This application claims priority to U.S. Provisional Patent Application No. 61/254,194, filed Oct. 22, 2009, entitled “BELL JAR EXTRACTION TOOL METHOD AND APPARATUS” by inventor Paul Alexander, commonly assigned and incorporated by reference herein for all purposes.
The present invention relates generally to the manufacture of thin-film photovoltaic modules. More particularly, the present invention provides a method and tool for extracting a supersized chamber used for the manufacture of thin film photovoltaic modules. Merely by way of example, the present invention provides a tool for lifting and extracting a supersized bell jar chamber against gravity load without causing stress-related failure.
Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. One advantage of the use of thin film technology in making solar cells is to form modules direct on large sized glass substrates. That requires, at the same time, supersized processing system for treating the thin film cells associated with the large sized glass substrates. Additionally, the processing system is subjected to routing maintenance for maintain thin-film process reliability for enhancing solar cell efficiency depending on applications. Often, conventional tools for handing the supersized processing system are either not available or unfit for newly developed system.
From the above, it is seen that improved apparatus and method for handling new supersized processing system for the manufacture of thin-film solar modules are desired.
The present invention relates generally to the manufacture of thin-film photovoltaic modules. More particularly, the present invention provides a method and tool for handling a supersized processing chamber used for the manufacture of thin film photovoltaic modules. Merely by way of example, the present invention provides a tool for lifting and extracting a supersized bell jar chamber against gravity load without causing stress-related failure.
In a specific embodiment, the present invention provides an apparatus for extracting a bell jar chamber from a processing station of a thin film photovoltaic material. The apparatus includes a rack fixture coupled to a robot loader. The rack fixture is configured to support the bell jar chamber to be moved using the robot loader in a horizontal direction and in a vertical direction. The horizontal direction is normal to the vertical direction. The apparatus further includes at least two support members configured within a vicinity of an upper region of the rack fixture. The two support members have respective arc length regions. The respective arc length regions support at least respective upper inner regions of the bell jar chamber. The rack fixture is in a lifting configuration having the at least two support members to form an intimate contact via a soften material with the upper inner region of the bell jar chamber against all external load. The lifting configuration is associated with a stress indicator of the bell jar chamber to be greater than an intrinsic factor of safety.
In an alternative embodiment, the present invention provides a method for extracting a bell jar chamber with a brittle mechanical characteristic. The method includes providing a rack fixture having at least two support members. Each support member includes an upper edge region. The method further includes inserting the rack fixture including the at least two support members from an open end horizontally into a bell jar chamber along an axial direction of the bell jar chamber. Furthermore, the method includes moving the rack fixture to use the at least two support members to lift the bell jar chamber against a gravitational force for extracting the bell jar chamber from a processing station.
In yet another alternative embodiment, the present invention provides a method for handling a chamber for manufacturing a photovoltaic device. The method includes providing a rack fixture having at least two support members. The method further includes inserting the rack fixture including the at least two support members from an open end into the chamber along an axial direction. Additionally, the method includes raising the rack fixture to form a contact region between each of the two support members and an upper inner region of the chamber. The method further includes lifting the chamber against gravity load and disposing the chamber to a processing station. The processing station includes at least one or more heaters. Furthermore, the method included transferring a substrate bearing a thin-film precursor material into the chamber and sealing the open end of the chamber to create a vacuum condition. The method further includes filling a work gas in the chamber to maintain a predetermined gaseous environment. Moreover, the method includes performing a reactive thermal treatment to the thin-film precursor material in the gaseous environment by supplying thermal energy from the one or more heaters based on a predetermined temperature profile. Through the reactive thermal treatment the thin-film precursor material is transformed to a photovoltaic absorber.
The invention provides the benefit of safely handling a supersized bell jar process chamber of brittle material. The process chamber then can be removed from a manufacturing system for maintenance and replaced by a redundant chamber for substantial saving in process time.
The present invention relates generally to the manufacture of thin-film photovoltaic modules. More particularly, the present invention provides a method and tool for handling a supersized processing chamber used for the manufacture of thin film photovoltaic modules. The invention provides a tool for lifting and extracting a supersized bell jar chamber against gravity load without causing stress-related failure.
Referring to
In a specific embodiment, each of the two support members 320 spread its upper edge to an arc length 321 across the rack fixture 310. In a specific embodiment, the bell jar chamber 300 is made of quartz material to take advantage of its property as a good thermal conductor and an excellent chemical inert matter to be used as a furnace chamber in an application for conducting a reactive thermal process therein. In an implementation, the bell jar chamber 300 is removably installed within a processing station of a thin-film photovoltaic device manufacture system. For example, the tubular shaped bell jar chamber is wholly surrounded by one or more heating elements or cooling elements mounted on an outer shell body. The bell jar chamber is sealed by a cover member engaged with the open end 301. In an example, the bell jar chamber 300 is used for forming a gaseous environment for chemically treating a precursor material on large glass substrates loaded therein to form a thin-film photovoltaic absorber. In order to maintain a large scale manufacture processing within a controlled manner, the bell jar chamber 300, after certain process runs, may be extracted out of the process system for cleaning and other maintenance works while replaced with another cleaned chamber for conducting the manufacture process in the mean time. The quartz material is relatively brittle and may be breakable if the tool for extracting the bell jar chamber 300 causes an internal stress level over certain ranges defined by a minimum factor of safety. In a specific embodiment, the support members for handling the chamber are configured to provide support the bell jar chamber against all external load without causing internal stress level to be near the ranges having high failure (breaking) probability.
In the example shown in
Additionally, the two support members 320 are disposed with a spatial gap 322 between each other. As the tool (or specifically the rack fixture 310) is inserted into the bell jar chamber 300, it should be reached to a preferred position so that when the rack fixture moves up to let the support members 320 to lift the chamber 300 the two support members 320 are respectively located substantially in a vicinity of a balanced position relative to a center of gravity 303 of the bell jar chamber 300. In an embodiment, the value of the spatial gap 322 can be relative flexible within a certain range but correspondingly the preferred position to dispose the rack fixture 310 inside the bell jar chamber must be restricted to a certain spatial range accordingly.
Referring to
The tool as described in above configuration for handling an exemplary bell jar chamber is modeled using a Solidworks™ Simulation software with a simplification of linear force calculation. In this model, the bell jar chamber is selected to be made by quartz material having a density of 2.05 kg/m3. The length of the bell jar chamber is set to be 80 inches and the inner diameter of the tube is set to be 40 inches with a shell thickness of about 18 mm and greater. Based on the material properties as proposed, the model yields an estimation of a tensile strength σT for the specific quartz bell jar chamber to be about 4800 psi and a compressive strength σC to be about 72520 psi. These estimations are comparable with values from Heraeus Brochure: tensile strength σT 40 N/mm2 and compressive strength σC 500 N/mm2, respectively. In order to determine whether the tool is able to handle the target structure without causing any stress related material or structural failure, an internal friction theory, also known as Mohr-Coulomb theory, is applied. Using Mohr-Coulomb theory, a stress-related material failure criterion is defined as:
σ1/σT+σ3/σC<1. (1)
Where σ1 and σ3 are respectively the tensile load and compressive load applied to the target structure. This criterion is used for brittle material with different tensile and compressive properties. Brittle materials do not have specific yield point and hence the yield strength is not recommended for defining limit stresses in this criterion. For designing a reliable tool for handling target structure, a design load (both tensile and compressive) for the target structure is given to provide a safe margin of stress level away from the material limit values. A factor of safety (FOS) can be defined as:
FOS=(σ1d/σT+σ3d/σC)−1 (2)
Here σ1d and σ3d are respectively the design tensile load and design compressive load applied to the target structure. For the bell jar chamber in quartz material a design load is given as 830 psi. This yields a FOS=7.0. In current model, a first principle tensile stress is estimated without considering compressive term and a finite element stress analysis is performed so that the FOS value can be mapped throughout the body of the target structure (though usually only a smaller region is selected for saving in calculation time). In a specific example, two support members 320 are respectively disposed at a position 13 inches and 73 inches from the open end 301; a soften material is also installed in a groove region of the upper edge region of each support member for providing reduction of contact force. A Delrin “O-rings” (which has a linear force deflection characteristic) is used in the model for simplifying the calculation to avoid non-linear solver. The simulation yields a minimum FOS value for this lifting configuration is 18, well above (safer) the minimum FOS 7.0 for quartz material.
Also note that, in an alternative example, the open end 301 of the bell jar chamber 300 has a geometric asymmetric stress effect induced by gravity. The two support members not only should be disposed separately with a proper distance from the center of gravity of the bell jar chamber, but also should be disposed at least a certain preferred distance away from the open end 301 so that the stress level for any local contact region would not surpass the intrinsic tensile/compressive strength of the material. An exemplary analysis shows that with a contact point associated with the back support member at 12 inches closer to the open end 301, the stress at the contact point can be as large as 10000 psi due to the change of the load distribution. This is well above the tensile strength of 5800 psi and most likely will result in tube breaking.
As shown, the above method provides a way of handling a chamber for the manufacture of a photovoltaic device according to an embodiment of the present invention. In a preferred embodiment, the method uses a chamber made by quartz material that is inert to the reactive chemical and good in thermal conduction for conducting the desired thermal reactive process therein for forming a photovoltaic absorber material. The chamber can be a tubular bell jar shape and can be also a rectangular cubic shape or other geometries. The chamber can have large size of about 2 meters or greater in length and 1 meter or greater in diameter with about 18 mm or greater in shell thickness.
As shown in
The tool includes a rack fixture having at least two support members provided in step 710. The rack fixture can be associated with a robot loader that is capable of moving linearly, for example, along x-direction horizontally in parallel to an axial direction associated with a tubular shaped target structure. In an embodiment, the rack fixture is an elongated bar structure with a first support member being spaced from a second support member.
The tool further includes the at least two support members on an upper region of the rack fixture. In an embodiment, the rack fixture has a length selected based on the target structure, for example, a tubular shaped bell jar chamber. The length of the rack fixture is at least no shorter than 75% of the length of the bell jar chamber. In another embodiment, one of support members is mounted on a front end of the rack fixture and at least another one is mounted at a position with a predetermined distance from the front end. Depending on target structure geometric shape and material property, the mounting position of the support members can be within a range of distances relative to the target structure. The support member can be in different orientations relative to the elongated rack fixture. In a specific embodiment, the support member is aligned substantially in a plane perpendicular to the length direction of the rack fixture.
Through an open end of the target bell jar chamber, the rack fixture including the at least two support members can be inserted within an inner diameter along an axial direction, as shown in step 720. In an embodiment, the tool is coupled to a robot loader. The robot loader is configured to move horizontally to insert the whole rack fixture into the bell jar chamber which is set on a base support with the bell jar axial direction (e.g, x-direction) in a horizontal direction.
Further, the method 700 includes a step 730 to lift the chamber by using the two support members against respective upper inner regions of the chamber. In a specific embodiment, the same robot loader is used to raise the whole rack fixture upward (e.g., in a y-direction which is normal to the x-direction) such that each support member forms a contact region with the bell jar chamber. In another specific embodiment, the support member is configured to have its upper region being spread laterally with a curved length that is configured to be substantially matched in curvature with the upper inner region of the chamber. Additionally, the upper region of the support member can include a soften material so that the contact region becomes cushioned for reducing stress or at least unidirectional contact forces. For example, a rubber material such as that for O-rings can be installed in a groove region formed in the upper region. This feature may be critical in stress reduction especially between a hard material (the tool) and a brittle material (the chamber). In yet another specific embodiment, the contact region for each support member is within a preferred location range so that lifting the target structure (the chamber) by the two support members would be balanced against the whole external load, which is only a gravitational force for the present implementation. Overall, the lifting of the chamber by the configured tool can be monitored through a stress indicator so that the handling of the chamber by the tool in a specific configuration has a factor of safety substantially higher than a minimum factor of safety associated with intrinsic material property. Therefore, once the lifting step is completed, the chamber is under a stress level that is safe and substantially small in risk of breakage or stress-related failure.
Once the chamber is lifted, the method performs a next step 740 to dispose the lifted chamber into a processing station of a manufacture system for treating thin-film photovoltaic materials. In particular, the processing station is an apparatus for holding the chamber and providing controlled thermal energy to the chamber so that a reactive thermal treatment can be performed to one or more thin-film materials on substrates loaded inside the chamber. This step can be further carried out by using the robot loader to move the bell jar chamber lifted by the two support members of the rack fixture. The bell jar chamber is moved into the processing station which is configured to be surrounded by one or more heaters mounted in a shell structure. The process station also can be equipped with one or more cooling devices for maintaining a balanced thermal energy control. The combined heaters and cooling devices are designed to supply thermal energy to the bell jar chamber and additionally to control chamber temperature following a predetermined temperature profile designated for treating thin-film photovoltaic materials on a plurality of substrates. After disposing the bell jar chamber in the processing station, the tool can be retracted out of the chamber, again controlled by the robot loader in both vertical and horizontal directions.
The method 700 additionally includes step 750 to transfer one or more substrates bearing one or more thin-film precursor materials into the bell jar chamber through the open end. In a specific embodiment, the one or more thin-film precursor materials include copper indium (or gallium) mixture (or alloy) materials pre-deposited on glass substrates. These precursor materials are examples of many material elements used for forming thin-film photovoltaic solar cells.
Referring to
The method 700 further includes filling the chamber with a work gas up to a desired pressure level in step 770. The work gas is designed for react with the precursor material for forming a desired end material product. For example, the work gas includes hydrogen selenide gas mixed with pure nitrogen gas for treating a copper-indium-gallium based precursor thin-film material. The gas filling inlet can be built in the cover member mentioned before.
Furthermore, the method 700 can start step 780 to perform a reactive thermal treatment of the precursor material loaded in the chamber using thermal energy supplied by the one or more heaters following a predetermined temperature profile. The process includes temperature ramping stages and temperature dwelling stages so that the precursor material on the substrates can react with the work gas in the gaseous environment formed inside the heated bell jar chamber. For example, a dwelling stage is set to be at 425° C. for 10-80 minutes. The method 700 may end with step 799 after the precursor material is transformed into a photovoltaic absorber material by the reactive thermal treatment inside the bell jar chamber.
The above sequence of processes or steps provides a handling method for a chamber used for processing a thin-film photovoltaic material according to an embodiment of the present invention. As shown, the method uses a combination of steps including providing a specific tool for safely handling a target structure which is a shaped chamber made by a relative brittle material, disposing the shaped chamber in process system, transferring precursor materials in the shaped chamber, and performing reactive thermal treatment of the precursor materials for the manufacture of the thin-film solar cells.
Although the above has been illustrated according to specific embodiments, there can be other modifications, alternatives, and variations. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3520732 | Nakayama et al. | Jul 1970 | A |
3828722 | Reuter et al. | Aug 1974 | A |
3975211 | Shirland | Aug 1976 | A |
4062038 | Cuomo et al. | Dec 1977 | A |
4263336 | Thompson et al. | Apr 1981 | A |
4332974 | Fraas | Jun 1982 | A |
4335266 | Mickelsen et al. | Jun 1982 | A |
4441113 | Madan | Apr 1984 | A |
4442310 | Carlson et al. | Apr 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4465575 | Love et al. | Aug 1984 | A |
4471155 | Mohr et al. | Sep 1984 | A |
4499658 | Lewis | Feb 1985 | A |
4507181 | Nath et al. | Mar 1985 | A |
4517403 | Morel et al. | May 1985 | A |
4518855 | Malak | May 1985 | A |
4542255 | Tanner et al. | Sep 1985 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4589194 | Roy | May 1986 | A |
4598306 | Nath et al. | Jul 1986 | A |
4599154 | Bender et al. | Jul 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4623601 | Lewis et al. | Nov 1986 | A |
4625070 | Berman et al. | Nov 1986 | A |
4638111 | Gay | Jan 1987 | A |
4661370 | Tarrant | Apr 1987 | A |
4663495 | Berman et al. | May 1987 | A |
4705912 | Nakashima et al. | Nov 1987 | A |
4724011 | Turner et al. | Feb 1988 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4793283 | Sarkozy | Dec 1988 | A |
4798660 | Ermer et al. | Jan 1989 | A |
4816082 | Guha et al. | Mar 1989 | A |
4816420 | Bozler et al. | Mar 1989 | A |
4865999 | Xi et al. | Sep 1989 | A |
4873118 | Elias et al. | Oct 1989 | A |
4915745 | Pollock et al. | Apr 1990 | A |
4950615 | Basol et al. | Aug 1990 | A |
4968354 | Nishiura et al. | Nov 1990 | A |
4996108 | Divigalpitiya et al. | Feb 1991 | A |
5008062 | Anderson et al. | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5028274 | Basol et al. | Jul 1991 | A |
5039353 | Schmitt | Aug 1991 | A |
5045409 | Eberspacher et al. | Sep 1991 | A |
5069727 | Kouzuma et al. | Dec 1991 | A |
5078803 | Pier et al. | Jan 1992 | A |
5125984 | Kruehler et al. | Jun 1992 | A |
5133809 | Sichanugrist et al. | Jul 1992 | A |
5137835 | Karg | Aug 1992 | A |
5154777 | Blackmom et al. | Oct 1992 | A |
5180686 | Banerjee et al. | Jan 1993 | A |
5211824 | Knapp | May 1993 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5248345 | Sichanugrist et al. | Sep 1993 | A |
5259883 | Yamabe et al. | Nov 1993 | A |
5261968 | Jordan | Nov 1993 | A |
5298086 | Guha et al. | Mar 1994 | A |
5336381 | Dalzell, Jr. et al. | Aug 1994 | A |
5336623 | Sichanugrist et al. | Aug 1994 | A |
5346853 | Guha et al. | Sep 1994 | A |
5397401 | Toma et al. | Mar 1995 | A |
5399504 | Ohsawa | Mar 1995 | A |
5436204 | Albin et al. | Jul 1995 | A |
5445847 | Wada | Aug 1995 | A |
5474939 | Pollock et al. | Dec 1995 | A |
5501744 | Albright et al. | Mar 1996 | A |
5512107 | van den Berg | Apr 1996 | A |
5518549 | Hellwig | May 1996 | A |
5528397 | Zavracky et al. | Jun 1996 | A |
5536333 | Foote et al. | Jul 1996 | A |
5578103 | Araujo et al. | Nov 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5622634 | Noma et al. | Apr 1997 | A |
5626688 | Probst et al. | May 1997 | A |
5665175 | Safir | Sep 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5698496 | Fastnacht et al. | Dec 1997 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5858819 | Miyasaka | Jan 1999 | A |
5868869 | Albright et al. | Feb 1999 | A |
5925228 | Panitz et al. | Jul 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981868 | Kushiya et al. | Nov 1999 | A |
5985691 | Basol et al. | Nov 1999 | A |
6040521 | Kushiya et al. | Mar 2000 | A |
6048442 | Kushiya et al. | Apr 2000 | A |
6092669 | Kushiya et al. | Jul 2000 | A |
6107562 | Hashimoto et al. | Aug 2000 | A |
6127202 | Kapur et al. | Oct 2000 | A |
6160215 | Curtin | Dec 2000 | A |
6166319 | Matsuyama | Dec 2000 | A |
6172297 | Hezel et al. | Jan 2001 | B1 |
6258620 | Morel et al. | Jul 2001 | B1 |
6284312 | Chandra et al. | Sep 2001 | B1 |
6288325 | Jansen et al. | Sep 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6307148 | Takeuchi et al. | Oct 2001 | B1 |
6310281 | Wendt et al. | Oct 2001 | B1 |
6323417 | Gillespie et al. | Nov 2001 | B1 |
6328871 | Ding et al. | Dec 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6361718 | Shinmo et al. | Mar 2002 | B1 |
6365225 | Chandra et al. | Apr 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6423565 | Barth et al. | Jul 2002 | B1 |
6632113 | Noma et al. | Oct 2003 | B1 |
6635307 | Huang et al. | Oct 2003 | B2 |
6653701 | Yamazaki et al. | Nov 2003 | B1 |
6667492 | Kendall | Dec 2003 | B1 |
6690041 | Armstrong et al. | Feb 2004 | B2 |
6692820 | Forrest et al. | Feb 2004 | B2 |
6784492 | Morishita | Aug 2004 | B1 |
6852920 | Sager et al. | Feb 2005 | B2 |
6878871 | Scher et al. | Apr 2005 | B2 |
6974976 | Hollars | Dec 2005 | B2 |
7122398 | Pichler | Oct 2006 | B1 |
7179677 | Ramanathan et al. | Feb 2007 | B2 |
7194197 | Wendt et al. | Mar 2007 | B1 |
7220321 | Barth et al. | May 2007 | B2 |
7235736 | Buller et al. | Jun 2007 | B1 |
7252923 | Kobayashi | Aug 2007 | B2 |
7265037 | Yang et al. | Sep 2007 | B2 |
7319190 | Tuttle | Jan 2008 | B2 |
7364808 | Sato et al. | Apr 2008 | B2 |
7441413 | Bae et al. | Oct 2008 | B2 |
7442413 | Zwaap et al. | Oct 2008 | B2 |
7544884 | Hollars | Jun 2009 | B2 |
7736755 | Igarashi et al. | Jun 2010 | B2 |
7741560 | Yonezawa | Jun 2010 | B2 |
7855089 | Farris, III et al. | Dec 2010 | B2 |
7863074 | Wieting | Jan 2011 | B2 |
7910399 | Wieting | Mar 2011 | B1 |
7955891 | Wieting | Jun 2011 | B2 |
7960204 | Lee | Jun 2011 | B2 |
7993954 | Wieting | Aug 2011 | B2 |
7993955 | Wieting | Aug 2011 | B2 |
7998762 | Lee et al. | Aug 2011 | B1 |
8003430 | Lee | Aug 2011 | B1 |
8008110 | Lee | Aug 2011 | B1 |
8008111 | Lee | Aug 2011 | B1 |
8008112 | Lee | Aug 2011 | B1 |
8017860 | Lee | Sep 2011 | B2 |
8026122 | Lee | Sep 2011 | B1 |
8142521 | Wieting | Mar 2012 | B2 |
8168463 | Wieting | May 2012 | B2 |
8178370 | Lee et al. | May 2012 | B2 |
8183066 | Lee et al. | May 2012 | B2 |
8217261 | Wieting | Jul 2012 | B2 |
8263494 | Patterson | Sep 2012 | B2 |
8287942 | Huang et al. | Oct 2012 | B1 |
20020002992 | Kariya et al. | Jan 2002 | A1 |
20020004302 | Fukumoto et al. | Jan 2002 | A1 |
20020061361 | Nakahara et al. | May 2002 | A1 |
20020063065 | Sonoda et al. | May 2002 | A1 |
20030075717 | Kondo et al. | Apr 2003 | A1 |
20030089899 | Lieber et al. | May 2003 | A1 |
20030188777 | Gaudiana et al. | Oct 2003 | A1 |
20030230338 | Menezes | Dec 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040084080 | Sager et al. | May 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040110393 | Munzer et al. | Jun 2004 | A1 |
20040161539 | Miyakawa | Aug 2004 | A1 |
20040187917 | Pichler | Sep 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040252488 | Thurk | Dec 2004 | A1 |
20040256001 | Mitra et al. | Dec 2004 | A1 |
20050074915 | Tuttle et al. | Apr 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050164432 | Lieber et al. | Jul 2005 | A1 |
20050194036 | Basol | Sep 2005 | A1 |
20050287717 | Heald et al. | Dec 2005 | A1 |
20060034065 | Thurk | Feb 2006 | A1 |
20060040103 | Whiteford et al. | Feb 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096536 | Tuttle | May 2006 | A1 |
20060096537 | Tuttle | May 2006 | A1 |
20060096635 | Tuttle | May 2006 | A1 |
20060102230 | Tuttle | May 2006 | A1 |
20060112983 | Parce et al. | Jun 2006 | A1 |
20060130890 | Hantschel et al. | Jun 2006 | A1 |
20060160261 | Sheats et al. | Jul 2006 | A1 |
20060173113 | Yabuta et al. | Aug 2006 | A1 |
20060174932 | Usui et al. | Aug 2006 | A1 |
20060219288 | Tuttle | Oct 2006 | A1 |
20060219547 | Tuttle | Oct 2006 | A1 |
20060220059 | Satoh et al. | Oct 2006 | A1 |
20060249202 | Yoo et al. | Nov 2006 | A1 |
20060267054 | Martin et al. | Nov 2006 | A1 |
20070006914 | Lee | Jan 2007 | A1 |
20070089782 | Scheuten et al. | Apr 2007 | A1 |
20070116892 | Zwaap | May 2007 | A1 |
20070116893 | Zwaap | May 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070163643 | Van Duren et al. | Jul 2007 | A1 |
20070169810 | Van Duren et al. | Jul 2007 | A1 |
20070193623 | Krasnov | Aug 2007 | A1 |
20070209700 | Yonezawa et al. | Sep 2007 | A1 |
20070264488 | Lee | Nov 2007 | A1 |
20070283998 | Kuriyagawa et al. | Dec 2007 | A1 |
20070289624 | Kuriyagawa et al. | Dec 2007 | A1 |
20080029154 | Mishtein et al. | Feb 2008 | A1 |
20080032044 | Kuriyagawa et al. | Feb 2008 | A1 |
20080041446 | Wu et al. | Feb 2008 | A1 |
20080057616 | Robinson et al. | Mar 2008 | A1 |
20080092945 | Munteanu et al. | Apr 2008 | A1 |
20080092953 | Lee | Apr 2008 | A1 |
20080092954 | Choi | Apr 2008 | A1 |
20080105294 | Kushiya et al. | May 2008 | A1 |
20080110491 | Buller et al. | May 2008 | A1 |
20080110495 | Onodera et al. | May 2008 | A1 |
20080121264 | Chen et al. | May 2008 | A1 |
20080121277 | Robinson et al. | May 2008 | A1 |
20080204696 | Kamijima | Aug 2008 | A1 |
20080210303 | Lu et al. | Sep 2008 | A1 |
20080280030 | Van Duren et al. | Nov 2008 | A1 |
20080283389 | Aoki | Nov 2008 | A1 |
20090021157 | Kim et al. | Jan 2009 | A1 |
20090058295 | Auday et al. | Mar 2009 | A1 |
20090087940 | Kushiya | Apr 2009 | A1 |
20090087942 | Meyers | Apr 2009 | A1 |
20090145746 | Hollars | Jun 2009 | A1 |
20090217969 | Matsushima et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090235983 | Girt et al. | Sep 2009 | A1 |
20090235987 | Akhtar et al. | Sep 2009 | A1 |
20090293945 | Peter | Dec 2009 | A1 |
20100081230 | Lee | Apr 2010 | A1 |
20100087016 | Britt et al. | Apr 2010 | A1 |
20100087026 | Winkeler et al. | Apr 2010 | A1 |
20100096007 | Mattmann et al. | Apr 2010 | A1 |
20100101648 | Morooka et al. | Apr 2010 | A1 |
20100101649 | Huignard et al. | Apr 2010 | A1 |
20100122726 | Lee | May 2010 | A1 |
20100197051 | Schlezinger et al. | Aug 2010 | A1 |
20100210064 | Hakuma et al. | Aug 2010 | A1 |
20100233386 | Krause et al. | Sep 2010 | A1 |
20100258179 | Wieting | Oct 2010 | A1 |
20100267190 | Hakuma et al. | Oct 2010 | A1 |
20110018103 | Wieting | Jan 2011 | A1 |
20110020980 | Wieting | Jan 2011 | A1 |
20110070682 | Wieting | Mar 2011 | A1 |
20110070683 | Wieting | Mar 2011 | A1 |
20110070684 | Wieting | Mar 2011 | A1 |
20110070685 | Wieting | Mar 2011 | A1 |
20110070686 | Wieting | Mar 2011 | A1 |
20110070687 | Wieting | Mar 2011 | A1 |
20110070688 | Wieting | Mar 2011 | A1 |
20110070689 | Wieting | Mar 2011 | A1 |
20110070690 | Wieting | Mar 2011 | A1 |
20110071659 | Farris, III et al. | Mar 2011 | A1 |
20110073181 | Wieting | Mar 2011 | A1 |
20110203634 | Wieting | Aug 2011 | A1 |
20110212565 | Wieting | Sep 2011 | A1 |
20110259395 | Wieting et al. | Oct 2011 | A1 |
20110259413 | Wieting et al. | Oct 2011 | A1 |
20110269260 | Buquing | Nov 2011 | A1 |
20110277836 | Lee | Nov 2011 | A1 |
20120003789 | Doering et al. | Jan 2012 | A1 |
20120018828 | Shao | Jan 2012 | A1 |
20120021552 | Alexander et al. | Jan 2012 | A1 |
20120094432 | Wieting | Apr 2012 | A1 |
20120122304 | Wieting | May 2012 | A1 |
20120186975 | Lee et al. | Jul 2012 | A1 |
20120240989 | Ramanathan et al. | Sep 2012 | A1 |
20120270341 | Lee et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
199878651 | Feb 1999 | AU |
200140599 | Aug 2001 | AU |
3314197 | Nov 1983 | DE |
10104726 | Aug 2002 | DE |
102005062977 | Sep 2007 | DE |
2646560 | Nov 1990 | FR |
2124826 | Feb 1984 | GB |
2000173969 | Jun 2000 | JP |
2000219512 | Aug 2000 | JP |
2002167695 | Jun 2002 | JP |
2002270871 | Sep 2002 | JP |
2002299670 | Oct 2002 | JP |
2004332043 | Nov 2004 | JP |
2005311292 | Nov 2005 | JP |
0157932 | Aug 2001 | WO |
2005011002 | Feb 2005 | WO |
2006126598 | Nov 2006 | WO |
2007022221 | Feb 2007 | WO |
2007077171 | Jul 2007 | WO |
2008025326 | Mar 2008 | WO |
Entry |
---|
Baumann, A., et al., Photovoltaic Technology Review, presentation Dec. 6, 2004, 18 pages. |
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92. |
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97. |
Guillen C., “CuInS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712. |
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337. |
Huang et al., Preparation of ZnxCd1-xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir 1998, 14, pp. 4342-4344. |
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, Retrieved from http://www.isetinc.com/cigs.html on Oct. 1, 2008, 4 pages. |
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136. |
Kapur et al., “Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates”, 29th IEEE Photovoltaic Specialists Conf., New Orleans, LA, IEEE, 2002, pp. 688-691. |
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43, 2003. |
Kapur et al., “Non-Vacuum Processing of CuIn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Precursor Inks”, Thin Solid Films, 2003, vol. 431-432, pp. 53-57. |
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Materials Research Society, Proceedings vol. 668, (2001) pp. H3.5.1-H3.5.6. |
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Materials Research Society Proceedings, vol. 668, (2001) pp. H2.6.1-H2.6.7. |
Mehta et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 107-113. |
Onuma et al., Preparation and Characterization of CuInS2 Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269. |
Salvador, “Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis,” Journal of Applied Physics, vol. 55, No. 8, pp. 2977-2985, Apr. 15, 1984. |
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451. |
Yang et al., “Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix”, Journal Material Chem., 1997, vol. 7, No. 1, pp. 131-133. |
Yang et al., “Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite”, Synthetic Metals 1997, vol. 91, pp. 347-349. |
Yang et al., “Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode”, Applied Physics Letters, vol. 69, No. 3, Jul. 15, 1996, pp. 377-379. |
Number | Date | Country | |
---|---|---|---|
61254194 | Oct 2009 | US |