This relates generally to imaging systems and, more particularly, to imaging systems with back side illuminated pixels.
Modern electronic devices such as cellular telephones, cameras, and computers often use digital image sensors. Imager sensors (sometimes referred to as imagers) may be formed from a two-dimensional array of image sensing pixels. Each pixel includes a photosensitive layer that receives incident photons (light) and converts the photons into electrical signals. Image sensors are sometimes designed to provide images to electronic devices using a Joint Photographic Experts Group (JPEG) format.
Pixels may be front-side illuminated or back-side illuminated. In back-side illuminated pixels, processing circuitry may be formed underneath the photosensitive layer so that processing circuitry does not prevent incident light from reaching the photosensitive layer. However, certain back-side illuminated pixels may have a low conversion gain, which may be defined as the change in voltage for each unit of charge accumulated by a photodiode. Pixels with low conversion gain may have excess pixel readout noise and poor pixel performance.
It would therefore be desirable to be able to provide improved back-side illuminated pixels for image sensors.
Embodiments of the present invention relate to image sensors with pixels that have interconnect layers. An electronic device with a digital camera module is shown in
Still and video image data from image sensor 14 may be provided to image processing and data formatting circuitry 16 via path 26. Image processing and data formatting circuitry 16 may be used to perform image processing functions such as automatic focusing functions, depth sensing, data formatting, adjusting white balance and exposure, implementing video image stabilization, face detection, etc.
Image processing and data formatting circuitry 16 may also be used to compress raw camera image files if desired (e.g., to Joint Photographic Experts Group or JPEG format). In a typical arrangement, which is sometimes referred to as a system on chip (SOC) arrangement, camera sensor 14 and image processing and data formatting circuitry 16 are implemented on a common integrated circuit. The use of a single integrated circuit to implement camera sensor 14 and image processing and data formatting circuitry 16 can help to reduce costs. This is, however, merely illustrative. If desired, camera sensor 14 and image processing and data formatting circuitry 16 may be implemented using separate integrated circuits.
Camera module 12 may convey acquired image data to host subsystems 20 over path 18 (e.g., image processing and data formatting circuitry 16 may convey image data to subsystems 20). Electronic device 10 typically provides a user with numerous high-level functions. In a computer or advanced cellular telephone, for example, a user may be provided with the ability to run user applications. To implement these functions, host subsystem 20 of electronic device 10 may include storage and processing circuitry 24 and input-output devices 22 such as keypads, input-output ports, joysticks, and displays. Storage and processing circuitry 24 may include volatile and nonvolatile memory (e.g., random-access memory, flash memory, hard drives, solid state drives, etc.). Storage and processing circuitry 24 may also include microprocessors, microcontrollers, digital signal processors, application specific integrated circuits, or other processing circuits.
An illustrative image pixel of image sensor 14 is shown in
Pixel 100 may have include photosensitive layer 36 in upper substrate layer 30. Photosensitive layer may be a photodiode formed from n-type doped silicon. The photosensitive layer may be surrounded by isolation layer 38. Isolation layer 38 may be formed from p-type doped silicon. In certain embodiments, the photodiode may be formed from p-type doped silicon and the isolation layer may be formed from n-type doped silicon. In yet another embodiment, isolation layer 38 may be formed using deep trench isolation (DTI) or a combination of deep trench isolation and doped silicon. Isolation layer 38 may prevent charge from leaking to adjacent photosensitive layers.
Photosensitive layer 36 may be covered by passivation layer 40, color filter layer 42, planarization layer 44, and microlens 46. Passivation layer 40 and planarization layer 44 may be formed from dielectric materials. Color filter layer 42 may be a part of a larger color filter array. For example, each pixel in image sensor 14 may have an individual color filter layer that is part of the color filter array. Image sensor 14 may include a Bayer color filter array in which vertically and horizontally adjacent color filters in the array are of different colors. The Bayer color filter array includes red, green, and blue color filters. A single red, green, blue, cyan, magenta, yellow, near-infrared, infrared, or clear color filter may be formed over photosensitive layer 36. In certain embodiments, the color filter formed over photosensitive layer 36 may have areas that pass colored light and areas that are clear (i.e., that pass visible spectrum light). A microlens may be formed over each pixel in image sensor 14. Each microlens may direct light towards a respective photosensitive layer.
Photosensitive layer 36 may include pinning layer 48. Pinning layer 48 may be adjacent to transfer transistor 50 (TX), floating diffusion region 52 (FD), reset transistor 54 (RST), and bias voltage supply line 56 (Vaa). Conductive layers 58 may be positioned in both the upper and lower substrate layers (for simplicity of the drawing every metal layer is not explicitly labeled). The conductive layers may be formed from metal. Conductive layers 58 may include a number of vias and traces that are electrically connected to other conductive layers, interconnect layer 34, or other components in pixel 100.
Lower substrate 32 may include bias voltage supply line 60 (Vaa), source follower transistor 62 (SF), row select transistor (RS) and pixel output line 66 (Pixout). An additional isolation layer 38 may be formed in lower substrate layer 32. Metal layers 58 may couple floating diffusion region 52 to interconnect layer 34. The interconnect layer may then be coupled to source follower transistor 62. In this way, floating diffusion region 52 is coupled directly to source follower transistor 62 via a conductive interconnect path. Interconnect layer 34 may be coupled to only floating diffusion region 52 and source follower transistor 62. Interconnect layer 34 may not be coupled to any additional transistors or regions.
Reset transistor 54 and floating diffusion region 52 may both be formed in upper substrate layer 30, as shown in
Another advantage of interconnect layer 34 is that it may act as a reflector for photodiode 36. As photons pass through photodiode 36, some of the photons may be absorbed by the photodiode and converted to charge. However, some photons may pass through the photodiode without being converted to charge. These photons may reflect off of interconnect layer 34 and travel upwards towards the photodiode. This increases the probability that the photon will be converted to charge by the photodiode.
Floating diffusion region 52 may be implemented using a region of doped semiconductor (e.g., a doped silicon region formed in a silicon substrate by ion implantation, impurity diffusion, or other doping techniques). The doped semiconductor region (i.e., the floating diffusion region) exhibits a capacitance that can be used to store the charge that has been transferred from photodiode 36. The signal associated with the stored charge on floating diffusion region 52 is conveyed to row select transistor 64 by source-follower transistor 62.
When it is desired to read out the value of the stored charge (i.e., the value of the stored charge that is represented by the signal at the source S of transistor 62), row select transistor 64 may be turned on. When row select transistor 64 is turned on, a corresponding signal VOUT that is representative of the magnitude of the charge on floating diffusion region 52 is produced on output path 66 (Pixout). In a typical configuration, there are numerous rows and columns of pixels such as pixel 100 in the image sensor pixel array of a given image sensor. Each output path 66 may be coupled to a vertical conductive path that is associated with each column of pixels.
If desired, pixel 100 may be provided with an additional transistor used to implement a dual conversion gain mode. In particular, pixel 100 may be operable in a high conversion gain mode and in a low conversion gain mode. If the additional transistor is disabled, pixel 100 will be placed in a high conversion gain mode. If the additional transistor is enabled, pixel 100 will be placed in a low conversion gain mode. The additional transistor may be coupled to a capacitor. When the additional transistor is turned on, the capacitor may be switched into use to provide floating diffusion FD with additional capacitance. This results in lower conversion gain for pixel 100. When the additional transistor is turned off, the additional loading of the capacitor is removed and the pixel reverts to a relatively higher pixel conversion gain configuration.
In various embodiments, reset transistor 54 may be shared by two, three, four, or more than four pixels.
Photodiodes PD1, PD2, PD3, and PD4 may be formed separately and separated by isolation layer 38. Similarly, transfer transistors TX1, TX2, TX3, and TX4 may be formed separately and separated by isolation layer 38. Floating diffusion regions FD1, FD2, FD3, and FD4 may also be formed separately and separated by isolation layer 38.
Pixels 100-1, 100-2, 100-3, and 100-4 may all share a single reset transistor 54 (RST). The reset transistor may be formed continuously and adjacent to FD1, FD2, FD3, and FD4. Bias voltage supply line Vaa may be formed adjacent to the reset transistor RST. The same bias voltage supply line Vaa may be used for pixels 100-1, 100-2, 100-3, and 100-4.
The arrangement of
Pixels 100-1, 100-2, 100-3, and 100-4 may each have a respective interconnect layer. Interconnect layer 34-1 may be used to connect floating diffusion region FD1 to source follower transistor SF1. Interconnect layer 34-2 may be used to connect floating diffusion region FD2 to source follower transistor SF2. Interconnect layer 34-3 may be used to connect floating diffusion region FD3 to source follower transistor SF3. Interconnect layer 34-4 may be used to connect floating diffusion region FD4 to source follower transistor SF4.
Row select transistor RST of
In addition to sharing reset transistor 54 among multiple pixels, floating diffusion region 52 may be shared by two, three, four, or more than four pixels.
Photodiodes PD1, PD2, PD3, and PD4 may be formed separately and separated by isolation layer 38. Similarly, transfer transistors TX1, TX2, TX3, and TX4 may be formed separately and separated by isolation layer 38.
Pixels 100-1, 100-2, 100-3, and 100-4 may all share a single reset transistor 54 (RST) and a single floating diffusion region (FD). The reset transistor may be formed continuously and adjacent to FD. The floating diffusion region FD may be formed continuously and adjacent to TX1, TX2, TX3, and TX4. Bias voltage supply line Vaa may be formed adjacent to the reset transistor RST. The same bias voltage supply line Vaa may be used for pixels 100-1, 100-2, 100-3, and 100-4.
Similar to the arrangement of
Because each pixel in
Pixels 100-1, 100-2, 100-3, and 100-4 may share a single interconnect layer 34. Interconnect layer 34 may be used to connect floating diffusion region FD to source follower transistor SF. Using only one interconnect layer between upper substrate layer 30 and lower substrate layer 32 may help reduce the size of the group of pixels.
Floating diffusion region FD of
In certain scenarios, having transfer transistor 50 formed entirely in upper substrate 30 (e.g.,
An interconnect layer that connects a transfer transistor to metal layers in the lower substrate layer may be used in a variety of pixel architectures. In
In various embodiments of the invention, an imaging pixel may be provided with an upper substrate layer, a lower substrate layer, a floating diffusion region in the upper substrate layer, and a photodiode in the upper substrate layer that is coupled to the floating diffusion region. The imaging pixel may also include a source follower transistor in the lower substrate layer and an interconnect layer in between the upper substrate layer and the lower substrate layer. The interconnect layer may couple the floating diffusion region directly to the source follower transistor. The imaging pixel may also include a reset transistor in the upper substrate layer, a transfer transistor in the upper substrate layer, and a row select transistor in the lower substrate layer. The imaging pixel may also include a first metal layer that connects the interconnect layer to the floating diffusion region and a second metal layer that connects the interconnect layer to the source follower transistor. The imaging pixel may include a reset transistor, and the interconnect layer may not be coupled to the reset transistor. The reset transistor may be formed in the upper substrate layer. The interconnect layer may be coupled to only the source follower transistor and the floating diffusion region. The interconnect layer may include metal. The imaging pixel may include a transfer transistor in the upper substrate layer, a metal layer in the lower substrate layer, and an additional interconnect layer that couples the transfer transistor to the metal layer.
In various embodiments of the invention, an imaging pixel may include a first wafer, a second wafer, a floating diffusion region in the first wafer, a photodiode in the first wafer that is coupled to the floating diffusion region, and a reset transistor in the first wafer that is coupled to a bias voltage supply line. The imaging pixel may also include a row select transistor in the second wafer, a source follower transistor in the second wafer, and an interconnect layer in between the first and second wafers that couples the floating diffusion region directly to the source follower transistor. The imaging pixel may also include a transfer transistor in the first wafer, a metal layer in the second wafer, and an additional interconnect layer that couples the transfer transistor to the metal layer.
In various embodiments of the invention, an image sensor may include an upper substrate, a lower substrate, a first photodiode in the upper substrate coupled to a first floating diffusion region, and a second photodiode in the upper substrate coupled to a second floating diffusion region. The image sensor may also include a reset transistor that is coupled to a bias voltage supply line. The reset transistor may be coupled to the first and second floating diffusion regions. The first floating diffusion region, the second floating diffusion region, and the rest transistor may be formed in the upper substrate. The image sensor may also include a first source follower transistor in the lower substrate, a second source follower transistor in the lower substrate, a first interconnect layer that couples the first floating diffusion region directly to the first source follower transistor, and a second interconnect layer that couples the second diffusion region directly to the second source follower transistor. The image sensor may also include first and second row select transistors in the lower substrate.
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5705807 | Throngnumchai | Jan 1998 | A |
6657665 | Guidash | Dec 2003 | B1 |
7960768 | Dungan | Jun 2011 | B2 |
8049256 | Guidash | Nov 2011 | B2 |
8071429 | Qian | Dec 2011 | B1 |
8368157 | Lenchenkov | Feb 2013 | B2 |
8530812 | Kikuchi | Sep 2013 | B2 |
8670059 | Ikeda | Mar 2014 | B2 |
8730330 | Solhusvik | May 2014 | B2 |
8835981 | Oishi | Sep 2014 | B2 |
8890047 | Solhusvik et al. | Nov 2014 | B2 |
9007489 | Wan | Apr 2015 | B2 |
9013612 | Del Monte | Apr 2015 | B2 |
9030583 | Gove | May 2015 | B2 |
9053993 | Yan | Jun 2015 | B2 |
9161028 | Solhusvik | Oct 2015 | B2 |
9319612 | Yan | Apr 2016 | B2 |
9337232 | Lee | May 2016 | B2 |
9478574 | Lenchenkov | Oct 2016 | B2 |
9508775 | Kobayashi | Nov 2016 | B2 |
9515116 | Sze | Dec 2016 | B1 |
9584744 | Lenchenkov | Feb 2017 | B2 |
9635290 | Okura | Apr 2017 | B2 |
9654712 | Hong | May 2017 | B2 |
9711551 | Silsby | Jul 2017 | B2 |
9749553 | Borthakur | Aug 2017 | B2 |
9773828 | Wang | Sep 2017 | B2 |
9854184 | Velichko | Dec 2017 | B2 |
20030042500 | Rhodes | Mar 2003 | A1 |
20040141077 | Ohkawa | Jul 2004 | A1 |
20050035381 | Holm | Feb 2005 | A1 |
20060043440 | Hiyama | Mar 2006 | A1 |
20060132633 | Nam | Jun 2006 | A1 |
20060279649 | Cole | Dec 2006 | A1 |
20080073488 | Silsby | Mar 2008 | A1 |
20080116537 | Adkisson | May 2008 | A1 |
20080124930 | Lim | May 2008 | A1 |
20090159944 | Oh | Jun 2009 | A1 |
20090184349 | Dungan | Jul 2009 | A1 |
20090200589 | Qian | Aug 2009 | A1 |
20090201400 | Zhang | Aug 2009 | A1 |
20090242950 | McCarten et al. | Oct 2009 | A1 |
20090294812 | Gambino | Dec 2009 | A1 |
20090294813 | Gambino | Dec 2009 | A1 |
20100060764 | McCarten | Mar 2010 | A1 |
20100148290 | Park | Jun 2010 | A1 |
20100171191 | Lee | Jul 2010 | A1 |
20110037137 | Wehbe-Alause | Feb 2011 | A1 |
20110096215 | Choi | Apr 2011 | A1 |
20110157445 | Itonaga | Jun 2011 | A1 |
20110207258 | Ahn | Aug 2011 | A1 |
20110226934 | Tian | Sep 2011 | A1 |
20110260221 | Mao | Oct 2011 | A1 |
20120002092 | Guidash | Jan 2012 | A1 |
20120019699 | Masuda | Jan 2012 | A1 |
20120104465 | Kim | May 2012 | A1 |
20120205730 | Chen | Aug 2012 | A1 |
20120326008 | McKee | Dec 2012 | A1 |
20130001725 | Huang | Jan 2013 | A1 |
20130027565 | Solhusvik | Jan 2013 | A1 |
20130075607 | Bikumandla | Mar 2013 | A1 |
20130082313 | Manabe | Apr 2013 | A1 |
20130084660 | Lu | Apr 2013 | A1 |
20130113065 | Qian | May 2013 | A1 |
20130161487 | Sakaguchi et al. | Jun 2013 | A1 |
20130193541 | Sun | Aug 2013 | A1 |
20130221194 | Manabe | Aug 2013 | A1 |
20130234029 | Bikumandla | Sep 2013 | A1 |
20130285181 | Lin | Oct 2013 | A1 |
20130307040 | Ahn | Nov 2013 | A1 |
20140042298 | Wan et al. | Feb 2014 | A1 |
20140077323 | Velichko | Mar 2014 | A1 |
20140078359 | Lenchenkov | Mar 2014 | A1 |
20140111663 | Soda | Apr 2014 | A1 |
20140117481 | Kato et al. | May 2014 | A1 |
20140191357 | Lee | Jul 2014 | A1 |
20140231887 | Chen | Aug 2014 | A1 |
20140246782 | Kim | Sep 2014 | A1 |
20140264298 | Park | Sep 2014 | A1 |
20140299925 | Manabe | Oct 2014 | A1 |
20140327061 | Lee | Nov 2014 | A1 |
20150009376 | Tsunai | Jan 2015 | A1 |
20150009379 | Yan | Jan 2015 | A1 |
20150035028 | Fan | Feb 2015 | A1 |
20150062392 | Lenchenkov | Mar 2015 | A1 |
20150076643 | Kikuchi | Mar 2015 | A1 |
20150076648 | Yang | Mar 2015 | A1 |
20150122971 | He | May 2015 | A1 |
20150123173 | He | May 2015 | A1 |
20150340394 | Hirase | Nov 2015 | A1 |
20150349005 | Yamashita | Dec 2015 | A1 |
20150349014 | Kobayashi | Dec 2015 | A1 |
20150357360 | Tian | Dec 2015 | A1 |
20150372030 | Cheng | Dec 2015 | A1 |
20150373255 | Kim | Dec 2015 | A1 |
20160020235 | Yamashita | Jan 2016 | A1 |
20160020239 | Liu | Jan 2016 | A1 |
20160043120 | Ahn | Feb 2016 | A1 |
20160088249 | Funaki | Mar 2016 | A1 |
20160141325 | Kao | May 2016 | A1 |
20160172412 | Lee | Jun 2016 | A1 |
20160204143 | Lee | Jul 2016 | A1 |
20160268220 | Tsai | Sep 2016 | A1 |
20160276380 | Yang | Sep 2016 | A1 |
20160316163 | Beck | Oct 2016 | A1 |
20160329365 | Tekleab | Nov 2016 | A1 |
20160343751 | Sze | Nov 2016 | A1 |
20160343761 | Ishino | Nov 2016 | A1 |
20160345005 | Hoekstra | Nov 2016 | A1 |
20160379960 | Huang | Dec 2016 | A1 |
20160381310 | Lenchenkov | Dec 2016 | A1 |
20170012071 | Lenchenkov | Jan 2017 | A1 |
20170053955 | Sze | Feb 2017 | A1 |
20170104020 | Lee | Apr 2017 | A1 |
20170133429 | Cheng | May 2017 | A1 |
20170186805 | Lee | Jun 2017 | A1 |
20170221954 | Madurawe | Aug 2017 | A1 |
20180070031 | Velichko | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2012042782 | Apr 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20170062501 A1 | Mar 2017 | US |