The present disclosure relates to lapping plates and methods of making lapping plates that can be used to lap (abrade) one or more bars of sliders.
The present disclosure includes embodiments of an apparatus for processing a major surface of a lapping plate platen, wherein the apparatus comprises:
a) a rotatable platter configured to secure and physically support the lapping plate platen during processing of the major surface of the lapping plate platen;
b) one or more liquid dispensers configured to dispense one or more liquid treatment compositions onto the major surface of the lapping plate platen;
c) a movable barrier mechanism, wherein the movable barrier mechanism comprises one or more ring segments that can be securely adjusted from an open position to allow one or more liquid treatment compositions to pass through between the barrier mechanism and the outside top perimeter of the lapping plate platen to a closed position so that the one or more elastic ring segments form a barrier that extends above the major surface of the lapping plate platen to substantially contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps of the major surface of the lapping plate platen.
The present disclosure also includes embodiments of a barrier ring assembly configured to be removably retained against a lapping plate platen during processing of a major surface of the lapping plate platen, wherein the ring assembly comprises:
a) a clamp ring having an adjustable inside perimeter that can be retained against an outside perimeter of the lapping plate platen, wherein the clamp ring has an inside perimeter wall, an outside perimeter wall, and slot between at least a portion of the inside perimeter wall and the outside perimeter wall;
b) a ring that can be slidably positioned within the slot so that the slot supports the ring, wherein the ring can be retained against the outside perimeter of the lapping plate platen, wherein when in a closed position the ring extends above the major surface of the lapping plate platen and forms a barrier to substantially contain a liquid treatment composition on the major surface of the lapping plate platen during processing of the major surface of the lapping plate platen; and
c) a latch that physically engages the clamp ring and is configured to securely adjust the inside perimeter of the clamp ring from an open and removable position to the closed position that retains the clamp ring and ring to the lapping plate platen to form the barrier to substantially contain a liquid treatment composition on the major surface of the lapping plate platen during processing of the major surface of the lapping plate platen.
The present disclosure also includes embodiments of a method of processing a major surface of a lapping plate platen, wherein the method comprises:
a) positioning a lapping plate platen on a rotatable platter, wherein the rotatable platter is configured to secure and physically support the lapping plate platen during processing of the major surface of the lapping plate platen;
b) actuating a movable barrier mechanism to a closed position to form a barrier that extends above the major surface of the lapping plate platen to substantially contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps of the major surface of the lapping plate platen, wherein the movable barrier mechanism comprises one or more ring segments that can be securely adjusted from the closed position to an open position to allow one or more liquid treatment compositions to pass through between the barrier mechanism and the outside top perimeter of the lapping plate platen; and
c) dispensing at least one liquid treatment composition onto the major surface of the lapping plate platen to process the major surface of the lapping plate platen while the movable barrier mechanism is in the closed position.
Lapping machines (apparatuses) can be used to perform lapping operations on various substrates such as a bar of sliders. Such lapping machines can use a lapping plate that performs grinding and/or polishing operations on a substrate such as a bar of sliders. Lapping machines can include a rotating lapping plate that defines a lapping surface which can help abrade the surface of a ceramic material such as AlTiC, which is a two phase composite of alumina (Al2O3) and titanium-carbide (TiC). If desired, a slurry can be applied to the lapping surface to enhance the abrading action as the lapping surface is rotated relative to a slider bar containing a plurality of the sliders held in a pressing engagement against the lapping surface. A lapping plate can be used for a variety of lapping processes such as rough lapping, fine lapping, and kiss lapping. Lapping plates can be constructed such that one, or both, work surfaces of the lapping plate include predetermined amounts of abrasive particles.
Abrasive particles can be made out of one or more materials. In some embodiments, abrasive particles are selected from the group consisting of diamond particles, cubic boron nitride particles, alumina particles, alumina zirconia particles, silicon carbide particles, and combinations thereof. In some embodiments, abrasive particles can be embedded within a ceramic material such as embedded diamond particles (embedded abrasive particles can also be referred to as encapsulated or composite abrasive particles, or even abrasive beads). Embedded abrasive particles are larger in size as compared to bare abrasive particles because the abrasive particles are embedded within ceramic material. For example, in some embodiments, embedded abrasive particles can have an average particle diameter in the range from 10 to 50 micrometers.
A variety of materials and methods can be used to construct the abrasive surface of a lapping plate. For example, the abrasive surface can be formed by embedding abrasive particles into the lapping plate in a process that can be referred to as “charging.” Techniques for charging abrasive particles into lapping plates can include hand charging with a tool and charging on an apparatus with various tools.
A variety of apparatuses and devices can be used for processing a lapping plate platen so as to form an abrasive surface on the platen and form a lapping plate. An example of such an apparatus is described in U.S. Pat. No. 6,585,559 (Griffin et al.), wherein the entirety of said patent is incorporated herein by reference. At least with respect to “charging” a platen with a slurry that includes abrasive particles and a liquid, either a multi-step apparatus can be used or a single-step apparatus can be used.
A “multi-step” apparatus, machine, or tool can be configured to perform multiple processes on a platen so as to form a lapping plate. An example of a multi-step apparatus 100 for processing a major surface of a lapping plate platen is described below with respect to
As shown, apparatus 100 includes a base 110. The base 110 can be constructed of rigid or high strength materials. As illustrated in
Platen 114 can have a wide variety of diameters. In some embodiments, platen 114 can have a diameter in the range from 10 to 20 inches.
A main drive motor (not shown) can be attached to the base 110, and can provide the force to rotate the platter 112 during operation of the apparatus 100 (e.g., counterclockwise as indicated by arrow 143). Also, a spindle assembly (not shown) can be coupled to the main drive motor in order to rotate the platter 112.
As shown, the apparatus 100 includes a pair of arms 128 disposed on the base 110. Although only two arms 128 are illustrated in
An actuator (not shown) can be coupled to each arm 128. The actuators can function to place the processing heads 132 in desired alignment with the surface 116 of the platen 114. Accordingly, the actuators are capable of placing the arms 128 in various operating positions. As shown in
An apparatus according to the present disclosure can include one or more liquid dispensers configured to dispense one or more liquid treatment compositions onto the major surface 116 of the lapping plate platen 114. As shown, apparatus 100 includes a dispensing unit 138 mounted on the base 110. The dispensing unit 138 can be configured to dispense controlled quantities of a liquid treatment composition onto the surface 116 of the platen 114. The liquid treatment composition dispensed on the platen 114 can be for example in the form of a liquid containing predetermined concentrations of abrasive particles. The dispensing unit 138 can be configured to dispense a liquid treatment composition in various manners depending on the specific operation being performed. For example, the dispensing unit 138 can be configured to dispense a liquid treatment composition in a drip fashion onto the surface 116. The dispensing unit 138 can be further controlled to either dispense or not dispense a liquid treatment composition for predetermined intervals of time depending on the specific protocol of the operation being performed.
A “single-step” apparatus can be configured to perform only a charging process to embed abrasive particles into the surface of a platen so as to form a lapping plate. For example, such an apparatus may be substantially similar to apparatus 100 with the exception of having only one arm 128 and one processing head 132.
An example of “charging” the surface 116 with a slurry of diamond particles to form a charged lapping surface is described herein below in connection with apparatus 100. “Charging” refers to a process of embedding abrasive particles from a suspension in a liquid into the surface 116 of platen 114. Charging can be performed using a processing head 132 in combination with a diamond abrasive charging slurry dispensed from dispensing unit 138. Specifically, as discussed above, pneumatics or predetermined weights (not shown) can be coupled with each arm 128 and head 132 so that the head 132 applies a predetermined amount of pressure to the surface 116 of platen 114 to help embed the diamond particles contained in the slurry into the lapping surface 116. In addition to rotating platter 112 and platen 114 as indicated by arrow 143, a processing head 132 can be rotated as indicated by arrow 142 for a period of time to embed a desired amount of abrasive particles into the surface 116. It is noted that rotating platter 112 and head 132 are not restricted to a particular direction of rotation.
Charging can be performed under a variety of rotatable platter 112 speeds and for a variety of time periods. Charging can be performed for a time period to produce a dense and even coverage of abrasive particles in surface 116. For example, charging can be performed for a time period in the range from 5 to 120 minutes. The rotational speed of the rotatable platter can be in a range from about 10 to 60 rpms to allow the abrasive particles to become fully embedded within the surface 116. The rotational speed of the processing head 132 can also be in a range from about 10 to 60 rpm.
In some embodiments, charging can be performed under constant conditions. Accordingly, rotational velocity of the charging head 132, pressure, and slurry concentration can be accurately controlled.
An example of a charging head 132 is further illustrated in
In one embodiment, as shown in
As shown by arrow 149 in
Embodiments of the present disclosure include a barrier device to substantially contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps (e.g., charging) of the major surface of the lapping plate platen. A barrier device can cause a treatment composition to pool on the surface of the platen so that the treatment composition is available for use by a head such as head 132. The contained liquid treatment composition (e.g., diamond slurry) can be distributed radially due to platen rotation, which can help cause the liquid to build up moving from an outer perimeter of the platen towards an inner perimeter. Movement of the charging rings can also help distribute the liquid treatment composition. In some embodiments, a spacer can optionally be used between the perimeter of the platen and the barrier so as to permit the perimeter of a processing head to extend beyond the perimeter of the platen and facilitate processing the entire surface of the platen while at the same time containing the treatment composition on the surface of the platen so that it does leak into a waste treatment system.
In some embodiments, a barrier device can be manually coupled to a lapping plate platen so that the barrier can contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps (e.g., charging) of the major surface of the lapping plate platen. In some embodiments, a barrier device can be optionally or alternatively incorporated into an apparatus (e.g., apparatus 100) for processing a major surface of a lapping plate platen, where the barrier can be configured to automatically couple to a lapping plate platen so that the barrier can contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps (e.g., charging) of the major surface of the lapping plate platen.
An example of manually coupling a barrier to a lapping plate platen is illustrated in connection with
As also shown in
An elastic ring can have a variety of heights and thicknesses. In some embodiments, the elastic ring can have a height of at least 0.5 inches, at least 1 inch, or even 1.5 inches. In some embodiments, the elastic ring can extend above the major surface of the lapping plate platen at least 0.1 inches, at least 0.25 inches, or even at least 1 inch. An elastic ring can have a thickness such that it is rigid enough to remain substantially perpendicular to the major surface of the lapping plate platen and form a barrier to liquid treatment compositions used during processing.
An elastic ring can have a variety of diameters and can be selected based on the diameter of the lapping plate platen. In some embodiments, the elastic ring can have a diameter of 10 inches or more, 12 inches or more, 15 inches or more, or even 20 inches or more.
An elastic ring can be made out of one or more elastic materials. In some embodiments, an elastic ring can be made out of rubber.
As shown, assembly 500 also includes a latch 530 that physically engages the clamp ring 505 and is configured to securely adjust the inside perimeter wall 508 of the clamp ring 505 from an open and removable position 531 to the closed position 532 that retains the clamp ring 505 and elastic ring 520 to the lapping plate platen 514 to form the barrier to substantially contain a liquid treatment composition on the major surface of the lapping plate platen during processing of the major surface of the lapping plate platen.
In some embodiments, a continuous elastic band can be manually coupled to lapping plate platen without a metal band. A band having a diameter less than the lapping plate platen can be stretched and placed around the outside perimeter of a lapping plate platen so that a portion of the band sticks above the major surface of the lapping plate platen during processing to contain a liquid treatment composition (e.g., abrasive slurry).
As mentioned above, the barrier can be configured to automatically couple to a lapping plate platen so that the barrier can contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps (e.g., charging) of the major surface of the lapping plate platen. An embodiment of an automated barrier is described below in connection with
As shown in
As mentioned, one or more elastic ring segments can be used. Some embodiments include three or more elastic ring segments, four or more elastic ring segments, five or more elastic ring segments, six or more elastic ring segments, etc.
An elastic ring can have a variety of heights and thicknesses. In some embodiments, the elastic ring can have a height of at least 0.5 inches, at least 1 inch, or even 1.5 inches. In some embodiments, the elastic ring can extend above the major surface of the lapping plate platen at least 0.1 inches, at least 0.25 inches, or even at least 1 inch. An elastic ring can have a thickness such that it is rigid enough to remain substantially perpendicular to the major surface of the lapping plate platen and form a barrier to liquid treatment compositions used during processing.
An elastic ring can have a variety of diameters and can be selected based on the diameter of the lapping plate platen. In some embodiments, the elastic ring can have a diameter of 10 inches or more, 12 inches or more, 15 inches or more, or even 20 inches or more.
An elastic ring can be made out of one or more elastic materials. In some embodiments, an elastic ring can be made out of rubber.
A movable barrier mechanism can also include three or more rigid segments that support and move the one or more elastic ring segments from an open position to allow one or more liquid treatment compositions to pass through between the barrier mechanism and the outside top perimeter of the lapping plate platen to a closed position so that the one or more elastic ring segments form a barrier that extends above the major surface of the lapping plate platen to substantially contain one or more liquid treatment compositions on the major surface of the lapping plate platen during one or more processing steps of the major surface of the lapping plate platen. As shown in
The movable barrier mechanism 600 can include a variety of mechanisms to automate the opening and closing of the barrier mechanism relative to a lapping plate platen. As shown in
In some embodiments, the apparatus shown in
To charge a major surface 616 of the lapping plate platen 614 with an abrasive slurry, a lapping plate platen 614 can be positioned on a rotatable platter or pedestal 605. The rotatable platter 605 can be configured to secure and physically support the lapping plate platen 614 during processing of the major surface 616 of the lapping plate platen 614. As shown in FIG. 6C, during charging, the movable barrier mechanism 600 can be actuated to a closed position using wire 630 to form a barrier that extends above the major surface 616 of the lapping plate platen 614 to substantially contain one or more liquid treatment compositions (not shown) on the major surface of the lapping plate platen 614 during charging of the major surface 616 of the lapping plate platen 614. In the closed position, the rigid segments 620 and elastic ring segments 601 are tightly retained against the outside perimeter 617 of the platen 614 to contain the abrasive slurry on the surface 616 during charging.
As shown in