The described technology is directed to the field of automated decision support tools, and, more particularly, to the field of automated budgeting tools.
Marketing communication (“marketing”) is the process by which the sellers of a product or a service—i.e., an “offering”—educate potential purchasers about the offering. Marketing is often a major expense for sellers, and is often made of a large number of components or categories, such as a variety of different advertising media and/or outlets, as well as other marketing techniques. Despite the complexity involved in developing a marketing budget attributing a level of spending to each of a number of components, few useful automated decision support tools exists, making it common to perform this activity manually, relying on subjective conclusions, and in many cases producing disadvantageous results.
In the few cases where useful decision support tools exist, it is typically necessary for the tool's user to provide large quantities of data about past allocations of marketing resources to the subject offering, and the results that that they produced. In many cases, such as in the cases of a new offering, such data is not available. Even where such data is available, it can be inconvenient to access this data and provide it to the decision support tool.
Accordingly, a tool that automatically prescribed an advantageous allocation of funds or other resources to an offering and its various components without requiring the user to provide historical performance data for the offering would have significant utility.
The following description is intended to illustrate various embodiments of the invention. As such, the specific modifications discussed are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein.
A software facility that uses a qualitative description of a subject offering to automatically prescribe both (1) a total budget for marketing and sales resources for a subject offering and (2) an allocation of that total budget over multiple spending categories—also referred to as “activities”—in a manner intended to optimize a business outcome such as profit for the subject offering based on experimentally-obtained econometric data (“the facility”) is provided.
In an initialization phase, the facility considers data about historical marketing efforts for various offerings that have no necessary relationship to the marketing effort for the subject offering. The data reflects, for each such effort: (1) characteristics of the marketed offering; (2) total marketing budget; (3) allocation among marketing activities; and (4) business results. This data can be obtained in a variety of ways, such as by directly conducting marketing studies, harvesting from academic publications, etc.
The facility uses this data to create resources adapted to the facility's objectives. First, the facility calculates an average elasticity measure for total marketing budget across all of the historical marketing efforts that predicts the impact on business outcome of allocating a particular level of resources to total marketing budget. Second, the facility derives a number of adjustment factors for the average elasticity measure for total marketing budget that specify how much the average elasticity measure for total marketing budget is to be increased or decreased to reflect particular characteristics of the historical marketing efforts. Third, for the historical marketing efforts of each of a number groups of qualitatively similar offerings, the facility derives per-activity elasticity measures indicating the extent to which each marketing activity impacted business outcome for marketing efforts for the group.
The facility uses interviewing techniques to solicit a qualitative description of the subject offering from a user. The facility uses portions of the solicited qualitative description to identify adjustment factors to apply to the average elasticity measure for total marketing budget. The facility uses a version of average elasticity measure for total marketing budget adjusted by the identified adjustment factors to identify an ideal total marketing budget expected to produce the highest level of profit for the subject offering, or to maximize some other objective specified by the user.
After identifying the ideal total marketing budget, the facility uses the solicited qualitative description of the subject offering to determine which of the groups of other offerings the subject offering most closely matches, and derives a set of ideal marketing activity allocations from the set of per-activity elasticity measures derived for that group.
In some embodiments, the facility considers data received from one or more of a number of types of external sources, including the following: syndicated media, syndicated sales data, internet media, internet behavioral data, natural search query data, paid search activity data, media data like television, radio, print, consumer behavioral data, tracking survey data, economic data, weather data, financial data like stock market, competitive marketing spend data, and online and offline sales data.
In some embodiments, the facility uses a uniform set of resource elasticities or lift factors to combine work-amended resource allocations produced using two different optimization schemes based upon different user inputs. In some embodiments, the facilities provides functionality for buying and scheduling marketing resources in accordance with allocations recommended by the facility. In some embodiments, the facility optimizes resource allocations within multi-media type and/or multi-platform media providers.
In this manner, the facility automatically prescribes a total marketing resource allocation and distribution for the subject offering without requiring the user to provide historical performance data for the subject offering.
The sales or market response curves determined by the facility predict business outcomes as mathematical functions of various resource drivers:
Sales=F(Any Set of Driver Variables),
where F denotes a statistical function with the proper economic characteristics of diminishing returns
Further, since this relationship is based on data, either time series, cross-section, or both time series and cross-section, the method inherently yields direct, indirect, and interaction effects for the underlying conditions.
These effects describe how sales responds to changes in the underlying driver variables and data structures. Often, these response effects are known as “lift factors.” As a special subset or case, these methods allow reading any on-off condition for the cross-sections or time-series.
There are various classes of statistical functions which are appropriate for determining and applying different types of lift factors. In some embodiments, the facility uses a class known as multiplicative and log log (using natural logarithms) and point estimates of the lift factors.
In certain situations, the facility uses methods which apply to categorical driver data and categorical outcomes. These include the, classes of probabilistic lift factors known as multinomial logit, logit, probit, non-parametric or hazard methods.
In various embodiments, the facility uses a variety of other types of lift factors determined in a variety of ways. Statements about “elasticity” herein in many cases extend to lift factors of a variety of other types.
While various embodiments are described in terms of the environment described above, those skilled in the art will appreciate that the facility may be implemented in a variety of other environments including a single, monolithic computer system, as well as various other combinations of computer systems or similar devices connected in various ways. In various embodiments, a variety of computing systems or other different client devices may be used in place of the web client computer systems, such as mobile phones, personal digital assistants, televisions, cameras, etc.
In order to define the profit curve and identify the total marketing budget level at which it reaches its peak, the facility first determines a total marketing budget elasticity appropriate for the subject offering. This elasticity value falls in a range between 0.01 and 0.30, and is overridden to remain within this range. The facility calculates the elasticity by adjusting an initial elasticity value, such as 0.10 or 0.11, in accordance with a number of adjustment factors each tied to a particular attribute value for the subject offering. Sample values for these adjustment factors are shown below in Table 1.
The industry newness column corresponds to control 701 shown in
The facility then uses the adjusted total marketing budget elasticity to determine the level of total marketing budget at which the maximum profit occurs, as is discussed in detail below in Table 2.
In some embodiments, the facility considers data received from one or more of a number of types of external sources, including the following: syndicated media, syndicated sales data, internet media, internet behavioral data, natural search query data, paid search activity data, media data like television, radio, print, consumer behavioral data, tracking survey data, economic data, weather data, financial data like stock market, competitive marketing spend data, and online and offline sales data.
In various embodiments, the facility incorporates one or more of the following additional aspects, discussed in greater detail below:
(1.1) Using the input questions for Information (Qx), Affect (Qy) and Experience (Qz), the facility classifies the brand/client communication needs using these 3 dimensions and a 3 point scale of low, medium and high (coded numerically as 1, 2, 3).
(1.2) The facility can allocate resources over any of a large number of communication touchpoints, also known as communication channels. For each channel, the facility considers the capability of the “medium” to deliver information, affect and experience dimensions of brand/client communications.
In selecting communication channels, the facility minimizes the “distance” between the communication needs and the mediums/channels to then select touchpoints that are relevant for market response and subsequent application of the elasticities and ideal economics computations.
Distance is defined as the sum of squared differences (SSD) between the brand/client need and the medium/channel.
Distance=(Medium Cognition−Brand Cognition)̂2+(Medium Affect−Brand Affect)̂2+(Medium Experience=Brand Experience)̂2
The method of classification is described in sections 1.1 and 1.2 above.
The core outcome equation is defined (elsewhere) as
Outcomes=(Base Outcome)*((Resource 1)̂Elasticity 1)*((Resource 2̂Elasticity 2)etc.
Additional resources multiply the right hand side.
The facility combines traditional media in Equation 3 as the so-called “direct path” linking resources and outcomes.
The facility extends this model to include the internet in 2 ways:
The facility then adds and applies a 2nd “indirect path” equation whereby internet natural search is explained by traditional marketing and sales resources.
Marketing Outcome=F(traditional resources,internet resources,natural search,base)
Natural Search=F(traditional resources,internet resources,base)
These 2 equations work “recursively”.
Practically, marketing and sales resources drive consumer/market attention and discovery. The discovery behavior is measured by the natural search. Subsequently in the recursive process, internet resources then “convert” attention into action.
The direct and indirect path equations then provide the mechanics for the “topline” of the economics optimization.
The facility applies varying resource input levels, flows the outcomes through the recursive topline equations to yield outcomes and then applies the associated elasticities (for diminishing returns) and the associated margins and costs of resources.
Also, in some cases the facility extends this method with a 3rd equation whereby Paid Search also is handled comparably to natural search. Hence, Paid Search is an intermediate outcome.
Any dynamic, momentum, intermediate or interim brand metric (awareness, consideration, buzz) is handled using this 3rd equation method.
The demand/outcome equations require data inputs that are:
The facility is unique in bringing together these 4 data streams for the purposes of demand modeling using the 2 equation method outlined above.
5.1) Brand data typically includes volumetric sales, pricing, revenue, new customer counts, existing customer counts, customer retention, customer attrition and customer upsell/cross sell of products or services. It also includes industry and brand/client attributes from the input questions.
5.2) External data includes a series of external factors and drivers. Typically, these include elements describing economic conditions and trends as well as weather, competitors marketing and sales resources and others.
5.3) Marketing and Sales data includes various measures for resource inputs. These can include resource spending for communication mediums/touchpoints. They can include physical measures of resources for mediums/touchpoints (time-based, ratings points or physical units such as direct mail counts etc).
5.4) The Internet specific data includes mainly measures of natural search using word counts and counts of word clusters and semantic phrases. Typically, these word measures address the brand name itself, aspects of the key phrasing associated with the brand (the so-called universal selling proposition), aspects of the brand positioning such as Quality and more generic or generalized words associated with the brand.
The facility uses the data dashboard user interface shown in
The facility then provides a data input template for each data class (see 5.1, 5.2, 5.3, 5.4 above).
The facility then applies a set of quality and data scrubbing algorithms to verify for the user the overall completeness, consistency and accuracy of the designated data streams.
The facility then transforms and loads these data vectors into the overall the facility matrix for modeling (MOM).
The row structure for MOM typically involves time dimensions, customer segments, channels of trading and/or geographic layers.
The column structure for MOM typically involves final outcome variables, intermediate outcome variables and driver variables (see 5.1, 5.2, 5.3 and 5.4). The facility uses a so-called log/log transformation for the data and the demand model specification.
Ln(Outcome)=Constant+Coef1*ln(Driver1)+Coef2*ln(Driver2)+Coef3*ln(Driver 3), etc.
The facility applies generalized least squares (GLS) methods for the statistical estimation of the various equations.
The facility also constructs any necessary “dummy” variables used in the econometrics, including seasonality.
The facility includes linkage and comparative methods across the Candidate Models (CM), the statistical diagnostics, t-values and GLS estimates of model/equation coefficients.
The facility conducts GLS estimation of approximately 40 CM variants and associated diagnostics. (The facility includes the numerical algorithms and methods for GLS.)
The facility then selects and utilizes the BLUS (best, linear, unbiased estimates) of response coefficients (response elasticities) for economic optimization for resource levels and mix.
This selection is determined by best fit, best t-values, the absence of multi-collinearity, the absence of serial correlation and elasticity estimates which are consistent with the Expert Library (CEL) and proper numerical signs (positive, negative).
As described above, the word counts and word count clusters related and derived from internet natural search include and address concepts for brand momentum, brand quality and brand image.
The facility classifies these word/semantic concepts into driver variables which are relevant and used within the 2 equation direct path and indirect path equations (see above). These semantic “buckets” include counts of received queries, related to the brand name itself, counts related to the product or service category and the brand/clients competitors and counts related to more generalized themes (for example, hybrid technology vehicles vs. Lexus RXH).
The facility includes dynamic feeds of word counts from natural search from search providers such as Google, Yahoo or MSN or others (MySpaces, Facebook, YouTube) as well as wireless and mobile devices.
DNM data are typically a dynamic sample of on-going internet traffic. The facility uses counts per “x” million queries.
The facility uses the 2 equation method outlined above to construct top-down optimization of brand/client goals relative to resource drivers. Drivers here include both traditional marketing and sales, as well as pricing and internet resources.
The facility uses both direct computation (closed form calculus) and a branch and bound (B&B) heuristic method to compute ideal outcomes using the domain of resource drivers.
The facility includes visual reporting and GUIs for brand/client outcomes (see Compass SMB, Compass Agency and Compass USMSD/DNM herein.) For example, in various embodiments, the facility displays outcomes using one or more of a sales response curve, a profit curve, and a current vs. ideal bar graph.
In various embodiments, the facility allocates resources across some or all of these channels, and in some cases additional channels:
Movie theatre
Print articles
Customer magazines
Loose inserts
Internet advertising
Internet search
Brand/company websites
Home shopping TV
Product placement
Public transportation
Sponsorship of sports events
Sponsorship of other events
Doctor's office
800/toll free lines
Mailings at home
Celebrity endorsement
In-store advertising
In-store examination
Promotions and special offers
Product samples
Recommendations from friends and family
Recommendations from professionals
Video on demand
Video games
Streaming video
Spec text table
Market response optimization (MRO) typically requires best, linear, unbiased estimates (BLUS) of resource response elasticity parameters which are based on data which embodies (1) adequate variation in resource levels and mix, as well as (2) adequate data observations.
In some embodiments, the facility uses a 4-step method for computing BLUS estimates of elasticity using cross-brand and cross-resource 3rd Party data. The 4-step method uses of ACE-L meta-data in combination with consistent 3rd Party data on outcomes and drivers in further combination with the best statistical methods for BLUS.
The value and result is a comprehensive database of cross-brand, cross media elasticities which is used for resource optimization. This overall methodology allows and measures (1) the pure effect of resource spending on sales outcomes across a wide range of cross brand and cross resource conditions and (2) the impacts of alternative ways to define “content impacts” via the ACE-L scores
Multi-Source Data
There are 2 main classes of data for modeling—outcomes and drivers. For econometric modeling, the ACE method typically utilizes combined time-series and cross-section data.
For the Multi-Source Library (MSL) and outcomes (dependent variables), ACE uses a consistent definition of sales revenue for the brands/services in the library.
For the Multi-Source Library (MSL) and resource drivers, ACE uses a range of independent variables.
Step 1: The facility obtains data for these drivers from 3rd Party data providers. For example, data series on media spending by time period, market location and type of media can be obtained from 1 or more 3rd Party sources. Data classes include the economy, competition, tracking, pricing, channel funds, salesforce, retail store conditions, offline marketing and online marketing as well as certain momentum data.
Typically, these 3rd Party data sources (3PDS) have known or well understood differences relative to client-specific transactional data (errors in variables, see below). However, these differences are generally thought to be consistent.
The cross-sections in the Multi-Source Library consist of brands/services, geographies and more. We apply the 3PDS resource drivers, defined consistently, within and across the library data for the brands, etc. Effectively, the facility eliminates data variation due to differences in data definitions across brands/clients.
The basic method is to define Sales=Base Volume times (Marketing Resource)̂ Elasticity Parameter, where ̂ denotes the natural exponent.
Sales=(Base)*(Resource)̂(Delta)
For each brand (i.e. data record), the facility defines its ACE scores on a 1-5 scale—for Affect (A), Cognition (C) and Experience (E). Also, the facility adds one factor for Local Market or Time Sensitivity (L).
Step 2: The facility then extends the modeling using the following specification:
Elasticity Parameter(Delta)=(c0+c1*Affect+c2*Cognition+c3*Experience+c4*Local).
Each record (cross-section) in the Library uses and includes the ACE-L scores.
Thus, up and down movement in the elasticity due to the brand characteristics, and the capacity of the media type to carry the content related to affect, cognition, and experience, is permitted.
For example, increasing the Affect score needed to motivate the consumer in turn will allow the elasticity of TV media to increase in this situation versus other brands with differing content goals. Lift factors for Print and Internet increase with information needs. Lift for Outdoor, Radio and Newspaper increase with the local market focus.
Complete BLUS Estimation of Response Elasticities
The basic or core elasticity parameters, absent ACE-L, use a formulation as follows:
Ln(Sales)=d1*Ln(Sales Prior Period)+d2*Ln(Base)+Delta*Ln(Resource)+Other+Error Core Equation
Each resource extends this formulation similarly. Other factors which drive “Delta” are described in Compass®, including innovation.
Step 3: The facility substitutes forward the ACE adjustments into this Core Equation to replace Delta. The result are a series of direct effects and “interactions” with the ACE components, as additional drivers. As an example:
Partial Component of Core Eq=(C0*Ln(Resource)+C1*Affect*Ln(Resource)+Other+Error)
Proper estimation of these direct and interaction parameters requires that the data and formulation are consistent with certain rules.
One rule or assumption is that the error terms are independent and identically distributed, albeit with similar variances.
However, due to the cross-section design, several aspects of the homogeneity assumptions will not be met.
This condition is known as heteroskedasticity.
Step 4: To correct for heteroskedasticity, the facility applies both Generalized Least Squares (GLS) estimation using Fixed Effects and corresponding “weights” for the cross-sections.
Other rules include correcting for serial correlation using lag terms.
In some embodiments, the facility uses a uniform set of resource elasticities or lift factors to combine work-amended resource allocations produced using two different optimization schemes based upon different user inputs. In some embodiments, the facilities provides functionality for buying and scheduling marketing resources in accordance with allocations recommended by the facility. In some embodiments, the facility optimizes resource allocations within multi-media type and/or multi-platform media providers.
(1) Hybrid Anchoring for Distance and Outcome Parameters
In some embodiments, two main methods (Mix 1 and Mix 2) are available to the facility for determining the optimal resource mix for media types and communication channels.
Mix 1 applies a full computational calculus, in that optimizes the client goals (e.g., volume or profit) subject to constraints, if any. The numerical method involves the sales revenue or profit goal function and the calculus for finding the maximum. By taking first derivatives for each driving resource (media type), the facility solves the set of derivative equations for the ideal resource level by type. The end result is that the ideal resource level and mix depend on both the elasticities by media type and the costs of the resources (if measured in dollars). Having completed these calculations, the ideal resource mix is equivalent to the ratio of the respective elasticities. These elasticities as applied by the facility are obtained from the Library and applied to the user's scenario profile.
Since media channels and touchpoints are rapidly evolving, the facility also includes a 2nd method for computing ideal mix, performed using the ACE (Affect, Cognition, Experience) attributes. Here, the brand “position” is defined by the user's scenario profile and specific questions (and scales) for the Affect, Cognition, and Experience attributes.
For ACE (Mix 2), the Library includes and applies ACE scales to each media channel and touchpoint. For Mix 2, the facility suppresses media types which do not apply selects media types by minimizing the distance to the brand ACE position for communications; and apply reach, ideal frequency, and cost per impression computations to “layer” the media types into the mix in an ideal way.
In some embodiments, either of the Mix 1 and Mix 2 methods can be used alone, or the two may be combined, since one or the other may be more applicable to the user or media channels desired. In many situations, there can or will be overlap in the media channels and information available. For example, there typically is overall either for the Internet channels (Display, Paid Search) or Print or Television or others.
Where its calculations have “overlap,” the facility combines the two methods, rely on the fact that the elasticities in Mix 1 provide a causal linkage to outcomes (volume, profit).
Given Mix 2 and the overlapped resource (OR1), the facility centers the calculations using the known Mix 1 elasticity (KME1) and compute each of the remaining elasticities as a ratio. An example shown below:
(2) Method of Digital Buying for any Resource or Media Channel
Referring to the screen shot of
In the screenshot of
In some embodiments (not shown), the horizontal band for each media type includes additional information that is useful to specify to the media provider for that media type, such as physical location, time-of-day, or day-of-week, or various other targeting information, information specifying or identifying a creative, etc.
For each flight, the facility includes a drop down menu for selection of one or more media vendor. For each media type, the facility includes a set of media vendor partners (MVP), essentially as the supply side of the facility's “marketplace”.
The screenshot of
As one illustration, the facility includes a standard “interfaces” and API's to vendors such Google, Yahoo or MSN for the purpose of buying and placing online display advertising and/or paid search.
The facility includes APIs to link and conduct digital buying and digital placement of media spending “orders’ by type of media.
In order to do this, the facility uses a multi-step process. The steps are as follows:
The facility uses these APIs to interact either directly with the media source itself, or via 3rd parties such as media buying agencies or resellers.
3) Application of the facility for Multi-Channel/Multi-Platform Resources and/or Media Channels
The facility includes variants and applications for a range of users. These include:
For example, the version for multi-platform media providers extends and applies the list of media resources and touch points to include both the main classes as well as the specific media types/vehicles offered by the media provider(s) included. For example, a single media provider may provide multiple media types, such as a media provider that is able to provide billboard, newspaper, and radio advertising. Additionally, a single media provider may be in a position to sell advertising on multiple properties that it controls, such as a newspaper syndicate that owns newspapers in eight different cites. Examples of such providers include ESPN, MTV, L.A. Times and Disney properties. For such providers, in some embodiments the facility were cursively allocated at the media provider level to individual properties and/or media types within the provider. The facility uses the same ACE computations for this.
It will be appreciated by those skilled in the art that the above-described facility may be straightforwardly adapted or extended in various ways.
This application claims the benefit of the following U.S. Provisional Patent Application Nos: 1) 61/030,550, filed Feb. 21, 2008; 2) 61/084,252, filed Jul. 28, 2008; 3) 61/084,255, filed Jul. 28, 2008; 4) 61/085,819, filed Aug. 1, 2008; and 5) 61/085,820, filed Aug. 1, 2008, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61030550 | Feb 2008 | US | |
61084252 | Jul 2008 | US | |
61084255 | Jul 2008 | US | |
61085819 | Aug 2008 | US | |
61085820 | Aug 2008 | US |