAfaGfCfgg
2291
GCUGCUAU
2625
UUUUAAAG
2959
GCUGCUA
3293
UUUUAAAG
3627
TTGCTGCT
3961


009125.2
4248
fAfCfcgcuuuaasasa

uaAfuAfgcagcsasa

UACCGCUU

CGGUAAUA

UUACCGC

CGGUAAUA

ATTACCGC









UAAAA

GCAGCAA

UUUAAAA

GCAGCAA

TTTAAAA






NM_
4270-
cscscuu(Uhd)UfaCf
1958
VPusUfsgucAfaGfUfuu
2292
CCCUUUUA
2626
CUGUCAAG
2960
CCCUUUU
3294
UUGUCAAG
3628
CGCCCTTTT
3962


009125.2
4292
UfAfaacuugacsasa

agUfaAfaagggscsg

CUAAACUU

UUUAGUAA

ACUAAAC

UUUAGUAA

ACTAAACT









GACAG

AAGGGCG

UUGACAA

AAGGGCG

TGACAG






NM_
4272-
csusuuu(Ahd)CfuA
1959
VPusUfscugUfcAfAfgu
2293
CUUUUACU
2627
UUCUGUCA
2961
CUUUUAC
3295
UUCUGUCA
3629
CCCTTTTAC
3963


009125.2
4294
fAfAfcuugacagsasa

uuAfgUfaaaagsgsg

AAACUUGA

AGUUUAGU

UAAACUU

AGUUUAGU

TAAACTTG









CAGAA

AAAAGGG

GACAGAA

AAAAGGG

ACAGAA






NM_
4273-
ususuua(Chd)UfaA
1960
VPusUfsucuGfuCfAfag
2294
UUUUACUA
2628
CUUCUGUC
2962
UUUUACU
3296
UUUCUGUC
3630
CCTTTTACT
3964


009125.2
4295
fAfCfuugacagasasa

uuUfaGfuaaaasgsg

AACUUGAC

AAGUUUAG

AAACUUG

AAGUUUAG

AAACTTGA









AGAAG

UAAAAGG

ACAGAAA

UAAAAGG

CAGAAG






NM_
4276-
usascua(Ahd)AfcUf
1961
VPusAfsacuUfcUfGfuc
2295
UACUAAAC
2629
GAACUUCU
2963
UACUAAA
3297
UAACUUCU
3631
TTTACTAA
3965


009125.2
4298
UfGfacagaagususa

aaGfuUfuaguasasa

UUGACAGA

GUCAAGUU

CUUGACA

GUCAAGUU

ACTTGACA









AGUUC

UAGUAAA

GAAGUUA

UAGUAAA

GAAGTTC






NM_
4278-
csusaaa(Chd)UfuGf
1962
VPusUfsgaaCfuUfCfug
2296
CUAAACUU
2630
CUGAACUU
2964
CUAAACU
3298
UUGAACUU
3632
TACTAAAC
3966


009125.2
4300
AfCfagaaguucsasa

ucAfaGfuuuagsusa

GACAGAAG

CUGUCAAG

UGACAGA

CUGUCAAG

TTGACAGA









UUCAG

UUUAGUA

AGUUCAA

UUUAGUA

AGTTCAG






NM_
4282-
ascsuug(Ahd)CfaGf
1963
VPusUfsuacUfgAfAfcu
2297
ACUUGACA
2631
UUUACUGA
2965
ACUUGAC
3299
UUUACUGA
3633
AAACTTGA
3967


009125.2
4304
AfAfguucaguasasa

ucUfgUfcaagususu

GAAGUUCA

ACUUCUGU

AGAAGUU

ACUUCUGU

CAGAAGTT









GUAAA

CAAGUUU

CAGUAAA

CAAGUUU

CAGTAAA






NM_
4285-
usgsaca(Ghd)AfaGf
1964
VPusAfsauuUfaCfUfga
2298
UGACAGAA
2632
GAAUUUAC
2966
UGACAGA
3300
UAAUUUAC
3634
CTTGACAG
3968


009125.2
4307
UfUfcaguaaaususa

acUfuCfugucasasg

GUUCAGUA

UGAACUUC

AGUUCAG

UGAACUUC

AAGTTCAG









AAUUC

UGUCAAG

UAAAUUA

UGUCAAG

TAAATTC






NM_
4287-
ascsaga(Ahd)GfuUf
1965
VPusAfsgaaUfuUfAfcu
2299
ACAGAAGU
2633
AAGAAUUU
2967
ACAGAAG
3301
UAGAAUUU
3635
TGACAGAA
3969


009125.2
4309
CfAfguaaauucsusa

gaAfcUfucuguscsa

UCAGUAAA

ACUGAACU

UUCAGUA

ACUGAACU

GTTCAGTA









UUCUU

UCUGUCA

AAUUCUA

UCUGUCA

AATTCTT






NM_
4288-
csasgaa(Ghd)UfuCf
1966
VPusAfsagaAfuUfUfac
2300
CAGAAGUU
2634
UAAGAAUU
2968
CAGAAGU
3302
UAAGAAUU
3636
GACAGAAG
3970


009125.2
4310
AfGfuaaauucususa

ugAfaCfuucugsusc

CAGUAAAU

UACUGAAC

UCAGUAA

UACUGAAC

TTCAGTAA









UCUUA

UUCUGUC

AUUCUUA

UUCUGUC

ATTCTTA






NM_
4289-
asgsaag(Uhd)UfcAf
1967
VPusUfsaagAfaUfUfua
2301
AGAAGUUC
2635
GUAAGAAU
2969
AGAAGUU
3303
UUAAGAAU
3637
ACAGAAGT
3971


009125.2
4311
GfUfaaauucuusasa

cuGfaAfcuucusgsu

AGUAAAUU

UUACUGAA

CAGUAAA

UUACUGAA

TCAGTAAA









CUUAC

CUUCUGU

UUCUUAA

CUUCUGU

TTCTTAC






NM_
4312-
cscsaaa(Chd)UfgAf
1968
VPusAfsuaaUfaAfUfcc
2302
CCAAACUG
2636
AAUAAUAA
2970
CCAAACU
3304
UAUAAUAA
3638
CGCCAAAC
3972


009125.2
4334
CfGfgauuauuasusa

guCfaGfuuuggscsg

ACGGAUUA

UCCGUCAG

GACGGAU

UCCGUCAG

TGACGGAT









UUAUU

UUUGGCG

UAUUAUA

UUUGGCG

TATTATT






NM_
4385-
gsusuaa(Ghd)GfgA
1969
VPusAfsguaAfaAfGfuu
2303
GUUAAGGG
2637
AAGUAAAA
2971
GUUAAGG
3305
UAGUAAAA
3639
AAGTTAAG
3973


009125.2
4407
fAfAfacuuuuacsusa

uuCfcCfuuaacsusu

AAAACUUU

GUUUUCCC

GAAAACU

GUUUUCCC

GGAAAACT









UACUU

UUAACUU

UUUACUA

UUAACUU

TTTACTT






NM_
4386-
ususaag(Ghd)GfaA
1970
VPusAfsaguAfaAfAfgu
2304
UUAAGGGA
2638
AAAGUAAA
2972
UUAAGGG
3306
UAAGUAAA
3640
AGTTAAGG
3974


009125.2
4408
fAfAfcuuuuacususa

uuUfcCfcuuaascsu

AAACUUUU

AGUUUUCC

AAAACUU

AGUUUUCC

GAAAACTT









ACUUU

CUUAACU

UUACUUA

CUUAACU

TTACTTT






NM_
4387-
usasagg(Ghd)AfaA
1971
VPusAfsaagUfaAfAfag
2305
UAAGGGAA
2639
CAAAGUAA
2973
UAAGGGA
3307
UAAAGUAA
3641
GTTAAGGG
3975


009125.2
4409
fAfCfuuuuacuususa

uuUfuCfccuuasasc

AACUUUUA

AAGUUUUC

AAACUUU

AAGUUUUC

AAAACTTT









CUUUG

CCUUAAC

UACUUUA

CCUUAAC

TACTTTG






NM_
4389-
asgsgga(Ahd)AfaCf
1972
VPusAfscaaAfgUfAfaa
2306
AGGGAAAA
2640
UACAAAGU
2974
AGGGAAA
3308
UACAAAGU
3642
TAAGGGAA
3976


009125.2
4411
UfUfuuacuuugsusa

agUfuUfucccususa

CUUUUACU

AAAAGUUU

ACUUUUA

AAAAGUUU

AACTTTTA









UUGUA

UCCCUUA

CUUUGUA

UCCCUUA

CTTTGTA






NM_
4390-
gsgsgaa(Ahd)AfcU
1973
VPusUfsacaAfaGfUfaa
2307
GGGAAAAC
2641
CUACAAAG
2975
GGGAAAA
3309
UUACAAAG
3643
AAGGGAAA
3977


009125.2
4412
fUfUfuacuuugusasa

aaGfuUfuucccsusu

UUUUACUU

UAAAAGUU

CUUUUAC

UAAAAGUU

ACTTTTAC









UGUAG

UUCCCUU

UUUGUAA

UUCCCUU

TTTGTAG






NM_
4392-
gsasaaa(Chd)UfuUf
1974
VPusUfscuaCfaAfAfgu
2308
GAAAACUU
2642
AUCUACAA
2976
GAAAACU
3310
UUCUACAA
3644
GGGAAAAC
3978


009125.2
4414
UfAfcuuuguagsasa

aaAfaGfuuuucscsc

UUACUUUG

AGUAAAAG

UUUACUU

AGUAAAAG

TTTTACTT









UAGAU

UUUUCCC

UGUAGAA

UUUUCCC

TGTAGAT






NM_
4393-
asasaac(Uhd)UfuUf
1975
VPusAfsucuAfcAfAfag
2309
AAAACUUU
2643
UAUCUACA
2977
AAAACUU
3311
UAUCUACA
3645
GGAAAACT
3979


009125.2
4415
AfCfuuuguagasusa

uaAfaAfguuuuscsc

UACUUUGU

AAGUAAAA

UUACUUU

AAGUAAAA

TTTACTTT









AGAUA

GUUUUCC

GUAGAUA

GUUUUCC

GTAGATA






NM_
4393-
asasaac(Uhd)UfuUf
1976
VPusAfsucuAfcAfAfag
2310
AAAACUUU
2644
UAUCUACA
2978
AAAACUU
3312
UAUCUACA
3646
GAAAAACT
3980


009125.2
4415
AfCfuuuguagasusa

uaAfaAfguuuuscsc

UACUUUGU

AAGUAAAA

UUACUUU

AAGUAAAA

TTTACTTTG









AGAUA

GUUUUCC

GUAGAUA

GUUUUCC

TAGATA
















TABLE 10







ATXN2 C16-modified siRNA sequences also modified with 2′-O-hexadecyl-adenosine-3′-phosphate, 2′-O-hexadecyl-guanosine-


3′-phosphate, or 2′-O-hexadecyl-cytidine-3′-phosphate, or 2′-O-hexadecyl-uridine-3′-phosphate and N-[tris(GalNAc-alkyl)-


amidodecanoyl)]-4-hydroxyprolinol Hyp-(GalNAc-alkyl)3 (Hyp-(GalNAc-alkyl)3).


































sense.





accession
mRNA




mRNA



anti-

trans

antisense.



version
range
Sense oligoSeq
Seq
Antisense oligoSeq
Seq
target
Seq
sense
Seq
sense
Seq
Seq
Seq
transSeq
Seq





NM_
  90-
uscscga(Chd)UfuCfCfG
3981
VPusAfscucUfuUfAfcc
4315
CCTCCGAC
4649
UCCGACU
4983
GACUCUUU
5317
UCCGACU
5651
UACUCUUU
5985


002973.3
112
fguaaagaguaL96

ggAfaGfucggasgsg

TTCCGGTA

UCCGGUA

ACCGGAAG

UCCGGUA

ACCGGAAG









AAGAGTC

AAGAGUC

UCGGAGG

AAGAGUA

UCGGAGG






NM_
  91-
cscsgac(Uhd)UfcCfGfG
3982
VPusGfsacuCfuUfUfac
4316
CTCCGACT
4650
CCGACUU
4984
GGACUCUU
5318
CCGACUU
5652
UGACUCUU
5986


002973.3
113
fuaaagagucaL96

cgGfaAfgucggsasg

TCCGGTAA

CCGGUAA

UACCGGAA

CCGGUAA

UACCGGAA









AGAGTCC

AGAGUCC

GUCGGAG

AGAGUCA

GUCGGAG






NM_
  92-
csgsacu(Uhd)CfcGfGfU
3983
VPusGfsgacUfcUfUfua
4317
TCCGACTT
4651
CGACUUC
4985
GGGACUCU
5319
CGACUUC
5653
UGGACUCU
5987


002973.3
114
faaagaguccaL96

ccGfgAfagucgsgsa

CCGGTAAA

CGGUAAA

UUACCGGA

CGGUAAA

UUACCGGA









GAGTCCC

GAGUCCC

AGUCGGA

GAGUCCA

AGUCGGA






NM_
 996-
asasugu(Ghd)AfaGfUfA
3984
VPusUfsuucAfcUfUfgu
4318
CAAATGTG
4652
AAUGUGA
4986
UUUUCACU
5320
AAUGUGA
5654
UUUUCACU
5988


002973.3
1018
fcaagugaaaaL96

acUfuCfacauususg

AAGTACAA

AGUACAA

UGUACUUC

AGUACAA

UGUACUUC









GTGAAAA

GUGAAAA

ACAUUUG

GUGAAAA

ACAUUUG






NM_
 997-
asusgug(Ahd)AfgUfAfC
3985
VPusUfsuuuCfaCfUfug
4319
AAATGTGA
4653
AUGUGAA
4987
UUUUUCAC
5321
AUGUGAA
5655
UUUUUCAC
5989


002973.3
1019
faagugaaaaaL96

uaCfuUfcacaususu

AGTACAAG

GUACAAG

UUGUACUU

GUACAAG

UUGUACUU









TGAAAAA

UGAAAAA

CACAUUU

UGAAAAA

CACAUUU






NM_
 999-
gsusgaa(Ghd)UfaCfAfA
3986
VPusAfsuuuUfuCfAfcu
4320
ATGTGAAG
4654
GUGAAGU
4988
CAUUUUUC
5322
GUGAAGU
5656
UAUUUUUC
5990


002973.3
1021
fgugaaaaauaL96

ugUfaCfuucacsasu

TACAAGTG

ACAAGUG

ACUUGUAC

ACAAGUG

ACUUGUAC









AAAAATG

AAAAAUG

UUCACAU

AAAAAUA

UUCACAU






NM_
1085-
csasuga(Ghd)AfaAfAfG
3987
VPusGfsauuCfuGfUfac
4321
CACATGAG
4655
CAUGAGA
4989
GGAUUCUG
5323
CAUGAGA
5657
UGAUUCUG
5991


002973.3
1107
fuacagaaucaL96

uuUfuCfucaugsusg

AAAAGTAC

AAAGUAC

UACUUUUC

AAAGUAC

UACUUUUC









AGAATCC

AGAAUCC

UCAUGUG

AGAAUCA

UCAUGUG






NM_
1744-
csascuu(Chd)UfcAfCfA
3988
VPusAfsaucUfgAfAfgu
4322
TCCACTTCT
4656
CACUUCU
4990
AAAUCUGA
5324
CACUUCU
5658
UAAUCUGA
5992


002973.3
1766
fcuucagauuaL96

guGfaGfaagugsgsa

CACACTTC

CACACUU

AGUGUGAG

CACACUU

AGUGUGAG









AGATTT

CAGAUUU

AAGUGGA

CAGAUUA

AAGUGGA






NM_
1745-
ascsuuc(Uhd)CfaCfAfCf
3989
VPusAfsaauCfuGfAfag
4323
CCACTTCT
4657
ACUUCUC
4991
GAAAUCUG
5325
ACUUCUC
5659
UAAAUCUG
5993


002973.3
1767
uucagauuuaL96

ugUfgAfgaagusgsg

CACACTTC

ACACUUC

AAGUGUGA

ACACUUC

AAGUGUGA









AGATTTC

AGAUUUC

GAAGUGG

AGAUUUA

GAAGUGG






NM_
1746-
csusucu(Chd)AfcAfCfU
3990
VPusGfsaaaUfcUfGfaa
4324
CACTTCTC
4658
CUUCUCA
4992
UGAAAUCU
5326
CUUCUCA
5660
UGAAAUCU
5994


002973.3
1768
fucagauuucaL96

guGfuGfagaagsusg

ACACTTCA

CACUUCA

GAAGUGUG

CACUUCA

GAAGUGUG









GATTTCA

GAUUUCA

AGAAGUG

GAUUUCA

AGAAGUG






NM_
1747-
ususcuc(Ahd)CfaCfUfU
3991
VPusUfsgaaAfuCfUfga
4325
ACTTCTCA
4659
UUCUCAC
4993
UUGAAAUC
5327
UUCUCAC
5661
UUGAAAUC
5995


002973.3
1769
fcagauuucaaL96

agUfgUfgagaasgsu

CACTTCAG

ACUUCAG

UGAAGUGU

ACUUCAG

UGAAGUGU









ATTTCAA

AUUUCAA

GAGAAGU

AUUUCAA

GAGAAGU






NM_
1748-
uscsuca(Chd)AfcUfUfC
3992
VPusUfsugaAfaUfCfug
4326
CTTCTCAC
4660
UCUCACA
4994
GUUGAAAU
5328
UCUCACA
5662
UUUGAAAU
5996


002973.3
1770
fagauuucaaaL96

aaGfuGfugagasasg

ACTTCAGA

CUUCAGA

CUGAAGUG

CUUCAGA

CUGAAGUG









TTTCAAC

UUUCAAC

UGAGAAG

UUUCAAA

UGAGAAG






NM_
1749-
csuscac(Ahd)CfuUfCfA
3993
VPusGfsuugAfaAfUfcu
4327
TTCTCACA
4661
CUCACAC
4995
GGUUGAAA
5329
CUCACAC
5663
UGUUGAAA
5997


002973.3
1771
fgauuucaacaL96

gaAfgUfgugagsasa

CTTCAGAT

UUCAGAU

UCUGAAGU

UUCAGAU

UCUGAAGU









TTCAACC

UUCAACC

GUGAGAA

UUCAACA

GUGAGAA






NM_
1750-
uscsaca(Chd)UfuCfAfG
3994
VPusGfsguuGfaAfAfuc
4328
TCTCACAC
4662
UCACACU
4996
GGGUUGAA
5330
UCACACU
5664
UGGUUGAA
5998


002973.3
1772
fauuucaaccaL96

ugAfaGfugugasgsa

TTCAGATT

UCAGAUU

AUCUGAAG

UCAGAUU

AUCUGAAG









TCAACCC

UCAACCC

UGUGAGA

UCAACCA

UGUGAGA






NM_
1751-
csascac(Uhd)UfcAfGfA
3995
VPusGfsgguUfgAfAfa
4329
CTCACACT
4663
CACACUU
4997
CGGGUUGA
5331
CACACUU
5665
UGGGUUGA
5999


002973.3
1773
fuuucaacccaL96

ucuGfaAfgugugsasg

TCAGATTT

CAGAUUU

AAUCUGAA

CAGAUUU

AAUCUGAA









CAACCCG

CAACCCG

GUGUGAG

CAACCCA

GUGUGAG






NM_
1754-
ascsuuc(Ahd)GfaUfUfU
3996
VPusUfsucgGfgUfUfga
4330
ACACTTCA
4664
ACUUCAG
4998
AUUCGGGU
5332
ACUUCAG
5666
UUUCGGGU
6000


002973.3
1776
fcaacccgaaaL96

aaUfcUfgaagusgsu

GATTTCAA

AUUUCAA

UGAAAUCU

AUUUCAA

UGAAAUCU









CCCGAAT

CCCGAAU

GAAGUGU

CCCGAAA

GAAGUGU






NM_
1781-
uscsaga(Chd)CfaAfAfG
3997
VPusUfsuaaCfuAfCfuc
4331
GTTCAGAC
4665
UCAGACC
4999
AUUAACUA
5333
UCAGACC
5667
UUUAACUA
6001


002973.3
1803
faguaguuaaaL96

uuUfgGfucugasasc

CAAAGAGT

AAAGAGU

CUCUUUGG

AAAGAGU

CUCUUUGG









AGTTAAT

AGUUAAU

UCUGAAC

AGUUAAA

UCUGAAC






NM_
1782-
csasgac(Chd)AfaAfGfA
3998
VPusAfsuuaAfcUfAfcu
4332
TTCAGACC
4666
CAGACCA
5000
CAUUAACU
5334
CAGACCA
5668
UAUUAACU
6002


002973.3
1804
fguaguuaauaL96

cuUfuGfgucugsasa

AAAGAGTA

AAGAGUA

ACUCUUUG

AAGAGUA

ACUCUUUG









GTTAATG

GUUAAUG

GUCUGAA

GUUAAUA

GUCUGAA






NM_
1984-
csuscua(Chd)UfaUfGfC
3999
VPusUfsgcgUfuUfAfg
4333
GTCTCTAC
4667
CUCUACU
5001
AUGCGUUU
5335
CUCUACU
5669
UUGCGUUU
6003


002973.3
2006
fcuaaacgcaaL96

gcaUfaGfuagagsasc

TATGCCTA

AUGCCUA

AGGCAUAG

AUGCCUA

AGGCAUAG









AACGCAT

AACGCAU

UAGAGAC

AACGCAA

UAGAGAC






NM_
1985-
uscsuac(Uhd)AfuGfCfC
4000
VPusAfsugcGfuUfUfag
4334
TCTCTACT
4668
UCUACUA
5002
CAUGCGUU
5336
UCUACUA
5670
UAUGCGUU
6004


002973.3
2007
fuaaacgcauaL96

gcAfuAfguagasgsa

ATGCCTAA

UGCCUAA

UAGGCAUA

UGCCUAA

UAGGCAUA









ACGCATG

ACGCAUG

GUAGAGA

ACGCAUA

GUAGAGA






NM_
1987-
usascua(Uhd)GfcCfUfA
4001
VPusAfscauGfcGfUfuu
4335
TCTACTAT
4669
UACUAUG
5003
GACAUGCG
5337
UACUAUG
5671
UACAUGCG
6005


002973.3
2009
faacgcauguaL96

agGfcAfuaguasgsa

GCCTAAAC

CCUAAAC

UUUAGGCA

CCUAAAC

UUUAGGCA









GCATGTC

GCAUGUC

UAGUAGA

GCAUGUA

UAGUAGA






NM_
2592-
csusucu(Ghd)AfaUfCfU
4002
VPusUfsugaUfcCfAfua
4336
TACTTCTG
4670
CUUCUGA
5004
GUUGAUCC
5338
CUUCUGA
5672
UUUGAUCC
6006


002973.3
2614
fauggaucaaaL96

gaUfuCfagaagsusa

AATCTATG

AUCUAUG

AUAGAUUC

AUCUAUG

AUAGAUUC









GATCAAC

GAUCAAC

AGAAGUA

GAUCAAA

AGAAGUA






NM_
2593-
ususcug(Ahd)AfuCfUfA
4003
VPusGfsuugAfuCfCfau
4337
ACTTCTGA
4671
UUCUGAA
5005
AGUUGAUC
5339
UUCUGAA
5673
UGUUGAUC
6007


002973.3
2615
fuggaucaacaL96

agAfuUfcagaasgsu

ATCTATGG

UCUAUGG

CAUAGAUU

UCUAUGG

CAUAGAUU









ATCAACT

AUCAACU

CAGAAGU

AUCAACA

CAGAAGU






NM_
2594-
uscsuga(Ahd)UfcUfAfU
4004
VPusAfsguuGfaUfCfca
4338
CTTCTGAA
4672
UCUGAAU
5006
UAGUUGAU
5340
UCUGAAU
5674
UAGUUGAU
6008


002973.3
2616
fggaucaacuaL96

uaGfaUfucagasasg

TCTATGGA

CUAUGGA

CCAUAGAU

CUAUGGA

CCAUAGAU









TCAACTA

UCAACUA

UCAGAAG

UCAACUA

UCAGAAG






NM_
2595-
csusgaa(Uhd)CfuAfUfG
4005
VPusUfsaguUfgAfUfcc
4339
TTCTGAAT
4673
CUGAAUC
5007
GUAGUUGA
5341
CUGAAUC
5675
UUAGUUGA
6009


002973.3
2617
fgaucaacuaaL96

auAfgAfuucagsasa

CTATGGAT

UAUGGAU

UCCAUAGA

UAUGGAU

UCCAUAGA









CAACTAC

CAACUAC

UUCAGAA

CAACUAA

UUCAGAA






NM_
2596-
usgsaau(Chd)UfaUfGfG
4006
VPusGfsuagUfuGfAfuc
4340
TCTGAATC
4674
UGAAUCU
5008
AGUAGUUG
5342
UGAAUCU
5676
UGUAGUUG
6010


002973.3
2618
faucaacuacaL96

caUfaGfauucasgsa

TATGGATC

AUGGAUC

AUCCAUAG

AUGGAUC

AUCCAUAG









AACTACT

AACUACU

AUUCAGA

AACUACA

AUUCAGA






NM_
2597-
gsasauc(Uhd)AfuGfGfA
4007
VPusAfsguaGfuUfGfau
4341
CTGAATCT
4675
GAAUCUA
5009
UAGUAGUU
5343
GAAUCUA
5677
UAGUAGUU
6011


002973.3
2619
fucaacuacuaL96

ccAfuAfgauucsasg

ATGGATCA

UGGAUCA

GAUCCAUA

UGGAUCA

GAUCCAUA









ACTACTA

ACUACUA

GAUUCAG

ACUACUA

GAUUCAG






NM_
2598-
asasucu(Ahd)UfgGfAfU
4008
VPusUfsaguAfgUfUfga
4342
TGAATCTA
4676
AAUCUAU
5010
UUAGUAGU
5344
AAUCUAU
5678
UUAGUAGU
6012


002973.3
2620
fcaacuacuaaL96

ucCfaUfagauuscsa

TGGATCAA

GGAUCAA

UGAUCCAU

GGAUCAA

UGAUCCAU









CTACTAA

CUACUAA

AGAUUCA

CUACUAA

AGAUUCA






NM_
2599-
asuscua(Uhd)GfgAfUfC
4009
VPusUfsuagUfaGfUfug
4343
GAATCTAT
4677
AUCUAUG
5011
UUUAGUAG
5345
AUCUAUG
5679
UUUAGUAG
6013


002973.3
2621
faacuacuaaaL96

auCfcAfuagaususc

GGATCAAC

GAUCAAC

UUGAUCCA

GAUCAAC

UUGAUCCA









TACTAAA

UACUAAA

UAGAUUC

UACUAAA

UAGAUUC






NM_
3102-
usasuac(Chd)CfaAfUfA
4010
VPusCfsgucAfuAfGfgu
4344
TTTATACC
4678
UAUACCC
5012
GCGUCAUA
5346
UAUACCC
5680
UCGUCAUA
6014


002973.3
3124
fccuaugacgaL96

auUfgGfguauasasa

CAATACCT

AAUACCU

GGUAUUGG

AAUACCU

GGUAUUGG









ATGACGC

AUGACGC

GUAUAAA

AUGACGA

GUAUAAA






NM_
3145-
gsascau(Ahd)UfaGfAfG
4011
VPusUfsuggUfaCfUfgc
4345
AAGACATA
4679
GACAUAU
5013
UUUGGUAC
5347
GACAUAU
5681
UUUGGUAC
6015


002973.3
3167
fcaguaccaaaL96

ucUfaUfaugucsusu

TAGAGCAG

AGAGCAG

UGCUCUAU

AGAGCAG

UGCUCUAU









TACCAAA

UACCAAA

AUGUCUU

UACCAAA

AUGUCUU






NM_
3148-
asusaua(Ghd)AfgCfAfG
4012
VPusUfsauuUfgGfUfac
4346
ACATATAG
4680
AUAUAGA
5014
AUAUUUGG
5348
AUAUAGA
5682
UUAUUUGG
6016


002973.3
3170
fuaccaaauaaL96

ugCfuCfuauausgsu

AGCAGTAC

GCAGUAC

UACUGCUC

GCAGUAC

UACUGCUC









CAAATAT

CAAAUAU

UAUAUGU

CAAAUAA

UAUAUGU






NM_
3149-
usasuag(Ahd)GfcAfGfU
4013
VPusAfsuauUfuGfGfua
4347
CATATAGA
4681
UAUAGAG
5015
CAUAUUUG
5349
UAUAGAG
5683
UAUAUUUG
6017


002973.3
3171
faccaaauauaL96

cuGfcUfcuauasusg

GCAGTACC

CAGUACC

GUACUGCU

CAGUACC

GUACUGCU









AAATATG

AAAUAUG

CUAUAUG

AAAUAUA

CUAUAUG






NM_
3150-
asusaga(Ghd)CfaGfUfA
4014
VPusCfsauaUfuUfGfgu
4348
ATATAGAG
4682
AUAGAGC
5016
GCAUAUUU
5350
AUAGAGC
5684
UCAUAUUU
6018


002973.3
3172
fccaaauaugaL96

acUfgCfucuausasu

CAGTACCA

AGUACCA

GGUACUGC

AGUACCA

GGUACUGC









AATATGC

AAUAUGC

UCUAUAU

AAUAUGA

UCUAUAU






NM_
3152-
asgsagc(Ahd)GfuAfCfC
4015
VPusGfsgcaUfaUfUfug
4349
ATAGAGCA
4683
AGAGCAG
5017
GGGCAUAU
5351
AGAGCAG
5685
UGGCAUAU
6019


002973.3
3174
faaauaugccaL96

guAfcUfgcucusasu

GTACCAAA

UACCAAA

UUGGUACU

UACCAAA

UUGGUACU









TATGCCC

UAUGCCC

GCUCUAU

UAUGCCA

GCUCUAU






NM_
3479-
usgsucc(Chd)AfaAfUfU
4016
VPusUfsuguAfuGfGfu
4350
CATGTCCC
4684
UGUCCCA
5018
GUUGUAUG
5352
UGUCCCA
5686
UUUGUAUG
6020


002973.3
3501
faccauacaaaL96

aauUfuGfggacasusg

AAATTACC

AAUUACC

GUAAUUUG

AAUUACC

GUAAUUUG









ATACAAC

AUACAAC

GGACAUG

AUACAAA

GGACAUG






NM_
3481-
uscscca(Ahd)AfuUfAfC
4017
VPusUfsguuGfuAfUfg
4351
TGTCCCAA
4685
UCCCAAA
5019
UUGUUGUA
5353
UCCCAAA
5687
UUGUUGUA
6021


002973.3
3503
fcauacaacaaL96

guaAfuUfugggascsa

ATTACCAT

UUACCAU

UGGUAAUU

UUACCAU

UGGUAAUU









ACAACAA

ACAACAA

UGGGACA

ACAACAA

UGGGACA






NM_
3508-
asasgcc(Chd)UfuCfUfU
4018
VPusCfsaaaGfuAfGfaa
4352
ACAAGCCC
4686
AAGCCCU
5020
GCAAAGUA
5354
AAGCCCU
5688
UCAAAGUA
6022


002973.3
3530
fucuacuuugaL96

agAfaGfggcuusgsu

TTCTTTCTA

UCUUUCU

GAAAGAAG

UCUUUCU

GAAAGAAG









CTTTGC

ACUUUGC

GGCUUGU

ACUUUGA

GGCUUGU






NM_
3511-
cscscuu(Chd)UfuUfCfU
4019
VPusUfsggcAfaAfGfua
4353
AGCCCTTC
4687
CCCUUCU
5021
AUGGCAAA
5355
CCCUUCU
5689
UUGGCAAA
6023


002973.3
3533
facuuugccaaL96

gaAfaGfaagggscsu

TTTCTACTT

UUCUACU

GUAGAAAG

UUCUACU

GUAGAAAG









TGCCAT

UUGCCAU

AAGGGCU

UUGCCAA

AAGGGCU






NM_
3512-
cscsuuc(Uhd)UfuCfUfA
4020
VPusAfsuggCfaAfAfgu
4354
GCCCTTCTT
4688
CCUUCUU
5022
AAUGGCAA
5356
CCUUCUU
5690
UAUGGCAA
6024


002973.3
3534
fcuuugccauaL96

agAfaAfgaaggsgsc

TCTACTTTG

UCUACUU

AGUAGAAA

UCUACUU

AGUAGAAA









CCATT

UGCCAUU

GAAGGGC

UGCCAUA

GAAGGGC






NM_
3513-
csusucu(Uhd)UfcUfAfC
4021
VPusAfsaugGfcAfAfag
4355
CCCTTCTTT
4689
CUUCUUU
5023
AAAUGGCA
5357
CUUCUUU
5691
UAAUGGCA
6025


002973.3
3535
fuuugccauuaL96

uaGfaAfagaagsgsg

CTACTTTG

CUACUUU

AAGUAGAA

CUACUUU

AAGUAGAA









CCATTT

GCCAUUU

AGAAGGG

GCCAUUA

AGAAGGG






NM_
3514-
ususcuu(Uhd)CfuAfCfU
4022
VPusAfsaauGfgCfAfaa
4356
CCTTCTTTC
4690
UUCUUUC
5024
GAAAUGGC
5358
UUCUUUC
5692
UAAAUGGC
6026


002973.3
3536
fuugccauuuaL96

guAfgAfaagaasgsg

TACTTTGC

UACUUUG

AAAGUAGA

UACUUUG

AAAGUAGA









CATTTC

CCAUUUC

AAGAAGG

CCAUUUA

AAGAAGG






NM_
3515-
uscsuuu(Chd)UfaCfUfU
4023
VPusGfsaaaUfgGfCfaa
4357
CTTCTTTCT
4691
UCUUUCU
5025
GGAAAUGG
5359
UCUUUCU
5693
UGAAAUGG
6027


002973.3
3537
fugccauuucaL96

agUfaGfaaagasasg

ACTTTGCC

ACUUUGC

CAAAGUAG

ACUUUGC

CAAAGUAG









ATTTCC

CAUUUCC

AAAGAAG

CAUUUCA

AAAGAAG






NM_
3516-
csusuuc(Uhd)AfcUfUfU
4024
VPusGfsgaaAfuGfGfca
4358
TTCTTTCTA
4692
CUUUCUA
5026
UGGAAAUG
5360
CUUUCUA
5694
UGGAAAUG
6028


002973.3
3538
fgccauuuccaL96

aaGfuAfgaaagsasa

CTTTGCCA

CUUUGCC

GCAAAGUA

CUUUGCC

GCAAAGUA









TTTCCA

AUUUCCA

GAAAGAA

AUUUCCA

GAAAGAA






NM_
3517-
ususucu(Ahd)CfuUfUfG
4025
VPusUfsggaAfaUfGfgc
4359
TCTTTCTAC
4693
UUUCUAC
5027
GUGGAAAU
5361
UUUCUAC
5695
UUGGAAAU
6029


002973.3
3539
fccauuuccaaL96

aaAfgUfagaaasgsa

TTTGCCATT

UUUGCCA

GGCAAAGU

UUUGCCA

GGCAAAGU









TCCAC

UUUCCAC

AGAAAGA

UUUCCAA

AGAAAGA






NM_
3518-
ususcua(Chd)UfuUfGfC
4026
VPusGfsuggAfaAfUfg
4360
CTTTCTACT
4694
UUCUACU
5028
CGUGGAAA
5362
UUCUACU
5696
UGUGGAAA
6030


002973.3
3540
fcauuuccacaL96

gcaAfaGfuagaasasg

TTGCCATTT

UUGCCAU

UGGCAAAG

UUGCCAU

UGGCAAAG









CCACG

UUCCACG

UAGAAAG

UUCCACA

UAGAAAG






NM_
3908-
csasugu(Ahd)CfaGfUfC
4027
VPusAfsccaUfuCfCfug
4361
CTCATGTA
4695
CAUGUAC
5029
AACCAUUC
5363
CAUGUAC
5697
UACCAUUC
6031


002973.3
3930
faggaaugguaL96

acUfgUfacaugsasg

CAGTCAGG

AGUCAGG

CUGACUGU

AGUCAGG

CUGACUGU









AATGGTT

AAUGGUU

ACAUGAG

AAUGGUA

ACAUGAG






NM_
3909-
asusgua(Chd)AfgUfCfA
4028
VPusAfsaccAfuUfCfcu
4362
TCATGTAC
4696
AUGUACA
5030
GAACCAUU
5364
AUGUACA
5698
UAACCAUU
6032


002973.3
3931
fggaaugguuaL96

gaCfuGfuacausgsa

AGTCAGGA

GUCAGGA

CCUGACUG

GUCAGGA

CCUGACUG









ATGGTTC

AUGGUUC

UACAUGA

AUGGUUA

UACAUGA






NM_
3910-
usgsuac(Ahd)GfuCfAfG
4029
VPusGfsaacCfaUfUfcc
4363
CATGTACA
4697
UGUACAG
5031
GGAACCAU
5365
UGUACAG
5699
UGAACCAU
6033


002973.3
3932
fgaaugguucaL96

ugAfcUfguacasusg

GTCAGGAA

UCAGGAA

UCCUGACU

UCAGGAA

UCCUGACU









TGGTTCC

UGGUUCC

GUACAUG

UGGUUCA

GUACAUG






NM_
3918-
csasgga(Ahd)UfgGfUfU
4030
VPusAfsugaGfaAfGfga
4364
GTCAGGAA
4698
CAGGAAU
5032
GAUGAGAA
5366
CAGGAAU
5700
UAUGAGAA
6034


002973.3
3940
fccuucucauaL96

acCfaUfuccugsasc

TGGTTCCTT

GGUUCCU

GGAACCAU

GGUUCCU

GGAACCAU









CTCATC

UCUCAUC

UCCUGAC

UCUCAUA

UCCUGAC






NM_
3921-
gsasaug(Ghd)UfuCfCfU
4031
VPusUfsggaUfgAfGfaa
4365
AGGAATGG
4699
GAAUGGU
5033
UUGGAUGA
5367
GAAUGGU
5701
UUGGAUGA
6035


002973.3
3943
fucucauccaaL96

ggAfaCfcauucscsu

TTCCTTCTC

UCCUUCU

GAAGGAAC

UCCUUCU

GAAGGAAC









ATCCAA

CAUCCAA

CAUUCCU

CAUCCAA

CAUUCCU






NM_
3923-
asusggu(Uhd)CfcUfUfC
4032
VPusGfsuugGfaUfGfag
4366
GAATGGTT
4700
AUGGUUC
5034
AGUUGGAU
5368
AUGGUUC
5702
UGUUGGAU
6036


002973.3
3945
fucauccaacaL96

aaGfgAfaccaususc

CCTTCTCAT

CUUCUCA

GAGAAGGA

CUUCUCA

GAGAAGGA









CCAACT

UCCAACU

ACCAUUC

UCCAACA

ACCAUUC






NM_
3924-
usgsguu(Chd)CfuUfCfU
4033
VPusAfsguuGfgAfUfg
4367
AATGGTTC
4701
UGGUUCC
5035
CAGUUGGA
5369
UGGUUCC
5703
UAGUUGGA
6037


002973.3
3946
fcauccaacuaL96

agaAfgGfaaccasusu

CTTCTCATC

UUCUCAU

UGAGAAGG

UUCUCAU

UGAGAAGG









CAACTG

CCAACUG

AACCAUU

CCAACUA

AACCAUU






NM_
3926-
gsusucc(Uhd)UfcUfCfA
4034
VPusGfscagUfuGfGfau
4368
TGGTTCCTT
4702
GUUCCUU
5036
GGCAGUUG
5370
GUUCCUU
5704
UGCAGUUG
6038


002973.3
3948
fuccaacugcaL96

gaGfaAfggaacscsa

CTCATCCA

CUCAUCC

GAUGAGAA

CUCAUCC

GAUGAGAA









ACTGCC

AACUGCC

GGAACCA

AACUGCA

GGAACCA






NM_
3947-
csasugc(Ghd)CfcAfAfU
4035
VPusAfsuuaGfcAfUfca
4369
CCCATGCG
4703
CAUGCGC
5037
CAUUAGCA
5371
CAUGCGC
5705
UAUUAGCA
6039


002973.3
3969
fgaugcuaauaL96

uuGfgCfgcaugsgsg

CCAATGAT

CAAUGAU

UCAUUGGC

CAAUGAU

UCAUUGGC









GCTAATG

GCUAAUG

GCAUGGG

GCUAAUA

GCAUGGG






NM_
3950-
gscsgcc(Ahd)AfuGfAfU
4036
VPusGfsucaUfuAfGfca
4370
ATGCGCCA
4704
GCGCCAA
5038
CGUCAUUA
5372
GCGCCAA
5706
UGUCAUUA
6040


002973.3
3972
fgcuaaugacaL96

ucAfuUfggcgcsasu

ATGATGCT

UGAUGCU

GCAUCAUU

UGAUGCU

GCAUCAUU









AATGACG

AAUGACG

GGCGCAU

AAUGACA

GGCGCAU






NM_
3952-
gscscaa(Uhd)GfaUfGfC
4037
VPusUfscguCfaUfUfag
4371
GCGCCAAT
4705
GCCAAUG
5039
GUCGUCAU
5373
GCCAAUG
5707
UUCGUCAU
6041


002973.3
3974
fuaaugacgaaL96

caUfcAfuuggcsgsc

GATGCTAA

AUGCUAA

UAGCAUCA

AUGCUAA

UAGCAUCA









TGACGAC

UGACGAC

UUGGCGC

UGACGAA

UUGGCGC






NM_
3953-
cscsaau(Ghd)AfuGfCfU
4038
VPusGfsucgUfcAfUfua
4372
CGCCAATG
4706
CCAAUGA
5040
UGUCGUCA
5374
CCAAUGA
5708
UGUCGUCA
6042


002973.3
3975
faaugacgacaL96

gcAfuCfauuggscsg

ATGCTAAT

UGCUAAU

UUAGCAUC

UGCUAAU

UUAGCAUC









GACGACA

GACGACA

AUUGGCG

GACGACA

AUUGGCG






NM_
3956-
asusgau(Ghd)CfuAfAfU
4039
VPusUfsgugUfcGfUfca
4373
CAATGATG
4707
AUGAUGC
5041
CUGUGUCG
5375
AUGAUGC
5709
UUGUGUCG
6043


002973.3
3978
fgacgacacaaL96

uuAfgCfaucaususg

CTAATGAC

UAAUGAC

UCAUUAGC

UAAUGAC

UCAUUAGC









GACACAG

GACACAG

AUCAUUG

GACACAA

AUCAUUG






NM_
3957-
usgsaug(Chd)UfaAfUfG
4040
VPusCfsuguGfuCfGfuc
4374
AATGATGC
4708
UGAUGCU
5042
GCUGUGUC
5376
UGAUGCU
5710
UCUGUGUC
6044


002973.3
3979
facgacacagaL96

auUfaGfcaucasusu

TAATGACG

AAUGACG

GUCAUUAG

AAUGACG

GUCAUUAG









ACACAGC

ACACAGC

CAUCAUU

ACACAGA

CAUCAUU






NM_
4003-
csgscuc(Ahd)AfaGfUfG
4041
VPusGfscugUfaGfUfgc
4375
CTCGCTCA
4709
CGCUCAA
5043
GGCUGUAG
5377
CGCUCAA
5711
UGCUGUAG
6045


002973.3
4025
fcacuacagcaL96

acUfuUfgagcgsasg

AAGTGCAC

AGUGCAC

UGCACUUU

AGUGCAC

UGCACUUU









TACAGCC

UACAGCC

GAGCGAG

UACAGCA

GAGCGAG






NM_
4020-
asgsccc(Ahd)UfuCfCfA
4042
VPusUfsgucGfaGfAfcu
4376
ACAGCCCA
4710
AGCCCAU
5044
UUGUCGAG
5378
AGCCCAU
5712
UUGUCGAG
6046


002973.3
4042
fgucucgacaaL96

ggAfaUfgggcusgsu

TTCCAGTC

UCCAGUC

ACUGGAAU

UCCAGUC

ACUGGAAU









TCGACAA

UCGACAA

GGGCUGU

UCGACAA

GGGCUGU






NM_
4022-
cscscau(Uhd)CfcAfGfU
4043
VPusGfsuugUfcGfAfga
4377
AGCCCATT
4711
CCCAUUC
5045
UGUUGUCG
5379
CCCAUUC
5713
UGUUGUCG
6047


002973.3
4044
fcucgacaacaL96

cuGfgAfaugggscsu

CCAGTCTC

CAGUCUC

AGACUGGA

CAGUCUC

AGACUGGA









GACAACA

GACAACA

AUGGGCU

GACAACA

AUGGGCU






NM_
4082-
csascca(Chd)CfaAfCfA
4044
VPusUfsacaAfcUfGfcu
4378
CCCACCAC
4712
CACCACC
5046
UUACAACU
5380
CACCACC
5714
UUACAACU
6048


002973.3
4104
fgcaguuguaaL96

guUfgGfuggugsgsg

CAACAGCA

AACAGCA

GCUGUUGG

AACAGCA

GCUGUUGG









GTTGTAA

GUUGUAA

UGGUGGG

GUUGUAA

UGGUGGG






NM_
4083-
ascscac(Chd)AfaCfAfG
4045
VPusUfsuacAfaCfUfgc
4379
CCACCACC
4713
ACCACCA
5047
CUUACAAC
5381
ACCACCA
5715
UUUACAAC
6049


002973.3
4105
fcaguuguaaaL96

ugUfuGfguggusgsg

AACAGCAG

ACAGCAG

UGCUGUUG

ACAGCAG

UGCUGUUG









TTGTAAG

UUGUAAG

GUGGUGG

UUGUAAA

GUGGUGG






NM_
4084-
cscsacc(Ahd)AfcAfGfC
4046
VPusCfsuuaCfaAfCfug
4380
CACCACCA
4714
CCACCAA
5048
CCUUACAA
5382
CCACCAA
5716
UCUUACAA
6050


002973.3
4106
faguuguaagaL96

cuGfuUfgguggsusg

ACAGCAGT

CAGCAGU

CUGCUGUU

CAGCAGU

CUGCUGUU









TGTAAGG

UGUAAGG

GGUGGUG

UGUAAGA

GGUGGUG






NM_
4086-
ascscaa(Chd)AfgCfAfG
4047
VPusGfsccuUfaCfAfac
4381
CCACCAAC
4715
ACCAACA
5049
AGCCUUAC
5383
ACCAACA
5717
UGCCUUAC
6051


002973.3
4108
fuuguaaggcaL96

ugCfuGfuuggusgsg

AGCAGTTG

GCAGUUG

AACUGCUG

GCAGUUG

AACUGCUG









TAAGGCT

UAAGGCU

UUGGUGG

UAAGGCA

UUGGUGG






NM_
4088-
csasaca(Ghd)CfaGfUfU
4048
VPusCfsagcCfuUfAfca
4382
ACCAACAG
4716
CAACAGC
5050
GCAGCCUU
5384
CAACAGC
5718
UCAGCCUU
6052


002973.3
4110
fguaaggcugaL96

acUfgCfuguugsgsu

CAGTTGTA

AGUUGUA

ACAACUGC

AGUUGUA

ACAACUGC









AGGCTGC

AGGCUGC

UGUUGGU

AGGCUGA

UGUUGGU






NM_
4143-
csusucu(Ahd)CfuGfCfU
4049
VPusGfsuugGfuAfGfaa
4383
CCCTTCTA
4717
CUUCUAC
5051
AGUUGGUA
5385
CUUCUAC
5719
UGUUGGUA
6053


002973.3
4165
fucuaccaacaL96

gcAfgUfagaagsgsg

CTGCTTCT

UGCUUCU

GAAGCAGU

UGCUUCU

GAAGCAGU









ACCAACT

ACCAACU

AGAAGGG

ACCAACA

AGAAGGG






NM_
4145-
uscsuac(Uhd)GfcUfUfC
4050
VPusCfsaguUfgGfUfag
4384
CTTCTACT
4718
UCUACUG
5052
CCAGUUGG
5386
UCUACUG
5720
UCAGUUGG
6054


002973.3
4167
fuaccaacugaL96

aaGfcAfguagasasg

GCTTCTAC

CUUCUAC

UAGAAGCA

CUUCUAC

UAGAAGCA









CAACTGG

CAACUGG

GUAGAAG

CAACUGA

GUAGAAG






NM_
4146-
csusacu(Ghd)CfuUfCfU
4051
VPusCfscagUfuGfGfua
4385
TTCTACTG
4719
CUACUGC
5053
UCCAGUUG
5387
CUACUGC
5721
UCCAGUUG
6055


002973.3
4168
faccaacuggaL96

gaAfgCfaguagsasa

CTTCTACC

UUCUACC

GUAGAAGC

UUCUACC

GUAGAAGC









AACTGGA

AACUGGA

AGUAGAA

AACUGGA

AGUAGAA






NM_
4149-
csusgcu(Uhd)CfuAfCfC
4052
VPusCfsuucCfaGfUfug
4386
TACTGCTT
4720
CUGCUUC
5054
GCUUCCAG
5388
CUGCUUC
5722
UCUUCCAG
6056


002973.3
4171
faacuggaagaL96

guAfgAfagcagsusa

CTACCAAC

UACCAAC

UUGGUAGA

UACCAAC

UUGGUAGA









TGGAAGC

UGGAAGC

AGCAGUA

UGGAAGA

AGCAGUA






NM_
4159-
csasacu(Ghd)GfaAfGfC
4053
VPusGfsuuuUfcUfGfu
4387
ACCAACTG
4721
CAACUGG
5055
AGUUUUCU
5389
CAACUGG
5723
UGUUUUCU
6057


002973.3
4181
facagaaaacaL96

gcuUfcCfaguugsgsu

GAAGCACA

AAGCACA

GUGCUUCC

AAGCACA

GUGCUUCC









GAAAACT

GAAAACU

AGUUGGU

GAAAACA

AGUUGGU






NM_
4215-
ususgau(Uhd)UfcUfUfG
4054
VPusUfsggaUfgUfUfac
4388
TGTTGATTT
4722
UUGAUUU
5056
UUGGAUGU
5390
UUGAUUU
5724
UUGGAUGU
6058


002973.3
4237
fuaacauccaaL96

aaGfaAfaucaascsa

CTTGTAAC

CUUGUAA

UACAAGAA

CUUGUAA

UACAAGAA









ATCCAA

CAUCCAA

AUCAACA

CAUCCAA

AUCAACA






NM_
4218-
asusuuc(Uhd)UfgUfAfA
4055
VPusUfsauuGfgAfUfg
4389
TGATTTCTT
4723
AUUUCUU
5057
CUAUUGGA
5391
AUUUCUU
5725
UUAUUGGA
6059


002973.3
4240
fcauccaauaaL96

uuaCfaAfgaaauscsa

GTAACATC

GUAACAU

UGUUACAA

GUAACAU

UGUUACAA









CAATAG

CCAAUAG

GAAAUCA

CCAAUAA

GAAAUCA






NM_
4220-
ususcuu(Ghd)UfaAfCfA
4056
VPusCfscuaUfuGfGfau
4390
ATTTCTTGT
4724
UUCUUGU
5058
UCCUAUUG
5392
UUCUUGU
5726
UCCUAUUG
6060


002973.3
4242
fuccaauaggaL96

guUfaCfaagaasasu

AACATCCA

AACAUCC

GAUGUUAC

AACAUCC

GAUGUUAC









ATAGGA

AAUAGGA

AAGAAAU

AAUAGGA

AAGAAAU






NM_
4221-
uscsuug(Uhd)AfaCfAfU
4057
VPusUfsccuAfuUfGfga
4391
TTTCTTGTA
4725
UCUUGUA
5059
UUCCUAUU
5393
UCUUGUA
5727
UUCCUAUU
6061


002973.3
4243
fccaauaggaaL96

ugUfuAfcaagasasa

ACATCCAA

ACAUCCA

GGAUGUUA

ACAUCCA

GGAUGUUA









TAGGAA

AUAGGAA

CAAGAAA

AUAGGAA

CAAGAAA






NM_
4224-
usgsuaa(Chd)AfuCfCfA
4058
VPusCfsauuCfcUfAfuu
4392
CTTGTAAC
4726
UGUAACA
5060
GCAUUCCU
5394
UGUAACA
5728
UCAUUCCU
6062


002973.3
4246
fauaggaaugaL96

ggAfuGfuuacasasg

ATCCAATA

UCCAAUA

AUUGGAUG

UCCAAUA

AUUGGAUG









GGAATGC

GGAAUGC

UUACAAG

GGAAUGA

UUACAAG






NM_
4226-
usasaca(Uhd)CfcAfAfU
4059
VPusAfsgcaUfuCfCfua
4393
TGTAACAT
4727
UAACAUC
5061
UAGCAUUC
5395
UAACAUC
5729
UAGCAUUC
6063


002973.3
4248
faggaaugcuaL96

uuGfgAfuguuascsa

CCAATAGG

CAAUAGG

CUAUUGGA

CAAUAGG

CUAUUGGA









AATGCTA

AAUGCUA

UGUUACA

AAUGCUA

UGUUACA






NM_
4227-
asascau(Chd)CfaAfUfA
4060
VPusUfsagcAfuUfCfcu
4394
GTAACATC
4728
AACAUCC
5062
UUAGCAUU
5396
AACAUCC
5730
UUAGCAUU
6064


002973.3
4249
fggaaugcuaaL96

auUfgGfauguusasc

CAATAGGA

AAUAGGA

CCUAUUGG

AAUAGGA

CCUAUUGG









ATGCTAA

AUGCUAA

AUGUUAC

AUGCUAA

AUGUUAC






NM_
4228-
ascsauc(Chd)AfaUfAfG
4061
VPusUfsuagCfaUfUfcc
4395
TAACATCC
4729
ACAUCCA
5063
GUUAGCAU
5397
ACAUCCA
5731
UUUAGCAU
6065


002973.3
4250
fgaaugcuaaaL96

uaUfuGfgaugususa

AATAGGAA

AUAGGAA

UCCUAUUG

AUAGGAA

UCCUAUUG









TGCTAAC

UGCUAAC

GAUGUUA

UGCUAAA

GAUGUUA






NM_
4229-
csasucc(Ahd)AfuAfGfG
4062
VPusGfsuuaGfcAfUfuc
4396
AACATCCA
4730
CAUCCAA
5064
UGUUAGCA
5398
CAUCCAA
5732
UGUUAGCA
6066


002973.3
4251
faaugcuaacaL96

cuAfuUfggaugsusu

ATAGGAAT

UAGGAAU

UUCCUAUU

UAGGAAU

UUCCUAUU









GCTAACA

GCUAACA

GGAUGUU

GCUAACA

GGAUGUU






NM_
4234-
asasuag(Ghd)AfaUfGfC
4063
VPusGfsaacUfgUfUfag
4397
CCAATAGG
4731
AAUAGGA
5065
UGAACUGU
5399
AAUAGGA
5733
UGAACUGU
6067


002973.3
4256
fuaacaguucaL96

caUfuCfcuauusgsg

AATGCTAA

AUGCUAA

UAGCAUUC

AUGCUAA

UAGCAUUC









CAGTTCA

CAGUUCA

CUAUUGG

CAGUUCA

CUAUUGG






NM_
4235-
asusagg(Ahd)AfuGfCfU
4064
VPusUfsgaaCfuGfUfua
4398
CAATAGGA
4732
AUAGGAA
5066
GUGAACUG
5400
AUAGGAA
5734
UUGAACUG
6068


002973.3
4257
faacaguucaaL96

gcAfuUfccuaususg

ATGCTAAC

UGCUAAC

UUAGCAUU

UGCUAAC

UUAGCAUU









AGTTCAC

AGUUCAC

CCUAUUG

AGUUCAA

CCUAUUG






NM_
4236-
usasgga(Ahd)UfgCfUfA
4065
VPusGfsugaAfcUfGfuu
4399
AATAGGAA
4733
UAGGAAU
5067
AGUGAACU
5401
UAGGAAU
5735
UGUGAACU
6069


002973.3
4258
facaguucacaL96

agCfaUfuccuasusu

TGCTAACA

GCUAACA

GUUAGCAU

GCUAACA

GUUAGCAU









GTTCACT

GUUCACU

UCCUAUU

GUUCACA

UCCUAUU






NM_
4237-
asgsgaa(Uhd)GfcUfAfA
4066
VPusAfsgugAfaCfUfgu
4400
ATAGGAAT
4734
AGGAAUG
5068
AAGUGAAC
5402
AGGAAUG
5736
UAGUGAAC
6070


002973.3
4259
fcaguucacuaL96

uaGfcAfuuccusasu

GCTAACAG

CUAACAG

UGUUAGCA

CUAACAG

UGUUAGCA









TTCACTT

UUCACUU

UUCCUAU

UUCACUA

UUCCUAU






NM_
4238-
gsgsaau(Ghd)CfuAfAfC
4067
VPusAfsaguGfaAfCfug
4401
TAGGAATG
4735
GGAAUGC
5069
CAAGUGAA
5403
GGAAUGC
5737
UAAGUGAA
6071


002973.3
4260
faguucacuuaL96

uuAfgCfauuccsusa

CTAACAGT

UAACAGU

CUGUUAGC

UAACAGU

CUGUUAGC









TCACTTG

UCACUUG

AUUCCUA

UCACUUA

AUUCCUA






NM_
4239-
gsasaug(Chd)UfaAfCfA
4068
VPusCfsaagUfgAfAfcu
4402
AGGAATGC
4736
GAAUGCU
5070
GCAAGUGA
5404
GAAUGCU
5738
UCAAGUGA
6072


002973.3
4261
fguucacuugaL96

guUfaGfcauucscsu

TAACAGTT

AACAGUU

ACUGUUAG

AACAGUU

ACUGUUAG









CACTTGC

CACUUGC

CAUUCCU

CACUUGA

CAUUCCU






NM_
4243-
gscsuaa(Chd)AfgUfUfC
4069
VPusAfscugCfaAfGfug
4403
ATGCTAAC
4737
GCUAACA
5071
CACUGCAA
5405
GCUAACA
5739
UACUGCAA
6073


002973.3
4265
facuugcaguaL96

aaCfuGfuuagcsasu

AGTTCACT

GUUCACU

GUGAACUG

GUUCACU

GUGAACUG









TGCAGTG

UGCAGUG

UUAGCAU

UGCAGUA

UUAGCAU






NM_
4248-
csasguu(Chd)AfcUfUfG
4070
VPusCfsuucCfaCfUfgc
4404
AACAGTTC
4738
CAGUUCA
5072
UCUUCCAC
5406
CAGUUCA
5740
UCUUCCAC
6074


002973.3
4270
fcaguggaagaL96

aaGfuGfaacugsusu

ACTTGCAG

CUUGCAG

UGCAAGUG

CUUGCAG

UGCAAGUG









TGGAAGA

UGGAAGA

AACUGUU

UGGAAGA

AACUGUU






NM_
4275-
gsasccg(Ahd)GfuAfGfA
4071
VPusCfsuaaAfuGfCfcu
4405
TGGACCGA
4739
GACCGAG
5073
CCUAAAUG
5407
GACCGAG
5741
UCUAAAUG
6075


002973.3
4297
fggcauuuagaL96

cuAfcUfcggucscsa

GTAGAGGC

UAGAGGC

CCUCUACU

UAGAGGC

CCUCUACU









ATTTAGG

AUUUAGG

CGGUCCA

AUUUAGA

CGGUCCA






NM_
4276-
ascscga(Ghd)UfaGfAfG
4072
VPusCfscuaAfaUfGfcc
4406
GGACCGAG
4740
ACCGAGU
5074
UCCUAAAU
5408
ACCGAGU
5742
UCCUAAAU
6076


002973.3
4298
fgcauuuaggaL96

ucUfaCfucgguscsc

TAGAGGCA

AGAGGCA

GCCUCUAC

AGAGGCA

GCCUCUAC









TTTAGGA

UUUAGGA

UCGGUCC

UUUAGGA

UCGGUCC






NM_
4304-
gsgscua(Uhd)UfcCfAfU
4073
VPusUfsaugGfaAfUfua
4407
GGGGCTAT
4741
GGCUAUU
5075
AUAUGGAA
5409
GGCUAUU
5743
UUAUGGAA
6077


002973.3
4326
faauuccauaaL96

ugGfaAfuagccscsc

TCCATAAT

CCAUAAU

UUAUGGAA

CCAUAAU

UUAUGGAA









TCCATAT

UCCAUAU

UAGCCCC

UCCAUAA

UAGCCCC






NM_
4361-
usgsccg(Ahd)AfaCfUfG
4074
VPusAfsauaAfcUfUfcc
4408
CTTGCCGA
4742
UGCCGAA
5076
AAAUAACU
5410
UGCCGAA
5744
UAAUAACU
6078


002973.3
4383
fgaaguuauuaL96

agUfuUfcggcasasg

AACTGGAA

ACUGGAA

UCCAGUUU

ACUGGAA

UCCAGUUU









GTTATTT

GUUAUUU

CGGCAAG

GUUAUUA

CGGCAAG






NM_
4363-
cscsgaa(Ahd)CfuGfGfA
4075
VPusUfsaaaUfaAfCfuu
4409
TGCCGAAA
4743
CCGAAAC
5077
AUAAAUAA
5411
CCGAAAC
5745
UUAAAUAA
6079


002973.3
4385
faguuauuuaaL96

ccAfgUfuucggscsa

CTGGAAGT

UGGAAGU

CUUCCAGU

UGGAAGU

CUUCCAGU









TATTTAT

UAUUUAU

UUCGGCA

UAUUUAA

UUCGGCA






NM_
4364-
csgsaaa(Chd)UfgGfAfA
4076
VPusAfsuaaAfuAfAfcu
4410
GCCGAAAC
4744
CGAAACU
5078
AAUAAAUA
5412
CGAAACU
5746
UAUAAAUA
6080


002973.3
4386
fguuauuuauaL96

ucCfaGfuuucgsgsc

TGGAAGTT

GGAAGUU

ACUUCCAG

GGAAGUU

ACUUCCAG









ATTTATT

AUUUAUU

UUUCGGC

AUUUAUA

UUUCGGC






NM_
4365-
gsasaac(Uhd)GfgAfAfG
4077
VPusAfsauaAfaUfAfac
4411
CCGAAACT
4745
GAAACUG
5079
AAAUAAAU
5413
GAAACUG
5747
UAAUAAAU
6081


002973.3
4387
fuuauuuauuaL96

uuCfcAfguuucsgsg

GGAAGTTA

GAAGUUA

AACUUCCA

GAAGUUA

AACUUCCA









TTTATTT

UUUAUUU

GUUUCGG

UUUAUUA

GUUUCGG






NM_
4366-
asasacu(Ghd)GfaAfGfU
4078
VPusAfsaauAfaAfUfaa
4412
CGAAACTG
4746
AAACUGG
5080
AAAAUAAA
5414
AAACUGG
5748
UAAAUAAA
6082


002973.3
4388
fuauuuauuuaL96

cuUfcCfaguuuscsg

GAAGTTAT

AAGUUAU

UAACUUCC

AAGUUAU

UAACUUCC









TTATTTT

UUAUUUU

AGUUUCG

UUAUUUA

AGUUUCG






NM_
4388-
usasaua(Ahd)CfcCfUfU
4079
VPusAfsugaCfuUfUfca
4413
TTTAATAA
4747
UAAUAAC
5081
CAUGACUU
5415
UAAUAAC
5749
UAUGACUU
6083


002973.3
4410
fgaaagucauaL96

agGfgUfuauuasasa

CCCTTGAA

CCUUGAA

UCAAGGGU

CCUUGAA

UCAAGGGU









AGTCATG

AGUCAUG

UAUUAAA

AGUCAUA

UAUUAAA






NM_
4389-
asasuaa(Chd)CfcUfUfG
4080
VPusCfsaugAfcUfUfuc
4414
TTAATAAC
4748
AAUAACC
5082
UCAUGACU
5416
AAUAACC
5750
UCAUGACU
6084


002973.3
4411
faaagucaugaL96

aaGfgGfuuauusasa

CCTTGAAA

CUUGAAA

UUCAAGGG

CUUGAAA

UUCAAGGG









GTCATGA

GUCAUGA

UUAUUAA

GUCAUGA

UUAUUAA






NM_
4392-
asasccc(Uhd)UfgAfAfA
4081
VPusGfsuucAfuGfAfcu
4415
ATAACCCT
4749
AACCCUU
5083
UGUUCAUG
5417
AACCCUU
5751
UGUUCAUG
6085


002973.3
4414
fgucaugaacaL96

uuCfaAfggguusasu

TGAAAGTC

GAAAGUC

ACUUUCAA

GAAAGUC

ACUUUCAA









ATGAACA

AUGAACA

GGGUUAU

AUGAACA

GGGUUAU






NM_
4396-
csusuga(Ahd)AfgUfCfA
4082
VPusAfsuguGfuUfCfau
4416
CCCTTGAA
4750
CUUGAAA
5084
GAUGUGUU
5418
CUUGAAA
5752
UAUGUGUU
6086


002973.3
4418
fugaacacauaL96

gaCfuUfucaagsgsg

AGTCATGA

GUCAUGA

CAUGACUU

GUCAUGA

CAUGACUU









ACACATC

ACACAUC

UCAAGGG

ACACAUA

UCAAGGG






NM_
4402-
asgsuca(Uhd)GfaAfCfA
4083
VPusUfsagcUfgAfUfgu
4417
AAAGTCAT
4751
AGUCAUG
5085
CUAGCUGA
5419
AGUCAUG
5753
UUAGCUGA
6087


002973.3
4424
fcaucagcuaaL96

guUfcAfugacususu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAG

UGACUUU

CAGCUAA

UGACUUU






NM_
4403-
gsuscau(Ghd)AfaCfAfC
4084
VPusCfsuagCfuGfAfug
4418
AAGTCATG
4752
GUCAUGA
5086
GCUAGCUG
5420
GUCAUGA
5754
UCUAGCUG
6088


002973.3
4425
faucagcuagaL96

ugUfuCfaugacsusu

AACACATC

ACACAUC

AUGUGUUC

ACACAUC

AUGUGUUC









AGCTAGC

AGCUAGC

AUGACUU

AGCUAGA

AUGACUU






NM_
4404-
uscsaug(Ahd)AfcAfCfA
4085
VPusGfscuaGfcUfGfau
4419
AGTCATGA
4753
UCAUGAA
5087
UGCUAGCU
5421
UCAUGAA
5755
UGCUAGCU
6089


002973.3
4426
fucagcuagcaL96

guGfuUfcaugascsu

ACACATCA

CACAUCA

GAUGUGUU

CACAUCA

GAUGUGUU









GCTAGCA

GCUAGCA

CAUGACU

GCUAGCA

CAUGACU






NM_
4405-
csasuga(Ahd)CfaCfAfU
4086
VPusUfsgcuAfgCfUfga
4420
GTCATGAA
4754
CAUGAAC
5088
UUGCUAGC
5422
CAUGAAC
5756
UUGCUAGC
6090


002973.3
4427
fcagcuagcaaL96

ugUfgUfucaugsasc

CACATCAG

ACAUCAG

UGAUGUGU

ACAUCAG

UGAUGUGU









CTAGCAA

CUAGCAA

UCAUGAC

CUAGCAA

UCAUGAC






NM_
4405-
csasuga(Ahd)CfaCfAfU
4087
VPusUfsgcuAfgCfUfga
4421
GTCATGAA
4755
CAUGAAC
5089
UUGCUAGC
5423
CAUGAAC
5757
UUGCUAGC
6091


002973.3
4427
fcagcuagcaaL96

ugUfgUfucaugsasc

CACATCAG

ACAUCAG

UGAUGUGU

ACAUCAG

UGAUGUGU









CTAGCAA

CUAGCAA

UCAUGAC

CUAGCAA

UCAUGAC






NM_
4406-
asusgaa(Chd)AfcAfUfC
4088
VPusUfsugcUfaGfCfug
4422
TCATGAAC
4756
AUGAACA
5090
UUUGCUAG
5424
AUGAACA
5758
UUUGCUAG
6092


002973.3
4428
fagcuagcaaaL96

auGfuGfuucausgsa

ACATCAGC

CAUCAGC

CUGAUGUG

CAUCAGC

CUGAUGUG









TAGCAAA

UAGCAAA

UUCAUGA

UAGCAAA

UUCAUGA






NM_
4407-
usgsaac(Ahd)CfaUfCfA
4089
VPusUfsuugCfuAfGfcu
4423
CATGAACA
4757
UGAACAC
5091
UUUUGCUA
5425
UGAACAC
5759
UUUUGCUA
6093


002973.3
4429
fgcuagcaaaaL96

gaUfgUfguucasusg

CATCAGCT

AUCAGCU

GCUGAUGU

AUCAGCU

GCUGAUGU









AGCAAAA

AGCAAAA

GUUCAUG

AGCAAAA

GUUCAUG






NM_
4408-
gsasaca(Chd)AfuCfAfG
4090
VPusUfsuuuGfcUfAfgc
4424
ATGAACAC
4758
GAACACA
5092
CUUUUGCU
5426
GAACACA
5760
UUUUUGCU
6094


002973.3
4430
fcuagcaaaaaL96

ugAfuGfuguucsasu

ATCAGCTA

UCAGCUA

AGCUGAUG

UCAGCUA

AGCUGAUG









GCAAAAG

GCAAAAG

UGUUCAU

GCAAAAA

UGUUCAU






NM_
4409-
asascac(Ahd)UfcAfGfC
4091
VPusCfsuuuUfgCfUfag
4425
TGAACACA
4759
AACACAU
5093
UCUUUUGC
5427
AACACAU
5761
UCUUUUGC
6095


002973.3
4431
fuagcaaaagaL96

cuGfaUfguguuscsa

TCAGCTAG

CAGCUAG

UAGCUGAU

CAGCUAG

UAGCUGAU









CAAAAGA

CAAAAGA

GUGUUCA

CAAAAGA

GUGUUCA






NM_
4413-
csasuca(Ghd)CfuAfGfC
4092
VPusAfscuuCfuUfUfug
4426
CACATCAG
4760
CAUCAGC
5094
UACUUCUU
5428
CAUCAGC
5762
UACUUCUU
6096


002973.3
4435
faaaagaaguaL96

cuAfgCfugaugsusg

CTAGCAAA

UAGCAAA

UUGCUAGC

UAGCAAA

UUGCUAGC









AGAAGTA

AGAAGUA

UGAUGUG

AGAAGUA

UGAUGUG



NM_
4419-
csusagc(Ahd)AfaAfGfA
4093
VPusCfsuugUfuAfCfuu
4427
AGCTAGCA
4761
CUAGCAA
5095
UCUUGUUA
5429
CUAGCAA
5763
UCUUGUUA
6097


002973.3
4441
faguaacaagaL96

cuUfuUfgcuagscsu

AAAGAAGT

AAGAAGU

CUUCUUUU

AAGAAGU

CUUCUUUU









AACAAGA

AACAAGA

GCUAGCU

AACAAGA

GCUAGCU






NM_
4431-
gsusaac(Ahd)AfgAfGfU
4094
VPusGfscaaGfaAfUfca
4428
AAGTAACA
4762
GUAACAA
5096
AGCAAGAA
5430
GUAACAA
5764
UGCAAGAA
6098


002973.3
4453
fgauucuugcaL96

cuCfuUfguuacsusu

AGAGTGAT

GAGUGAU

UCACUCUU

GAGUGAU

UCACUCUU









TCTTGCT

UCUUGCU

GUUACUU

UCUUGCA

GUUACUU






NM_
4432-
usasaca(Ahd)GfaGfUfG
4095
VPusAfsgcaAfgAfAfuc
4429
AGTAACAA
4763
UAACAAG
5097
CAGCAAGA
5431
UAACAAG
5765
UAGCAAGA
6099


002973.3
4454
fauucuugcuaL96

acUfcUfuguuascsu

GAGTGATT

AGUGAUU

AUCACUCU

AGUGAUU

AUCACUCU









CTTGCTG

CUUGCUG

UGUUACU

CUUGCUA

UGUUACU






NM_
4433-
asascaa(Ghd)AfgUfGfA
4096
VPusCfsagcAfaGfAfau
4430
GTAACAAG
4764
AACAAGA
5098
GCAGCAAG
5432
AACAAGA
5766
UCAGCAAG
6100


002973.3
4455
fuucuugcugaL96

caCfuCfuuguusasc

AGTGATTC

GUGAUUC

AAUCACUC

GUGAUUC

AAUCACUC









TTGCTGC

UUGCUGC

UUGUUAC

UUGCUGA

UUGUUAC






NM_
4437-
asgsagu(Ghd)AfuUfCfU
4097
VPusAfsuagCfaGfCfaa
4431
CAAGAGTG
4765
AGAGUGA
5099
AAUAGCAG
5433
AGAGUGA
5767
UAUAGCAG
6101


002973.3
4459
fugcugcuauaL96

gaAfuCfacucususg

ATTCTTGCT

UUCUUGC

CAAGAAUC

UUCUUGC

CAAGAAUC









GCTATT

UGCUAUU

ACUCUUG

UGCUAUA

ACUCUUG






NM_
4438-
gsasgug(Ahd)UfuCfUfU
4098
VPusAfsauaGfcAfGfca
4432
AAGAGTGA
4766
GAGUGAU
5100
UAAUAGCA
5434
GAGUGAU
5768
UAAUAGCA
6102


002973.3
4460
fgcugcuauuaL96

agAfaUfcacucsusu

TTCTTGCTG

UCUUGCU

GCAAGAAU

UCUUGCU

GCAAGAAU









CTATTA

GCUAUUA

CACUCUU

GCUAUUA

CACUCUU






NM_
4440-
gsusgau(Uhd)CfuUfGfC
4099
VPusGfsuaaUfaGfCfag
4433
GAGTGATT
4767
GUGAUUC
5101
AGUAAUAG
5435
GUGAUUC
5769
UGUAAUAG
6103


002973.3
4462
fugcuauuacaL96

caAfgAfaucacsusc

CTTGCTGC

UUGCUGC

CAGCAAGA

UUGCUGC

CAGCAAGA









TATTACT

UAUUACU

AUCACUC

UAUUACA

AUCACUC






NM_
4492-
ususgga(Ahd)CfgCfCfC
4100
VPusUfsuagUfaAfAfag
4434
ACTTGGAA
4768
UUGGAAC
5102
UUUAGUAA
5436
UUGGAAC
5770
UUUAGUAA
6104


002973.3
4514
fuuuuacuaaaL96

ggCfgUfuccaasgsu

CGCCCTTTT

GCCCUUU

AAGGGCGU

GCCCUUU

AAGGGCGU









ACTAAA

UACUAAA

UCCAAGU

UACUAAA

UCCAAGU






NM_
4493-
usgsgaa(Chd)GfcCfCfU
4101
VPusUfsuuaGfuAfAfaa
4435
CTTGGAAC
4769
UGGAACG
5103
GUUUAGUA
5437
UGGAACG
5771
UUUUAGUA
6105


002973.3
4515
fuuuacuaaaaL96

ggGfcGfuuccasasg

GCCCTTTT

CCCUUUU

AAAGGGCG

CCCUUUU

AAAGGGCG









ACTAAAC

ACUAAAC

UUCCAAG

ACUAAAA

UUCCAAG






NM_
4495-
gsasacg(Chd)CfcUfUfU
4102
VPusAfsguuUfaGfUfaa
4436
TGGAACGC
4770
GAACGCC
5104
AAGUUUAG
5438
GAACGCC
5772
UAGUUUAG
6106


002973.3
4517
fuacuaaacuaL96

aaGfgGfcguucscsa

CCTTTTACT

CUUUUAC

UAAAAGGG

CUUUUAC

UAAAAGGG









AAACTT

UAAACUU

CGUUCCA

UAAACUA

CGUUCCA






NM_
4496-
asascgc(Chd)CfuUfUfU
4103
VPusAfsaguUfuAfGfua
4437
GGAACGCC
4771
AACGCCC
5105
CAAGUUUA
5439
AACGCCC
5773
UAAGUUUA
6107


002973.3
4518
facuaaacuuaL96

aaAfgGfgcguuscsc

CTTTTACTA

UUUUACU

GUAAAAGG

UUUUACU

GUAAAAGG









AACTTG

AAACUUG

GCGUUCC

AAACUUA

GCGUUCC






NM_
4497-
ascsgcc(Chd)UfuUfUfA
4104
VPusCfsaagUfuUfAfgu
4438
GAACGCCC
4772
ACGCCCU
5106
UCAAGUUU
5440
ACGCCCU
5774
UCAAGUUU
6108


002973.3
4519
fcuaaacuugaL96

aaAfaGfggcgususc

TTTTACTA

UUUACUA

AGUAAAAG

UUUACUA

AGUAAAAG









AACTTGA

AACUUGA

GGCGUUC

AACUUGA

GGCGUUC






NM_
4498-
csgsccc(Uhd)UfuUfAfC
4105
VPusUfscaaGfuUfUfag
4439
AACGCCCT
4773
CGCCCUU
5107
GUCAAGUU
5441
CGCCCUU
5775
UUCAAGUU
6109


002973.3
4520
fuaaacuugaaL96

uaAfaAfgggcgsusu

TTTACTAA

UUACUAA

UAGUAAAA

UUACUAA

UAGUAAAA









ACTTGAC

ACUUGAC

GGGCGUU

ACUUGAA

GGGCGUU






NM_
4522-
gsusuuc(Ahd)GfuAfAfA
4106
VPusCfsgguAfaGfAfau
4440
AAGTTTCA
4774
GUUUCAG
5108
ACGGUAAG
5442
GUUUCAG
5776
UCGGUAAG
6110


002973.3
4544
fuucuuaccgaL96

uuAfcUfgaaacsusu

GTAAATTC

UAAAUUC

AAUUUACU

UAAAUUC

AAUUUACU









TTACCGT

UUACCGU

GAAACUU

UUACCGA

GAAACUU






NM_
4523-
ususuca(Ghd)UfaAfAfU
4107
VPusAfscggUfaAfGfaa
4441
AGTTTCAG
4775
UUUCAGU
5109
GACGGUAA
5443
UUUCAGU
5777
UACGGUAA
6111


002973.3
4545
fucuuaccguaL96

uuUfaCfugaaascsu

TAAATTCT

AAAUUCU

GAAUUUAC

AAAUUCU

GAAUUUAC









TACCGTC

UACCGUC

UGAAACU

UACCGUA

UGAAACU






NM_
4524-
ususcag(Uhd)AfaAfUfU
4108
VPusGfsacgGfuAfAfga
4442
GTTTCAGT
4776
UUCAGUA
5110
UGACGGUA
5444
UUCAGUA
5778
UGACGGUA
6112


002973.3
4546
fcuuaccgucaL96

auUfuAfcugaasasc

AAATTCTT

AAUUCUU

AGAAUUUA

AAUUCUU

AGAAUUUA









ACCGTCA

ACCGUCA

CUGAAAC

ACCGUCA

CUGAAAC






NM_
4525-
uscsagu(Ahd)AfaUfUfC
4109
VPusUfsgacGfgUfAfag
4443
TTTCAGTA
4777
UCAGUAA
5111
UUGACGGU
5445
UCAGUAA
5779
UUGACGGU
6113


002973.3
4547
fuuaccgucaaL96

aaUfuUfacugasasa

AATTCTTA

AUUCUUA

AAGAAUUU

AUUCUUA

AAGAAUUU









CCGTCAA

CCGUCAA

ACUGAAA

CCGUCAA

ACUGAAA






NM_
4526-
csasgua(Ahd)AfuUfCfU
4110
VPusUfsugaCfgGfUfaa
4444
TTCAGTAA
4778
CAGUAAA
5112
UUUGACGG
5446
CAGUAAA
5780
UUUGACGG
6114


002973.3
4548
fuaccgucaaaL96

gaAfuUfuacugsasa

ATTCTTAC

UUCUUAC

UAAGAAUU

UUCUUAC

UAAGAAUU









CGTCAAA

CGUCAAA

UACUGAA

CGUCAAA

UACUGAA






NM_
4527-
asgsuaa(Ahd)UfuCfUfU
4111
VPusUfsuugAfcGfGfua
4445
TCAGTAAA
4779
AGUAAAU
5113
GUUUGACG
5447
AGUAAAU
5781
UUUUGACG
6115


002973.3
4549
faccgucaaaaL96

agAfaUfuuacusgsa

TTCTTACC

UCUUACC

GUAAGAAU

UCUUACC

GUAAGAAU









GTCAAAC

GUCAAAC

UUACUGA

GUCAAAA

UUACUGA






NM_
4528-
gsusaaa(Uhd)UfcUfUfA
4112
VPusGfsuuuGfaCfGfgu
4446
CAGTAAAT
4780
GUAAAUU
5114
AGUUUGAC
5448
GUAAAUU
5782
UGUUUGAC
6116


002973.3
4550
fccgucaaacaL96

aaGfaAfuuuacsusg

TCTTACCG

CUUACCG

GGUAAGAA

CUUACCG

GGUAAGAA









TCAAACT

UCAAACU

UUUACUG

UCAAACA

UUUACUG






NM_
4529-
usasaau(Uhd)CfuUfAfC
4113
VPusAfsguuUfgAfCfg
4447
AGTAAATT
4781
UAAAUUC
5115
CAGUUUGA
5449
UAAAUUC
5783
UAGUUUGA
6117


002973.3
4551
fcgucaaacuaL96

guaAfgAfauuuascsu

CTTACCGT

UUACCGU

CGGUAAGA

UUACCGU

CGGUAAGA









CAAACTG

CAAACUG

AUUUACU

CAAACUA

AUUUACU






NM_
4530-
asasauu(Chd)UfuAfCfC
4114
VPusCfsaguUfuGfAfcg
4448
GTAAATTC
4782
AAAUUCU
5116
UCAGUUUG
5450
AAAUUCU
5784
UCAGUUUG
6118


002973.3
4552
fgucaaacugaL96

guAfaGfaauuusasc

TTACCGTC

UACCGUC

ACGGUAAG

UACCGUC

ACGGUAAG









AAACTGA

AAACUGA

AAUUUAC

AAACUGA

AAUUUAC






NM_
4531-
asasuuc(Uhd)UfaCfCfG
4115
VPusUfscagUfuUfGfac
4449
TAAATTCT
4783
AAUUCUU
5117
GUCAGUUU
5451
AAUUCUU
5785
UUCAGUUU
6119


002973.3
4553
fucaaacugaaL96

ggUfaAfgaauususa

TACCGTCA

ACCGUCA

GACGGUAA

ACCGUCA

GACGGUAA









AACTGAC

AACUGAC

GAAUUUA

AACUGAA

GAAUUUA






NM_
4532-
asusucu(Uhd)AfcCfGfU
4116
VPusGfsucaGfuUfUfga
4450
AAATTCTT
4784
AUUCUUA
5118
CGUCAGUU
5452
AUUCUUA
5786
UGUCAGUU
6120


002973.3
4554
fcaaacugacaL96

cgGfuAfagaaususu

ACCGTCAA

CCGUCAA

UGACGGUA

CCGUCAA

UGACGGUA









ACTGACG

ACUGACG

AGAAUUU

ACUGACA

AGAAUUU






NM_
4533-
ususcuu(Ahd)CfcGfUfC
4117
VPusCfsgucAfgUfUfug
4451
AATTCTTA
4785
UUCUUAC
5119
CCGUCAGU
5453
UUCUUAC
5787
UCGUCAGU
6121


002973.3
4555
faaacugacgaL96

acGfgUfaagaasusu

CCGTCAAA

CGUCAAA

UUGACGGU

CGUCAAA

UUGACGGU









CTGACGG

CUGACGG

AAGAAUU

CUGACGA

AAGAAUU






NM_
4534-
uscsuua(Chd)CfgUfCfA
4118
VPusCfscguCfaGfUfuu
4452
ATTCTTAC
4786
UCUUACC
5120
UCCGUCAG
5454
UCUUACC
5788
UCCGUCAG
6122


002973.3
4556
faacugacggaL96

gaCfgGfuaagasasu

CGTCAAAC

GUCAAAC

UUUGACGG

GUCAAAC

UUUGACGG









TGACGGA

UGACGGA

UAAGAAU

UGACGGA

UAAGAAU






NM_
4535-
csusuac(Chd)GfuCfAfA
4119
VPusUfsccgUfcAfGfuu
4453
TTCTTACC
4787
CUUACCG
5121
AUCCGUCA
5455
CUUACCG
5789
UUCCGUCA
6123


002973.3
4557
facugacggaaL96

ugAfcGfguaagsasa

GTCAAACT

UCAAACU

GUUUGACG

UCAAACU

GUUUGACG









GACGGAT

GACGGAU

GUAAGAA

GACGGAA

GUAAGAA






NM_
4536-
ususacc(Ghd)UfcAfAfA
4120
VPusAfsuccGfuCfAfgu
4454
TCTTACCG
4788
UUACCGU
5122
AAUCCGUC
5456
UUACCGU
5790
UAUCCGUC
6124


002973.3
4558
fcugacggauaL96

uuGfaCfgguaasgsa

TCAAACTG

CAAACUG

AGUUUGAC

CAAACUG

AGUUUGAC









ACGGATT

ACGGAUU

GGUAAGA

ACGGAUA

GGUAAGA






NM_
4537-
usasccg(Uhd)CfaAfAfC
4121
VPusAfsaucCfgUfCfag
4455
CTTACCGT
4789
UACCGUC
5123
UAAUCCGU
5457
UACCGUC
5791
UAAUCCGU
6125


002973.3
4559
fugacggauuaL96

uuUfgAfcgguasasg

CAAACTGA

AAACUGA

CAGUUUGA

AAACUGA

CAGUUUGA









CGGATTA

CGGAUUA

CGGUAAG

CGGAUUA

CGGUAAG






NM_
4537-
usasccg(Uhd)CfaAfAfC
4122
VPusAfsaucCfgUfCfag
4456
CTTACCGT
4790
UACCGUC
5124
UAAUCCGU
5458
UACCGUC
5792
UAAUCCGU
6126


002973.3
4559
fugacggauuaL96

uuUfgAfcgguasasg

CAAACTGA

AAACUGA

CAGUUUGA

AAACUGA

CAGUUUGA









CGGATTA

CGGAUUA

CGGUAAG

CGGAUUA

CGGUAAG






NM_
4538-
ascscgu(Chd)AfaAfCfU
4123
VPusUfsaauCfcGfUfca
4457
TTACCGTC
4791
ACCGUCA
5125
AUAAUCCG
5459
ACCGUCA
5793
UUAAUCCG
6127


002973.3
4560
fgacggauuaaL96

guUfuGfacggusasa

AAACTGAC

AACUGAC

UCAGUUUG

AACUGAC

UCAGUUUG









GGATTAT

GGAUUAU

ACGGUAA

GGAUUAA

ACGGUAA






NM_
4545-
asascug(Ahd)CfgGfAfU
4124
VPusUfsaaaUfaAfUfaa
4458
CAAACTGA
4792
AACUGAC
5126
AUAAAUAA
5460
AACUGAC
5794
UUAAAUAA
6128


002973.3
4567
fuauuauuuaaL96

ucCfgUfcaguususg

CGGATTAT

GGAUUAU

UAAUCCGU

GGAUUAU

UAAUCCGU









TATTTAT

UAUUUAU

CAGUUUG

UAUUUAA

CAGUUUG






NM_
4572-
asgsuuu(Ghd)AfuGfAfG
4125
VPusAfsgugAfuCfAfcc
4459
CAAGTTTG
4793
AGUUUGA
5127
CAGUGAUC
5461
AGUUUGA
5795
UAGUGAUC
6129


002973.3
4594
fgugaucacuaL96

ucAfuCfaaacususg

ATGAGGTG

UGAGGUG

ACCUCAUC

UGAGGUG

ACCUCAUC









ATCACTG

AUCACUG

AAACUUG

AUCACUA

AAACUUG






NM_
4589-
ascsugu(Chd)UfaCfAfG
4126
VPusGfsuugAfaCfCfac
4460
TCACTGTC
4794
ACUGUCU
5128
AGUUGAAC
5462
ACUGUCU
5796
UGUUGAAC
6130


002973.3
4611
fugguucaacaL96

ugUfaGfacagusgsa

TACAGTGG

ACAGUGG

CACUGUAG

ACAGUGG

CACUGUAG









TTCAACT

UUCAACU

ACAGUGA

UUCAACA

ACAGUGA






NM_
4590-
csusguc(Uhd)AfcAfGfU
4127
VPusAfsguuGfaAfCfca
4461
CACTGTCT
4795
CUGUCUA
5129
AAGUUGAA
5463
CUGUCUA
5797
UAGUUGAA
6131


002973.3
4612
fgguucaacuaL96

cuGfuAfgacagsusg

ACAGTGGT

CAGUGGU

CCACUGUA

CAGUGGU

CCACUGUA









TCAACTT

UCAACUU

GACAGUG

UCAACUA

GACAGUG






NM_
4594-
csusaca(Ghd)UfgGfUfU
4128
VPusUfsaaaAfgUfUfga
4462
GTCTACAG
4796
CUACAGU
5130
UUAAAAGU
5464
CUACAGU
5798
UUAAAAGU
6132


002973.3
4616
fcaacuuuuaaL96

acCfaCfuguagsasc

TGGTTCAA

GGUUCAA

UGAACCAC

GGUUCAA

UGAACCAC









CTTTTAA

CUUUUAA

UGUAGAC

CUUUUAA

UGUAGAC






NM_
4595-
usascag(Uhd)GfgUfUfC
4129
VPusUfsuaaAfaGfUfug
4463
TCTACAGT
4797
UACAGUG
5131
CUUAAAAG
5465
UACAGUG
5799
UUUAAAAG
6133


002973.3
4617
faacuuuuaaaL96

aaCfcAfcuguasgsa

GGTTCAAC

GUUCAAC

UUGAACCA

GUUCAAC

UUGAACCA









TTTTAAG

UUUUAAG

CUGUAGA

UUUUAAA

CUGUAGA






NM_
4604-
uscsaac(Uhd)UfuUfAfA
4130
VPusUfscccUfuAfAfcu
4464
GTTCAACT
4798
UCAACUU
5132
UUCCCUUA
5466
UCAACUU
5800
UUCCCUUA
6134


002973.3
4626
fguuaagggaaL96

uaAfaAfguugasasc

TTTAAGTT

UUAAGUU

ACUUAAAA

UUAAGUU

ACUUAAAA









AAGGGAA

AAGGGAA

GUUGAAC

AAGGGAA

GUUGAAC






NM_
4606-
asascuu(Uhd)UfaAfGfU
4131
VPusUfsuucCfcUfUfaa
4465
TCAACTTTT
4799
AACUUUU
5133
UUUUCCCU
5467
AACUUUU
5801
UUUUCCCU
6135


002973.3
4628
fuaagggaaaaL96

cuUfaAfaaguusgsa

AAGTTAAG

AAGUUAA

UAACUUAA

AAGUUAA

UAACUUAA









GGAAAA

GGGAAAA

AAGUUGA

GGGAAAA

AAGUUGA






NM_
4623-
asasaaa(Chd)UfuUfUfA
4132
VPusUfscuaCfaAfAfgu
4466
GGAAAAAC
4800
AAAAACU
5134
AUCUACAA
5468
AAAAACU
5802
UUCUACAA
6136


002973.3
4645
fcuuuguagaaL96

aaAfaGfuuuuuscsc

TTTTACTTT

UUUACUU

AGUAAAAG

UUUACUU

AGUAAAAG









GTAGAT

UGUAGAU

UUUUUCC

UGUAGAA

UUUUUCC






NM_
 557-
csuscag(Uhd)CfuAfCfG
4133
VPusAfsaaaGfaAfAfuc
4467
GCCTCAGT
4801
CUCAGUC
5135
CAAAAGAA
5469
CUCAGUC
5803
UAAAAGAA
6137


002973.4
579
fauuucuuuuaL96

guAfgAfcugagsgsc

CTACGATT

UACGAUU

AUCGUAGA

UACGAUU

AUCGUAGA









TCTTTTG

UCUUUUG

CUGAGGC

UCUUUUA

CUGAGGC






NM_
 558-
uscsagu(Chd)UfaCfGfA
4134
VPusCfsaaaAfgAfAfau
4468
CCTCAGTC
4802
UCAGUCU
5136
UCAAAAGA
5470
UCAGUCU
5804
UCAAAAGA
6138


002973.4
580
fuuucuuuugaL96

cgUfaGfacugasgsg

TACGATTT

ACGAUUU

AAUCGUAG

ACGAUUU

AAUCGUAG









CTTTTGA

CUUUUGA

ACUGAGG

CUUUUGA

ACUGAGG






NM_
 559-
csasguc(Uhd)AfcGfAfU
4135
VPusUfscaaAfaGfAfaa
4469
CTCAGTCT
4803
CAGUCUA
5137
AUCAAAAG
5471
CAGUCUA
5805
UUCAAAAG
6139


002973.4
581
fuucuuuugaaL96

ucGfuAfgacugsasg

ACGATTTC

CGAUUUC

AAAUCGUA

CGAUUUC

AAAUCGUA









TTTTGAT

UUUUGAU

GACUGAG

UUUUGAA

GACUGAG






NM_
 724-
csasuga(Ghd)AfaAfAfG
4136
VPusGfsauuCfuGfUfac
4470
CACATGAG
4804
CAUGAGA
5138
GGAUUCUG
5472
CAUGAGA
5806
UGAUUCUG
6140


002973.4
746
fuacagaaucaL96

uuUfuCfucaugsusg

AAAAGTAC

AAAGUAC

UACUUUUC

AAAGUAC

UACUUUUC









AGAATCC

AGAAUCC

UCAUGUG

AGAAUCA

UCAUGUG






NM_
 724-
csasuga(Ghd)AfaAfAfG
4137
VPusGfsauuCfuGfUfac
4471
CACATGAG
4805
CAUGAGA
5139
GGAUUCUG
5473
CAUGAGA
5807
UGAUUCUG
6141


002973.4
746
fuacagaaucaL96

uuUfuCfucaugsusg

AAAAGTAC

AAAGUAC

UACUUUUC

AAAGUAC

UACUUUUC









AGAATCC

AGAAUCC

UCAUGUG

AGAAUCA

UCAUGUG






NM_
 790-
asasaug(Uhd)UfcAfGfA
4138
VPusAfscaaCfaAfAfgu
4472
TCAAATGT
4806
AAAUGUU
5140
CACAACAA
5474
AAAUGUU
5808
UACAACAA
6142


002973.4
812
fcuuuguuguaL96

cuGfaAfcauuusgsa

TCAGACTT

CAGACUU

AGUCUGAA

CAGACUU

AGUCUGAA









TGTTGTG

UGUUGUG

CAUUUGA

UGUUGUA

CAUUUGA






NM_
 867-
usgscua(Uhd)CfaGfUfG
4139
VPusUfscacUfuUfAfgc
4473
TCTGCTAT
4807
UGCUAUC
5141
UUCACUUU
5475
UGCUAUC
5809
UUCACUUU
6143


002973.4
889
fcuaaagugaaL96

acUfgAfuagcasgsa

CAGTGCTA

AGUGCUA

AGCACUGA

AGUGCUA

AGCACUGA









AAGTGAA

AAGUGAA

UAGCAGA

AAGUGAA

UAGCAGA






NM_
1040-
csgsuau(Ghd)AfuAfGfC
4140
VPusAfsgauAfaAfCfug
4474
TACGTATG
4808
CGUAUGA
5142
AAGAUAAA
5476
CGUAUGA
5810
UAGAUAAA
6144


002973.4
1062
faguuuaucuaL96

cuAfuCfauacgsusa

ATAGCAGT

UAGCAGU

CUGCUAUC

UAGCAGU

CUGCUAUC









TTATCTT

UUAUCUU

AUACGUA

UUAUCUA

AUACGUA






NM_
1041-
gsusaug(Ahd)UfaGfCfA
4141
VPusAfsagaUfaAfAfcu
4475
ACGTATGA
4809
GUAUGAU
5143
GAAGAUAA
5477
GUAUGAU
5811
UAAGAUAA
6145


002973.4
1063
fguuuaucuuaL96

gcUfaUfcauacsgsu

TAGCAGTT

AGCAGUU

ACUGCUAU

AGCAGUU

ACUGCUAU









TATCTTC

UAUCUUC

CAUACGU

UAUCUUA

CAUACGU






NM_
1084-
gsasuaa(Chd)UfcAfGfA
4142
VPusAfsaaaAfuUfCfuu
4476
GAGATAAC
4810
GAUAACU
5144
UAAAAAUU
5478
GAUAACU
5812
UAAAAAUU
6146


002973.4
1106
fagaauuuuuaL96

cuGfaGfuuaucsusc

TCAGAAGA

CAGAAGA

CUUCUGAG

CAGAAGA

CUUCUGAG









ATTTTTA

AUUUUUA

UUAUCUC

AUUUUUA

UUAUCUC






NM_
1380-
asuscca(Chd)UfuCfUfC
4143
VPusCfsugaAfgUfGfug
4477
AGATCCAC
4811
AUCCACU
5145
UCUGAAGU
5479
AUCCACU
5813
UCUGAAGU
6147


002973.4
1402
facacuucagaL96

agAfaGfuggauscsu

TTCTCACA

UCUCACA

GUGAGAAG

UCUCACA

GUGAGAAG









CTTCAGA

CUUCAGA

UGGAUCU

CUUCAGA

UGGAUCU






NM_
1387-
uscsuca(Chd)AfcUfUfC
4144
VPusUfsugaAfaUfCfug
4478
CTTCTCAC
4812
UCUCACA
5146
GUUGAAAU
5480
UCUCACA
5814
UUUGAAAU
6148


002973.4
1409
fagauuucaaaL96

aaGfuGfugagasasg

ACTTCAGA

CUUCAGA

CUGAAGUG

CUUCAGA

CUGAAGUG









TTTCAAC

UUUCAAC

UGAGAAG

UUUCAAA

UGAGAAG






NM_
1623-
csuscua(Chd)UfaUfGfC
4145
VPusUfsgcgUfuUfAfg
4479
GTCTCTAC
4813
CUCUACU
5147
AUGCGUUU
5481
CUCUACU
5815
UUGCGUUU
6149


002973.4
1645
fcuaaacgcaaL96

gcaUfaGfuagagsasc

TATGCCTA

AUGCCUA

AGGCAUAG

AUGCCUA

AGGCAUAG









AACGCAT

AACGCAU

UAGAGAC

AACGCAA

UAGAGAC






NM_
1624-
uscsuac(Uhd)AfuGfCfC
4146
VPusAfsugcGfuUfUfag
4480
TCTCTACT
4814
UCUACUA
5148
CAUGCGUU
5482
UCUACUA
5816
UAUGCGUU
6150


002973.4
1646
fuaaacgcauaL96

gcAfuAfguagasgsa

ATGCCTAA

UGCCUAA

UAGGCAUA

UGCCUAA

UAGGCAUA









ACGCATG

ACGCAUG

GUAGAGA

ACGCAUA

GUAGAGA






NM_
1692-
uscsgaa(Ahd)UfcAfCfA
4147
VPusCfsagaAfaCfUfcu
4481
CCTCGAAA
4815
UCGAAAU
5149
GCAGAAAC
5483
UCGAAAU
5817
UCAGAAAC
6151


002973.4
1714
fgaguuucugaL96

guGfaUfuucgasgsg

TCACAGAG

CACAGAG

UCUGUGAU

CACAGAG

UCUGUGAU









TTTCTGC

UUUCUGC

UUCGAGG

UUUCUGA

UUCGAGG






NM_
1693-
csgsaaa(Uhd)CfaCfAfG
4148
VPusGfscagAfaAfCfuc
4482
CTCGAAAT
4816
CGAAAUC
5150
AGCAGAAA
5484
CGAAAUC
5818
UGCAGAAA
6152


002973.4
1715
faguuucugcaL96

ugUfgAfuuucgsasg

CACAGAGT

ACAGAGU

CUCUGUGA

ACAGAGU

CUCUGUGA









TTCTGCT

UUCUGCU

UUUCGAG

UUCUGCA

UUUCGAG






NM_
2225-
gsusucu(Ahd)CfuUfCfU
4149
VPusCfsauaGfaUfUfca
4483
AAGTTCTA
4817
GUUCUAC
5151
CCAUAGAU
5485
GUUCUAC
5819
UCAUAGAU
6153


002973.4
2247
fgaaucuaugaL96

gaAfgUfagaacsusu

CTTCTGAA

UUCUGAA

UCAGAAGU

UUCUGAA

UCAGAAGU









TCTATGG

UCUAUGG

AGAACUU

UCUAUGA

AGAACUU






NM_
2226-
ususcua(Chd)UfuCfUfG
4150
VPusCfscauAfgAfUfuc
4484
AGTTCTAC
4818
UUCUACU
5152
UCCAUAGA
5486
UUCUACU
5820
UCCAUAGA
6154


002973.4
2248
faaucuauggaL96

agAfaGfuagaascsu

TTCTGAAT

UCUGAAU

UUCAGAAG

UCUGAAU

UUCAGAAG









CTATGGA

CUAUGGA

UAGAACU

CUAUGGA

UAGAACU






NM_
2227-
uscsuac(Uhd)UfcUfGfA
4151
VPusUfsccaUfaGfAfuu
4485
GTTCTACTT
4819
UCUACUU
5153
AUCCAUAG
5487
UCUACUU
5821
UUCCAUAG
6155


002973.4
2249
faucuauggaaL96

caGfaAfguagasasc

CTGAATCT

CUGAAUC

AUUCAGAA

CUGAAUC

AUUCAGAA









ATGGAT

UAUGGAU

GUAGAAC

UAUGGAA

GUAGAAC






NM_
2228-
csusacu(Uhd)CfuGfAfA
4152
VPusAfsuccAfuAfGfau
4486
TTCTACTTC
4820
CUACUUC
5154
GAUCCAUA
5488
CUACUUC
5822
UAUCCAUA
6156


002973.4
2250
fucuauggauaL96

ucAfgAfaguagsasa

TGAATCTA

UGAAUCU

GAUUCAGA

UGAAUCU

GAUUCAGA









TGGATC

AUGGAUC

AGUAGAA

AUGGAUA

AGUAGAA






NM_
2235-
usgsaau(Chd)UfaUfGfG
4153
VPusGfsuagUfuGfAfuc
4487
TCTGAATC
4821
UGAAUCU
5155
AGUAGUUG
5489
UGAAUCU
5823
UGUAGUUG
6157


002973.4
2257
faucaacuacaL96

caUfaGfauucasgsa

TATGGATC

AUGGAUC

AUCCAUAG

AUGGAUC

AUCCAUAG









AACTACT

AACUACU

AUUCAGA

AACUACA

AUUCAGA






NM_
2235-
usgsaau(Chd)UfaUfGfG
4154
VPusGfsuagUfuGfAfuc
4488
TCTGAATC
4822
UGAAUCU
5156
AGUAGUUG
5490
UGAAUCU
5824
UGUAGUUG
6158


002973.4
2257
faucaacuacaL96

caUfaGfauucasgsa

TATGGATC

AUGGAUC

AUCCAUAG

AUGGAUC

AUCCAUAG









AACTACT

AACUACU

AUUCAGA

AACUACA

AUUCAGA






NM_
2250-
ascsuac(Uhd)AfaAfCfA
4155
VPusCfsucuAfuUfUfuu
4489
CAACTACT
4823
ACUACUA
5157
UCUCUAUU
5491
ACUACUA
5825
UCUCUAUU
6159


002973.4
2272
faaaauagagaL96

guUfuAfguagususg

AAACAAAA

AACAAAA

UUUGUUUA

AACAAAA

UUUGUUUA









ATAGAGA

AUAGAGA

GUAGUUG

AUAGAGA

GUAGUUG






NM_
2310-
ascscaa(Ghd)UfgCfUfA
4156
VPusAfsagaAfuCfCfuu
4490
GAACCAAG
4824
ACCAAGU
5158
AAAGAAUC
5492
ACCAAGU
5826
UAAGAAUC
6160


002973.4
2332
faggauucuuaL96

agCfaCfuuggususc

TGCTAAGG

GCUAAGG

CUUAGCAC

GCUAAGG

CUUAGCAC









ATTCTTT

AUUCUUU

UUGGUUC

AUUCUUA

UUGGUUC






NM_
2525-
ususagg(Ahd)AfaUfCfA
4157
VPusAfsuucAfaUfGfuu
4491
AGTTAGGA
4825
UUAGGAA
5159
GAUUCAAU
5493
UUAGGAA
5827
UAUUCAAU
6161


002973.4
2547
facauugaauaL96

gaUfuUfccuaascsu

AATCAACA

AUCAACA

GUUGAUUU

AUCAACA

GUUGAUUU









TTGAATC

UUGAAUC

CCUAACU

UUGAAUA

CCUAACU






NM_
2657-
asgscca(Ahd)CfuCfCfA
4158
VPusAfsguaUfaAfAfcu
4492
ACAGCCAA
4826
AGCCAAC
5160
GAGUAUAA
5494
AGCCAAC
5828
UAGUAUAA
6162


002973.4
2679
fguuuauacuaL96

ggAfgUfuggcusgsu

CTCCAGTT

UCCAGUU

ACUGGAGU

UCCAGUU

ACUGGAGU









TATACTC

UAUACUC

UGGCUGU

UAUACUA

UGGCUGU






NM_
3066-
ususcuu(Chd)AfgCfAfA
4159
VPusCfsguaCfuGfAfgu
4493
TCTTCTTCA
4827
UUCUUCA
5161
CCGUACUG
5495
UUCUUCA
5829
UCGUACUG
6163


002973.4
3088
fcucaguacgaL96

ugCfuGfaagaasgsa

GCAACTCA

GCAACUC

AGUUGCUG

GCAACUC

AGUUGCUG









GTACGG

AGUACGG

AAGAAGA

AGUACGA

AAGAAGA






NM_
3156-
ususucu(Ahd)CfuUfUfG
4160
VPusUfsggaAfaUfGfgc
4494
TCTTTCTAC
4828
UUUCUAC
5162
GUGGAAAU
5496
UUUCUAC
5830
UUGGAAAU
6164


002973.4
3178
fccauuuccaaL96

aaAfgUfagaaasgsa

TTTGCCATT

UUUGCCA

GGCAAAGU

UUUGCCA

GGCAAAGU









TCCAC

UUUCCAC

AGAAAGA

UUUCCAA

AGAAAGA






NM_
3157-
ususcua(Chd)UfuUfGfC
4161
VPusGfsuggAfaAfUfg
4495
CTTTCTACT
4829
UUCUACU
5163
CGUGGAAA
5497
UUCUACU
5831
UGUGGAAA
6165


002973.4
3179
fcauuuccacaL96

gcaAfaGfuagaasasg

TTGCCATTT

UUGCCAU

UGGCAAAG

UUGCCAU

UGGCAAAG









CCACG

UUCCACG

UAGAAAG

UUCCACA

UAGAAAG






NM_
3860-
uscsuug(Uhd)AfaCfAfU
4162
VPusUfsccuAfuUfGfga
4496
TTTCTTGTA
4830
UCUUGUA
5164
UUCCUAUU
5498
UCUUGUA
5832
UUCCUAUU
6166


002973.4
3882
fccaauaggaaL96

ugUfuAfcaagasasa

ACATCCAA

ACAUCCA

GGAUGUUA

ACAUCCA

GGAUGUUA









TAGGAA

AUAGGAA

CAAGAAA

AUAGGAA

CAAGAAA






NM_
4002-
cscsgaa(Ahd)CfuGfGfA
4163
VPusUfsaaaUfaAfCfuu
4497
TGCCGAAA
4831
CCGAAAC
5165
AUAAAUAA
5499
CCGAAAC
5833
UUAAAUAA
6167


002973.4
4024
faguuauuuaaL96

ccAfgUfuucggscsa

CTGGAAGT

UGGAAGU

CUUCCAGU

UGGAAGU

CUUCCAGU









TATTTAT

UAUUUAU

UUCGGCA

UAUUUAA

UUCGGCA






NM_
4002-
cscsgaa(Ahd)CfuGfGfA
4164
VPusUfsaaaUfaAfCfuu
4498
TGCCGAAA
4832
CCGAAAC
5166
AUAAAUAA
5500
CCGAAAC
5834
UUAAAUAA
6168


002973.4
4024
faguuauuuaaL96

ccAfgUfuucggscsa

CTGGAAGT

UGGAAGU

CUUCCAGU

UGGAAGU

CUUCCAGU









TATTTAT

UAUUUAU

UUCGGCA

UAUUUAA

UUCGGCA






NM_
4002-
cscsgaa(Ahd)CfuGfGfA
4165
VPusUfsaaaUfaAfCfuu
4499
TGCCGAAA
4833
CCGAAAC
5167
AUAAAUAA
5501
CCGAAAC
5835
UUAAAUAA
6169


002973.4
4024
faguuauuuaaL96

ccAfgUfuucggscsa

CTGGAAGT

UGGAAGU

CUUCCAGU

UGGAAGU

CUUCCAGU









TATTTAT

UAUUUAU

UUCGGCA

UAUUUAA

UUCGGCA






NM_
4005-
asasacu(Ghd)GfaAfGfU
4166
VPusAfsaauAfaAfUfaa
4500
CGAAACTG
4834
AAACUGG
5168
AAAAUAAA
5502
AAACUGG
5836
UAAAUAAA
6170


002973.4
4027
fuauuuauuuaL96

cuUfcCfaguuuscsg

GAAGTTAT

AAGUUAU

UAACUUCC

AAGUUAU

UAACUUCC









TTATTTT

UUAUUUU

AGUUUCG

UUAUUUA

AGUUUCG






NM_
4035-
csusuga(Ahd)AfgUfCfA
4167
VPusAfsuguGfuUfCfau
4501
CCCTTGAA
4835
CUUGAAA
5169
GAUGUGUU
5503
CUUGAAA
5837
UAUGUGUU
6171


002973.4
4057
fugaacacauaL96

gaCfuUfucaagsgsg

AGTCATGA

GUCAUGA

CAUGACUU

GUCAUGA

CAUGACUU









ACACATC

ACACAUC

UCAAGGG

ACACAUA

UCAAGGG






NM_
4035-
csusuga(Ahd)AfgUfCfA
4168
VPusAfsuguGfuUfCfau
4502
CCCTTGAA
4836
CUUGAAA
5170
GAUGUGUU
5504
CUUGAAA
5838
UAUGUGUU
6172


002973.4
4057
fugaacacauaL96

gaCfuUfucaagsgsg

AGTCATGA

GUCAUGA

CAUGACUU

GUCAUGA

CAUGACUU









ACACATC

ACACAUC

UCAAGGG

ACACAUA

UCAAGGG






NM_
4041-
asgsuca(Uhd)GfaAfCfA
4169
VPusUfsagcUfgAfUfgu
4503
AAAGTCAT
4837
AGUCAUG
5171
CUAGCUGA
5505
AGUCAUG
5839
UUAGCUGA
6173


002973.4
4063
fcaucagcuaaL96

guUfcAfugacususu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAG

UGACUUU

CAGCUAA

UGACUUU






NM_
4041-
asgsuca(Uhd)GfaAfCfA
4170
VPusUfsagcUfgAfUfgu
4504
AAAGTCAT
4838
AGUCAUG
5172
CUAGCUGA
5506
AGUCAUG
5840
UUAGCUGA
6174


002973.4
4063
fcaucagcuaaL96

guUfcAfugacususu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAG

UGACUUU

CAGCUAA

UGACUUU






NM_
4041-
asgsuca(Uhd)GfaAfCfA
4171
VPusUfsagcUfgAfUfgu
4505
AAAGTCAT
4839
AGUCAUG
5173
CUAGCUGA
5507
AGUCAUG
5841
UUAGCUGA
6175


002973.4
4063
fcaucagcuaaL96

guUfcAfugacususu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAG

UGACUUU

CAGCUAA

UGACUUU






NM_
4042-
gsuscau(Ghd)AfaCfAfC
4172
VPusCfsuagCfuGfAfug
4506
AAGTCATG
4840
GUCAUGA
5174
GCUAGCUG
5508
GUCAUGA
5842
UCUAGCUG
6176


002973.4
4064
faucagcuagaL96

ugUfuCfaugacsusu

AACACATC

ACACAUC

AUGUGUUC

ACACAUC

AUGUGUUC









AGCTAGC

AGCUAGC

AUGACUU

AGCUAGA

AUGACUU






NM_
4042-
gsuscau(Ghd)AfaCfAfC
4173
VPusCfsuagCfuGfAfug
4507
AAGTCATG
4841
GUCAUGA
5175
GCUAGCUG
5509
GUCAUGA
5843
UCUAGCUG
6177


002973.4
4064
faucagcuagaL96

ugUfuCfaugacsusu

AACACATC

ACACAUC

AUGUGUUC

ACACAUC

AUGUGUUC









AGCTAGC

AGCUAGC

AUGACUU

AGCUAGA

AUGACUU






NM_
4044-
csasuga(Ahd)CfaCfAfU
4174
VPusUfsgcuAfgCfUfga
4508
GTCATGAA
4842
CAUGAAC
5176
UUGCUAGC
5510
CAUGAAC
5844
UUGCUAGC
6178


002973.4
4066
fcagcuagcaaL96

ugUfgUfucaugsasc

CACATCAG

ACAUCAG

UGAUGUGU

ACAUCAG

UGAUGUGU









CTAGCAA

CUAGCAA

UCAUGAC

CUAGCAA

UCAUGAC






NM_
4076-
asgsagu(Ghd)AfuUfCfU
4175
VPusAfsuagCfaGfCfaa
4509
CAAGAGTG
4843
AGAGUGA
5177
AAUAGCAG
5511
AGAGUGA
5845
UAUAGCAG
6179


002973.4
4098
fugcugcuauaL96

gaAfuCfacucususg

ATTCTTGCT

UUCUUGC

CAAGAAUC

UUCUUGC

CAAGAAUC









GCTATT

UGCUAUU

ACUCUUG

UGCUAUA

ACUCUUG






NM_
4076-
asgsagu(Ghd)AfuUfCfU
4176
VPusAfsuagCfaGfCfaa
4510
CAAGAGTG
4844
AGAGUGA
5178
AAUAGCAG
5512
AGAGUGA
5846
UAUAGCAG
6180


002973.4
4098
fugcugcuauaL96

gaAfuCfacucususg

ATTCTTGCT

UUCUUGC

CAAGAAUC

UUCUUGC

CAAGAAUC









GCTATT

UGCUAUU

ACUCUUG

UGCUAUA

ACUCUUG






NM_
4079-
gsusgau(Uhd)CfuUfGfC
4177
VPusGfsuaaUfaGfCfag
4511
GAGTGATT
4845
GUGAUUC
5179
AGUAAUAG
5513
GUGAUUC
5847
UGUAAUAG
6181


002973.4
4101
fugcuauuacaL96

caAfgAfaucacsusc

CTTGCTGC

UUGCUGC

CAGCAAGA

UUGCUGC

CAGCAAGA









TATTACT

UAUUACU

AUCACUC

UAUUACA

AUCACUC






NM_
4079-
gsusgau(Uhd)CfuUfGfC
4178
VPusGfsuaaUfaGfCfag
4512
GAGTGATT
4846
GUGAUUC
5180
AGUAAUAG
5514
GUGAUUC
5848
UGUAAUAG
6182


002973.4
4101
fugcuauuacaL96

caAfgAfaucacsusc

CTTGCTGC

UUGCUGC

CAGCAAGA

UUGCUGC

CAGCAAGA









TATTACT

UAUUACU

AUCACUC

UAUUACA

AUCACUC






NM_
4137-
csgsccc(Uhd)UfuUfAfC
4179
VPusUfscaaGfuUfUfag
4513
AACGCCCT
4847
CGCCCUU
5181
GUCAAGUU
5515
CGCCCUU
5849
UUCAAGUU
6183


002973.4
4159
fuaaacuugaaL96

uaAfaAfgggcgsusu

TTTACTAA

UUACUAA

UAGUAAAA

UUACUAA

UAGUAAAA









ACTTGAC

ACUUGAC

GGGCGUU

ACUUGAA

GGGCGUU






NM_
4137-
csgsccc(Uhd)UfuUfAfC
4180
VPusUfscaaGfuUfUfag
4514
AACGCCCT
4848
CGCCCUU
5182
GUCAAGUU
5516
CGCCCUU
5850
UUCAAGUU
6184


002973.4
4159
fuaaacuugaaL96

uaAfaAfgggcgsusu

TTTACTAA

UUACUAA

UAGUAAAA

UUACUAA

UAGUAAAA









ACTTGAC

ACUUGAC

GGGCGUU

ACUUGAA

GGGCGUU






NM_
4176-
usasccg(Uhd)CfaAfAfC
4181
VPusAfsaucCfgUfCfag
4515
CTTACCGT
4849
UACCGUC
5183
UAAUCCGU
5517
UACCGUC
5851
UAAUCCGU
6185


002973.4
4198
fugacggauuaL96

uuUfgAfcgguasasg

CAAACTGA

AAACUGA

CAGUUUGA

AAACUGA

CAGUUUGA









CGGATTA

CGGAUUA

CGGUAAG

CGGAUUA

CGGUAAG






NM_
4228-
ascsugu(Chd)UfaCfAfG
4182
VPusGfsuugAfaCfCfac
4516
TCACTGTC
4850
ACUGUCU
5184
AGUUGAAC
5518
ACUGUCU
5852
UGUUGAAC
6186


002973.4
4250
fugguucaacaL96

ugUfaGfacagusgsa

TACAGTGG

ACAGUGG

CACUGUAG

ACAGUGG

CACUGUAG









TTCAACT

UUCAACU

ACAGUGA

UUCAACA

ACAGUGA






NM_
4228-
ascsugu(Chd)UfaCfAfG
4183
VPusGfsuugAfaCfCfac
4517
TCACTGTC
4851
ACUGUCU
5185
AGUUGAAC
5519
ACUGUCU
5853
UGUUGAAC
6187


002973.4
4250
fugguucaacaL96

ugUfaGfacagusgsa

TACAGTGG

ACAGUGG

CACUGUAG

ACAGUGG

CACUGUAG









TTCAACT

UUCAACU

ACAGUGA

UUCAACA

ACAGUGA






NM_
4237-
asgsugg(Uhd)UfcAfAfC
4184
VPusAfsacuUfaAfAfag
4518
ACAGTGGT
4852
AGUGGUU
5186
UAACUUAA
5520
AGUGGUU
5854
UAACUUAA
6188


002973.4
4259
fuuuuaaguuaL96

uuGfaAfccacusgsu

TCAACTTTT

CAACUUU

AAGUUGAA

CAACUUU

AAGUUGAA









AAGTTA

UAAGUUA

CCACUGU

UAAGUUA

CCACUGU






NM_
4238-
gsusggu(Uhd)CfaAfCfU
4185
VPusUfsaacUfuAfAfaa
4519
CAGTGGTT
4853
GUGGUUC
5187
UUAACUUA
5521
GUGGUUC
5855
UUAACUUA
6189


002973.4
4260
fuuuaaguuaaL96

guUfgAfaccacsusg

CAACTTTT

AACUUUU

AAAGUUGA

AACUUUU

AAAGUUGA









AAGTTAA

AAGUUAA

ACCACUG

AAGUUAA

ACCACUG






NM_
4256-
usasagg(Ghd)AfaAfAfA
4186
VPusAfsaguAfaAfAfgu
4520
GTTAAGGG
4854
UAAGGGA
5188
AAAGUAAA
5522
UAAGGGA
5856
UAAGUAAA
6190


002973.4
4278
fcuuuuacuuaL96

uuUfuCfccuuasasc

AAAAACTT

AAAACUU

AGUUUUUC

AAAACUU

AGUUUUUC









TTACTTT

UUACUUU

CCUUAAC

UUACUUA

CCUUAAC






NM_
 692-
cscsuca(Ghd)CfcUfAfC
4187
VPusAfsaagAfaAfUfcg
4521
TGCCTCAG
4855
CCUCAGC
5189
AAAAGAAA
5523
CCUCAGC
5857
UAAAGAAA
6191


009125.2
714
fgauuucuuuaL96

uaGfgCfugaggscsa

CCTACGAT

CUACGAU

UCGUAGGC

CUACGAU

UCGUAGGC









TTCTTTT

UUCUUUU

UGAGGCA

UUCUUUA

UGAGGCA






NM_
 693-
csuscag(Chd)CfuAfCfG
4188
VPusAfsaaaGfaAfAfuc
4522
GCCTCAGC
4856
CUCAGCC
5190
CAAAAGAA
5524
CUCAGCC
5858
UAAAAGAA
6192


009125.2
715
fauuucuuuuaL96

guAfgGfcugagsgsc

CTACGATT

UACGAUU

AUCGUAGG

UACGAUU

AUCGUAGG









TCTTTTG

UCUUUUG

CUGAGGC

UCUUUUA

CUGAGGC






NM_
 694-
uscsagc(Chd)UfaCfGfA
4189
VPusCfsaaaAfgAfAfau
4523
CCTCAGCC
4857
UCAGCCU
5191
UCAAAAGA
5525
UCAGCCU
5859
UCAAAAGA
6193


009125.2
716
fuuucuuuugaL96

cgUfaGfgcugasgsg

TACGATTT

ACGAUUU

AAUCGUAG

ACGAUUU

AAUCGUAG









CTTTTGA

CUUUUGA

GCUGAGG

CUUUUGA

GCUGAGG






NM_
 733-
gsasgga(Uhd)GfgUfUfC
4190
VPusUfsaagUfaUfAfug
4524
GTGAGGAT
4858
GAGGAUG
5192
GUAAGUAU
5526
GAGGAUG
5860
UUAAGUAU
6194


009125.2
755
fauauacuuaaL96

aaCfcAfuccucsasc

GGTTCATA

GUUCAUA

AUGAACCA

GUUCAUA

AUGAACCA









TACTTAC

UACUUAC

UCCUCAC

UACUUAA

UCCUCAC






NM_
 733-
gsasgga(Uhd)GfgUfUfC
4191
VPusUfsaagUfaUfAfug
4525
ATGAGGAT
4859
GAGGAUG
5193
AUAAGUAU
5527
GAGGAUG
5861
UUAAGUAU
6195


009125.2
755
fauauacuuaaL96

aaCfcAfuccucsasc

GGTTCATA

GUUCAUA

AUGAACCA

GUUCAUA

AUGAACCA









TACTTAC

UACUUAU

UCCUCAC

UACUUAA

UCCUCAC






NM_
 734-
asgsgau(Ghd)GfuUfCfA
4192
VPusGfsuaaGfuAfUfau
4526
TGAGGATG
4860
AGGAUGG
5194
CGUAAGUA
5528
AGGAUGG
5862
UGUAAGUA
6196


009125.2
756
fuauacuuacaL96

gaAfcCfauccuscsa

GTTCATAT

UUCAUAU

UAUGAACC

UUCAUAU

UAUGAACC









ACTTACG

ACUUACG

AUCCUCA

ACUUACA

AUCCUCA






NM_
 771-
asasugu(Ghd)AfaGfUfA
4193
VPusUfsuucAfcUfUfgu
4527
GAAATGTG
4861
AAUGUGA
5195
UUUUCACU
5529
AAUGUGA
5863
UUUUCACU
6197


009125.2
793
fcaagugaaaaL96

acUfuCfacauususc

AAGTACAA

AGUACAA

UGUACUUC

AGUACAA

UGUACUUC









GTGAAAA

GUGAAAA

ACAUUUC

GUGAAAA

ACAUUUC






NM_
 771-
asasugu(Ghd)AfaGfUfA
4194
VPusUfsuucAfcUfUfgu
4528
CAAATGTG
4862
AAUGUGA
5196
UUUUCACU
5530
AAUGUGA
5864
UUUUCACU
6198


009125.2
793
fcaagugaaaaL96

acUfuCfacauususc

AAGTACAA

AGUACAA

UGUACUUC

AGUACAA

UGUACUUC









GTGAAAA

GUGAAAA

ACAUUUC

GUGAAAA

ACAUUUC






NM_
 774-
gsusgaa(Ghd)UfaCfAfA
4195
VPusGfsuuuUfuCfAfcu
4529
ATGTGAAG
4863
GUGAAGU
5197
CGUUUUUC
5531
GUGAAGU
5865
UGUUUUUC
6199


009125.2
796
fgugaaaaacaL96

ugUfaCfuucacsasu

TACAAGTG

ACAAGUG

ACUUGUAC

ACAAGUG

ACUUGUAC









AAAAACG

AAAAACG

UUCACAU

AAAAACA

UUCACAU






NM_
 807-
asasgga(Ghd)UfuUfUfU
4196
VPusGfsuauGfuUfUfua
4530
TGAAGGAG
4864
AAGGAGU
5198
UGUAUGUU
5532
AAGGAGU
5866
UGUAUGUU
6200


009125.2
829
faaaacauacaL96

aaAfaCfuccuuscsa

TTTTTAAA

UUUUAAA

UUAAAAAC

UUUUAAA

UUAAAAAC









ACATACA

ACAUACA

UCCUUCA

ACAUACA

UCCUUCA






NM_
 808-
asgsgag(Uhd)UfuUfUfA
4197
VPusUfsguaUfgUfUfu
4531
GAAGGAGT
4865
AGGAGUU
5199
CUGUAUGU
5533
AGGAGUU
5867
UUGUAUGU
6201


009125.2
830
faaacauacaaL96

uaaAfaAfcuccususc

TTTTAAAA

UUUAAAA

UUUAAAAA

UUUAAAA

UUUAAAAA









CATACAG

CAUACAG

CUCCUUC

CAUACAA

CUCCUUC






NM_
 819-
asasaca(Uhd)AfcAfGfU
4198
VPusAfscacUfuAfGfga
4532
TAAAACAT
4866
AAACAUA
5200
CACACUUA
5534
AAACAUA
5868
UACACUUA
6202


009125.2
841
fccuaaguguaL96

cuGfuAfuguuususa

ACAGTCCT

CAGUCCU

GGACUGUA

CAGUCCU

GGACUGUA









AAGTGTG

AAGUGUG

UGUUUUA

AAGUGUA

UGUUUUA






NM_
 820-
asascau(Ahd)CfaGfUfC
4199
VPusCfsacaCfuUfAfgg
4533
AAAACATA
4867
AACAUAC
5201
UCACACUU
5535
AACAUAC
5869
UCACACUU
6203


009125.2
842
fcuaagugugaL96

acUfgUfauguususu

CAGTCCTA

AGUCCUA

AGGACUGU

AGUCCUA

AGGACUGU









AGTGTGA

AGUGUGA

AUGUUUU

AGUGUGA

AUGUUUU






NM_
 821-
ascsaua(Chd)AfgUfCfC
4200
VPusUfscacAfcUfUfag
4534
AAACATAC
4868
ACAUACA
5202
GUCACACU
5536
ACAUACA
5870
UUCACACU
6204


009125.2
843
fuaagugugaaL96

gaCfuGfuaugususu

AGTCCTAA

GUCCUAA

UAGGACUG

GUCCUAA

UAGGACUG









GTGTGAC

GUGUGAC

UAUGUUU

GUGUGAA

UAUGUUU






NM_
 854-
gscsugc(Ahd)CfaUfGfA
4201
VPusGfsuacUfuUfUfcu
4535
ATGCTGCA
4869
GCUGCAC
5203
UGUACUUU
5537
GCUGCAC
5871
UGUACUUU
6205


009125.2
876
fgaaaaguacaL96

caUfgUfgcagcsasu

CATGAGAA

AUGAGAA

UCUCAUGU

AUGAGAA

UCUCAUGU









AAGTACA

AAGUACA

GCAGCAU

AAGUACA

GCAGCAU






NM_
 855-
csusgca(Chd)AfuGfAfG
4202
VPusUfsguaCfuUfUfuc
4536
TGCTGCAC
4870
CUGCACA
5204
CUGUACUU
5538
CUGCACA
5872
UUGUACUU
6206


009125.2
877
faaaaguacaaL96

ucAfuGfugcagscsa

ATGAGAAA

UGAGAAA

UUCUCAUG

UGAGAAA

UUCUCAUG









AGTACAG

AGUACAG

UGCAGCA

AGUACAA

UGCAGCA






NM_
 908-
asusgga(Ghd)AfgUfGfU
4203
VPusUfsugaAfcAfAfaa
4537
TAATGGAG
4871
AUGGAGA
5205
UUUGAACA
5539
AUGGAGA
5873
UUUGAACA
6207


009125.2
930
fuuuguucaaaL96

caCfuCfuccaususa

AGTGTTTT

GUGUUUU

AAACACUC

GUGUUUU

AAACACUC









GTTCAAA

GUUCAAA

UCCAUUA

GUUCAAA

UCCAUUA






NM_
 910-
gsgsaga(Ghd)UfgUfUfU
4204
VPusAfsuuuGfaAfCfaa
4538
ATGGAGAG
4872
GGAGAGU
5206
CAUUUGAA
5540
GGAGAGU
5874
UAUUUGAA
6208


009125.2
932
fuguucaaauaL96

aaCfaCfucuccsasu

TGTTTTGTT

GUUUUGU

CAAAACAC

GUUUUGU

CAAAACAC









CAAATG

UCAAAUG

UCUCCAU

UCAAAUA

UCUCCAU






NM_
 919-
ususugu(Uhd)CfaAfAfU
4205
VPusAfsgucUfgAfGfca
4539
GTTTTGTTC
4873
UUUGUUC
5207
AAGUCUGA
5541
UUUGUUC
5875
UAGUCUGA
6209


009125.2
941
fgcucagacuaL96

uuUfgAfacaaasasc

AAATGCTC

AAAUGCU

GCAUUUGA

AAAUGCU

GCAUUUGA









AGACTT

CAGACUU

ACAAAAC

CAGACUA

ACAAAAC






NM_
 921-
usgsuuc(Ahd)AfaUfGfC
4206
VPusGfsaagUfcUfGfag
4540
TTTGTTCA
4874
UGUUCAA
5208
CGAAGUCU
5542
UGUUCAA
5876
UGAAGUCU
6210


009125.2
943
fucagacuucaL96

caUfuUfgaacasasa

AATGCTCA

AUGCUCA

GAGCAUUU

AUGCUCA

GAGCAUUU









GACTTCG

GACUUCG

GAACAAA

GACUUCA

GAACAAA






NM_
 922-
gsusuca(Ahd)AfuGfCfU
4207
VPusCfsgaaGfuCfUfga
4541
TTGTTCAA
4875
GUUCAAA
5209
ACGAAGUC
5543
GUUCAAA
5877
UCGAAGUC
6211


009125.2
944
fcagacuucgaL96

gcAfuUfugaacsasa

ATGCTCAG

UGCUCAG

UGAGCAUU

UGCUCAG

UGAGCAUU









ACTTCGT

ACUUCGU

UGAACAA

ACUUCGA

UGAACAA






NM_
 923-
ususcaa(Ahd)UfgCfUfC
4208
VPusAfscgaAfgUfCfug
4542
TGTTCAAA
4876
UUCAAAU
5210
AACGAAGU
5544
UUCAAAU
5878
UACGAAGU
6212


009125.2
945
fagacuucguaL96

agCfaUfuugaascsa

TGCTCAGA

GCUCAGA

CUGAGCAU

GCUCAGA

CUGAGCAU









CTTCGTT

CUUCGUU

UUGAACA

CUUCGUA

UUGAACA






NM_
 924-
uscsaaa(Uhd)GfcUfCfA
4209
VPusAfsacgAfaGfUfcu
4543
GTTCAAAT
4877
UCAAAUG
5211
CAACGAAG
5545
UCAAAUG
5879
UAACGAAG
6213


009125.2
946
fgacuucguuaL96

gaGfcAfuuugasasc

GCTCAGAC

CUCAGAC

UCUGAGCA

CUCAGAC

UCUGAGCA









TTCGTTG

UUCGUUG

UUUGAAC

UUCGUUA

UUUGAAC






NM_
 925-
csasaau(Ghd)CfuCfAfG
4210
VPusCfsaacGfaAfGfuc
4544
TTCAAATG
4878
CAAAUGC
5212
ACAACGAA
5546
CAAAUGC
5880
UCAACGAA
6214


009125.2
947
facuucguugaL96

ugAfgCfauuugsasa

CTCAGACT

UCAGACU

GUCUGAGC

UCAGACU

GUCUGAGC









TCGTTGT

UCGUUGU

AUUUGAA

UCGUUGA

AUUUGAA






NM_
 926-
asasaug(Chd)UfcAfGfA
4211
VPusAfscaaCfgAfAfgu
4545
TCAAATGC
4879
AAAUGCU
5213
CACAACGA
5547
AAAUGCU
5881
UACAACGA
6215


009125.2
948
fcuucguuguaL96

cuGfaGfcauuusgsa

TCAGACTT

CAGACUU

AGUCUGAG

CAGACUU

AGUCUGAG









CGTTGTG

CGUUGUG

CAUUUGA

CGUUGUA

CAUUUGA






NM_
 927-
asasugc(Uhd)CfaGfAfC
4212
VPusCfsacaAfcGfAfag
4546
CAAATGCT
4880
AAUGCUC
5214
CCACAACG
5548
AAUGCUC
5882
UCACAACG
6216


009125.2
949
fuucguugugaL96

ucUfgAfgcauususg

CAGACTTC

AGACUUC

AAGUCUGA

AGACUUC

AAGUCUGA









GTTGTGG

GUUGUGG

GCAUUUG

GUUGUGA

GCAUUUG






NM_
1131-
ascsaug(Uhd)UfuCfGfA
4213
VPusUfsucaUfuAfUfau
4547
TGACATGT
4881
ACAUGUU
5215
CUUCAUUA
5549
ACAUGUU
5883
UUUCAUUA
6217


009125.2
1153
fuauaaugaaaL96

cgAfaAfcauguscsa

TTCGATAT

UCGAUAU

UAUCGAAA

UCGAUAU

UAUCGAAA









AATGAAG

AAUGAAG

CAUGUCA

AAUGAAA

CAUGUCA






NM_
1186-
ususuau(Chd)UfuCfAfU
4214
VPusGfsaacCfgUfAfua
4548
AGTTTATC
4882
UUUAUCU
5216
GGAACCGU
5550
UUUAUCU
5884
UGAACCGU
6218


009125.2
1208
fauacgguucaL96

ugAfaGfauaaascsu

TTCATATA

UCAUAUA

AUAUGAAG

UCAUAUA

AUAUGAAG









CGGTTCC

CGGUUCC

AUAAACU

CGGUUCA

AUAAACU






NM_
1214-
asgsgga(Chd)AfaCfUfC
4215
VPusAfsauuCfuUfCfug
4549
AAAGGGAC
4883
AGGGACA
5217
AAAUUCUU
5551
AGGGACA
5885
UAAUUCUU
6219


009125.2
1236
fagaagaauuaL96

agUfuGfucccususu

AACTCAGA

ACUCAGA

CUGAGUUG

ACUCAGA

CUGAGUUG









AGAATTT

AGAAUUU

UCCCUUU

AGAAUUA

UCCCUUU






NM_
1215-
gsgsgac(Ahd)AfcUfCfA
4216
VPusAfsaauUfcUfUfcu
4550
AAGGGACA
4884
GGGACAA
5218
GAAAUUCU
5552
GGGACAA
5886
UAAAUUCU
6220


009125.2
1237
fgaagaauuuaL96

gaGfuUfgucccsusu

ACTCAGAA

CUCAGAA

UCUGAGUU

CUCAGAA

UCUGAGUU









GAATTTC

GAAUUUC

GUCCCUU

GAAUUUA

GUCCCUU






NM_
1216-
gsgsaca(Ahd)CfuCfAfG
4217
VPusGfsaaaUfuCfUfuc
4551
AGGGACAA
4885
GGACAAC
5219
AGAAAUUC
5553
GGACAAC
5887
UGAAAUUC
6221


009125.2
1238
faagaauuucaL96

ugAfgUfuguccscsu

CTCAGAAG

UCAGAAG

UUCUGAGU

UCAGAAG

UUCUGAGU









AATTTCT

AAUUUCU

UGUCCCU

AAUUUCA

UGUCCCU






NM_
1217-
gsascaa(Chd)UfcAfGfA
4218
VPusAfsgaaAfuUfCfuu
4552
GGGACAAC
4886
GACAACU
5220
AAGAAAUU
5554
GACAACU
5888
UAGAAAUU
6222


009125.2
1239
fagaauuucuaL96

cuGfaGfuugucscsc

TCAGAAGA

CAGAAGA

CUUCUGAG

CAGAAGA

CUUCUGAG









ATTTCTT

AUUUCUU

UUGUCCC

AUUUCUA

UUGUCCC






NM_
1516-
usgscuu(Chd)UfcAfCfA
4219
VPusAfsaucUfgAfAfgu
4553
GCTGCTTC
4887
UGCUUCU
5221
AAAUCUGA
5555
UGCUUCU
5889
UAAUCUGA
6223


009125.2
1538
fcuucagauuaL96

guGfaGfaagcasgsc

TCACACTT

CACACUU

AGUGUGAG

CACACUU

AGUGUGAG









CAGATTT

CAGAUUU

AAGCAGC

CAGAUUA

AAGCAGC






NM_
1517-
gscsuuc(Uhd)CfaCfAfC
4220
VPusAfsaauCfuGfAfag
4554
CTGCTTCTC
4888
GCUUCUC
5222
GAAAUCUG
5556
GCUUCUC
5890
UAAAUCUG
6224


009125.2
1539
fuucagauuuaL96

ugUfgAfgaagcsasg

ACACTTCA

ACACUUC

AAGUGUGA

ACACUUC

AAGUGUGA









GATTTC

AGAUUUC

GAAGCAG

AGAUUUA

GAAGCAG






NM_
1518-
csusucu(Chd)AfcAfCfU
4221
VPusGfsaaaUfcUfGfaa
4555
TGCTTCTC
4889
CUUCUCA
5223
UGAAAUCU
5557
CUUCUCA
5891
UGAAAUCU
6225


009125.2
1540
fucagauuucaL96

guGfuGfagaagscsa

ACACTTCA

CACUUCA

GAAGUGUG

CACUUCA

GAAGUGUG









GATTTCA

GAUUUCA

AGAAGCA

GAUUUCA

AGAAGCA






NM_
1518-
csusucu(Chd)AfcAfCfU
4222
VPusGfsaaaUfcUfGfaa
4556
CACTTCTC
4890
CUUCUCA
5224
UGAAAUCU
5558
CUUCUCA
5892
UGAAAUCU
6226


009125.2
1540
fucagauuucaL96

guGfuGfagaagscsa

ACACTTCA

CACUUCA

GAAGUGUG

CACUUCA

GAAGUGUG









GATTTCA

GAUUUCA

AGAAGCA

GAUUUCA

AGAAGCA






NM_
1519-
ususcuc(Ahd)CfaCfUfU
4223
VPusUfsgaaAfuCfUfga
4557
GCTTCTCA
4891
UUCUCAC
5225
UUGAAAUC
5559
UUCUCAC
5893
UUGAAAUC
6227


009125.2
1541
fcagauuucaaL96

agUfgUfgagaasgsc

CACTTCAG

ACUUCAG

UGAAGUGU

ACUUCAG

UGAAGUGU









ATTTCAA

AUUUCAA

GAGAAGC

AUUUCAA

GAGAAGC






NM_
1519-
ususcuc(Ahd)CfaCfUfU
4224
VPusUfsgaaAfuCfUfga
4558
ACTTCTCA
4892
UUCUCAC
5226
UUGAAATC
5560
UUCUCAC
5894
UUGAAAUC
6228


009125.2
1541
fcagauuucaaL96

agUfgUfgagaasgsc

CACTTCAG

ACUUCAG

UGAAGUGU

ACUUCAG

UGAAGUGU









ATTTCAA

AUUUCAA

GAGAAGC

AUUUCAA

GAGAAGC






NM_
1553-
uscsaga(Chd)CfaAfAfG
4225
VPusUfsuaaCfuAfCfuc
4559
GCTCAGAC
4893
UCAGACC
5227
AUUAACUA
5561
UCAGACC
5895
UUUAACUA
6229


009125.2
1575
faguaguuaaaL96

uuUfgGfucugasgsc

CAAAGAGT

AAAGAGU

CUCUUUGG

AAAGAGU

CUCUUUGG









AGTTAAT

AGUUAAU

UCUGAGC

AGUUAAA

UCUGAGC






NM_
1553-
uscsaga(Chd)CfaAfAfG
4226
VPusUfsuaaCfuAfCfuc
4560
GTTCAGAC
4894
UCAGACC
5228
AUUAACTA
5562
UCAGACC
5896
UUUAACUA
6230


009125.2
1575
faguaguuaaaL96

uuUfgGfucugasgsc

CAAAGAGT

AAAGAGU

CUCUUUGG

AAAGAGU

CUCUUUGG









AGTTAAT

AGUUAAU

UCUGAGC

AGUUAAA

UCUGAGC






NM_
1554-
csasgac(Chd)AfaAfGfA
4227
VPusAfsuuaAfcUfAfcu
4561
CTCAGACC
4895
CAGACCA
5229
CAUUAACU
5563
CAGACCA
5897
UAUUAACU
6231


009125.2
1576
fguaguuaauaL96

cuUfuGfgucugsasg

AAAGAGTA

AAGAGUA

ACUCUUUG

AAGAGUA

ACUCUUUG









GTTAATG

GUUAAUG

GUCUGAG

GUUAAUA

GUCUGAG






NM_
1554-
csasgac(Chd)AfaAfGfA
4228
VPusAfsuuaAfcUfAfcu
4562
TTCAGACC
4896
CAGACCA
5230
AAUUAACU
5564
CAGACCA
5898
UAUUAACU
6232


009125.2
1576
fguaguuaauaL96

cuUfuGfgucugsasg

AAAGAGTA

AAGAGUA

ACUCUUUG

AAGAGUA

ACUCUUUG









GTTAATG

GUUAAUU

GUCUGAG

GUUAAUA

GUCUGAG






NM_
1872-
usasgaa(Uhd)UfuGfUfA
4229
VPusAfsuugUfgGfGfa
4563
CCTAGAAT
4897
UAGAAUU
5231
GAUUGUGG
5565
UAGAAUU
5899
UAUUGUGG
6233


009125.2
1894
fucccacaauaL96

uacAfaAfuucuasgsg

TTGTATCC

UGUAUCC

GAUACAAA

UGUAUCC

GAUACAAA









CACAATC

CACAAUC

UUCUAGG

CACAAUA

UUCUAGG






NM_
1873-
asgsaau(Uhd)UfgUfAfU
4230
VPusGfsauuGfuGfGfga
4564
CTAGAATT
4898
AGAAUUU
5232
GGAUUGUG
5566
AGAAUUU
5900
UGAUUGUG
6234


009125.2
1895
fcccacaaucaL96

uaCfaAfauucusasg

TGTATCCC

GUAUCCC

GGAUACAA

GUAUCCC

GGAUACAA









ACAATCC

ACAAUCC

AUUCUAG

ACAAUCA

AUUCUAG






NM_
1874-
gsasauu(Uhd)GfuAfUfC
4231
VPusGfsgauUfgUfGfg
4565
TAGAATTT
4899
GAAUUUG
5233
GGGAUUGU
5567
GAAUUUG
5901
UGGAUUGU
6235


009125.2
1896
fccacaauccaL96

gauAfcAfaauucsusa

GTATCCCA

UAUCCCA

GGGAUACA

UAUCCCA

GGGAUACA









CAATCCC

CAAUCCC

AAUUCUA

CAAUCCA

AAUUCUA






NM_
2238-
gsusgaa(Ahd)CfaUfCfA
4232
VPusAfsaagCfuAfGfgu
4566
AAGTGAAA
4900
GUGAAAC
5234
AAAAGCUA
5568
GUGAAAC
5902
UAAAGCUA
6236


009125.2
2260
fccuagcuuuaL96

gaUfgUfuucacsusu

CATCACCT

AUCACCU

GGUGAUGU

AUCACCU

GGUGAUGU









AGCTTTT

AGCUUUU

UUCACUU

AGCUUUA

UUCACUU






NM_
2239-
usgsaaa(Chd)AfuCfAfC
4233
VPusAfsaaaGfcUfAfgg
4567
AGTGAAAC
4901
UGAAACA
5235
GAAAAGCU
5569
UGAAACA
5903
UAAAAGCU
6237


009125.2
2261
fcuagcuuuuaL96

ugAfuGfuuucascsu

ATCACCTA

UCACCUA

AGGUGAUG

UCACCUA

AGGUGAUG









GCTTTTC

GCUUUUC

UUUCACU

GCUUUUA

UUUCACU






NM_
2240-
gsasaac(Ahd)UfcAfCfC
4234
VPusGfsaaaAfgCfUfag
4568
GTGAAACA
4902
GAAACAU
5236
UGAAAAGC
5570
GAAACAU
5904
UGAAAAGC
6238


009125.2
2262
fuagcuuuucaL96

guGfaUfguuucsasc

TCACCTAG

CACCUAG

UAGGUGAU

CACCUAG

UAGGUGAU









CTTTTCA

CUUUUCA

GUUUCAC

CUUUUCA

GUUUCAC






NM_
2241-
asasaca(Uhd)CfaCfCfU
4235
VPusUfsgaaAfaGfCfua
4569
TGAAACAT
4903
AAACAUC
5237
UUGAAAAG
5571
AAACAUC
5905
UUGAAAAG
6239


009125.2
2263
fagcuuuucaaL96

ggUfgAfuguuuscsa

CACCTAGC

ACCUAGC

CUAGGUGA

ACCUAGC

CUAGGUGA









TTTTCAA

UUUUCAA

UGUUUCA

UUUUCAA

UGUUUCA






NM_
2242-
asascau(Chd)AfcCfUfA
4236
VPusUfsugaAfaAfGfcu
4570
GAAACATC
4904
AACAUCA
5238
UUUGAAAA
5572
AACAUCA
5906
UUUGAAAA
6240


009125.2
2264
fgcuuuucaaaL96

agGfuGfauguususc

ACCTAGCT

CCUAGCU

GCUAGGUG

CCUAGCU

GCUAGGUG









TTTCAAA

UUUCAAA

AUGUUUC

UUUCAAA

AUGUUUC






NM_
2243-
ascsauc(Ahd)CfcUfAfG
4237
VPusUfsuugAfaAfAfgc
4571
AAACATCA
4905
ACAUCAC
5239
UUUUGAAA
5573
ACAUCAC
5907
UUUUGAAA
6241


009125.2
2265
fcuuuucaaaaL96

uaGfgUfgaugususu

CCTAGCTT

CUAGCUU

AGCUAGGU

CUAGCUU

AGCUAGGU









TTCAAAA

UUCAAAA

GAUGUUU

UUCAAAA

GAUGUUU






NM_
2244-
csasuca(Chd)CfuAfGfC
4238
VPusUfsuuuGfaAfAfag
4572
AACATCAC
4906
CAUCACC
5240
CUUUUGAA
5574
CAUCACC
5908
UUUUUGAA
6242


009125.2
2266
fuuuucaaaaaL96

cuAfgGfugaugsusu

CTAGCTTTT

UAGCUUU

AAGCUAGG

UAGCUUU

AAGCUAGG









CAAAAG

UCAAAAG

UGAUGUU

UCAAAAA

UGAUGUU






NM_
2245-
asuscac(Chd)UfaGfCfU
4239
VPusCfsuuuUfgAfAfaa
4573
ACATCACC
4907
AUCACCU
5241
GCUUUUGA
5575
AUCACCU
5909
UCUUUUGA
6243


009125.2
2267
fuuucaaaagaL96

gcUfaGfgugausgsu

TAGCTTTTC

AGCUUUU

AAAGCUAG

AGCUUUU

AAAGCUAG









AAAAGC

CAAAAGC

GUGAUGU

CAAAAGA

GUGAUGU






NM_
2246-
uscsacc(Uhd)AfgCfUfU
4240
VPusGfscuuUfuGfAfaa
4574
CATCACCT
4908
UCACCUA
5242
AGCUUUUG
5576
UCACCUA
5910
UGCUUUUG
6244


009125.2
2268
fuucaaaagcaL96

agCfuAfggugasusg

AGCTTTTC

GCUUUUC

AAAAGCUA

GCUUUUC

AAAAGCUA









AAAAGCT

AAAAGCU

GGUGAUG

AAAAGCA

GGUGAUG






NM_
2247-
csasccu(Ahd)GfcUfUfU
4241
VPusAfsgcuUfuUfGfaa
4575
ATCACCTA
4909
CACCUAG
5243
CAGCUUUU
5577
CACCUAG
5911
UAGCUUUU
6245


009125.2
2269
fucaaaagcuaL96

aaGfcUfaggugsasu

GCTTTTCA

CUUUUCA

GAAAAGCU

CUUUUCA

GAAAAGCU









AAAGCTG

AAAGCUG

AGGUGAU

AAAGCUA

AGGUGAU






NM_
2248-
ascscua(Ghd)CfuUfUfU
4242
VPusCfsagcUfuUfUfga
4576
TCACCTAG
4910
ACCUAGC
5244
UCAGCUUU
5578
ACCUAGC
5912
UCAGCUUU
6246


009125.2
2270
fcaaaagcugaL96

aaAfgCfuaggusgsa

CTTTTCAA

UUUUCAA

UGAAAAGC

UUUUCAA

UGAAAAGC









AAGCTGA

AAGCUGA

UAGGUGA

AAGCUGA

UAGGUGA






NM_
2249-
cscsuag(Chd)UfuUfUfC
4243
VPusUfscagCfuUfUfug
4577
CACCTAGC
4911
CCUAGCU
5245
GUCAGCUU
5579
CCUAGCU
5913
UUCAGCUU
6247


009125.2
2271
faaaagcugaaL96

aaAfaGfcuaggsusg

TTTTCAAA

UUUCAAA

UUGAAAAG

UUUCAAA

UUGAAAAG









AGCTGAC

AGCUGAC

CUAGGUG

AGCUGAA

CUAGGUG






NM_
2364-
csasucu(Ghd)AfaUfCfU
4244
VPusUfsugaUfcCfAfua
4578
TACATCTG
4912
CAUCUGA
5246
GUUGAUCC
5580
CAUCUGA
5914
UUUGAUCC
6248


009125.2
2386
fauggaucaaaL96

gaUfuCfagaugsusa

AATCTATG

AUCUAUG

AUAGAUUC

AUCUAUG

AUAGAUUC









GATCAAC

GAUCAAC

AGAUGUA

GAUCAAA

AGAUGUA






NM_
2365-
asuscug(Ahd)AfuCfUfA
4245
VPusGfsuugAfuCfCfau
4579
ACATCTGA
4913
AUCUGAA
5247
AGUUGAUC
5581
AUCUGAA
5915
UGUUGAUC
6249


009125.2
2387
fuggaucaacaL96

agAfuUfcagausgsu

ATCTATGG

UCUAUGG

CAUAGAUU

UCUAUGG

CAUAGAUU









ATCAACT

AUCAACU

CAGAUGU

AUCAACA

CAGAUGU






NM_
2366-
uscsuga(Ahd)UfcUfAfU
4246
VPusAfsguuGfaUfCfca
4580
CATCTGAA
4914
UCUGAAU
5248
UAGUUGAU
5582
UCUGAAU
5916
UAGUUGAU
6250


009125.2
2388
fggaucaacuaL96

uaGfaUfucagasusg

TCTATGGA

CUAUGGA

CCAUAGAU

CUAUGGA

CCAUAGAU









TCAACTA

UCAACUA

UCAGAUG

UCAACUA

UCAGAUG






NM_
2366-
uscsuga(Ahd)UfcUfAfU
4247
VPusAfsguuGfaUfCfca
4581
CTTCTGAA
4915
UCUGAAU
5249
UAGUUGAU
5583
UCUGAAU
5917
UAGUUGAU
6251


009125.2
2388
fggaucaacuaL96

uaGfaUfucagasusg

TCTATGGA

CUAUGGA

CCAUAGAU

CUAUGGA

CCAUAGAU









TCAACTA

UCAACUA

UCAGAUG

UCAACUA

UCAGAUG






NM_
2367-
csusgaa(Uhd)CfuAfUfG
4248
VPusUfsaguUfgAfUfcc
4582
ATCTGAAT
4916
CUGAAUC
5250
GUAGUUGA
5584
CUGAAUC
5918
UUAGUUGA
6252


009125.2
2389
fgaucaacuaaL96

auAfgAfuucagsasu

CTATGGAT

UAUGGAU

UCCAUAGA

UAUGGAU

UCCAUAGA









CAACTAC

CAACUAC

UUCAGAU

CAACUAA

UUCAGAU






NM_
2367-
csusgaa(Uhd)CfuAfUfG
4249
VPusUfsaguUfgAfUfcc
4583
TTCTGAAT
4917
CUGAAUC
5251
AUAGUUGA
5585
CUGAAUC
5919
UUAGUUGA
6253


009125.2
2389
fgaucaacuaaL96

auAfgAfuucagsasu

CTATGGAT

UAUGGAU

UCCAUAGA

UAUGGAU

UCCAUAGA









CAACTAC

CAACUAU

UUCAGAU

CAACUAA

UUCAGAU






NM_
2371-
asuscua(Uhd)GfgAfUfC
4250
VPusUfsuagUfaGfUfug
4584
GAATCTAT
4918
AUCUAUG
5252
CUUAGUAG
5586
AUCUAUG
5920
UUUAGUAG
6254


009125.2
2393
faacuacuaaaL96

auCfcAfuagaususc

GGATCAAC

GAUCAAC

UUGAUCCA

GAUCAAC

UUGAUCCA









TACTAAG

UACUAAG

UAGAUUC

UACUAAA

UAGAUUC






NM_
2372-
uscsuau(Ghd)GfaUfCfA
4251
VPusCfsuuaGfuAfGfuu
4585
AATCTATG
4919
UCUAUGG
5253
GCUUAGUA
5587
UCUAUGG
5921
UCUUAGUA
6255


009125.2
2394
facuacuaagaL96

gaUfcCfauagasusu

GATCAACT

AUCAACU

GUUGAUCC

AUCAACU

GUUGAUCC









ACTAAGC

ACUAAGC

AUAGAUU

ACUAAGA

AUAGAUU






NM_
2373-
csusaug(Ghd)AfuCfAfA
4252
VPusGfscuuAfgUfAfg
4586
ATCTATGG
4920
CUAUGGA
5254
UGCUUAGU
5588
CUAUGGA
5922
UGCUUAGU
6256


009125.2
2395
fcuacuaagcaL96

uugAfuCfcauagsasu

ATCAACTA

UCAACUA

AGUUGAUC

UCAACUA

AGUUGAUC









CTAAGCA

CUAAGCA

CAUAGAU

CUAAGCA

CAUAGAU






NM_
2374-
usasugg(Ahd)UfcAfAfC
4253
VPusUfsgcuUfaGfUfag
4587
TCTATGGA
4921
UAUGGAU
5255
UUGCUUAG
5589
UAUGGAU
5923
UUGCUUAG
6257


009125.2
2396
fuacuaagcaaL96

uuGfaUfccauasgsa

TCAACTAC

CAACUAC

UAGUUGAU

CAACUAC

UAGUUGAU









TAAGCAA

UAAGCAA

CCAUAGA

UAAGCAA

CCAUAGA






NM_
2375-
asusgga(Uhd)CfaAfCfU
4254
VPusUfsugcUfuAfGfua
4588
CTATGGAT
4922
AUGGAUC
5256
UUUGCUUA
5590
AUGGAUC
5924
UUUGCUUA
6258


009125.2
2397
facuaagcaaaL96

guUfgAfuccausasg

CAACTACT

AACUACU

GUAGUUGA

AACUACU

GUAGUUGA









AAGCAAA

AAGCAAA

UCCAUAG

AAGCAAA

UCCAUAG






NM_
2376-
usgsgau(Chd)AfaCfUfA
4255
VPusUfsuugCfuUfAfg
4589
TATGGATC
4923
UGGAUCA
5257
UUUUGCUU
5591
UGGAUCA
5925
UUUUGCUU
6259


009125.2
2398
fcuaagcaaaaL96

uagUfuGfauccasusa

AACTACTA

ACUACUA

AGUAGUUG

ACUACUA

AGUAGUUG









AGCAAAA

AGCAAAA

AUCCAUA

AGCAAAA

AUCCAUA






NM_
2377-
gsgsauc(Ahd)AfcUfAfC
4256
VPusUfsuuuGfcUfUfag
4590
ATGGATCA
4924
GGAUCAA
5258
UUUUUGCU
5592
GGAUCAA
5926
UUUUUGCU
6260


009125.2
2399
fuaagcaaaaaL96

uaGfuUfgauccsasu

ACTACTAA

CUACUAA

UAGUAGUU

CUACUAA

UAGUAGUU









GCAAAAA

GCAAAAA

GAUCCAU

GCAAAAA

GAUCCAU






NM_
2378-
gsasuca(Ahd)CfuAfCfU
4257
VPusUfsuuuUfgCfUfua
4591
TGGATCAA
4925
GAUCAAC
5259
AUUUUUGC
5593
GAUCAAC
5927
UUUUUUGC
6261


009125.2
2400
faagcaaaaaaL96

guAfgUfugaucscsa

CTACTAAG

UACUAAG

UUAGUAGU

UACUAAG

UUAGUAGU









CAAAAAT

CAAAAAU

UGAUCCA

CAAAAAA

UGAUCCA






NM_
2403-
asasgga(Ghd)AfaAfAfG
4258
VPusAfsucuCfgUfGfac
4592
AGAAGGAG
4926
AAGGAGA
5260
AAUCUCGU
5594
AAGGAGA
5928
UAUCUCGU
6262


009125.2
2425
fucacgagauaL96

uuUfuCfuccuuscsu

AAAAGTCA

AAAGUCA

GACUUUUC

AAAGUCA

GACUUUUC









CGAGATT

CGAGAUU

UCCUUCU

CGAGAUA

UCCUUCU






NM_
2695-
gsgsagu(Uhd)CfaAfCfC
4259
VPusAfsagaAfcGfAfgg
4593
AAGGAGTT
4927
GGAGUUC
5261
AAAGAACG
5595
GGAGUUC
5929
UAAGAACG
6263


009125.2
2717
fcucguucuuaL96

guUfgAfacuccsusu

CAACCCTC

AACCCUC

AGGGUUGA

AACCCUC

AGGGUUGA









GTTCTTT

GUUCUUU

ACUCCUU

GUUCUUA

ACUCCUU






NM_
2698-
gsusuca(Ahd)CfcCfUfC
4260
VPusAfsgaaAfgAfAfcg
4594
GAGTTCAA
4928
GUUCAAC
5262
GAGAAAGA
5596
GUUCAAC
5930
UAGAAAGA
6264


009125.2
2720
fguucuuucuaL96

agGfgUfugaacsusc

CCCTCGTT

CCUCGUU

ACGAGGGU

CCUCGUU

ACGAGGGU









CTTTCTC

CUUUCUC

UGAACUC

CUUUCUA

UGAACUC






NM_
2699-
ususcaa(Chd)CfcUfCfG
4261
VPusGfsagaAfaGfAfac
4595
AGTTCAAC
4929
UUCAACC
5263
AGAGAAAG
5597
UUCAACC
5931
UGAGAAAG
6265


009125.2
2721
fuucuuucucaL96

gaGfgGfuugaascsu

CCTCGTTCT

CUCGUUC

AACGAGGG

CUCGUUC

AACGAGGG









TTCTCT

UUUCUCU

UUGAACU

UUUCUCA

UUGAACU






NM_
2700-
uscsaac(Chd)CfuCfGfU
4262
VPusAfsgagAfaAfGfaa
4596
GTTCAACC
4930
UCAACCC
5264
GAGAGAAA
5598
UCAACCC
5932
UAGAGAAA
6266


009125.2
2722
fucuuucucuaL96

cgAfgGfguugasasc

CTCGTTCTT

UCGUUCU

GAACGAGG

UCGUUCU

GAACGAGG









TCTCTC

UUCUCUC

GUUGAAC

UUCUCUA

GUUGAAC






NM_
2701-
csasacc(Chd)UfcGfUfU
4263
VPusGfsagaGfaAfAfga
4597
TTCAACCC
4931
CAACCCU
5265
UGAGAGAA
5599
CAACCCU
5933
UGAGAGAA
6267


009125.2
2723
fcuuucucucaL96

acGfaGfgguugsasa

TCGTTCTTT

CGUUCUU

AGAACGAG

CGUUCUU

AGAACGAG









CTCTCA

UCUCUCA

GGUUGAA

UCUCUCA

GGUUGAA






NM_
2702-
asasccc(Uhd)CfgUfUfC
4264
VPusUfsgagAfgAfAfag
4598
TCAACCCT
4932
AACCCUC
5266
CUGAGAGA
5600
AACCCUC
5934
UUGAGAGA
6268


009125.2
2724
fuuucucucaaL96

aaCfgAfggguusgsa

CGTTCTTTC

GUUCUUU

AAGAACGA

GUUCUUU

AAGAACGA









TCTCAG

CUCUCAG

GGGUUGA

CUCUCAA

GGGUUGA






NM_
2708-
csgsuuc(Uhd)UfuCfUfC
4265
VPusUfsuugGfcUfGfag
4599
CTCGTTCTT
4933
CGUUCUU
5267
CUUUGGCU
5601
CGUUCUU
5935
UUUUGGCU
6269


009125.2
2730
fucagccaaaaL96

agAfaAfgaacgsasg

TCTCTCAG

UCUCUCA

GAGAGAAA

UCUCUCA

GAGAGAAA









CCAAAG

GCCAAAG

GAACGAG

GCCAAAA

GAACGAG






NM_
2709-
gsusucu(Uhd)UfcUfCfU
4266
VPusCfsuuuGfgCfUfga
4600
TCGTTCTTT
4934
GUUCUUU
5268
GCUUUGGC
5602
GUUCUUU
5936
UCUUUGGC
6270


009125.2
2731
fcagccaaagaL96

gaGfaAfagaacsgsa

CTCTCAGC

CUCUCAG

UGAGAGAA

CUCUCAG

UGAGAGAA









CAAAGC

CCAAAGC

AGAACGA

CCAAAGA

AGAACGA






NM_
3143-
asgsucc(Uhd)GfuCfAfU
4267
VPusUfsuacCfuUfGfua
4601
ACAGTCCT
4935
AGUCCUG
5269
AUUACCUU
5603
AGUCCUG
5937
UUUACCUU
6271


009125.2
3165
facaagguaaaL96

ugAfcAfggacusgsu

GTCATACA

UCAUACA

GUAUGACA

UCAUACA

GUAUGACA









AGGTAAT

AGGUAAU

GGACUGU

AGGUAAA

GGACUGU






NM_
3144-
gsusccu(Ghd)UfcAfUfA
4268
VPusAfsuuaCfcUfUfgu
4602
CAGTCCTG
4936
GUCCUGU
5270
CAUUACCU
5604
GUCCUGU
5938
UAUUACCU
6272


009125.2
3166
fcaagguaauaL96

auGfaCfaggacsusg

TCATACAA

CAUACAA

UGUAUGAC

CAUACAA

UGUAUGAC









GGTAATG

GGUAAUG

AGGACUG

GGUAAUA

AGGACUG






NM_
3148-
usgsuca(Uhd)AfcAfAfG
4269
VPusUfsggcAfuUfAfcc
4603
CCTGTCAT
4937
UGUCAUA
5271
CUGGCAUU
5605
UGUCAUA
5939
UUGGCAUU
6273


009125.2
3170
fguaaugccaaL96

uuGfuAfugacasgsg

ACAAGGTA

CAAGGUA

ACCUUGUA

CAAGGUA

ACCUUGUA









ATGCCAG

AUGCCAG

UGACAGG

AUGCCAA

UGACAGG






NM_
3149-
gsuscau(Ahd)CfaAfGfG
4270
VPusCfsuggCfaUfUfac
4604
CTGTCATA
4938
GUCAUAC
5272
CCUGGCAU
5606
GUCAUAC
5940
UCUGGCAU
6274


009125.2
3171
fuaaugccagaL96

cuUfgUfaugacsasg

CAAGGTAA

AAGGUAA

UACCUUGU

AAGGUAA

UACCUUGU









TGCCAGG

UGCCAGG

AUGACAG

UGCCAGA

AUGACAG






NM_
3303-
uscsuac(Uhd)UfuGfCfC
4271
VPusGfsgugGfaAfAfu
4605
TTTCTACTT
4939
UCUACUU
5273
CGGUGGAA
5607
UCUACUU
5941
UGGUGGAA
6275


009125.2
3325
fauuuccaccaL96

ggcAfaAfguagasasa

TGCCATTT

UGCCAUU

AUGGCAAA

UGCCAUU

AUGGCAAA









CCACCG

UCCACCG

GUAGAAA

UCCACCA

GUAGAAA






NM_
3950-
asasgca(Chd)AfgAfAfA
4272
VPusAfsguuCfuAfGfu
4606
GGAAGCAC
4940
AAGCACA
5274
AAGUUCUA
5608
AAGCACA
5942
UAGUUCUA
6276


009125.2
3972
facuagaacuaL96

uuuCfuGfugcuuscsc

AGAAAACT

GAAAACU

GUUUUCUG

GAAAACU

GUUUUCUG









AGAACTT

AGAACUU

UGCUUCC

AGAACUA

UGCUUCC






NM_
3952-
gscsaca(Ghd)AfaAfAfC
4273
VPusGfsaagUfuCfUfag
4607
AAGCACAG
4941
GCACAGA
5275
UGAAGUUC
5609
GCACAGA
5943
UGAAGUUC
6277


009125.2
3974
fuagaacuucaL96

uuUfuCfugugcsusu

AAAACTAG

AAACUAG

UAGUUUUC

AAACUAG

UAGUUUUC









AACTTCA

AACUUCA

UGUGCUU

AACUUCA

UGUGCUU






NM_
3954-
ascsaga(Ahd)AfaCfUfA
4274
VPusAfsugaAfgUfUfcu
4608
GCACAGAA
4942
ACAGAAA
5276
AAUGAAGU
5610
ACAGAAA
5944
UAUGAAGU
6278


009125.2
3976
fgaacuucauaL96

agUfuUfucugusgsc

AACTAGAA

ACUAGAA

UCUAGUUU

ACUAGAA

UCUAGUUU









CTTCATT

CUUCAUU

UCUGUGC

CUUCAUA

UCUGUGC






NM_
3955-
csasgaa(Ahd)AfcUfAfG
4275
VPusAfsaugAfaGfUfuc
4609
CACAGAAA
4943
CAGAAAA
5277
CAAUGAAG
5611
CAGAAAA
5945
UAAUGAAG
6279


009125.2
3977
faacuucauuaL96

uaGfuUfuucugsusg

ACTAGAAC

CUAGAAC

UUCUAGUU

CUAGAAC

UUCUAGUU









TTCATTG

UUCAUUG

UUCUGUG

UUCAUUA

UUCUGUG






NM_
4134-
usgscuu(Ghd)CfuGfAfA
4276
VPusAfscuuCfcAfGfuu
4610
TCTGCTTG
4944
UGCUUGC
5278
AACUUCCA
5612
UGCUUGC
5946
UACUUCCA
6280


009125.2
4156
facuggaaguaL96

ucAfgCfaagcasgsa

CTGAAACT

UGAAACU

GUUUCAGC

UGAAACU

GUUUCAGC









GGAAGTT

GGAAGUU

AAGCAGA

GGAAGUA

AAGCAGA






NM_
4140-
csusgaa(Ahd)CfuGfGfA
4277
VPusUfsaaaUfaAfCfuu
4611
TGCTGAAA
4945
CUGAAAC
5279
AUAAAUAA
5613
CUGAAAC
5947
UUAAAUAA
6281


009125.2
4162
faguuauuuaaL96

ccAfgUfuucagscsa

CTGGAAGT

UGGAAGU

CUUCCAGU

UGGAAGU

CUUCCAGU









TATTTAT

UAUUUAU

UUCAGCA

UAUUUAA

UUCAGCA






NM_
4141-
usgsaaa(Chd)UfgGfAfA
4278
VPusAfsuaaAfuAfAfcu
4612
GCTGAAAC
4946
UGAAACU
5280
AAUAAAUA
5614
UGAAACU
5948
UAUAAAUA
6282


009125.2
4163
fguuauuuauaL96

ucCfaGfuuucasgsc

TGGAAGTT

GGAAGUU

ACUUCCAG

GGAAGUU

ACUUCCAG









ATTTATT

AUUUAUU

UUUCAGC

AUUUAUA

UUUCAGC






NM_
4142-
gsasaac(Uhd)GfgAfAfG
4279
VPusAfsauaAfaUfAfac
4613
CTGAAACT
4947
GAAACUG
5281
AAAUAAAU
5615
GAAACUG
5949
UAAUAAAU
6283


009125.2
4164
fuuauuuauuaL96

uuCfcAfguuucsasg

GGAAGTTA

GAAGUUA

AACUUCCA

GAAGUUA

AACUUCCA









TTTATTT

UUUAUUU

GUUUCAG

UUUAUUA

GUUUCAG






NM_
4142-
gsasaac(Uhd)GfgAfAfG
4280
VPusAfsauaAfaUfAfac
4614
CCGAAACT
4948
GAAACUG
5282
AAAUAAAU
5616
GAAACUG
5950
UAAUAAAU
6284


009125.2
4164
fuuauuuauuaL96

uuCfcAfguuucsasg

GGAAGTTA

GAAGUUA

AACUUCCA

GAAGUUA

AACUUCCA









TTTATTT

UUUAUUU

GUUUCAG

UUUAUUA

GUUUCAG






NM_
4174-
ususgag(Ahd)GfuCfAfU
4281
VPusGfsaugUfgUfUfca
4615
CCTTGAGA
4949
UUGAGAG
5283
UGAUGUGU
5617
UUGAGAG
5951
UGAUGUGU
6285


009125.2
4196
fgaacacaucaL96

ugAfcUfcucaasgsg

GTCATGAA

UCAUGAA

UCAUGACU

UCAUGAA

UCAUGACU









CACATCA

CACAUCA

CUCAAGG

CACAUCA

CUCAAGG






NM_
4179-
asgsuca(Uhd)GfaAfCfA
4282
VPusUfsagcUfgAfUfgu
4616
AGAGTCAT
4950
AGUCAUG
5284
CUAGCUGA
5618
AGUCAUG
5952
UUAGCUGA
6286


009125.2
4201
fcaucagcuaaL96

guUfcAfugacuscsu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAG

UGACUCU

CAGCUAA

UGACUCU






NM_
4179-
asgsuca(Uhd)GfaAfCfA
4283
VPusUfsagcUfgAfUfgu
4617
AAAGTCAT
4951
AGUCAUG
5285
AUAGCUGA
5619
AGUCAUG
5953
UUAGCUGA
6287


009125.2
4201
fcaucaguaaL96

guUfcAfugacuscsu

GAACACAT

AACACAU

UGUGUUCA

AACACAU

UGUGUUCA









CAGCTAG

CAGCUAU

UGACUCU

CAGCUAA

UGACUCU






NM_
4180-
gsuscau(Ghd)AfaCfAfC
4284
VPusCfsuagCfuGfAfug
4618
GAGTCATG
4952
GUCAUGA
5286
GCUAGCUG
5620
GUCAUGA
5954
UCUAGCUG
6288


009125.2
4202
faucagcuagaL96

ugUfuCfaugacsusc

AACACATC

ACACAUC

AUGUGUUC

ACACAUC

AUGUGUUC









AGCTAGC

AGCUAGC

AUGACUC

AGCUAGA

AUGACUC






NM_
4180-
gsuscau(Ghd)AfaCfAfC
4285
VPusCfsuagCfuGfAfug
4619
AAGTCATG
4953
GUCAUGA
5287
ACUAGCTG
5621
GUCAUGA
5955
UCUAGCUG
6289


009125.2
4202
faucagcuagaL96

ugUfuCfaugacsusc

AACACATC

ACACAUC

AUGUGUUC

ACACAUC

AUGUGUUC









AGCTAGC

AGCUAGU

AUGACUC

AGCUAGA

AUGACUC






NM_
4183-
asusgaa(Chd)AfcAfUfC
4286
VPusUfsugcUfaGfCfug
4620
TCATGAAC
4954
AUGAACA
5288
GUUGCUAG
5622
AUGAACA
5956
UUUGCUAG
6290


009125.2
4205
fagcuagcaaaL96

auGfuGfuucausgsa

ACATCAGC

CAUCAGC

CUGAUGUG

CAUCAGC

CUGAUGUG









TAGCAAC

UAGCAAC

UUCAUGA

UAGCAAA

UUCAUGA






NM_
4184-
usgsaac(Ahd)CfaUfCfA
4287
VPusGfsuugCfuAfGfcu
4621
CATGAACA
4955
UGAACAC
5289
UGUUGCUA
5623
UGAACAC
5957
UGUUGCUA
6291


009125.2
4206
fgcuagcaacaL96

gaUfgUfguucasusg

CATCAGCT

AUCAGCU

GCUGAUGU

AUCAGCU

GCUGAUGU









AGCAACA

AGCAACA

GUUCAUG

AGCAACA

GUUCAUG






NM_
4191-
asuscag(Chd)UfaGfCfA
4288
VPusUfsacuUfcUfGfuu
4622
ACATCAGC
4956
AUCAGCU
5290
UUACUUCU
5624
AUCAGCU
5958
UUACUUCU
6292


009125.2
4213
facagaaguaaL96

gcUfaGfcugausgsu

TAGCAACA

AGCAACA

GUUGCUAG

AGCAACA

GUUGCUAG









GAAGTAA

GAAGUAA

CUGAUGU

GAAGUAA

CUGAUGU






NM_
4193-
csasgcu(Ahd)GfcAfAfC
4289
VPusGfsuuaCfuUfCfug
4623
ATCAGCTA
4957
CAGCUAG
5291
UGUUACUU
5625
CAGCUAG
5959
UGUUACUU
6293


009125.2
4215
fagaaguaacaL96

uuGfcUfagcugsasu

GCAACAGA

CAACAGA

CUGUUGCU

CAACAGA

CUGUUGCU









AGTAACA

AGUAACA

AGCUGAU

AGUAACA

AGCUGAU






NM_
4196-
csusagc(Ahd)AfcAfGfA
4290
VPusCfsuugUfuAfCfuu
4624
AGCTAGCA
4958
CUAGCAA
5292
UCUUGUUA
5626
CUAGCAA
5960
UCUUGUUA
6294


009125.2
4218
faguaacaagaL96

cuGfuUfgcuagscsu

ACAGAAGT

CAGAAGU

CUUCUGUU

CAGAAGU

CUUCUGUU









AACAAGA

AACAAGA

GCUAGCU

AACAAGA

GCUAGCU






NM_
4197-
usasgca(Ahd)CfaGfAfA
4291
VPusUfscuuGfuUfAfcu
4625
GCTAGCAA
4959
UAGCAAC
5293
CUCUUGUU
5627
UAGCAAC
5961
UUCUUGUU
6295


009125.2
4219
fguaacaagaaL96

ucUfgUfugcuasgsc

CAGAAGTA

AGAAGUA

ACUUCUGU

AGAAGUA

ACUUCUGU









ACAAGAG

ACAAGAG

UGCUAGC

ACAAGAA

UGCUAGC






NM_
4204-
asgsaag(Uhd)AfaCfAfA
4292
VPusGfsaauCfaCfUfcu
4626
ACAGAAGT
4960
AGAAGUA
5294
AGAAUCAC
5628
AGAAGUA
5962
UGAAUCAC
6296


009125.2
4226
fgagugauucaL96

ugUfuAfcuucusgsu

AACAAGAG

ACAAGAG

UCUUGUUA

ACAAGAG

UCUUGUUA









TGATTCT

UGAUUCU

CUUCUGU

UGAUUCA

CUUCUGU






NM_
4204-
asgsaag(Uhd)AfaCfAfA
4293
VPusGfsaauCfaCfUfcu
4627
AAAGAAGT
4961
AGAAGUA
5295
AGAAUCAC
5629
AGAAGUA
5963
UGAAUCAC
6297


009125.2
4226
fgagugauucaL96

ugUfuAfcuucusgsu

AACAAGAG

ACAAGAG

UCUUGUUA

ACAAGAG

UCUUGUUA









TGATTCT

UGAUUCU

CUUCUGU

UGAUUCA

CUUCUGU






NM_
4223-
csusugc(Uhd)GfcUfAfU
4294
VPusAfsaagCfgGfUfaa
4628
TTCTTGCTG
4962
CUUGCUG
5296
UAAAGCGG
5630
CUUGCUG
5964
UAAAGCGG
6298


009125.2
4245
fuaccgcuuuaL96

uaGfcAfgcaagsasa

CTATTACC

CUAUUAC

UAAUAGCA

CUAUUAC

UAAUAGCA









GCTTTA

CGCUUUA

GCAAGAA

CGCUUUA

GCAAGAA






NM_
4226-
gscsugc(Uhd)AfuUfAfC
4295
VPusUfsuuaAfaGfCfgg
4629
TTGCTGCT
4963
GCUGCUA
5297
UUUUAAAG
5631
GCUGCUA
5965
UUUUAAAG
6299


009125.2
4248
fcgcuuuaaaaL96

uaAfuAfgcagcsasa

ATTACCGC

UUACCGC

CGGUAAUA

UUACCGC

CGGUAAUA









TTTAAAA

UUUAAAA

GCAGCAA

UUUAAAA

GCAGCAA






NM_
4270-
cscscuu(Uhd)UfaCfUfA
4296
VPusUfsgucAfaGfUfuu
4630
CGCCCTTTT
4964
CCCUUUU
5298
CUGUCAAG
5632
CCCUUUU
5966
UUGUCAAG
6300


009125.2
4292
faacuugacaaL96

agUfaAfaagggscsg

ACTAAACT

ACUAAAC

UUUAGUAA

ACUAAAC

UUUAGUAA









TGACAG

UUGACAG

AAGGGCG

UUGACAA

AAGGGCG






NM_
4272-
csusuuu(Ahd)CfuAfAfA
4297
VPusUfscugUfcAfAfgu
4631
CCCTTTTAC
4965
CUUUUAC
5299
UUCUGUCA
5633
CUUUUAC
5967
UUCUGUCA
6301


009125.2
4294
fcuugacagaaL96

uuAfgUfaaaagsgsg

TAAACTTG

UAAACUU

AGUUUAGU

UAAACUU

AGUUUAGU









ACAGAA

GACAGAA

AAAAGGG

GACAGAA

AAAAGGG






NM_
4273-
ususuua(Chd)UfaAfAfC
4298
VPusUfsucuGfuCfAfag
4632
CCTTTTACT
4966
UUUUACU
5300
CUUCUGUC
5634
UUUUACU
5968
UUUCUGUC
6302


009125.2
4295
fuugacagaaaL96

uuUfaGfuaaaasgsg

AAACTTGA

AAACUUG

AAGUUUAG

AAACUUG

AAGUUUAG









CAGAAG

ACAGAAG

UAAAAGG

ACAGAAA

UAAAAGG






NM_
4276-
usascua(Ahd)AfcUfUfG
4299
VPusAfsacuUfcUfGfuc
4633
TTTACTAA
4967
UACUAAA
5301
GAACUUCU
5635
UACUAAA
5969
UAACUUCU
6303


009125.2
4298
facagaaguuaL96

aaGfuUfuaguasasa

ACTTGACA

CUUGACA

GUCAAGUU

CUUGACA

GUCAAGUU









GAAGTTC

GAAGUUC

UAGUAAA

GAAGUUA

UAGUAAA






NM_
4278-
csusaaa(Chd)UfuGfAfC
4300
VPusUfsgaaCfuUfCfug
4634
TACTAAAC
4968
CUAAACU
5302
CUGAACUU
5636
CUAAACU
5970
UUGAACUU
6304


009125.2
4300
fagaaguucaaL96

ucAfaGfuuuagsusa

TTGACAGA

UGACAGA

CUGUCAAG

UGACAGA

CUGUCAAG









AGTTCAG

AGUUCAG

UUUAGUA

AGUUCAA

UUUAGUA






NM_
4282-
ascsuug(Ahd)CfaGfAfA
4301
VPusUfsuacUfgAfAfcu
4635
AAACTTGA
4969
ACUUGAC
5303
UUUACUGA
5637
ACUUGAC
5971
UUUACUGA
6305


009125.2
4304
fguucaguaaaL96

ucUfgUfcaagususu

CAGAAGTT

AGAAGUU

ACUUCUGU

AGAAGUU

ACUUCUGU









CAGTAAA

CAGUAAA

CAAGUUU

CAGUAAA

CAAGUUU






NM_
4285-
usgsaca(Ghd)AfaGfUfU
4302
VPusAfsauuUfaCfUfga
4636
CTTGACAG
4970
UGACAGA
5304
GAAUUUAC
5638
UGACAGA
5972
UAAUUUAC
6306


009125.2
4307
fcaguaaauuaL96

acUfuCfugucasasg

AAGTTCAG

AGUUCAG

UGAACUUC

AGUUCAG

UGAACUUC









TAAATTC

UAAAUUC

UGUCAAG

UAAAUUA

UGUCAAG






NM_
4287-
ascsaga(Ahd)GfuUfCfA
4303
VPusAfsgaaUfuUfAfcu
4637
TGACAGAA
4971
ACAGAAG
5305
AAGAAUUU
5639
ACAGAAG
5973
UAGAAUUU
6307


009125.2
4309
fguaaauucuaL96

gaAfcUfucuguscsa

GTTCAGTA

UUCAGUA

ACUGAACU

UUCAGUA

ACUGAACU









AATTCTT

AAUUCUU

UCUGUCA

AAUUCUA

UCUGUCA






NM_
4288-
csasgaa(Ghd)UfuCfAfG
4304
VPusAfsagaAfuUfUfac
4638
GACAGAAG
4972
CAGAAGU
5306
UAAGAAUU
5640
CAGAAGU
5974
UAAGAAUU
6308


009125.2
4310
fuaaauucuuaL96

ugAfaCfuucugsusc

TTCAGTAA

UCAGUAA

UACUGAAC

UCAGUAA

UACUGAAC









ATTCTTA

AUUCUUA

UUCUGUC

AUUCUUA

UUCUGUC






NM_
4289-
asgsaag(Uhd)UfcAfGfU
4305
VPusUfsaagAfaUfUfua
4639
ACAGAAGT
4973
AGAAGUU
5307
GUAAGAAU
5641
AGAAGUU
5975
UUAAGAAU
6309


009125.2
4311
faaauucuuaaL96

cuGfaAfcuucusgsu

TCAGTAAA

CAGUAAA

UUACUGAA

CAGUAAA

UUACUGAA









TTCTTAC

UUCUUAC

CUUCUGU

UUCUUAA

CUUCUGU






NM_
4312-
cscsaaa(Chd)UfgAfCfG
4306
VPusAfsuaaUfaAfUfcc
4640
CGCCAAAC
4974
CCAAACU
5308
AAUAAUAA
5642
CCAAACU
5976
UAUAAUAA
6310


009125.2
4334
fgauuauuauaL96

guCfaGfuuuggscsg

TGACGGAT

GACGGAU

UCCGUCAG

GACGGAU

UCCGUCAG









TATTATT

UAUUAUU

UUUGGCG

UAUUAUA

UUUGGCG






NM_
4385-
gsusuaa(Ghd)GfgAfAfA
4307
VPusAfsguaAfaAfGfuu
4641
AAGTTAAG
4975
GUUAAGG
5309
AAGUAAAA
5643
GUUAAGG
5977
UAGUAAAA
6311


009125.2
4407
facuuuuacuaL96

uuCfcCfuuaacsusu

GGAAAACT

GAAAACU

GUUUUCCC

GAAAACU

GUUUUCCC









TTTACTT

UUUACUU

UUAACUU

UUUACUA

UUAACUU






NM_
4386-
ususaag(Ghd)GfaAfAfA
4308
VPusAfsaguAfaAfAfgu
4642
AGTTAAGG
4976
UUAAGGG
5310
AAAGUAAA
5644
UUAAGGG
5978
UAAGUAAA
6312


009125.2
4408
fcuuuuacuuaL96

uuUfcCfcuuaascsu

GAAAACTT

AAAACUU

AGUUUUCC

AAAACUU

AGUUUUCC









TTACTTT

UUACUUU

CUUAACU

UUACUUA

CUUAACU






NM_
4387-
usasagg(Ghd)AfaAfAfC
4309
VPusAfsaagUfaAfAfag
4643
GTTAAGGG
4977
UAAGGGA
5311
CAAAGUAA
5645
UAAGGGA
5979
UAAAGUAA
6313


009125.2
4409
fuuuuacuuuaL96

uuUfuCfccuuasasc

AAAACTTT

AAACUUU

AAGUUUUC

AAACUUU

AAGUUUUC









TACTTTG

UACUUUG

CCUUAAC

UACUUUA

CCUUAAC






NM_
4389-
asgsgga(Ahd)AfaCfUfU
4310
VPusAfscaaAfgUfAfaa
4644
TAAGGGAA
4978
AGGGAAA
5312
UACAAAGU
5646
AGGGAAA
5980
UACAAAGU
6314


009125.2
4411
fuuacuuuguaL96

agUfuUfucccususa

AACTTTTA

ACUUUUA

AAAAGUUU

ACUUUUA

AAAAGUUU









CTTTGTA

CUUUGUA

UCCCUUA

CUUUGUA

UCCCUUA






NM_
4390-
gsgsgaa(Ahd)AfcUfUfU
4311
VPusUfsacaAfaGfUfaa
4645
AAGGGAAA
4979
GGGAAAA
5313
CUACAAAG
5647
GGGAAAA
5981
UUACAAAG
6315


009125.2
4412
fuacuuuguaaL96

aaGfuUfuucccsusu

ACTTTTACT

CUUUUAC

UAAAAGUU

CUUUUAC

UAAAAGUU









TTGTAG

UUUGUAG

UUCCCUU

UUUGUAA

UUCCCUU






NM_
4392-
gsasaaa(Chd)UfuUfUfA
4312
VPusUfscuaCfaAfAfgu
4646
GGGAAAAC
4980
GAAAACU
5314
AUCUACAA
5648
GAAAACU
5982
UUCUACAA
6316


009125.2
4414
fcuuuguagaaL96

aaAfaGfuuuucscsc

TTTTACTTT

UUUACUU

AGUAAAAG

UUUACUU

AGUAAAAG









GTAGAT

UGUAGAU

UUUUCCC

UGUAGAA

UUUUCCC






NM_
4393-
asasaac(Uhd)UfuUfAfC
4313
VPusAfsucuAfcAfAfag
4647
GGAAAACT
4981
AAAACUU
5315
UAUCUACA
5649
AAAACUU
5983
UAUCUACA
6317


009125.2
4415
fuuuguagauaL96

uaAfaAfguuuuscsc

TTTACTTTG

UUACUUU

AAGUAAAA

UUACUUU

AAGUAAAA









TAGATA

GUAGAUA

GUUUUCC

GUAGAUA

GUUUUCC






NM_
4393-
asasaac(Uhd)UfuUfAfC
4314
VPusAfsucuAfcAfAfag
4648
GAAAAACT
4982
AAAACUU
5316
UAUCUACA
5650
AAAACUU
5984
UAUCUACA
6318


009125.2
4415
fuuuguagauaL96

uaAfaAfguuuuscsc

TTTACTTTG

UUACUUU

AAGUAAAA

UUACUUU

AAGUAAAA









TAGATA

GUAGAUA

GUUUUCC

GUAGAUA

GUUUUCC
















TABLE 11







Modified sense and antisense strand sequences of mouse and human ATXN2 siRNAs evaluated in AAV-transduced mice


expressing hATXN2-IRES-gLuc constructs














Duplex
Oligo



SEQ ID

SEQ ID


Name
Name
Strand
Target
OligoSeq
NO:
TransSeq
NO:





AD-64228
A-128009
sense
None
asascaguGfuUfCfUfugcucuauaaL96
6319
AACAGUGUUCUUGCUCUAUAA
6320



A-128003
antis
mTTR
usUfsauaGfaGfCfaagaAfcAgcuguususu
6321
UUAUAGAGCAAGAACACUGUUUU
6322





AD-
A-707687
sense
ATXN2
uscsagucUfaCfGfAfuuucuuuugaL96
1358
UCAGUCUACGAUUUCUUUUGA
1529


1037307
A-1923523
antis
ATXN2
VPusCfsaaaAfgAfAfaucgUfaGfacugasgsg
1415
UCAAAAGAAAUCGUAGACUGAGG
1586





AD-
A-708019
sense
ATXN2
csasugagAfaAfAfGfuacagaaucuL96
  18
CAUGAGAAAAGUACAGAAUCU
 828


365144
A-708020
antis
ATXN2
asGfsauuc(Tgn)guacuuUfuCfucaugsusg
 283
AGAUUCTGUACUUUUCUCAUGUG
6323





AD-
A-709219
sense
ATXN2
asusccacUfuCfUfCfacacuucagaL96
1366
AUCCACUUCUCACACUUCAGA
1537


1039956
A-1928560
antis
ATXN2
VPusCfsugaAfgUfGfugagAfaGfuggauscsu
1423
UCUGAAGUGUGAGAAGUGGAUCU
1594





AD-
A-713683
sense
ATXN2
asgsugguUfcAfAfCfuuuuaaguuaL96
1386
AGUGGUUCAACUUUUAAGUUA
1557


1044729
A-1936873
antis
ATXN2
VPusAfsacuUfaAfAfaguuGfaAfccacusgsu
1443
UAACUUAAAAGUUGAACCACUGU
1614





AD-
A-713685
sense
ATXN2
gsusgguuCfaAfCfUfuuuaaguuaaL96
1387
GUGGUUCAACUUUUAAGUUAA
1558


1044730
A-1936874
antis
ATXN2
VPusUfsaacUfuAfAfaaguUfgAfaccacsusg
1444
UUAACUUAAAAGUUGAACCACUG
1615





AD-
A-1923811
sense
ATXN2
csuscaguCfuAfCfGfauuucuuuuaL96
1359
CUCAGUCUACGAUUUCUUUUA
1530


1037453
A-1923812
antis
ATXN2
VPusAfsaaaGfaAfAfucguAfgAfcugagsgsc
1416
UAAAAGAAAUCGUAGACUGAGGC
1587





AD-
A-1928751
sense
ATXN2
uscsucacAfcUfUfCfagauuucaaaL96
1367
UCUCACACUUCAGAUUUCAAA
1538


1040054
A-1928752
antis
ATXN2
VPusUfsugaAfaUfCfugaaGfuGfugagasasg
1424
UUUGAAAUCUGAAGUGUGAGAAG
1595





AD-
A-1929687
sense
ATXN2
csuscuacUfaUfGfCfcuaaacgcaaL96
1368
CUCUACUAUGCCUAAACGCAA
1539


1040559
A-1929688
antis
ATXN2
VPusUfsgcgUfuUfAfggcaUfaGfuagagsasc
1425
UUGCGUUUAGGCAUAGUAGAGAC
1596





AD-
A-1929689
sense
ATXN2
uscsuacuAfuGfCfCfuaaacgcauaL96
1369
UCUACUAUGCCUAAACGCAUA
1540


1040560
A-1929690
antis
ATXN2
VPusAfsugcGfuUfUfaggcAfuAfguagasgsa
1426
UAUGCGUUUAGGCAUAGUAGAGA
1597





AD-
A-1929999
sense
ATXN2
uscsgaaaUfcAfCfAfgaguuucugaL96
1370
UCGAAAUCACAGAGUUUCUGA
1541


1040735
A-1930000
antis
ATXN2
VPusCfsagaAfaCfUfcuguGfaUfuucgasgsg
1427
UCAGAAACUCUGUGAUUUCGAGG
1598





AD-
A-1930001
sense
ATXN2
csgsaaauCfaCfAfGfaguuucugcaL96
1371
CGAAAUCACAGAGUUUCUGCA
1542


1040736
A-1930002
antis
ATXN2
VPusGfscagAfaAfCfucugUfgAfuuucgsasg
1428
UGCAGAAACUCUGUGAUUUCGAG
1599





AD-
A-1931750
sense
ATXN2
gsusucuaCfuUfCfUfgaaucuaugaL96
1374
GUUCUACUUCUGAAUCUAUGA
1545


1041737
A-1931751
antis
ATXN2
VPusCfsauaGfaUfUfcagaAfgUfagaacsusu
1431
UCAUAGAUUCAGAAGUAGAACUU
1602





AD-
A-1931754
sense
ATXN2
csusacuuCfuGfAfAfucuauggauaL96
1376
CUACUUCUGAAUCUAUGGAUA
1547


1041739
A-1931755
antis
ATXN2
VPusAfsuccAfuAfGfauucAfgAfaguagsasa
1433
UAUCCAUAGAUUCAGAAGUAGAA
1604





AD-
A-1931976
sense
ATXN2
ascscaagUfgCfUfAfaggauucuuaL96
1377
ACCAAGUGCUAAGGAUUCUUA
1548


1041872
A-1931977
antis
ATXN2
VPusAfsagaAfuCfCfuuagCfaCfuuggususc
1434
UAAGAAUCCUUAGCACUUGGUUC
1605





AD-
A-1985507
sense
ATXN2
asgsagu(Ghd)AfuUfCfUfugcugcuauaL96
1396
AGAGUGAUUCUUGCUGCUAUA
1567


1069814
A-1936499
antis
ATXN2
VPusAfsuagCfaGfCfaagaAfuCfacucususg
1453
UAUAGCAGCAAGAAUCACUCUUG
1624
















TABLE 12







Tabulated gLuc and ATXN2 knockdown results in siRNA-


treated mice expressing hATXN2-IRES-gLuc constructs









Normalized to D0










Group

gLuc (D14)
qPCR (D14)












#
Treatment
Average
SD
Average
SD















1
PBS
100.00
21.97
100.00
11.57


2
Naïve
134.50
28.23
182.79
66.47


3
AD-1040560.1
54.78
5.94
62.35
19.17


4
AD-10447292.1
39.63
10.64
77.30
11.50


5
AD-1040736.1
74.91
26.73
98.10
23.68


6
AD-1041737.1
63.81
25.48
75.55
23.67


7
AD-1041739.1
75.63
14.58
119.47
29.33


8
AD-1040559.1
70.49
7.78
114.90
32.60


9
AD-1040735.1
80.54
8.77
112.80
12.88


10
AD-1041872.1
82.15
26.80
150.26
54.27


11
AD-1037453.1
121.06
10.70
163.16
6.26


12
AD-1039956.1
79.72
10.11
143.95
23.25


13
AD-1037307.1
123.34
31.27
170.67
44.76


14
AD-1044730.1
43.34
8.75
110.76
35.51


15
AD-1069814.1
74.97
10.99
143.77
35.16


16
AD-1040054.1
76.36
21.92
126.14
32.29


17
AD-365144.1
46.49
7.51
146.22
21.18


18
AD-64228.41 (CTL)
67.34
13.15
164.72
55.67
















TABLE 13







Tabulated dosage and gLuc knockdown results for siRNA-


treated mice expressing hATXN2-IRES-gLuc constructs









Treatment - Day















Duplex
Dose
Unit
Frequency
Injection
Tissue
Avg
SD
day


















AD-1040560.1
5
mpk
Once
SC
Liver
54.7808
5.935449
14


AD-1044729.1
5
mpk
Once
SC
Liver
39.6288
10.63508
14


AD-1040736.1
5
mpk
Once
SC
Liver
74.9069
26.73369
14


AD-1041737.1
5
mpk
Once
SC
Liver
63.8063
25.48052
14


AD-1041739.1
5
mpk
Once
SC
Liver
75.6285
14.57687
14


AD-1040559.1
5
mpk
Once
SC
Liver
70.4864
7.776618
14


AD-1040735.1
5
mpk
Once
SC
Liver
80.5356
8.769235
14


AD-1041872.1
5
mpk
Once
SC
Liver
82.1471
26.79664
14


AD-1037453.1
5
mpk
Once
SC
Liver
121.057
10.70181
14


AD-1039956.1
5
mpk
Once
SC
Liver
79.7205
10.11007
14


AD-1037307.1
5
mpk
Once
SC
Liver
123.336
31.26885
14


AD-1044730.1
5
mpk
Once
SC
Liver
43.3394
8.75033
14


AD-1069814.1
5
mpk
Once
SC
Liver
74.9677
10.98704
14



















INFORMAL SEQUENCE LISTING















SEQ ID NO: 1








LOCUS
NM_002973 4712 bp mRNA linear PRI 21-FEB-2019


DEFINITION

Homo sapiens ataxin 2 (ATXN2), transcript variant 1, mRNA.



VERSION
NM_002973.3








1
acccccgaga aagcaaccca gcgcgccgcc cgctcctcac gtgtccctcc cggccccggg


61
gccacctcac gttctgcttc cgtctgaccc ctccgacttc cggtaaagag tccctatccg


121
cacctccgct cccacccggc gcctcggcgc gcccgccctc cgatgcgctc agcggccgca


181
gctcctcgga gtcccgcggt ggccaccgag tctcgccgct tcgccgcagc caggtggccc


241
gggtggcgct cgctccagcg gccggcgcgg cggagcgggc ggggcggcgg tggcgcggcc


301
ccgggaccgt atccctccgc cgcccctccc ccgcccggcc ccggcccccc tccctcccgg


361
cagagctcgc ctccctccgc ctcagactgt tttggtagca acggcaacgg cggcggcgcg


421
tttcggcccg gctcccggcg gctccttggt ctcggcgggc ctccccgccc cttcgtcgtc


481
ctccttctcc ccctcgccag cccgggcgcc cctccggccg cgccaacccg cgcctccccg


541
ctcggcgccc gcgcgtcccc gccgcgttcc ggcgtctcct tggcgcgccc ggctcccggc


601
tgtccccgcc cggcgtgcga gccggtgtat gggcccctca ccatgtcgct gaagccccag


661
cagcagcagc agcagcagca gcagcagcag cagcagcaac agcagcagca gcagcagcag


721
cagcagccgc cgcccgcggc tgccaatgtc cgcaagcccg gcggcagcgg ccttctagcg


781
tcgcccgccg ccgcgccttc gccgtcctcg tcctcggtct cctcgtcctc ggccacggct


841
ccctcctcgg tggtcgcggc gacctccggc ggcgggaggc ccggcctggg cagaggtcga


901
aacagtaaca aaggactgcc tcagtctacg atttcttttg atggaatcta tgcaaatatg


961
aggatggttc atatacttac atcagttgtt ggctccaaat gtgaagtaca agtgaaaaat


1021
ggaggtatat atgaaggagt ttttaaaact tacagtccga agtgtgattt ggtacttgat


1081
gccgcacatg agaaaagtac agaatccagt tcggggccga aacgtgaaga aataatggag


1141
agtattttgt tcaaatgttc agactttgtt gtggtacagt ttaaagatat ggactccagt


1201
tatgcaaaaa gagatgcttt tactgactct gctatcagtg ctaaagtgaa tggcgaacac


1261
aaagagaagg acctggagcc ctgggatgca ggtgaactca cagccaatga ggaacttgag


1321
gctttggaaa atgacgtatc taatggatgg gatcccaatg atatgtttcg atataatgaa


1381
gaaaattatg gtgtagtgtc tacgtatgat agcagtttat cttcgtatac agtgccctta


1441
gaaagagata actcagaaga atttttaaaa cgggaagcaa gggcaaacca gttagcagaa


1501
gaaattgagt caagtgccca gtacaaagct cgagtggccc tggaaaatga tgataggagt


1561
gaggaagaaa aatacacagc agttcagaga aattccagtg aacgtgaggg gcacagcata


1621
aacactaggg aaaataaata tattcctcct ggacaaagaa atagagaagt catatcctgg


1681
ggaagtggga gacagaattc accgcgtatg ggccagcctg gatcgggctc catgccatca


1741
agatccactt ctcacacttc agatttcaac ccgaattctg gttcagacca aagagtagtt


1801
aatggaggtg ttccctggcc atcgccttgc ccatctcctt cctctcgccc accttctcgc


1861
taccagtcag gtcccaactc tcttccacct cgggcagcca cccctacacg gccgccctcc


1921
aggcccccct cgcggccatc cagacccccg tctcacccct ctgctcatgg ttctccagct


1981
cctgtctcta ctatgcctaa acgcatgtct tcagaagggc ctccaaggat gtccccaaag


2041
gcccagcgac atcctcgaaa tcacagagtt tctgctggga ggggttccat atccagtggc


2101
ctagaatttg tatcccacaa cccacccagt gaagcagcta ctcctccagt agcaaggacc


2161
agtccctcgg ggggaacgtg gtcatcagtg gtcagtgggg ttccaagatt atcccctaaa


2221
actcatagac ccaggtctcc cagacagaac agtattggaa atacccccag tgggccagtt


2281
cttgcttctc cccaagctgg tattattcca actgaagctg ttgccatgcc tattccagct


2341
gcatctccta cgcctgctag tcctgcatcg aacagagctg ttaccccttc tagtgaggct


2401
aaagattcca ggcttcaaga tcagaggcag aactctcctg cagggaataa agaaaatatt


2461
aaacccaatg aaacatcacc tagcttctca aaagctgaaa acaaaggtat atcaccagtt


2521
gtttctgaac atagaaaaca gattgatgat ttaaagaaat ttaagaatga ttttaggtta


2581
cagccaagtt ctacttctga atctatggat caactactaa acaaaaatag agagggagaa


2641
aaatcaagag atttgatcaa agacaaaatt gaaccaagtg ctaaggattc tttcattgaa


2701
aatagcagca gcaactgtac cagtggcagc agcaagccga atagccccag catttcccct


2761
tcaatactta gtaacacgga gcacaagagg ggacctgagg tcacttccca aggggttcag


2821
acttccagcc cagcatgtaa acaagagaaa gacgataagg aagagaagaa agacgcagct


2881
gagcaagtta ggaaatcaac attgaatccc aatgcaaagg agttcaaccc acgttccttc


2941
tctcagccaa agccttctac taccccaact tcacctcggc ctcaagcaca acctagccca


3001
tctatggtgg gtcatcaaca gccaactcca gtttatactc agcctgtttg ttttgcacca


3061
aatatgatgt atccagtccc agtgagccca ggcgtgcaac ctttataccc aatacctatg


3121
acgcccatgc cagtgaatca agccaagaca tatagagcag taccaaatat gccccaacag


3181
cggcaagacc agcatcatca gagtgccatg atgcacccag cgtcagcagc gggcccaccg


3241
attgcagcca ccccaccagc ttactccacg caatatgttg cctacagtcc tcagcagttc


3301
ccaaatcagc cccttgttca gcatgtgcca cattatcagt ctcagcatcc tcatgtctat


3361
agtcctgtaa tacagggtaa tgctagaatg atggcaccac caacacacgc ccagcctggt


3421
ttagtatctt cttcagcaac tcagtacggg gctcatgagc agacgcatgc gatgtatgca


3481
tgtcccaaat taccatacaa caaggagaca agcccttctt tctactttgc catttccacg


3541
ggctcccttg ctcagcagta tgcgcaccct aacgctaccc tgcacccaca tactccacac


3601
cctcagcctt cagctacccc cactggacag cagcaaagcc aacatggtgg aagtcatcct


3661
gcacccagtc ctgttcagca ccatcagcac caggccgccc aggctctcca tctggccagt


3721
ccacagcagc agtcagccat ttaccacgcg gggcttgcgc caactccacc ctccatgaca


3781
cctgcctcca acacgcagtc gccacagaat agtttcccag cagcacaaca gactgtcttt


3841
acgatccatc cttctcacgt tcagccggcg tataccaacc caccccacat ggcccacgta


3901
cctcaggctc atgtacagtc aggaatggtt ccttctcatc caactgccca tgcgccaatg


3961
atgctaatga cgacacagcc acccggcggt ccccaggccg ccctcgctca aagtgcacta


4021
cagcccattc cagtctcgac aacagcgcat ttcccctata tgacgcaccc ttcagtacaa


4081
gcccaccacc aacagcagtt gtaaggctgc cctggaggaa ccgaaaggcc aaattccctc


4141
ctcccttcta ctgcttctac caactggaag cacagaaaac tagaatttca tttattttgt


4201
ttttaaaata tatatgttga tttcttgtaa catccaatag gaatgctaac agttcacttg


4261
cagtggaaga tacttggacc gagtagaggc atttaggaac ttgggggcta ttccataatt


4321
ccatatgctg tttcagagtc ccgcaggtac cccagctctg cttgccgaaa ctggaagtta


4381
tttatttttt aataaccctt gaaagtcatg aacacatcag ctagcaaaag aagtaacaag


4441
agtgattctt gctgctatta ctgctaaaaa aaaaaaaaaa aaaaaatcaa gacttggaac


4501
gcccttttac taaacttgac aaagtttcag taaattctta ccgtcaaact gacggattat


4561
tatttataaa tcaagtttga tgaggtgatc actgtctaca gtggttcaac ttttaagtta


4621
agggaaaaac ttttactttg tagataatat aaaataaaaa cttaaaaaaa atttaaaaaa


4681
taaaaaaagt tttaaaaact gaaaaaaaaa aa










SEQ ID NO: 2


Reverse complement of SEQ ID NO: 1


tttttttttttcagtttttaaaactttttttattttttaaattttttttaagtttttattttatattatc


tacaaagtaaaagtttttcccttaacttaaaagttgaaccactgtagacagtgatcacctcatcaaactt


gatttataaataataatccgtcagtttgacggtaagaatttactgaaactttgtcaagtttagtaaaagg


gcgttccaagtcttgatttttttttttttttttttttagcagtaatagcagcaagaatcactcttgttac


ttcttttgctagctgatgtgttcatgactttcaagggttattaaaaaataaataacttccagtttcggca


agcagagctggggtacctgcgggactctgaaacagcatatggaattatggaatagcccccaagttcctaa


atgcctctactcggtccaagtatcttccactgcaagtgaactgttagcattcctattggatgttacaaga


aatcaacatatatattttaaaaacaaaataaatgaaattctagttttctgtgcttccagttggtagaagc


agtagaagggaggagggaatttggcctttcggttcctccagggcagccttacaactgctgttggtggtgg


gcttgtactgaagggtgcgtcatataggggaaatgcgctgttgtcgagactggaatgggctgtagtgcac


tttgagcgagggcggcctggggaccgccgggtggctgtgtcgtcattagcatcattggcgcatgggcagt


tggatgagaaggaaccattcctgactgtacatgagcctgaggtacgtgggccatgtggggtgggttggta


tacgccggctgaacgtgagaaggatggatcgtaaagacagtctgttgtgctgctgggaaactattctgtg


gcgactgcgtgttggaggcaggtgtcatggagggtggagttggcgcaagccccgcgtggtaaatggctga


ctgctgctgtggactggccagatggagagcctgggcggcctggtgctgatggtgctgaacaggactgggt


gcaggatgacttccaccatgttggctttgctgctgtccagtgggggtagctgaaggctgagggtgtggag


tatgtgggtgcagggtagcgttagggtgcgcatactgctgagcaagggagcccgtggaaatggcaaagta


gaaagaagggcttgtctccttgttgtatggtaatttgggacatgcatacatcgcatgcgtctgctcatga


gccccgtactgagttgctgaagaagatactaaaccaggctgggcgtgtgttggtggtgccatcattctag


cattaccctgtattacaggactatagacatgaggatgctgagactgataatgtggcacatgctgaacaag


gggctgatttgggaactgctgaggactgtaggcaacatattgcgtggagtaagctggtggggtggctgca


atcggtgggcccgctgctgacgctgggtgcatcatggcactctgatgatgctggtcttgccgctgttggg


gcatatttggtactgctctatatgtcttggcttgattcactggcatgggcgtcataggtattgggtataa


aggttgcacgcctgggctcactgggactggatacatcatatttggtgcaaaacaaacaggctgagtataa


actggagttggctgttgatgacccaccatagatgggctaggttgtgcttgaggccgaggtgaagttgggg


tagtagaaggctttggctgagagaaggaacgtgggttgaactcctttgcattgggattcaatgttgattt


cctaacttgctcagctgcgtctttcttctcttccttatcgtctttctcttgtttacatgctgggctggaa


gtctgaaccccttgggaagtgacctcaggtcccctcttgtgctccgtgttactaagtattgaaggggaaa


tgctggggctattcggcttgctgctgccactggtacagttgctgctgctattttcaatgaaagaatcctt


agcacttggttcaattttgtctttgatcaaatctcttgatttttctccctctctatttttgtttagtagt


tgatccatagattcagaagtagaacttggctgtaacctaaaatcattcttaaatttctttaaatcatcaa


tctgttttctatgttcagaaacaactggtgatatacctttgttttcagcttttgagaagctaggtgatgt


ttcattgggtttaatattttctttattccctgcaggagagttctgcctctgatcttgaagcctggaatct


ttagcctcactagaaggggtaacagctctgttcgatgcaggactagcaggcgtaggagatgcagctggaa


taggcatggcaacagcttcagttggaataataccagcttggggagaagcaagaactggcccactgggggt


atttccaatactgttctgtctgggagacctgggtctatgagttttaggggataatcttggaaccccactg


accactgatgaccacgttccccccgagggactggtccttgctactggaggagtagctgcttcactgggtg


ggttgtgggatacaaattctaggccactggatatggaacccctcccagcagaaactctgtgatttcgagg


atgtcgctgggcctttggggacatccttggaggcccttctgaagacatgcgtttaggcatagtagagaca


ggagctggagaaccatgagcagaggggtgagacgggggtctggatggccgcgaggggggcctggagggcg


gccgtgtaggggtggctgcccgaggtggaagagagttgggacctgactggtagcgagaaggtgggcgaga


ggaaggagatgggcaaggcgatggccagggaacacctccattaactactctttggtctgaaccagaattc


gggttgaaatctgaagtgtgagaagtggatcttgatggcatggagcccgatccaggctggcccatacgcg


gtgaattctgtctcccacttccccaggatatgacttctctatttctttgtccaggaggaatatatttatt


ttccctagtgtttatgctgtgcccctcacgttcactggaatttctctgaactgctgtgtatttttcttcc


tcactcctatcatcattttccagggccactcgagctttgtactgggcacttgactcaatttcttctgcta


actggtttgcccttgcttcccgttttaaaaattcttctgagttatctctttctaagggcactgtatacga


agataaactgctatcatacgtagacactacaccataattttcttcattatatcgaaacatatcattggga


tcccatccattagatacgtcattttccaaagcctcaagttcctcattggctgtgagttcacctgcatccc


agggctccaggtccttctctttgtgttcgccattcactttagcactgatagcagagtcagtaaaagcatc


tctttttgcataactggagtccatatctttaaactgtaccacaacaaagtctgaacatttgaacaaaata


ctctccattatttcttcacgtttcggccccgaactggattctgtacttttctcatgtgcggcatcaagta


ccaaatcacacttcggactgtaagttttaaaaactccttcatatatacctccatttttcacttgtacttc


acatttggagccaacaactgatgtaagtatatgaaccatcctcatatttgcatagattccatcaaaagaa


atcgtagactgaggcagtcctttgttactgtttcgacctctgcccaggccgggcctcccgccgccggagg


tcgccgcgaccaccgaggagggagccgtggccgaggacgaggagaccgaggacgaggacggcgaaggcgc


ggcggcgggcgacgctagaaggccgctgccgccgggcttgcggacattggcagccgcgggcggcggctgc


tgctgctgctgctgctgctgctgttgctgctgctgctgctgctgctgctgctgctgctgctgctggggct


tcagcgacatggtgaggggcccatacaccggctcgcacgccgggcggggacagccgggagccgggcgcgc


caaggagacgccggaacgcggcggggacgcgcgggcgccgagcggggaggcgcgggttggcgcggccgga


ggggcgcccgggctggcgagggggagaaggaggacgacgaaggggcggggaggcccgccgagaccaagga


gccgccgggagccgggccgaaacgcgccgccgccgttgccgttgctaccaaaacagtctgaggcggaggg


aggcgagctctgccgggagggaggggggccggggccgggcgggggaggggcggcggagggatacggtccc


ggggccgcgccaccgccgccccgcccgctccgccgcgccggccgctggagcgagcgccacccgggccacc


tggctgcggcgaagcggcgagactcggtggccaccgcgggactccgaggagctgcggccgctgagcgcat


cggagggcgggcgcgccgaggcgccgggtgggagcggaggtgcggatagggactctttaccggaagtcgg


aggggtcagacggaagcagaacgtgaggtggccccggggccgggagggacacgtgaggagcgggcggcgc


gctgggttgctttctcgggggt





SEQ ID NO: 3








LOCUS
XM_005572266 4666 bp mRNA linear PRI 19-SEP-2013


DEFINITION PREDICTED: 

Macacafascicularis uncharacterized LOC101926470, transcript




variant X1, mRNA.


VERSION
XM_005572266.1








1
cgcgaaagcg gcccagcgcg gcgccctcac gtgtccctcc cggccccggg gccactcacg


61
ttctgcttcc gcccgacccc tccgacttcc ggtaaagagt ccctaccgca cctccgcgct


121
cccccggcgc ctcggcgcgc ccggcctccg atgcgctcag tggccgcagc tcctcggagt


181
cccgtggcgg gcaccaagtc tcgccccttc gccgcagcca actggcccgg gtggcgctcg


241
ctccagcggc cggcgcagcg gaacgggcgg ggcggcggtg gcgcggcctc tggacagtat


301
ccctccgccg cccctccccc gcccggccct ggcccccctc cctcccggca gcgctcgcct


361
ccctccgcct cagactgttt tggttgcaac ggcaacggcg gtggcgcgtt ccggcccggc


421
tccccgcagc tcctcggtct cggcgggcct ccccgcccct tcgtcgtcct ccttctcccc


481
cgcggcagcc cgggtgcccc cccggccgcg ccaacccgcg cctccctgct cggcgcccgc


541
gcgtccccgc cgcgctccgg cgtctcctcg gcgcgcccgg ctcccggctg tccccgcccg


601
gcgtgcgagc cggtgtatgg gcccctcacc atgtcgctga agccccagca gcagcagcag


661
cagcagcaac agcagcagca gcagcagcag cagccgcccg cggctgccaa tgtccgcaag


721
cccggcggca gcggccttct agcgtcgccc gccgcctcgc cttcgccgtc gtcgtcctcg


781
gtctcctcgt cctcggccac gactccctcc tcggcggccg cggcgacctc cggcggcggt


841
aggcccggcc tgggcagagg tcgaaacagt aacaaaggac tgcctcagtc tacgatttct


901
tttgacggaa tctatgcaaa tatgaggatg gttcatatac ttacatcagt tgttggctcc


961
aaatgtgaag tacaagtgaa aaatggaggt atatatgaag gagtttttaa aacctacagt


1021
ccgaagtgtg atttggtact tgatgccgca catgagaaaa gtacagaatc cagttcgggg


1081
ccaaaacgtg aagaaataat ggagagtatc ttgttcaaat gttcagactt tgttgtggta


1141
cagtttaaag atatggactc cagttatgca aaaagagatg cttttactga ctctgctatc


1201
agtgctaaag tgaacggcga acacaaagag aaggacctgg agccctggga tgcaggcgaa


1261
ctcacagcca atgaggaact tgaggctttg gaaaatgacg tatctaatgg atgggatccc


1321
aatgatatgt ttcgatataa tgaagaaaat tatggtgtag tgtctacata tgatagcagt


1381
ttatcttcat atacggtgcc cttagaaaga gataactcag aagaattttt aaaacgggaa


1441
gcaagggcaa accagttagc agaagaaatt gagtcaagtg cccagtacaa agctcgagtg


1501
gccctggaaa atgatgatag gagtgaggaa gaaaaataca cagcagttca gagaaattcc


1561
agtgaacgtg aggggcacag cataaacact agggaaaata aatatattcc tcctggacaa


1621
agaaatagag aagtcatatc ctggggaagt gggagacaga attcaccgcg tatgggccag


1681
cctggatcgg gctccatgcc atcaagatcc acttctcaca cttcagattt caacccgaat


1741
tcttgttcag accaaagagt agttaatgga ggtgttccct ggccatcgcc ttgcccatct


1801
ccttcctctc gcccaccttc tcgctaccag tcaggtccca actctcttcc acctcgggca


1861
gccaccccta cacggccgcc ctccaggccc ccctcgcggc catccagacc cccgtctcac


1921
ccctctgctc atggttctcc agctcctgtc tctactatgc ctaaacgcat gtcttcagaa


1981
gggcctccaa ggatgtcccc aaaggcccag cgacatcctc gaaatcacag agtttctgct


2041
gggaggggtt ccatatccag tggcctagag tttgtatccc acaacccacc cagtgaagca


2101
gctactcctc cagtagcaag gaccagtccc tcggggggaa cgtggtcatc agtggtcagt


2161
ggggttccaa gattatcccc taaaactcat agacccaggt ctcctagaca gaacagtatt


2221
ggaaataccc ccagtgggcc agttcttgct tctccccaag ctggtattat tccaactgaa


2281
gctgttgcca tgcctattcc agctgcatct cctacgcctg ctagtcctgc atcgaacaga


2341
gctgttaccc cttctagtga ggctaaagat tccagacttc aagatcaaag gcagaactct


2401
cctgcaggga ataaagaaaa tattaagccc aatgaaacat cacctagctt ctcaaaagct


2461
gaaaacaaag gtatatcacc aattgtttct gaacatagaa aacagattga tgatttaaag


2521
aaatttaaga atgattttag gttacagcca agttctactt ctgaatctat ggatcaacta


2581
ctaaacaaaa atagagaggc agaaaaatca agagatttga tcaaagacaa aattgaacca


2641
agtgctaagg attctttcac tgaaaatagc agcagcaact gtaccagtgg cagcagcaag


2701
ccgaatagcc ccagcatttc cccttcaata cttagtaaca cggagcacaa gaggggacct


2761
gaggtcactt cccaaggggt tcagacttcc agtccagcat gtaaacaaga gaaagatgat


2821
aaggaagaga agaaagacgc agctgagcaa gttaggaaat caacattgaa tcctaatgca


2881
aaggagttca acccacgttc cttctctcag ccaaagcctt ctactacccc aacttcacct


2941
cggcctcaag cacaacctag cccatctatg gtgggtcatc aacagccaac tccagtttat


3001
actcagcctg tttgttttgc accaaatatg atgtatccag tcccagtgag cccaggcgtg


3061
caacctttgt acccaatacc tatgacgccc atgccagtga atcaagccaa gacatataga


3121
gcagtaccaa atatgcccca acagcggcaa gaccagcatc atcagagtgc catgatgcat


3181
ccagcgtcag cagcgggccc accgattgca gccaccccac cagcttactc cacgcaatat


3241
gttgcctaca gtcctcagca gttcccaaat cagccccttg ttcagcatgt gccacattat


3301
cagtctcagc atcctcatgt ctatagtcct gtaatacagg gtaatgctag aatgatggca


3361
ccaccaacac atgcccagcc tggtttagtg tcttcttcag caactcagta cggggctcat


3421
gagcagacgc atgcgatgta tgcatgtccc aaattaccat acaacaagga gacaagccct


3481
tctttctact ttgccatttc cacgggctcc cttgctcagc agtatgcgca ccctaacgct


3541
accctgcacc cacatactcc acaccctcag ccttcagcta cccccactgg acagcagcaa


3601
agccaacatg gtggaagtca tcctgcaccc agccctgttc agcaccatca gcaccaggcc


3661
gcccaggctc tccatctggc cagtccacag cagcagtcag ccatttacca cgcggggctt


3721
gcaccaactc caccctccat gacacctgcc tccaacacgc agtcgccaca gaatagtttc


3781
ccagcagcac aacagaccgt ctttacgatc catccttctc acgttcagcc ggcgtatacc


3841
aacccacccc acatggccca cgtacctcag gctcatgtac agtcaggaat ggttccttct


3901
catccaactg cccatgcgcc aatgatgcta atgacgacac agccacccgg cggtccccag


3961
gccgccctcg ctcaaagtgc actacagccc attccagtct cgacaactgc gcatttcccc


4021
tatatgacgc acccttcagt acaagcccac caccaacagc agttgtaagg ctgccctgga


4081
ggaaacgaaa ggccaaattc cctcctccct tctactgctt ctaccaactg gaagcacaga


4141
aaactagaat ttcatttatt ttgtttttaa aatatatatg ttgatttctt gtaacatcca


4201
ataggaatgc taacagttca cttgcagtgg aagatatttg gaccgagtag aggcatttag


4261
gaacttgggg gctattccat aattccatac gctgtttcag agtcccacag gtaccccagc


4321
tctgcttgcc gaaactggaa gttatttatt ttttaataac ccttgaaagt catgaacaca


4381
tcagctagca aaagaagtaa caagagtgat tcttgctgct attactgctt aaaaaaaaaa


4441
aaaaaaaaaa tcaagacttg gaacgccctt ttactaaact tgacaaaggt tcagtaaatt


4501
cttaccgtca aactgacgga ttattattta taaatcaagt ttgatgaggt gatcactgtc


4561
tacagtggtt caacttttaa gttaagggaa aaacttttac tttgtagata atataaaata


4621
aaaactttaa aaaaatttaa aaaataaaaa aagttttaaa aactga










SEQ ID NO: 4


Reverse complement of SEQ ID NO: 3


tcagtttttaaaactttttttattttttaaatttttttaaagtttttattttatattatctacaaagtaa


aagtttttcccttaacttaaaagttgaaccactgtagacagtgatcacctcatcaaacttgatttataaa


taataatccgtcagtttgacggtaagaatttactgaacctttgtcaagtttagtaaaagggcgttccaag


tcttgattttttttttttttttttttaagcagtaatagcagcaagaatcactcttgttacttcttttgct


agctgatgtgttcatgactttcaagggttattaaaaaataaataacttccagtttcggcaagcagagctg


gggtacctgtgggactctgaaacagcgtatggaattatggaatagcccccaagttcctaaatgcctctac


tcggtccaaatatcttccactgcaagtgaactgttagcattcctattggatgttacaagaaatcaacata


tatattttaaaaacaaaataaatgaaattctagttttctgtgcttccagttggtagaagcagtagaaggg


aggagggaatttggcctttcgtttcctccagggcagccttacaactgctgttggtggtgggcttgtactg


aagggtgcgtcatataggggaaatgcgcagttgtcgagactggaatgggctgtagtgcactttgagcgag


ggcggcctggggaccgccgggtggctgtgtcgtcattagcatcattggcgcatgggcagttggatgagaa


ggaaccattcctgactgtacatgagcctgaggtacgtgggccatgtggggtgggttggtatacgccggct


gaacgtgagaaggatggatcgtaaagacggtctgttgtgctgctgggaaactattctgtggcgactgcgt


gttggaggcaggtgtcatggagggtggagttggtgcaagccccgcgtggtaaatggctgactgctgctgt


ggactggccagatggagagcctgggcggcctggtgctgatggtgctgaacagggctgggtgcaggatgac


ttccaccatgttggctttgctgctgtccagtgggggtagctgaaggctgagggtgtggagtatgtgggtg


cagggtagcgttagggtgcgcatactgctgagcaagggagcccgtggaaatggcaaagtagaaagaaggg


cttgtctccttgttgtatggtaatttgggacatgcatacatcgcatgcgtctgctcatgagccccgtact


gagttgctgaagaagacactaaaccaggctgggcatgtgttggtggtgccatcattctagcattaccctg


tattacaggactatagacatgaggatgctgagactgataatgtggcacatgctgaacaaggggctgattt


gggaactgctgaggactgtaggcaacatattgcgtggagtaagctggtggggtggctgcaatcggtgggc


ccgctgctgacgctggatgcatcatggcactctgatgatgctggtcttgccgctgttggggcatatttgg


tactgctctatatgtcttggcttgattcactggcatgggcgtcataggtattgggtacaaaggttgcacg


cctgggctcactgggactggatacatcatatttggtgcaaaacaaacaggctgagtataaactggagttg


gctgttgatgacccaccatagatgggctaggttgtgcttgaggccgaggtgaagttggggtagtagaagg


ctttggctgagagaaggaacgtgggttgaactcctttgcattaggattcaatgttgatttcctaacttgc


tcagctgcgtctttcttctcttccttatcatctttctcttgtttacatgctggactggaagtctgaaccc


cttgggaagtgacctcaggtcccctcttgtgctccgtgttactaagtattgaaggggaaatgctggggct


attcggcttgctgctgccactggtacagttgctgctgctattttcagtgaaagaatccttagcacttggt


tcaattttgtctttgatcaaatctcttgatttttctgcctctctatttttgtttagtagttgatccatag


attcagaagtagaacttggctgtaacctaaaatcattcttaaatttctttaaatcatcaatctgttttct


atgttcagaaacaattggtgatatacctttgttttcagcttttgagaagctaggtgatgtttcattgggc


ttaatattttctttattccctgcaggagagttctgcctttgatcttgaagtctggaatctttagcctcac


tagaaggggtaacagctctgttcgatgcaggactagcaggcgtaggagatgcagctggaataggcatggc


aacagcttcagttggaataataccagcttggggagaagcaagaactggcccactgggggtatttccaata


ctgttctgtctaggagacctgggtctatgagttttaggggataatcttggaaccccactgaccactgatg


accacgttccccccgagggactggtccttgctactggaggagtagctgcttcactgggtgggttgtggga


tacaaactctaggccactggatatggaacccctcccagcagaaactctgtgatttcgaggatgtcgctgg


gcctttggggacatccttggaggcccttctgaagacatgcgtttaggcatagtagagacaggagctggag


aaccatgagcagaggggtgagacgggggtctggatggccgcgaggggggcctggagggcggccgtgtagg


ggtggctgcccgaggtggaagagagttgggacctgactggtagcgagaaggtgggcgagaggaaggagat


gggcaaggcgatggccagggaacacctccattaactactctttggtctgaacaagaattcgggttgaaat


ctgaagtgtgagaagtggatcttgatggcatggagcccgatccaggctggcccatacgcggtgaattctg


tctcccacttccccaggatatgacttctctatttctttgtccaggaggaatatatttattttccctagtg


tttatgctgtgcccctcacgttcactggaatttctctgaactgctgtgtatttttcttcctcactcctat


catcattttccagggccactcgagctttgtactgggcacttgactcaatttcttctgctaactggtttgc


ccttgcttcccgttttaaaaattcttctgagttatctctttctaagggcaccgtatatgaagataaactg


ctatcatatgtagacactacaccataattttcttcattatatcgaaacatatcattgggatcccatccat


tagatacgtcattttccaaagcctcaagttcctcattggctgtgagttcgcctgcatcccagggctccag


gtccttctctttgtgttcgccgttcactttagcactgatagcagagtcagtaaaagcatctctttttgca


taactggagtccatatctttaaactgtaccacaacaaagtctgaacatttgaacaagatactctccatta


tttcttcacgttttggccccgaactggattctgtacttttctcatgtgcggcatcaagtaccaaatcaca


cttcggactgtaggttttaaaaactccttcatatatacctccatttttcacttgtacttcacatttggag


ccaacaactgatgtaagtatatgaaccatcctcatatttgcatagattccgtcaaaagaaatcgtagact


gaggcagtcctttgttactgtttcgacctctgcccaggccgggcctaccgccgccggaggtcgccgcggc


cgccgaggagggagtcgtggccgaggacgaggagaccgaggacgacgacggcgaaggcgaggcggcgggc


gacgctagaaggccgctgccgccgggcttgcggacattggcagccgcgggcggctgctgctgctgctgct


gctgctgttgctgctgctgctgctgctgctggggcttcagcgacatggtgaggggcccatacaccggctc


gcacgccgggcggggacagccgggagccgggcgcgccgaggagacgccggagcgcggcggggacgcgcgg


gcgccgagcagggaggcgcgggttggcgcggccgggggggcacccgggctgccgcgggggagaaggagga


cgacgaaggggcggggaggcccgccgagaccgaggagctgcggggagccgggccggaacgcgccaccgcc


gttgccgttgcaaccaaaacagtctgaggcggagggaggcgagcgctgccgggagggaggggggccaggg


ccgggcgggggaggggcggcggagggatactgtccagaggccgcgccaccgccgccccgcccgttccgct


gcgccggccgctggagcgagcgccacccgggccagttggctgcggcgaaggggcgagacttggtgcccgc


cacgggactccgaggagctgcggccactgagcgcatcggaggccgggcgcgccgaggcgccgggggagcg


cggaggtgcggtagggactctttaccggaagtcggaggggtcgggcggaagcagaacgtgagtggccccg


gggccgggagggacacgtgagggcgccgcgctgggccgctttcgcg





SEQ ID NO: 5








LOCUS
NM_009125 4505 bp mRNA linear ROD 17-FEB-2019


DEFINITION

Mus musculus ataxin 2 (Atxn2), transcript variant 1, mRNA.



VERSION
NM_009125.2











1
ccgtccgcgt ccgccagccc gggtcccatg cgttcgtcca ccgccgccgc tcagcggccc


61
gcggcggggg accccgagcc gcgccgcccg gcgggctggg ccgcgcggcg ctcgctcccg


121
cggacggcgc ggcgcggcgg gcggggcggc gcggtggcgt atccctccgc cggccctccc


181
ccgcgcggcc ccggcgcccc tccccgcggg ccgcgctcgc caccctgcgc ctcagactgt


241
tttggtagca acggccacgg cgcgtcccgg cccggctccc ggcggctgct cggtgtctgc


301
gggcctcccc gccccttcgt cgttgtcctg ctgcctctgg cccccgcggc cacgccggcc


361
cgcgcctgcc cgcccggcgt ccgcgcgtcc ccgccgcgct ccggcgtctc ctcctcggcg


421
cgcccggcac ccggctgtcc ccgcccggcg tgcgagccgg tgtatgggcc gctcaccatg


481
tcgctgaagc cgcagccgca gccgcccgcg cccgccactg gccgcaagcc cggcggcggc


541
ctgctctcgt cgcccggcgc cgcgccggcc tcggccgcgg tgacctcggc ttccgtggtg


601
ccggccccgg ccgcgccggt ggcgtcttcc tcggcggccg cgggcggcgg gcgtcccggc


661
ctgggcagag gtcggaacag tagcaaagga ctgcctcagc ctacgatttc ttttgatgga


721
atctatgcaa acgtgaggat ggttcatata cttacgtcag ttgttggatc gaaatgtgaa


781
gtacaagtga aaaacggagg catatatgaa ggagttttta aaacatacag tcctaagtgt


841
gacttggtac ttgatgctgc acatgagaaa agtacagaat ccagttcggg gccaaaacgt


901
gaagaaataa tggagagtgt tttgttcaaa tgctcagact tcgttgtggt acagtttaaa


961
gatacagact ccagttatgc acggagagat gcttttactg actctgctct cagcgcaaag


1021
gtgaatggtg agcacaagga gaaggacctg gagccctggg atgcagggga gctcacggcc


1081
agcgaggagc tggagctgga gaatgatgtg tctaatggat gggaccccaa tgacatgttt


1141
cgatataatg aagagaatta tggtgtggtg tccacatatg atagcagttt atcttcatat


1201
acggttcctt tagaaaggga caactcagaa gaatttctta aacgggaggc aagggcaaac


1261
cagttagcag aagaaattga atccagtgct cagtacaaag ctcgtgtcgc ccttgagaat


1321
gatgaccgga gtgaggaaga aaaatacaca gcagtccaga gaaactgcag tgaccgggag


1381
gggcatggcc ccaacactag ggacaataaa tatattcctc ctggacaaag aaacagagaa


1441
gtcctatcct ggggaagtgg gagacagagc tcaccacgga tgggccagcc tgggccaggc


1501
tccatgccgt caagagctgc ttctcacact tcagatttca acccgaacgc tggctcagac


1561
caaagagtag ttaatggagg tgttccctgg ccatcgcctt gcccatctcc ttcctctcgc


1621
ccaccttctc gctaccagtc aggtcccaac tctcttccac ctcgggcagc cacccctaca


1681
cggccgccct ccaggccccc ctcgaggccc tccagacccc cgtctcaccc ctctgctcat


1741
ggttctccag ctcctgtctc tactatgcct aaacgcatgt cttcagaagg acccccaagg


1801
atgtctccaa aggcacagcg ccaccctcgg aatcacagag tctctgctgg gagaggctcc


1861
atgtctagtg gcctagaatt tgtatcccac aatcccccaa gtgaagcagc tgctcctcca


1921
gtggcaagga ccagtcctgc agggggaacg tggtcctcag tggtcagtgg ggttccaagg


1981
ttatctccca aaactcacag acccaggtct cccaggcaga gcagcattgg aaactctccc


2041
agcgggcctg tgcttgcttc tccccaagct ggcatcatcc ctgcagaagc cgtttccatg


2101
cctgttcccg ccgcatctcc gactcctgcc agccctgcat ccaacagagc actgacccca


2161
tctattgagg caaaagattc caggcttcaa gatcagaggc agaactctcc tgcagggagt


2221
aaagaaaatg ttaaagcaag tgaaacatca cctagctttt caaaagctga caacaaaggt


2281
atgtcaccag ttgtttctga acacagaaaa cagattgatg acttaaagaa gtttaagaat


2341
gattttaggt tacagccaag ctctacatct gaatctatgg atcaactact aagcaaaaat


2401
agagaaggag aaaagtcacg agatttgatt aaagataaaa cggaagcaag tgctaaggat


2461
agtttcattg acagcagcag cagcagcagc aactgtacca gtggcagcag caagaccaac


2521
agccctagca tctccccttc catgcttagt aatgcagagc acaagagggg gcctgaggtc


2581
acatcccaag gggtgcagac ttccagccca gcctgcaaac aagagaagga tgacagagaa


2641
gagaagaaag acacaacaga gcaggttagg aaatcgacat tgaatcccaa tgcaaaggag


2701
ttcaaccctc gttctttctc tcagccaaag ccttctacta ccccaacgtc acctcggcct


2761
caagcacaac ccagcccatc tatggtgggt catcagcagc cagctccagt gtacactcag


2821
cctgtgtgct tcgcacccaa tatgatgtat cccgtcccag tgagcccggg cgtacaacct


2881
ttatacccaa tacctatgac gcccatgcct gtgaaccaag ccaagacata tagagcaggt


2941
aaagtaccaa atatgcccca acagcgacaa gaccaacatc atcaaagcac catgatgcac


3001
ccagcctccg cggcagggcc acccatcgta gccaccccgc ccgcttactc cactcagtac


3061
gttgcctaca gccctcagca gtttcccaat cagcctttgg tccagcatgt gccgcattat


3121
cagtctcagc atcctcatgt gtacagtcct gtcatacaag gtaatgccag gatgatggca


3181
ccaccagcac atgctcagcc tggtttagtg tcttcttcag ctgctcagtt cggggctcac


3241
gagcagacgc acgccatgta tgcatgtccc aaattaccat acaacaagga gacaagccct


3301
tctttctact ttgccatttc caccggctcc ctcgctcagc agtatgcaca tcctaatgcc


3361
gccctgcatc cacatactcc ccatcctcag ccttcggcca ctcccaccgg acagcagcaa


3421
agccagcatg gtggaagtca ccctgcaccc agtcctgttc agcaccatca gcaccaggct


3481
gcccaggctc ttcatctggc cagtccacag cagcagtcgg ccatttatca tgcggggctg


3541
gcaccaacac caccttccat gacacctgcc tctaatacac agtctccaca gagcagtttc


3601
ccagcagcac aacagacagt cttcaccatc cacccttctc atgttcagcc ggcatacacc


3661
accccacccc acatggccca cgtacctcag gctcatgtac agtcaggaat ggttccttct


3721
catccaactg cccatgcgcc aatgatgcta atgacgacac agccacccgg cggtccccag


3781
gccgccctcg ctcaaagtgc actacagccc attccagtct cgacaacagc gcatttccct


3841
tatatgacgc acccttcagt acaagcccac caccaacagc agttgtaagg ctgccctgga


3901
ggaaccgaaa ggccaaatcc cctcctccct tctcctgctt ctgccaaccg gaagcacaga


3961
aaactagaac ttcattgatt ttgtttttta aaagatacac tgatttaaca tctgatagga


4021
atgctaacag ctcacttgca gtggaggatg ttttggaccg agtagaggca tgtagggact


4081
tgtggctgtt ccataattcc atgtgctgtt gcagggtcct gcaagtaccc agctctgctt


4141
gctgaaactg gaagttattt attttttaat ggcccttgag agtcatgaac acatcagcta


4201
gcaacagaag taacaagagt gattcttgct gctattaccg ctttaaaaaa aaaaaatcaa


4261
gacttggaac gcccttttac taaacttgac agaagttcag taaattctta ccgccaaact


4321
gacggattat tatttataaa tcaagtttga tgaggcgatc actgtctaca gtggttcaac


4381
ttttaagtta agggaaaact tttactttgt agataatata aaataaaaac taaaaaaaaa


4441
aattaaaaaa taaaaaaagt tttaaaaact gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa


4501
aaaaa










SEQ ID NO: 6


Reverse complement of SEQ ID NO: 5


ttttttttttttttttttttttttttttttttttcagtttttaaaactttttttattttttaattttttt


ttttagtttttattttatattatctacaaagtaaaagttttcccttaacttaaaagttgaaccactgtag


acagtgatcgcctcatcaaacttgatttataaataataatccgtcagtttggcggtaagaatttactgaa


cttctgtcaagtttagtaaaagggcgttccaagtcttgattttttttttttaaagcggtaatagcagcaa


gaatcactcttgttacttctgttgctagctgatgtgttcatgactctcaagggccattaaaaaataaata


acttccagtttcagcaagcagagctgggtacttgcaggaccctgcaacagcacatggaattatggaacag


ccacaagtccctacatgcctctactcggtccaaaacatcctccactgcaagtgagctgttagcattccta


tcagatgttaaatcagtgtatcttttaaaaaacaaaatcaatgaagttctagttttctgtgcttccggtt


ggcagaagcaggagaagggaggaggggatttggcctttcggttcctccagggcagccttacaactgctgt


tggtggtgggcttgtactgaagggtgcgtcatataagggaaatgcgctgttgtcgagactggaatgggct


gtagtgcactttgagcgagggcggcctggggaccgccgggtggctgtgtcgtcattagcatcattggcgc


atgggcagttggatgagaaggaaccattcctgactgtacatgagcctgaggtacgtgggccatgtggggt


ggggtggtgtatgccggctgaacatgagaagggtggatggtgaagactgtctgttgtgctgctgggaaac


tgctctgtggagactgtgtattagaggcaggtgtcatggaaggtggtgttggtgccagccccgcatgata


aatggccgactgctgctgtggactggccagatgaagagcctgggcagcctggtgctgatggtgctgaaca


ggactgggtgcagggtgacttccaccatgctggctttgctgctgtccggtgggagtggccgaaggctgag


gatggggagtatgtggatgcagggcggcattaggatgtgcatactgctgagcgagggagccggtggaaat


ggcaaagtagaaagaagggcttgtctccttgttgtatggtaatttgggacatgcatacatggcgtgcgtc


tgctcgtgagccccgaactgagcagctgaagaagacactaaaccaggctgagcatgtgctggtggtgcca


tcatcctggcattaccttgtatgacaggactgtacacatgaggatgctgagactgataatgcggcacatg


ctggaccaaaggctgattgggaaactgctgagggctgtaggcaacgtactgagtggagtaagcgggcggg


gtggctacgatgggtggccctgccgcggaggctgggtgcatcatggtgctttgatgatgttggtcttgtc


gctgttggggcatatttggtactttacctgctctatatgtcttggcttggttcacaggcatgggcgtcat


aggtattgggtataaaggttgtacgcccgggctcactgggacgggatacatcatattgggtgcgaagcac


acaggctgagtgtacactggagctggctgctgatgacccaccatagatgggctgggttgtgcttgaggcc


gaggtgacgttggggtagtagaaggctttggctgagagaaagaacgagggttgaactcctttgcattggg


attcaatgtcgatttcctaacctgctctgttgtgtctttcttctcttctctgtcatccttctcttgtttg


caggctgggctggaagtctgcaccccttgggatgtgacctcaggccccctcttgtgctctgcattactaa


gcatggaaggggagatgctagggctgttggtcttgctgctgccactggtacagttgctgctgctgctgct


gctgtcaatgaaactatccttagcacttgcttccgttttatctttaatcaaatctcgtgacttttctcct


tctctatttttgcttagtagttgatccatagattcagatgtagagcttggctgtaacctaaaatcattct


taaacttctttaagtcatcaatctgttttctgtgttcagaaacaactggtgacatacctttgttgtcagc


ttttgaaaagctaggtgatgtttcacttgctttaacattttctttactccctgcaggagagttctgcctc


tgatcttgaagcctggaatcttttgcctcaatagatggggtcagtgctctgttggatgcagggctggcag


gagtcggagatgcggcgggaacaggcatggaaacggcttctgcagggatgatgccagcttggggagaagc


aagcacaggcccgctgggagagtttccaatgctgctctgcctgggagacctgggtctgtgagttttggga


gataaccttggaaccccactgaccactgaggaccacgttccccctgcaggactggtccttgccactggag


gagcagctgcttcacttgggggattgtgggatacaaattctaggccactagacatggagcctctcccagc


agagactctgtgattccgagggtggcgctgtgcctttggagacatccttgggggtccttctgaagacatg


cgtttaggcatagtagagacaggagctggagaaccatgagcagaggggtgagacgggggtctggagggcc


tcgaggggggcctggagggcggccgtgtaggggtggctgcccgaggtggaagagagttgggacctgactg


gtagcgagaaggtgggcgagaggaaggagatgggcaaggcgatggccagggaacacctccattaactact


ctttggtctgagccagcgttcgggttgaaatctgaagtgtgagaagcagctcttgacggcatggagcctg


gcccaggctggcccatccgtggtgagctctgtctcccacttccccaggataggacttctctgtttctttg


tccaggaggaatatatttattgtccctagtgttggggccatgcccctcccggtcactgcagtttctctgg


actgctgtgtatttttcttcctcactccggtcatcattctcaagggcgacacgagctttgtactgagcac


tggattcaatttcttctgctaactggtttgcccttgcctcccgtttaagaaattcttctgagttgtccct


ttctaaaggaaccgtatatgaagataaactgctatcatatgtggacaccacaccataattctcttcatta


tatcgaaacatgtcattggggtcccatccattagacacatcattctccagctccagctcctcgctggccg


tgagctcccctgcatcccagggctccaggtccttctccttgtgctcaccattcacctttgcgctgagagc


agagtcagtaaaagcatctctccgtgcataactggagtctgtatctttaaactgtaccacaacgaagtct


gagcatttgaacaaaacactctccattatttcttcacgttttggccccgaactggattctgtacttttct


catgtgcagcatcaagtaccaagtcacacttaggactgtatgttttaaaaactccttcatatatgcctcc


gtttttcacttgtacttcacatttcgatccaacaactgacgtaagtatatgaaccatcctcacgtttgca


tagattccatcaaaagaaatcgtaggctgaggcagtcctttgctactgttccgacctctgcccaggccgg


gacgcccgccgcccgcggccgccgaggaagacgccaccggcgcggccggggccggcaccacggaagccga


ggtcaccgcggccgaggccggcgcggcgccgggcgacgagagcaggccgccgccgggcttgcggccagtg


gcgggcgcgggcggctgcggctgcggcttcagcgacatggtgagcggcccatacaccggctcgcacgccg


ggcggggacagccgggtgccgggcgcgccgaggaggagacgccggagcgcggcggggacgcgcggacgcc


gggcgggcaggcgcgggccggcgtggccgcgggggccagaggcagcaggacaacgacgaaggggcgggga


ggcccgcagacaccgagcagccgccgggagccgggccgggacgcgccgtggccgttgctaccaaaacagt


ctgaggcgcagggtggcgagcgcggcccgcggggaggggcgccggggccgcgcgggggagggccggcgga


gggatacgccaccgcgccgccccgcccgccgcgccgcgccgtccgcgggagcgagcgccgcgcggcccag


cccgccgggcggcgcggctcggggtcccccgccgcgggccgctgagcggcggcggtggacgaacgcatgg


gacccgggctggcggacgcggacgg





SEQ ID NO: 7








LOCUS
XM_008769286 7067 bp mRNA linear ROD 26-JUL-2016


DEFINITION PREDICTED:

Rattusnorvegicus ataxin 2 (Atxn2), transcript variant




X10, mRNA.


VERSION
XM_008769286.2











1
caggctggcc tgtgcatttt aagtgctggg attaaaggtg tgtaccacga cacctgtttt


61
caatggttcc tttttacttt tctcttttct gaagttactc cagaatatgt actcacacct


121
gaagttttgg aattaggcac ctcagatgag agaggacatg tgacatttgt ctttatgggt


181
atgggtttcc ttactaaata tgtttttttc tagttccaac tatttaccca gctggaccct


241
aaggaggagg tggctctttt aaagacaggt tctcacatag tctaggctgg gtgcaagttc


301
tcgagtagct gaggctggcc ttgaacccac agagatcgac tgcctctgcc tccccagtgt


361
taggattaat ggcatgggct accacggtct gtcaaattgc ttctgtttta agacttatgt


421
tttaagtctt tgcagtgctt gcaaaggcca gaagaggatg ttagattctc ctaatcttaa


481
gagttacagg caatttcgag ctaccccaca atgttgctat aatagaatca gacctgtgga


541
agaaccttta ataccgaacc atctttgtgg tccagacctt gaactcctga tcctgcttct


601
tagtgctagg attgcaagtg tgtgtcactg tacctgattt ttgtgtggta ctggggggaa


661
aaccagggct ggctacactc tactaactca gcctgtcttt taacccttaa ttgtaaagtt


721
tgaagggtgc caggaagttc ttgggttgtg ataggatcct aagagtaaga acgcataccc


781
cgggaacaaa agcccgggca tcgatgaggt gcgcctagct gcagcaggcc ttactgcaca


841
tggagtgggt tgggtggttt gggtcaaggt tcacgtccat caattgtgaa acaggtggtt


901
ggtcagagtc cagtgcgaaa cattggactt ggctcatagc cagacccagg acaagttaga


961
agtcaggttc ttcaggtttt tcaattcttt ttttttcctt ctcttttcaa atggctcctg


1021
actggaatgt acaggtcaga ggacaacctg tgagagttct ctctatgagg acccagagga


1081
tagaacgcgg gttgtcaggc ttggtggcaa gtgccttcac ctgctgaggc actctgcagg


1141
tgacaagaac atttttacag tgtgcgaagc atagcattct agaatctctg gaagaaatga


1201
gaggccatcc agcctaagcc agctgtcctg agtgagtgag gtgaggaaga cagttggaga


1261
gtggagagac taggtagtgg gctgccttgg agttctgcta gcctgctgcc gtgagttggc


1321
aaccctgctc taggcaagct cttcattgac ttttcagatt ttgactcaag tggagcgtgt


1381
ggttgctcta tgaagatgga atttcaaagg ctggacagag gtcccagtgc ttaaggacat


1441
tggccgcatg tacaggacct gggtttgttt gtcagcactc acacggctgc tcagaacatt


1501
ctgtaacacc agttcctggg gatcagtgtc ctccgggccc tgtgggcacc aggcacatag


1561
aaggtgcaca gacatgcagg caggcgggcg ctcagccaca cgtacattta aaacaaaaaa


1621
tccaaaaaac ccaacaactt taaaatggga tttcagttgt gttgttcaca acgtgtggaa


1681
gagaaatgta ggattccttg ttatttgtga gaaactcaat cttttccctt agaagaaggc


1741
ttaggttgtg caggctctat tgaactaaca gaggatggaa aggattggtg gaaactgtac


1801
cagcaaggac tgtgcatcgt ggtttcgttt gtctttcttg tcattctcta aatacagtcg


1861
tgtgtgtaca ttctctaaat acagtcgcta cagtgtagcg tttacatttg actggatatt


1921
aaatactaaa catctttgaa catctttgaa ttttgcttct gatgggatct cggacaaatc


1981
ctctagttca cttgaaaata gtccccgtta cacggcacca tttgatagct gagtttatgt


2041
tgtttaatgc gggctttgtt tgtctctgca gtgctggaac ctgagcttag gactcaaagc


2101
cactaagcaa gcacacttga ccaccgagtg agccacccca gcctggcagc tgagtcttgt


2161
gtgctgtgtc tttctaaggg agagggtggt aaggaaaggc ttggtgaaca attcctgagt


2221
tttgacagtg tagcccaggc tagctcactg cctaagctgg gattacagct gtggaccacg


2281
aggcctgcca tatcacatgc cagatctgac agagacgtgg tgtttagaag tcaaagtgtt


2341
tataattatc tctgatgttt aaacattgat ttatttgtgt gtgtgtgtat gtgtgtgtgt


2401
gtggtgtgtg gggtgtgtgg gtgtgcatgt gtgtgtgtgt gtgtgtccca gcatacatgt


2461
agtgggcaga ggacagttta tagaagttga ttctcctttt gttgtatggt cctggggatt


2521
gaattcaagt cttcagactt gtagctaatg ccttctgagc cttctgaaaa gccctgcttt


2581
aacttaattt tggtagtttt ttcctgcagt tataaacact tagttgcttt tagagatgga


2641
gaaaatgaga gctgattggg gtgtcagtca gctctgttga tcccaagtgt gtgccaccgc


2701
gccttgcttc taagagtacg gctgctttgc gtgccattgt ccttcagtcc cttactgggg


2761
tagggagatg aggtgtgctc tacagccctg gctgagctca cacatggcat cccactgcct


2821
cagcctctga agggtgagtg cagccacaca ctgctcacta cactgcacca gctcagctgg


2881
cttcactcta tgcatttggt tttgtttatt tagcttttag ggtcaaggtc tcactcagta


2941
gctctggctg tcctggaatt cactgtgtag agcaggctgc ctgcttctgt ctcccgagag


3001
ctgggattac atgcatgtgg cactccacct gcctcaccgg tttgggtttg ataaagcgag


3061
ttgtgtttcg tcttcctctc tgtggcagtc tctccctggc ctggtagcac acagccactg


3121
agatttcctg tcacacagga tggccccttc cacactcagc ctggcctgtg tttgagtaga


3181
attagaagat tatattttat gttctcttta atttaaataa aatgaagatt gaatttaaca


3241
aaacaatatt tattaatctt tgcagaggtc ggaacagtag caaaggactg cctcagccta


3301
cgatttcttt tgacggaatc tatgcaaacg tgaggatggt tcatatactt acatcggttg


3361
tgggatcgaa atgtgaagta caagtgaaaa acggaggtgt atatgaagga gtttttaaaa


3421
catacagtcc taagtgtgat ttggtacttg atgctgcaca tgagaaaagt acagaatcca


3481
gttcggggcc aaaacgtgaa gaaataatgg agagtgtttt gttcaaatgc tcagacttcg


3541
ttgtggtaca atttaaagat acagactcga gttatgcacg aagagatgct ttcactgact


3601
ctgctctcag tgctaaagtg aatggtgaac acaaggagaa ggacctggag ccctgggatg


3661
caggggagct cacagccagc gaggagctgg aggctctgga gaatgatgtg tctaacggat


3721
gggatcccaa tgatatgttt cgatataatg aagagaatta cggtgtggtg tccacatacg


3781
atagtagttt atcttcatat acggttccct tagaaaggga caactcagaa gaatttctaa


3841
aacgggaggc aagggcaaac cagttagcag aagaaatcga gtccagtgct cagtacaaag


3901
ctcgtgtggc ccttgagaat gatgaccgga gtgaggaaga gaagtacaca gcagtccaga


3961
gaaactgcag tgaccgggaa ggtcatggca ccaacactag ggaaaataaa tatattcctc


4021
ctggacaaag aaacagagaa gtcatatcct ggggaagtgg gagacagagc tcaccacgga


4081
tgggccagcc tggaccaggc tccatgccat caagagctac ttctcacact tcagatttca


4141
acccgaatgc tggctcagac caaagagtag ttaatggagg tgttccctgg ccatcgcctt


4201
gcccatctcc ttcctctcgc ccaccttctc gctaccagtc aggtcccaac tctcttccac


4261
ctcgggcagc cacccctaca cggccgccct ccaggccccc ctcgaggccc tccagacccc


4321
cgtctcaccc ctctgctcat ggttctccag ctcctgtctc tactatgcct aaacgcatgt


4381
ctgcagaagg cccaccaagg atgtctccaa aggcacagcg gcaccctcgg aatcatagag


4441
tctccgctgg gagaggctcc atgtctagtg gcctagaatt tgtatcccac aatcccccaa


4501
gtgaagcagc tgctcctcca gtggcaagga ccagtcctgc agggggaacg tggtcctcag


4561
tggtcagtgg ggttccaaga ctatctccca aaactcacag acccaggtct cccaggcaga


4621
acagcgctgg aaactctccc agcgggcctg tgctcgcttc tccccaagct ggcatcaccc


4681
ctgccgaagc cgtttccatg ccggtccccg ccgcgtcccc tactcctgcc agccctgcgt


4741
ccaacagagc tctgacccca tctatcgagg cgaaagattc caggcttcaa gatcagaggc


4801
agaactctcc tgcagggaat aaagaaaata ttaaagcaag tgaaacatca cctagctttt


4861
caaaagctga aaacaaaggt gtgtcaccag ttatctctga acacagaaaa cagatcgatg


4921
atttaaagaa gtttaagaat gattttaggt tacagccaag ttctacgtct gaatctatgg


4981
atcaactact aagcaaaaac agagaaggag aaaagtcacg agatttgatg aaagacaaaa


5041
cggaagcaag tgctaaggac agcttcattg acagtggcag cagcagctgc accagcagca


5101
gcagcaagac caacagcccc agcgcctccc cttctgtgct tagtaatgca gagcacaaga


5161
gggggcctga ggtcacgtcc cagggggtgc agacttccag tccggcctgc aaacaagaga


5221
aggatgaccg agaagagcgg aaagacacaa ccgagcaagt taggaagtcg actttgaatc


5281
ccaatgcaaa ggagttcaac cctcgttctt tctctcagcc aaagccttct actaccccaa


5341
cgtcgcctcg gcctcaagcc cagcccagcc cgtccatggt gggtcatcag cagccagctc


5401
cagtgtacac gcagcctgtg tgctttgcac ccaatatgat gtaccctgtc ccagtgagcc


5461
caggcgtgca gcctttatac ccaataccta tgacgcccat gccagtgaac caagccaaga


5521
catatagagc agtaccaaat atgccccaac agcgacaaga gcagcaccat caaagcacca


5581
tgatgcaccc tgcctccgca gcagggccgc ctatcgttgc caccccgccc gccgcttact


5641
ccacgcagta cgttgcctac agccctcagc agtttcccaa ccagcctttg gtccagcacg


5701
tgccgcatta tcagtctcag catcctcatg tgtacagtcc tgtcatacaa ggtaatgcca


5761
ggatgatggc accaccagca catgctcagc ctggtttagt gtcgtcttca gctgctcagt


5821
tcggggctca cgagcagacg catgccatgt atgcatgtcc caaattacca tacaacaagg


5881
agacaagccc ttctttctac tttgccattt ccaccggctc cctcgctcag cagtacgcac


5941
atcctaatgc caccctgcat ccacaccctc cacatcctca gccttcggcc actcccaccg


6001
gacagcaaca aagccagcat ggtggaagtc atcctgcacc cagtcctgtt cagcaccatc


6061
agcaccaggc cgcccaggct cttcacctgg ccagtccaca gcagcagtcg gccatttatc


6121
acgcggggct ggcaccaaca ccaccttcca tgacacctgc ctctaataca cagtctccac


6181
agagcagttt cccagcagca ccacagacag tcttcaccat ccatccttct catgttcagc


6241
cggcatacac caccccaccc cacatggccc acgtacctca ggctcatgta cagtcaggaa


6301
tggttccttc tcatccaact gcccatgcgc caatgatgct tatgacgaca cagccacccg


6361
gcggtcccca ggccgccctc gctcaaagtg cactacagcc cattccagtc tcgacaacag


6421
cgcatttccc ctatatgacg cacccttcag tacaagccca ccaccaacag cagttgtaag


6481
tctgccctgg aggaaccgaa aggccaaatc ccctcctccc ttctactgct tctgccaact


6541
ggaagcacag aaaactagaa cttcatttat tttgtttttt tttttaaaaa agatacactg


6601
atttaacatc ggtaggaatg ctaacagttc acttgcagtg gaggatgttc tggaccgagt


6661
agaggcatgt agggacttgt ggctgttcca taactccatg tgctgttgca gggtcctcaa


6721
gtacccagct ctgcttgctg aaactggaag ttatttattt tttaatggcc cttgagagtc


6781
atgaacacat cagctagcaa cagaagtaac aagagtgatt cttgctgcta ttaccgcttt


6841
aaaaaaaaaa aaatcaagac ttggaacgcc cttttactaa acttgacaga agttcagtaa


6901
attcttaccg ccaaactgac ggattattat ttataaatca agtttgatga ggcgatcact


6961
gtctacagtg attcaacttt taagttaagg gaaaactttt actttgtaga taatataaaa


7021
taaaaactaa aaaaaaatta aaaaataaaa aaagttttaa aaactga










SEQ ID NO: 8


Reverse complement of SEQ ID NO: 7


tcagtttttaaaactttttttattttttaatttttttttagtttttattttatattatctacaaagtaaa


agttttcccttaacttaaaagttgaatcactgtagacagtgatcgcctcatcaaacttgatttataaata


ataatccgtcagtttggcggtaagaatttactgaacttctgtcaagtttagtaaaagggcgttccaagtc


ttgatttttttttttttaaagcggtaatagcagcaagaatcactcttgttacttctgttgctagctgatg


tgttcatgactctcaagggccattaaaaaataaataacttccagtttcagcaagcagagctgggtacttg


aggaccctgcaacagcacatggagttatggaacagccacaagtccctacatgcctctactcggtccagaa


catcctccactgcaagtgaactgttagcattcctaccgatgttaaatcagtgtatcttttttaaaaaaaa


aaacaaaataaatgaagttctagttttctgtgcttccagttggcagaagcagtagaagggaggaggggat


ttggcctttcggttcctccagggcagacttacaactgctgttggtggtgggcttgtactgaagggtgcgt


catataggggaaatgcgctgttgtcgagactggaatgggctgtagtgcactttgagcgagggcggcctgg


ggaccgccgggtggctgtgtcgtcataagcatcattggcgcatgggcagttggatgagaaggaaccattc


ctgactgtacatgagcctgaggtacgtgggccatgtggggtggggtggtgtatgccggctgaacatgaga


aggatggatggtgaagactgtctgtggtgctgctgggaaactgctctgtggagactgtgtattagaggca


ggtgtcatggaaggtggtgttggtgccagccccgcgtgataaatggccgactgctgctgtggactggcca


ggtgaagagcctgggcggcctggtgctgatggtgctgaacaggactgggtgcaggatgacttccaccatg


ctggctttgttgctgtccggtgggagtggccgaaggctgaggatgtggagggtgtggatgcagggtggca


ttaggatgtgcgtactgctgagcgagggagccggtggaaatggcaaagtagaaagaagggcttgtctcct


tgttgtatggtaatttgggacatgcatacatggcatgcgtctgctcgtgagccccgaactgagcagctga


agacgacactaaaccaggctgagcatgtgctggtggtgccatcatcctggcattaccttgtatgacagga


ctgtacacatgaggatgctgagactgataatgcggcacgtgctggaccaaaggctggttgggaaactgct


gagggctgtaggcaacgtactgcgtggagtaagcggcgggcggggtggcaacgataggcggccctgctgc


ggaggcagggtgcatcatggtgctttgatggtgctgctcttgtcgctgttggggcatatttggtactgct


ctatatgtcttggcttggttcactggcatgggcgtcataggtattgggtataaaggctgcacgcctgggc


tcactgggacagggtacatcatattgggtgcaaagcacacaggctgcgtgtacactggagctggctgctg


atgacccaccatggacgggctgggctgggcttgaggccgaggcgacgttggggtagtagaaggctttggc


tgagagaaagaacgagggttgaactcctttgcattgggattcaaagtcgacttcctaacttgctcggttg


tgtctttccgctcttctcggtcatccttctcttgtttgcaggccggactggaagtctgcaccccctggga


cgtgacctcaggccccctcttgtgctctgcattactaagcacagaaggggaggcgctggggctgttggtc


ttgctgctgctgctggtgcagctgctgctgccactgtcaatgaagctgtccttagcacttgcttccgttt


tgtctttcatcaaatctcgtgacttttctccttctctgtttttgcttagtagttgatccatagattcaga


cgtagaacttggctgtaacctaaaatcattcttaaacttctttaaatcatcgatctgttttctgtgttca


gagataactggtgacacacctttgttttcagcttttgaaaagctaggtgatgtttcacttgctttaatat


tttctttattccctgcaggagagttctgcctctgatcttgaagcctggaatctttcgcctcgatagatgg


ggtcagagctctgttggacgcagggctggcaggagtaggggacgcggcggggaccggcatggaaacggct


tcggcaggggtgatgccagcttggggagaagcgagcacaggcccgctgggagagtttccagcgctgttct


gcctgggagacctgggtctgtgagttttgggagatagtcttggaaccccactgaccactgaggaccacgt


tccccctgcaggactggtccttgccactggaggagcagctgcttcacttgggggattgtgggatacaaat


tctaggccactagacatggagcctctcccagcggagactctatgattccgagggtgccgctgtgcctttg


gagacatccttggtgggccttctgcagacatgcgtttaggcatagtagagacaggagctggagaaccatg


agcagaggggtgagacgggggtctggagggcctcgaggggggcctggagggcggccgtgtaggggtggct


gcccgaggtggaagagagttgggacctgactggtagcgagaaggtgggcgagaggaaggagatgggcaag


gcgatggccagggaacacctccattaactactctttggtctgagccagcattcgggttgaaatctgaagt


gtgagaagtagctcttgatggcatggagcctggtccaggctggcccatccgtggtgagctctgtctccca


cttccccaggatatgacttctctgtttctttgtccaggaggaatatatttattttccctagtgttggtgc


catgaccttcccggtcactgcagtttctctggactgctgtgtacttctcttcctcactccggtcatcatt


ctcaagggccacacgagctttgtactgagcactggactcgatttcttctgctaactggtttgcccttgcc


tcccgttttagaaattcttctgagttgtccctttctaagggaaccgtatatgaagataaactactatcgt


atgtggacaccacaccgtaattctcttcattatatcgaaacatatcattgggatcccatccgttagacac


atcattctccagagcctccagctcctcgctggctgtgagctcccctgcatcccagggctccaggtccttc


tccttgtgttcaccattcactttagcactgagagcagagtcagtgaaagcatctcttcgtgcataactcg


agtctgtatctttaaattgtaccacaacgaagtctgagcatttgaacaaaacactctccattatttcttc


acgttttggccccgaactggattctgtacttttctcatgtgcagcatcaagtaccaaatcacacttagga


ctgtatgttttaaaaactccttcatatacacctccgtttttcacttgtacttcacatttcgatcccacaa


ccgatgtaagtatatgaaccatcctcacgtttgcatagattccgtcaaaagaaatcgtaggctgaggcag


tcctttgctactgttccgacctctgcaaagattaataaatattgttttgttaaattcaatcttcatttta


tttaaattaaagagaacataaaatataatcttctaattctactcaaacacaggccaggctgagtgtggaa


ggggccatcctgtgtgacaggaaatctcagtggctgtgtgctaccaggccagggagagactgccacagag


aggaagacgaaacacaactcgctttatcaaacccaaaccggtgaggcaggtggagtgccacatgcatgta


atcccagctctcgggagacagaagcaggcagcctgctctacacagtgaattccaggacagccagagctac


tgagtgagaccttgaccctaaaagctaaataaacaaaaccaaatgcatagagtgaagccagctgagctgg


tgcagtgtagtgagcagtgtgtggctgcactcacccttcagaggctgaggcagtgggatgccatgtgtga


gctcagccagggctgtagagcacacctcatctccctaccccagtaagggactgaaggacaatggcacgca


aagcagccgtactcttagaagcaaggcgcggtggcacacacttgggatcaacagagctgactgacacccc


aatcagctctcattttctccatctctaaaagcaactaagtgtttataactgcaggaaaaaactaccaaaa


ttaagttaaagcagggcttttcagaaggctcagaaggcattagctacaagtctgaagacttgaattcaat


ccccaggaccatacaacaaaaggagaatcaacttctataaactgtcctctgcccactacatgtatgctgg


gacacacacacacacacacatgcacacccacacaccccacacaccacacacacacacatacacacacaca


caaataaatcaatgtttaaacatcagagataattataaacactttgacttctaaacaccacgtctctgtc


agatctggcatgtgatatggcaggcctcgtggtccacagctgtaatcccagcttaggcagtgagctagcc


tgggctacactgtcaaaactcaggaattgttcaccaagcctttccttaccaccctctcccttagaaagac


acagcacacaagactcagctgccaggctggggtggctcactcggtggtcaagtgtgcttgcttagtggct


ttgagtcctaagctcaggttccagcactgcagagacaaacaaagcccgcattaaacaacataaactcagc


tatcaaatggtgccgtgtaacggggactattttcaagtgaactagaggatttgtccgagatcccatcaga


agcaaaattcaaagatgttcaaagatgtttagtatttaatatccagtcaaatgtaaacgctacactgtag


cgactgtatttagagaatgtacacacacgactgtatttagagaatgacaagaaagacaaacgaaaccacg


atgcacagtccttgctggtacagtttccaccaatcctttccatcctctgttagttcaatagagcctgcac


aacctaagccttcttctaagggaaaagattgagtttctcacaaataacaaggaatcctacatttctcttc


cacacgttgtgaacaacacaactgaaatcccattttaaagttgttgggttttttggattttttgttttaa


atgtacgtgtggctgagcgcccgcctgcctgcatgtctgtgcaccttctatgtgcctggtgcccacaggg


cccggaggacactgatccccaggaactggtgttacagaatgttctgagcagccgtgtgagtgctgacaaa


caaacccaggtcctgtacatgcggccaatgtccttaagcactgggacctctgtccagcctttgaaattcc


atcttcatagagcaaccacacgctccacttgagtcaaaatctgaaaagtcaatgaagagcttgcctagag


cagggttgccaactcacggcagcaggctagcagaactccaaggcagcccactacctagtctctccactct


ccaactgtcttcctcacctcactcactcaggacagctggcttaggctggatggcctctcatttcttccag


agattctagaatgctatgcttcgcacactgtaaaaatgttcttgtcacctgcagagtgcctcagcaggtg


aaggcacttgccaccaagcctgacaacccgcgttctatcctctgggtcctcatagagagaactctcacag


gttgtcctctgacctgtacattccagtcaggagccatttgaaaagagaaggaaaaaaaaagaattgaaaa


acctgaagaacctgacttctaacttgtcctgggtctggctatgagccaagtccaatgtttcgcactggac


tctgaccaaccacctgtttcacaattgatggacgtgaaccttgacccaaaccacccaacccactccatgt


gcagtaaggcctgctgcagctaggcgcacctcatcgatgcccgggcttttgttcccggggtatgcgttct


tactcttaggatcctatcacaacccaagaacttcctggcacccttcaaactttacaattaagggttaaaa


gacaggctgagttagtagagtgtagccagccctggttttccccccagtaccacacaaaaatcaggtacag


tgacacacacttgcaatcctagcactaagaagcaggatcaggagttcaaggtctggaccacaaagatggt


tcggtattaaaggttcttccacaggtctgattctattatagcaacattgtggggtagctcgaaattgcct


gtaactcttaagattaggagaatctaacatcctcttctggcctttgcaagcactgcaaagacttaaaaca


taagtcttaaaacagaagcaatttgacagaccgtggtagcccatgccattaatcctaacactggggaggc


agaggcagtcgatctctgtgggttcaaggccagcctcagctactcgagaacttgcacccagcctagacta


tgtgagaacctgtctttaaaagagccacctcctccttagggtccagctgggtaaatagttggaactagaa


aaaaacatatttagtaaggaaacccatacccataaagacaaatgtcacatgtcctctctcatctgaggtg


cctaattccaaaacttcaggtgtgagtacatattctggagtaacttcagaaaagagaaaagtaaaaagga


accattgaaaacaggtgtcgtggtacacacctttaatcccagcacttaaaatgcacaggccagcctg









EQUIVALENTS

Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.

Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of ATXN2, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, or a nucleotide sequence having at least 90% nucleotide sequence identity to a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, or a nucleotide sequence having at least 90% nucleotide sequence identity to a portion of the nucleotide sequence of SEQ ID NO: 2.
  • 2. A double stranded ribonucleic acid (RNAi) agent for inhibiting expression of an ATXN2 gene, wherein the RNAi agent comprises a sense strand and an antisense strand, and wherein the antisense strand comprises a region of complementarity comprising at least 15 contiguous nucleotides differing by no more than 3 nucleotides from an antisense sequence selected from the group consisting of the antisense sequences of Tables 2, 3, 5, 6, 9 and 10.
  • 3. The dsRNA agent of claim 1, wherein the sense strand or the antisense strand is conjugated to one or more lipophilic moieties.
  • 4. The dsRNA agent of claim 1, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand.
  • 5. The dsRNA agent of claim 1, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand.
  • 6. The dsRNA agent of claim 1, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0 or 1 mismatches, of a portion of the nucleotide sequence of SEQ ID NO: 1, and the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0 or 1 mismatches, of the corresponding portion of nucleotide sequence of SEQ ID NO: 2, such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand.
  • 7. The dsRNA agent of claim 1, wherein the sense strand or the antisense strand is a sense strand or an antisense strand selected from the group consisting of any of the sense strands and antisense strands in any one of Tables 2, 3, 5, 6, 9 or 10.
  • 8. The dsRNA agent of claim 1, wherein both the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.
  • 9. The dsRNA agent of claim 3, wherein: the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent, optionally wherein the lipophilic moiety is conjugated via a linker or a carrier and/or optionally wherein lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0:one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand: optionally wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier, optionally wherein: the internal positions include all positions except the terminal two positions from each end of the at least one strand: the internal positions include all positions except the terminal three positions from each end of the at least one strand: the internal positions exclude a cleavage site region of the sense strand, optionally wherein the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand and/or the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand: the internal positions exclude a cleavage site region of the antisense strand, optionally wherein the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand; and/or the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end; and/orthe positions in the double stranded region exclude a cleavage site region of the sense strand.
  • 10-11. (canceled)
  • 12. The dsRNA agent of claim 1, wherein the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2, optionally wherein the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.
  • 13. (canceled)
  • 14. The dsRNA agent of claim 1, wherein: the dsRNA agent comprises at least one modified nucleotide, optionally wherein: no more than five of the sense strand nucleotides and no more than five of the nucleotides of the antisense strand are unmodified nucleotides;all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification; and/orat least one of the modified nucleotides is selected from the group a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, a nucleotide comprising a 5′-methylphosphonate group, a nucleotide comprising a 5′ phosphate or 5′ phosphate mimic, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA), a nucleotide comprising thymidine-glycol nucleic acid (GNA)S-Isomer, a nucleotide comprising 2-hydroxymethyl-tetrahydrofurane-5-phosphate, a nucleotide comprising 2′-deoxythymidine-3′phosphate, a nucleotide comprising 2′-deoxyguanosine-3′-phosphate, and a terminal nucleotide linked to a cholestervl derivative and a dodecanoic acid bisdecylamide group; and combinations thereof, optionally wherein the modified nucleotide is selected from the group consisting of a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, 3′-terminal deoxy-thymine nucleotides (dT), a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide; optionally wherein the modified nucleotide comprises a short sequence of 3′-terminal deoxy-thymine nucleotides (dT): optionally wherein the modifications on the nucleotides are 2′-O-methyl, GNA and 2′fluoro modifications; and/or optionally further comprising at least one phosphorothioate internucleotide linkage, optionally wherein the dsRNA agent comprises 6-8 phosphorothioate internucleotide linkages:each strand is no more than 30 nucleotides in length:at least one strand comprises a 3′ overhang of at least 1 nucleotide;at least one strand comprises a 3′ overhang of at least 2 nucleotides;the double stranded region is 15-30 nucleotide pairs in length, optionally wherein the double stranded region is 17-23 nucleotide pairs in length: optionally wherein the double stranded region is 17-25 nucleotide pairs in length: optionally wherein the double stranded region is 23-27 nucleotide pairs in length: optionally wherein the double stranded region is 19-21 nucleotide pairs in length; and/or optionally wherein the double stranded region is 21-23 nucleotide pairs in length;each strand has 19-30 nucleotides;each strand has 19-23 nucleotides;each strand has 21-23 nucleotides;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand, optionally wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand, optionally wherein: the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand; the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand; the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand; and/or the lipophilic moiety is conjugated to position 16 of the antisense strand;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound, optionally wherein the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, 03-(oleoyl)lithocholic acid, 03-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine, optionally wherein the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne, optionally wherein: the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain; and/or the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain, optionally wherein the saturated or unsaturated C16 hydrocarbon chain is conjugated to position 6, counting from the 5′-end of the strand;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region, optionally wherein the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate;the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage:the sense strand or the antisense strand is conjugated to one or more lipophilic moieties and the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof;the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl;the dsRNA agent further comprises a targeting ligand that targets a liver tissue, optionally wherein the targeting ligand is a GalNAc conjugate:the dsRNA agent further comprises: a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, ora terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration;the dsRNA agent further comprises: a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, ora terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration;the dsRNA agent further comprises: a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, ora terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration;the dsRNA agent further comprises: a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, ora terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration;the dsRNA agent further comprises: a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, ora terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration;the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand, optionally wherein the phosphate mimic is a 5′-vinyl phosphonate (VP);the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an A:U base pair; and/orthe sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.
  • 15-75. (canceled)
  • 76. A composition comprising one or more of the following: A cell containing the dsRNA agent of claim 1;A pharmaceutical composition for inhibiting expression of a gene encoding ATXN2, comprising the dsRNA agent of claim 1; and/orA pharmaceutical composition comprising the dsRNA agent of claim 1 and a lipid formulation.
  • 77-78. (canceled)
  • 79. A method of inhibiting expression of an ATXN2 gene in a cell, the method comprising: (a) contacting the cell with the dsRNA agent of claim 1; and(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of the ATXN2 gene, thereby inhibiting expression of the ATXN2 gene in the cell.
  • 80. The method of claim 79, wherein: the cell is within a subject, optionally wherein the subject is a human:the expression of ATXN2 is inhibited by at least 50%;the subject meets at least one diagnostic criterion for an ATXN2-associated disease:the subject has been diagnosed with an ATXN2-associated disease; and/orthe ATXN2-associated disease is selected from the group consisting of a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), or Amyotrophic Lateral Sclerosis (ALS).
  • 81-85. (canceled)
  • 86. A method of treating a subject diagnosed with an ATXN2-associated neurodegenerative disease, the method comprising administering to the subject a therapeutically effective amount of the dsRNA agent of claim 1, thereby treating the subject.
  • 87. The method of claim 86, wherein: treating comprises amelioration of at least on sign or symptom of the disease;treating comprises prevention of progression of the disease;the ATXN2-associated disease is characterized by progressive cerebellar ataxia or blindness;the ATXN2-associated neurodegenerative disease is selected from the group consisting of a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), and Amyotrophic Lateral Sclerosis ALS);the subject is human:the dsRNA agent is administered to the subject at a dose of about 0.01 mg/kg to about 50 mg/kg:the dsRNA agent is administered to the subject intrathecally; and/orthe method further comprises administering to the subject an additional agent or a therapy suitable for treatment or prevention of an ATXN2-associated disease or disorder.
  • 88-90. (canceled)
  • 91. A method of preventing development of an ATXN2-associated neurodegenerative disease in a subject meeting at least one diagnostic criterion for an ATXN2-associated neurodegenerative disease, the method comprising administering to the subject a therapeutically effective amount of the dsRNA agent of claim 1, thereby preventing the development of an ATXN2-associated neurodegenerative disease in the subject meeting at least one diagnostic criterion for an ATXN2-associated neurodegenerative disease.
  • 92. (canceled)
  • 93. The method of claim 91, wherein: the subject has been diagnosed with an ATXN2-associated disease, optionally wherein the ATXN2-associated disease is selected from the group consisting of a spinocerebellar ataxia (SCA), such as spinocerebellar ataxia 2 (SCA2), and Amyotrophic Lateral Sclerosis (ALS).
  • 94-97. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/058,119, filed Jul. 29, 2020, entitled “ATXN2 iRNA Compositions and Methods of Use Thereof for Treating or Preventing ATXN2-Associated Neurodegenerative Diseases,” and to U.S. Provisional Application No. 63/146,689, filed Feb. 7, 2021, also entitled “ATXN2 iRNA Compositions and Methods of Use Thereof for Treating or Preventing ATXN2-Associated Neurodegenerative Diseases.” The entire contents of the aforementioned applications are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/043429 7/28/2021 WO
Provisional Applications (2)
Number Date Country
63058119 Jul 2020 US
63146689 Feb 2021 US