Automatically generated test diagram

Information

  • Patent Grant
  • 10429437
  • Patent Number
    10,429,437
  • Date Filed
    Thursday, May 28, 2015
    9 years ago
  • Date Issued
    Tuesday, October 1, 2019
    4 years ago
Abstract
A method of operating a data processing system to generate a diagram indicative of an experimental setup includes a device to be tested (DUT) and a plurality of test instruments is disclosed. The method includes detecting a first test instrument that is connected to the data processing system and determining connection points to the first test instrument. A script that specifies tests for the DUT using the plurality of test instruments and includes instructions specifying measurements to be made by the first test instrument is examined. A first connection between the DUT and the first test instrument is determined. An initial diagram on a display controlled by the data processing system is generated. The initial diagram includes a first node representing the first test instrument, a second node representing the DUT and a line representing the first connection between the first and second nodes.
Description
BACKGROUND

In an automated test system, a device to be tested (DUT) is connected to signal sources and measurement devices that are under the control of the test system. The DUT is typically tested for a number of different input conditions. The sources and measurement devices can be controlled from a computer via a local area network or some other form of communication channel. The computer defines the tests to be run by some form of script that causes the signal sources to sequence through the defined input sequences and the measurement devices to make the desired measurements.


SUMMARY

The present invention includes a method of operating a data processing system to generate a diagram indicative of an experimental setup which includes a DUT and a plurality of test instruments. The method includes detecting a first test instrument that is connected to the data processing system and determining connection points to the first test instrument. A script that specifies tests for the DUT using the plurality of test instruments and includes instructions specifying measurements to be made by the first test instrument is examined. A first connection between the DUT and the first test instrument is determined. A diagram on a display controlled by the data processing system is generated. The initial diagram includes a first node representing the first test instrument, a second node representing the DUT and a line representing the first connection between the first and second nodes.


In one aspect of the invention, the data processing system detects a second one of the plurality of test instruments and generates a third node on the diagram on the display representing the second one of the plurality of test instruments. The data processing system determines a connection between the second one of the plurality of test instruments from the script and generates a line connecting the third node to the DUT or one of the other test instruments representing the determined connection.


In another aspect of the invention, the data processing system generates a node representing each of the plurality of test instruments in the diagram on the display. In one embodiment, one of the plurality of test instruments is not detectable by the data processing system, and the data processing system is configured to receive input from a user of the data processing system defining the one of the plurality of instruments and connections that are available to that one of the plurality of test instruments.


In another aspect of the invention, the data processing system is configured to receive an instruction from a user of the data processing system, the instruction specifying a connection between two of the nodes on the display, the data processing system generating a line between the two of the nodes in the diagram on the display.


In a still further aspect of the invention, the data processing system is configured to receive user input specifying one of the nodes on the display, and the data processing system displays portions of the script that reference the test instrument corresponding to that node on the display.


In another aspect of the invention, the data processing system is configured to receive user input specifying a connection to one of the nodes on the display, and the data processing system displays portions of the script that reference the connection on the display.


In another aspect of the invention, the data processing system is configured to receive user input specifying a portion of the script that references one of the test instruments, and the data processing system displays highlights of the node representing that test instrument in the diagram.


In another aspect of the invention, the data processing system is configured to receive user input specifying a portion of the script that references a connection to one of the test instruments, and the data processing system displays highlights of the connection in the diagram.


In another aspect of the invention, the data processing system automatically removes nodes in the diagram that correspond to test instruments that are not referenced in the script.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a front panel representation of a function generator that might appear in a typical virtual bench top.



FIG. 1B illustrates one embodiment of a measurement system according to the present invention.



FIG. 2 illustrates the nodes of an initial drawing with the instruments represented by simple blocks.



FIG. 3 illustrates the initial drawing corresponding to the script.



FIG. 4 illustrates the correspondence between the drawing and script.



FIG. 5 illustrates an experimental setup for measuring the battery run-down performance of a battery-powered DUT using a specialized instrument, such as a Keysight Technologies N6781A.



FIG. 6 illustrates an aspect of the present invention in which the user specifies the connections between the instruments.





DETAILED DESCRIPTION

A test of the DUT is defined in terms of the topology of a circuit that includes the DUT. Even though measurements are defined in terms of a circuit configuration, most systems for automating electronic measurements fail to capture the circuit configuration information in the automation specification. A specification for a frequency response measurement, for example, would include sequences of commands to change frequency and amplitude inputs of a test signal and measure DUT outputs. Any information about the associated circuit configuration, such as how the DUT was actually connected to the signal sources and which DUT outputs were connected to the measurement device, is not captured in the script specifying the commands.


Hence, a user must maintain that information in some auxiliary format such as a laboratory notebook. This configuration information typically includes the details of the circuit showing how the components were connected to each other and which components were used. In addition, the association of the circuit configuration to the automation script must also be captured. The configuration record also needs to take into account variations in the script during development.


Requiring the user to maintain this information in a separate document is time consuming and error prone. Since a separate record is not essential to writing and debugging a script, a user may just keep this information in his or her head during the initial development of the script, and hence, the record will be lost when someone else decides to use the script in a new test.


Losing the association between a circuit configuration and an automation script may not be an insurmountable problem for experts, or for simple basic configurations. However, for less technical users or less typical configurations, losing the association between a circuit configuration and an automation script may cause the script to be unusable.


The present invention automatically generates a circuit diagram from the automation script and from information provided by the user. The circuit diagram is stored with the script. This has the advantage of relieving the user of the task of documenting the circuit topology. In addition, if the circuit diagram disagrees with the model the user had in mind when he or she wrote the script, the user will be alerted to possible errors in the script by inaccuracies in the generated diagram. The automatically generated circuit diagram can be edited by the user to provide comments and/or to provide connections that cannot be deduced from the script and a knowledge of the instruments attached to the computer running the method of the present invention.


In one aspect of the invention, a DUT diagram is a digital representation of a circuit configuration with a model and at least one view. The model needs to be able to represent the topology of an electrical circuit. In an exemplary embodiment, a graph is used as the model; however, other representations such as an adjacency matrix could also be used. In a graph, there will be one node for each instrument involved in the test and one node for the DUT. It is assumed that all of the relevant test instruments that are controlled by the script are controlled by the data processing system running the software. For example, if the present invention is part of a virtual bench top such as BenchVue by Keysight Technologies, Inc., the present invention will operate on the automation script in that application and the various instruments that are logged into the virtual bench top.


In some cases, a test instrument or power source may not be logged into the computer running the present invention. Devices that are part of the experimental setup, but not logged into the software of the present invention, will be referred to as uncontrolled devices. These devices are not controlled by the script. For example, in testing a battery-operated DUT during a battery run down test, the battery will typically not include the hardware and software needed to log into the computer. In addition, the script will not control the output of the battery.


In such cases, the present invention must acquire information about such devices from the user. The information must include the inputs and outputs of the non-logged device that are available for connection to the DUT or other instruments in the test setup. For common non-logged devices such as batteries, the information can be provided in the form of a device menu that is part of the present invention to reduce the work required to enter the relevant information. The user may still need to provide some information, such as the battery voltage even in non-logged devices that have preprogrammed menu items. In other cases, the user must provide all of the information.


The degree of detail for the nodes representing the instruments can vary from a simple box representing an instrument to a detailed view of the front panel of the instrument. In the case of a virtual bench top, representations of the instruments are available which represent the front panel of the instrument in a manner that allows the user to control the instrument as if the user were pushing buttons on the front panel of the actual instrument. Refer now to FIG. 1A, which illustrates a front panel representation of a function generator that might appear in a typical virtual bench top. Representation 20 includes a number of “buttons” for selecting the desired output waveform such as button 21. In addition, other properties of the output such as the amplitude, frequency, etc. can be set by typing values into the appropriate windows such as window 23 when amplitude is selected in window 22. The portion of the script dealing with the instrument may include the values corresponding to the waveform to be generated and the initial values of other parameters such as the phase of the output signal. These values are set once, and hence, are located in the initialization steps in the automation script.


Such detailed representations of the instruments can be useful for a user who must wire the actual instruments to the DUT in setting up the measurements. However, if the number of instruments in the setup is large, a less detailed representation may be preferred to allow the entire setup to be seen on a single display.


Refer now to FIG. 1B, which illustrates one embodiment of a measurement system according to the present invention. In general, there will be a number of physical instruments connected to a computer 57 which runs a program that executes the method of the present invention. Exemplary instruments are shown at 51-53. The instruments can be connected to computer 57 by any suitable communication path including a LAN, WAN, serial communication or wireless communication link. It should be noted that the DUT 58, in general, is not connected to computer 57. In addition, there may be other instruments or components that are used in the test, but are not connected to the computer, such as battery 59. Information about the DUT and non-connected instruments is supplied by the user in a manner that will be discussed in more detail below.


Computer 57 controls a display screen 54 which implements a graphical user interface (GUI) that is used to display and create a diagram 55 of the experimental setup and a script 56. Display screen 54 can be part of computer 57 or a separate component that is remotely located from computer 57. For example, the physical test instruments and the DUT may be located in a laboratory, while display screen 54 is located in the office of a test engineer who is actually running the test once the physical components are connected together.


Refer now to FIG. 2, which illustrates the nodes of an initial diagram with the instruments represented by simple blocks. In this example, DUT 58 is to be characterized by measuring the response of DUT 58 to an input signal that is varied in frequency and amplitude. The output of DUT 58 is measured using a digital multimeter (DMM) to measure the amplitude of the signal from DUT 58. The script that provides the automation of the measurements is shown at 15.


Script 15 sets up the function generator to use channel 1 and to generate a sine wave output. Script 15 also places the DMM in an automatic mode. Script 15 has two nested DO loops that vary the frequency and amplitude of the output of the function generator. For each combination of frequency and amplitude, the DMM is read and the frequency and amplitude of the function generator output is logged together with the DMM reading.


The data processing system detected a function generator 51 and a DMM 52 that are connected to the data processing system. In one aspect of the invention, if other instruments are connected to the data processing system but not referenced in the script, the additional instruments will not be shown in the initial diagram. Hence, since script 15 does not reference any other instruments, additional instruments that are connected to the data processing system do not give rise to additional nodes in the diagram. In other modes, the data processing system shows all instruments in the initial diagram, and the user removes the unwanted instruments.


In the present example, automation script 15 references a function generator 51 and a DMM 52. Hence, the data processing system places nodes corresponding to these instruments in diagram area 16. While function generator 51 has multiple channels, script 15 only refers to one channel. Hence, only one outbound edge 12c is provided in the diagram. Script 15 also references the frequency and amplitude of the signal from frequency generator 12. Hence, inbound edges 12a and 12b are provided.


Similarly, script 15 references DMM 52 which is also connected to the data processing system. In this simple example, it is assumed that DMM 52 has only one input and one output as shown at 14a and 14b. However, if the script referenced a DMM that had more than one input and output, the node for DMM 52 could have additional inputs and outputs, unless only one set was referenced in script 15.


Since the oscilloscope 53 shown in FIG. 2 is not referenced in the script, the initial diagram omits a node for oscilloscope 53, even though that instrument is connected to computer 57. In one aspect of the invention, the computer shows all connected instruments and provides a mechanism for the user to delete the instruments that are actually being used in the test.


The data processing system assumes that DUT 58 has one input and one output shown at 13a and 13b, respectively. The initial diagram is generated by placing the node corresponding to the DUT in the center of the diagram. Nodes that give rise to output signals that can form the input signal to the DUT are placed on the left of DUT 58. Nodes that can act as a sink for the output signal from the DUT are placed on the right of DUT 58. In this example, there is only one source that is not matched, namely outbound edge 12c. Similarly, there is only a sink that lacks a connection, namely input 14a. Hence, the data processing system assumes that the diagram is as shown in FIG. 3, which illustrates the initial diagram corresponding to script 15.


In one aspect of the present invention, a correspondence is maintained between the diagram and the script. If the user selects an element of the diagram, the location of the references to that element in the script are highlighted, and vice versa. Refer now to FIG. 4, which illustrates the correspondence between the diagram and script. If the user selects inbound edge 12a of function generator 51, the corresponding lines of code in the script are highlighted as shown by the bolded lines in script 15. Similarly, if the user selects a line of code in script 15 as shown at 17, the corresponding element is highlighted in diagram area 16 as shown by the highlighting of DMM 52.


In the above example, the data processing system can detect the instruments attached to it; however, it must be informed of the properties of those elements of the experimental setup that are not discernable from the drivers associated with those instruments or elements that are not so detectable, such as the DUT. In one aspect of the invention, the data processing system receives information from the user as to these other elements or other inputs and outputs that are not discernable from the drivers. The additional inputs and outputs are then shown on the initial diagram when appropriate.


In one aspect of the invention, the terminals corresponding to the inputs and outputs of the various instruments and other elements are classified as to whether the terminal is a source or a sink of a signal. If the instruments have drivers that are used by the data processing system and are recognized by the data processing system, this information is typically included in the information provided by the driver. In the case of elements that are not discernable from the drivers, the user supplies this information when the user inputs the information about the element in question. This arrangement reduces the number of possible connections that must be considered, since a source can only be connected to a sink, and a sink can only be connected to a source.


In some cases, the data processing system will be unable to deduce all of the connections in the test circuit from the known instruments and the script. In this case, the present invention presents the user with the possible connections between terminals that are not unambiguously defined by the script. Refer now to FIG. 5, which illustrates an experimental setup 40 for measuring the battery run-down performance of a battery-powered DUT using a specialized instrument 42, such as a Keysight Technologies N6781A. Instrument 42 measures the voltage across DUT 41 and the current flowing through DUT 41 when DUT 41 is powered by battery 43. The voltage between outputs S+ and S− is maintained such that no voltage difference appears between terminals 44 and 45, and hence, eliminates any voltage drop resulting from the wiring. The current flowing between OUT+ and OUT− is measured by instrument 42 together with the voltage between DVM+ and DVM−.


The data processing system detects the presence of instrument 42. It is assumed that there is a simple script that repeatedly measures the voltage between DVM+ and DVM− and the current flowing through +OUT and −OUT. Since the instrument has a driver that specifies its inputs and outputs, instrument 42 knows which of the terminals in instrument 42 are sources and which are sinks. The data processing system also assumes that there is a DUT having a terminal that is a source and a terminal that is a sink. The presence of battery 43 is provided by user input. The user can pick the battery from a list displayed by the data processing system or enter the information specifying that element.


To aid the user, the data processing system can provide a list of additional common elements that are not directly connected to the data processing system, such as a battery. The inputs and outputs of these predefined, but not connected elements, are included in their definitions and stored in the data processing system. Alternatively, the user can supply the information directly by providing a name for the element and its inputs and outputs.


In the example shown in FIG. 5, the data processing system knows that a battery is present with a positive and a negative terminal. The data processing system also knows that DUT 41 had a positive and a negative terminal. The six terminals of instrument 42 are also known. The manner in which the various terminals are connected; however, is not clear, since the various measurements are all contained within instrument 42.


Refer now to FIG. 6, which illustrates an aspect of the present invention in which the user specifies the connections between the instruments. In such a case, the data processing system can provide various possible connections in the diagram area, and the user can indicate the connections that are being used in the experimental setup. For example, the data processing system can provide a list of all possible terminals on instrument 42 and the two terminals on DUT 41. The user can then select a terminal from the DUT and a terminal from instrument 42 for connection. The process is repeated until the user has specified all of the desired connections.


In general, the specific implementation of the present invention will depend on the particular automation script language used by the virtual bench top or other test automation system. However, in general, the script will include statements that define the initial setup of each of the instruments being controlled. The script will also include statements that vary particular inputs and read particular outputs of the instruments during the test. Finally, the script will define where the data generated by the test is stored.


In general, there will be a driver representing each instrument that is currently logged into the virtual bench top. That driver will include information about the instrument, including the instrument's inputs and/or outputs. A signal output of an instrument is a “source”, and a signal input of an instrument is a “sink” relative to the DUT. In addition, instruments such as power supplies or batteries can provide power outputs and inputs that are sources and sinks relative to power connections on the DUT. In such cases, the number of possible connections is reduced because a source must be connected to a sink.


In one aspect of the invention, the diagram engine is active while the script is being written or edited. In this case, the automatic deletion of instruments that are logged into the system running the present invention and that are not part of the script is suspended. In this aspect of the invention, new nodes are created automatically from new instruments referenced in the current script. For example, the first time the user references a property of a power supply, a node for the power supply will be inserted into the model and the diagram will be updated to show the new node.


The present invention can be implemented on any suitable data processing system including a conventional computer or special purpose hardware.


The present invention also includes a computer readable medium that stores instructions that cause a data processing system to execute the method of the present invention. A computer readable medium is defined to be any medium that constitutes patentable subject matter under 35 U.S.C. 101 and excludes any medium that does not constitute patentable subject matter under 35 U.S.C. 101. Examples of patentable media include non-transitory media such as computer memory devices that store information in a format that is readable by a computer or data processing system.


The above-described embodiments of the present invention have been provided to illustrate various aspects of the invention. However, it is to be understood that different aspects of the present invention that are shown in different specific embodiments can be combined to provide other embodiments of the present invention. In addition, various modifications to the present invention will become apparent from the foregoing description and accompanying drawings. Accordingly, the present invention is to be limited solely by the scope of the following claims.

Claims
  • 1. A self-documenting instrument test system comprising: a plurality of test instruments that perform a test specified by a script on a DUT when said DUT is connected to a circuit comprising connections between said DUT and said test instruments, said script specifying sequences of operations to be performed by said test instruments during said test, but not said connections between the test instruments and said DUT;a data processing system that operates each test instrument to determine any input and output connection points on said test instrument and any signal that can be generated by that test instrument and/or any signals that can be measured by that test instrument,said data processing system being adapted to examine said script and said information on said test instruments connected to said data processing system and to generate a circuit diagram showing said DUT and said test instruments in said script and connections between said DUT and said test instruments, said data processing system being adapted to display said circuit diagram on a GUI connected to said data processing system.
  • 2. The system of claim 1 wherein said data processing system generates a node representing each of said plurality of test instruments in said diagram on said display.
  • 3. The system of claim 2 wherein one of said plurality of test instruments is not detectable by said data processing system and wherein said data processing system is configured to receive input from a user of said data processing system defining said one of said plurality of test instruments and connections that are available to that one of said plurality of test instruments.
  • 4. The system of claim 2 wherein said data processing system is configured to receive an instruction from a user of said data processing system, said instruction specifying a connection between two of said nodes on said display, said data processing system generating a line between said two of said nodes in said diagram on said display.
  • 5. The system of claim 2 wherein said data processing system is configured to receive user input specifying one of said nodes on said display and wherein said data processing system displays portions of said script that reference said test instrument corresponding to said one of said nodes on said display.
  • 6. The system of claim 2 wherein said data processing system is configured to receive user input specifying a connection to one of said nodes on said display and wherein said data processing system displays portions of said script that reference said connection on said display.
  • 7. The system of claim 2 wherein said data processing system is configured to receive user input specifying a portion of said script that references one of said test instruments and wherein said data processing system highlights said node representing that test instrument in said diagram.
  • 8. The system of claim 2 wherein said data processing system is configured to receive user input specifying a portion of said script that references a connection to one of said test instruments and wherein said data processing system highlights said connection in said diagram.
  • 9. The system of claim 2 wherein said data processing system automatically removes nodes in said diagram that correspond to test instruments that are not referenced in said script.
  • 10. A computer readable medium comprising instructions that cause a data processing system in an instrument test system comprising a plurality of test instruments connected to said data processing system in which said instrument test system performs a test on a DUT under the control of a script that does not provide the connections between said test instruments and said DUT to be converted to a self-documenting test system according to claim 1.
  • 11. The computer readable medium of claim 10 wherein said data processing system generates a node representing each of said plurality of test instruments in said diagram on said display.
  • 12. The computer readable medium of claim 11 wherein one of said plurality of test instruments is not detectable by said data processing system and wherein said data processing system is configured to receive input from a user of said data processing system defining said one of said plurality of test instruments and connections that are available to that one of said plurality of test instruments.
  • 13. The computer readable medium of claim 11 wherein said data processing system is configured to receive an instruction from a user of said data processing system, said instruction specifying a connection between two of said nodes on said display, said data processing system generating a line between said two of said nodes in said diagram on said display.
  • 14. The computer readable medium of claim 11 wherein said data processing system is configured to receive user input specifying one of said nodes on said display and wherein said data processing system displays portions of said script that reference said test instrument corresponding to said one of said nodes on said display.
  • 15. The computer readable medium of claim 11 wherein said data processing system is configured to receive user input specifying a connection to one of said nodes on said display and wherein said data processing system displays portions of said script that reference said connection on said display.
  • 16. The computer readable medium of claim 11 wherein said data processing system is configured to receive user input specifying a portion of said script that references one of said test instruments wherein said data processing system displays highlights of said node representing that test instrument in said diagram.
US Referenced Citations (203)
Number Name Date Kind
4348636 Doundoulakis Sep 1982 A
5500934 Austin Mar 1996 A
5535330 Bell Jul 1996 A
5606664 Brown Feb 1997 A
5793366 Mano Aug 1998 A
5917808 Kosbab Jun 1999 A
5974572 Weinberg Oct 1999 A
5991537 McKeon Nov 1999 A
6002992 Pauwels Dec 1999 A
6112015 Planas Aug 2000 A
6137295 Yoshida Oct 2000 A
6418391 Umezu Jul 2002 B1
6421069 Ludtke Jul 2002 B1
6463552 Jibbe Oct 2002 B1
6529951 Okuyama Mar 2003 B1
6594599 Kent Jul 2003 B1
6784902 Melder Aug 2004 B1
6957396 Iwamura Oct 2005 B2
6988229 Folea, Jr. Jan 2006 B1
7284177 Hollander Oct 2007 B2
7363188 Olgaard Apr 2008 B1
7486205 Wegener Feb 2009 B2
7528623 Zellner May 2009 B2
7552024 Kelbon Jun 2009 B2
7606909 Ely Oct 2009 B1
7613594 Lechine Nov 2009 B2
7627790 Frisch Dec 2009 B2
7631237 Kiryu Dec 2009 B2
7636622 Underdal Dec 2009 B2
7680621 Hayes Mar 2010 B2
7768278 Mayder Aug 2010 B2
7810001 Zhou Oct 2010 B2
7853931 Srinivasamurthy Dec 2010 B2
7930130 Sakarovitch Apr 2011 B2
7950004 Vieira May 2011 B2
7970594 Gaudette Jun 2011 B2
8527231 Luce Sep 2013 B2
8626913 Chourey Jan 2014 B1
8718967 Filler May 2014 B2
8782581 Agarwala Jul 2014 B2
8793646 Chancey Jul 2014 B2
8805767 Wang Aug 2014 B1
8837294 Frishberg Sep 2014 B2
9154241 Luong Oct 2015 B2
9285427 Luo Mar 2016 B2
9400301 Kanne Jul 2016 B2
9485038 Olgaard Nov 2016 B2
9549053 Voona Jan 2017 B2
9606183 Moon Mar 2017 B2
9641419 Gintis May 2017 B2
9712406 Chu Jul 2017 B2
9741256 Akopian Aug 2017 B2
9952276 Frediani Apr 2018 B2
9959186 Hutner May 2018 B2
20020038439 Sato Mar 2002 A1
20020130836 Ohmori Sep 2002 A1
20020131052 Emery Sep 2002 A1
20020143486 Jain Oct 2002 A1
20030036866 Nair Feb 2003 A1
20030083831 Agrawal May 2003 A1
20030212523 Dorough Nov 2003 A1
20030221149 Vollrath Nov 2003 A1
20030234652 Bald Dec 2003 A1
20040021452 Hwang Feb 2004 A1
20040024656 Coleman Feb 2004 A1
20040093516 Hornbeek May 2004 A1
20040100468 Tenten May 2004 A1
20050005262 Mohan Jan 2005 A1
20050039161 Pfander Feb 2005 A1
20050183098 Ilic Aug 2005 A1
20050232256 White Oct 2005 A1
20050235263 Bundy Oct 2005 A1
20050240372 Monk Oct 2005 A1
20050240831 Balkman Oct 2005 A1
20050253617 Roberts Nov 2005 A1
20050261856 Kushnick Nov 2005 A1
20050268171 House Dec 2005 A1
20050278129 Benvenga Dec 2005 A1
20060074584 Giral Apr 2006 A1
20060150126 Kamannavar Jul 2006 A1
20060168183 Fuller, III Jul 2006 A1
20060174161 Sharma Aug 2006 A1
20060225034 Peck Oct 2006 A1
20060282723 Pleasant Dec 2006 A1
20070016394 Gaudette Jan 2007 A1
20070118779 Wu May 2007 A1
20070124114 Shapiro May 2007 A1
20070168735 Lo Jul 2007 A1
20070185682 Eidson Aug 2007 A1
20070226543 Young Sep 2007 A1
20070226555 Raines Sep 2007 A1
20070230770 Kulkarni Oct 2007 A1
20070234195 Wells Oct 2007 A1
20080021669 Blancha Jan 2008 A1
20080022264 Macklem Jan 2008 A1
20080030203 Chung Feb 2008 A1
20080034297 Correll Feb 2008 A1
20080086668 Jefferson Apr 2008 A1
20080144656 Frishberg Jun 2008 A1
20080282212 Dennison Nov 2008 A1
20090037132 Zhou Feb 2009 A1
20090089619 Huang Apr 2009 A1
20090089715 Dickey Apr 2009 A1
20090100900 Spalding Apr 2009 A1
20090163832 Sunderani Jun 2009 A1
20090164931 Kemmerling Jun 2009 A1
20090249121 Kube Oct 2009 A1
20090249297 Doshi Oct 2009 A1
20100023294 Fan Jan 2010 A1
20100075678 Akman Mar 2010 A1
20100077260 Pillai Mar 2010 A1
20100085894 Johnson Apr 2010 A1
20100111410 Lu May 2010 A1
20100125667 Soundararajan May 2010 A1
20100174697 Mor-Barak Jul 2010 A1
20110001833 Grinkemeyer Jan 2011 A1
20110131000 Daub Jun 2011 A1
20110160885 Itskov Jun 2011 A1
20110286506 Libby Nov 2011 A1
20110313942 Higgins Dec 2011 A1
20110314333 Olgaard Dec 2011 A1
20110320216 Kasmark Dec 2011 A1
20120065906 Luce Mar 2012 A1
20120089917 Kwahk Apr 2012 A1
20120210179 Xanthopoulos Aug 2012 A1
20120249332 Tezuka Oct 2012 A1
20120278741 Garrity Nov 2012 A1
20120284564 Verma Nov 2012 A1
20120290920 Crossley Nov 2012 A1
20130007710 Vedula Jan 2013 A1
20130031514 Gabbert Jan 2013 A1
20130054170 Sobajic Feb 2013 A1
20130117019 Akopian May 2013 A1
20130127904 Dove May 2013 A1
20130185093 Wittliff, III Jul 2013 A1
20130198429 Chandhoke Aug 2013 A1
20130218509 Schroeder Aug 2013 A1
20130247019 Xu Sep 2013 A1
20130259097 Olgaard Oct 2013 A1
20130262015 White Oct 2013 A1
20130275337 Gershon Oct 2013 A1
20130282892 Levi Oct 2013 A1
20130289925 Jiang Oct 2013 A1
20130290938 Nir Oct 2013 A1
20130297973 Hyland Nov 2013 A1
20130305088 Xu Nov 2013 A1
20130305091 Stan Nov 2013 A1
20130321092 Simpson Dec 2013 A1
20130338960 Bourgault Dec 2013 A1
20130339803 Vandervalk Dec 2013 A1
20130345524 Meyer Dec 2013 A1
20140019923 Agarwala Jan 2014 A1
20140047417 Kaasila Feb 2014 A1
20140093056 Kawashima Apr 2014 A1
20140114528 Marino Apr 2014 A1
20140115394 Fattah Apr 2014 A1
20140123096 Su May 2014 A1
20140130002 AbdelAzim May 2014 A1
20140149811 Ross May 2014 A1
20140157050 Zhao Jun 2014 A1
20140173094 Majumdar Jun 2014 A1
20140177459 Watt Jun 2014 A1
20140178845 Riesberg Jun 2014 A1
20140184648 Claydon Jul 2014 A1
20140256056 Wang Sep 2014 A1
20140256373 Hernandez Sep 2014 A1
20140258781 Cook Sep 2014 A1
20140269386 Chu Sep 2014 A1
20140277607 Nixon Sep 2014 A1
20140280424 Moyer Sep 2014 A1
20140281721 Navalur Sep 2014 A1
20140288911 Chien Sep 2014 A1
20140294293 Yamamura Oct 2014 A1
20140295771 Finlow-Bates Oct 2014 A1
20140321285 Chew Oct 2014 A1
20140331195 Agarwala Nov 2014 A1
20140342333 Knoche Nov 2014 A1
20140344627 Schaub Nov 2014 A1
20140358514 Liu Dec 2014 A1
20140365826 Liu Dec 2014 A1
20140380278 Dayan Dec 2014 A1
20150052500 Herron Feb 2015 A1
20150058685 Jang Feb 2015 A1
20150066417 Kimura Mar 2015 A1
20150070041 Song Mar 2015 A1
20150106669 Gintis Apr 2015 A1
20150106670 Gintis Apr 2015 A1
20150133744 Kobayashi May 2015 A1
20150234006 Richards Aug 2015 A1
20150249458 Harrington Sep 2015 A1
20150294342 Hertel Oct 2015 A1
20150331779 Subramaniam Nov 2015 A1
20150355274 Ross Dec 2015 A1
20150365317 Wang Dec 2015 A1
20160057040 Bergeron Feb 2016 A1
20160081575 Wu Mar 2016 A1
20160103664 Kee Apr 2016 A1
20160111740 Spaziante Apr 2016 A1
20160116528 Narasaki Apr 2016 A1
20160132202 Hafizovic May 2016 A1
20160182310 Gintis Jun 2016 A1
20170235661 Liu Aug 2017 A1
20170249129 McDaniel Aug 2017 A1
Related Publications (1)
Number Date Country
20160349312 A1 Dec 2016 US