This invention relates generally to BiCMOS processes for fabricating integrated circuits and, more particularly, to a JFET device, and a method of manufacturing same, which is compatible with standard BiCMOS processes.
Modern integrated circuits for high performance RF applications conventionally rely on semiconductor processes that include a vertical bipolar junction transistor, along with conventional CMOS processes.
Traditionally, in integrated circuit design, JFETs function field effect transistors), which are unipolar devices, can be used as good followers, because of their high input impedance and improved cut-off frequencies and low noise Figures relative to MOS (metal-oxide semiconductor) field effect transistors. On the other hand, JFETs are not such good amplifiers as bipolar transistors, because in bipolar transistors, the transconductance is proportional to the emitter current, whereas in JFETs the transconductance is proportional to the square root of the drain current.
The so-called BiCMOS processes, which tend to be used to fabricate vertical bipolar devices, cater to high-end RF solutions. On the other hand, JFET devices are frequently used in applications where noise performance is critical, and may provide an ideal solution in areas such as satellite receivers, or car radar systems, where the low noise front-end currently tends to be a discrete III/V device.
In spite of the fact that it is often highly desirable to use other devices, such as JFETs, in such high-end RF solutions, so as to take advantage of certain qualities thereof, it can be difficult and costly to integrate other devices, particularly JFETs into the standard BiCMOS processes, because this requires extra masking and implantation steps.
U.S. Pat. No. 4,939,099 describes a process for obtaining a JFET in a BiCMOS process, whereby the JFET source and drain regions are formed simultaneously with a vertical bipolar transistor emitter region, and the JFET gate contact region is formed simultaneously with a vertical bipolar base contact region. However, additional steps are required in the fabrication of the JEFET, including an implantation step to form a top gate region and another implantation step to create a JFET channel region, which steps must be performed separately from the process for fabricating the vertical bipolar transistor, thereby increasing the complexity and cost of the standard BiCMOS process.
We have now devised an improved arrangement, and it is an object of the present invention to provide a method of fabricating a JFET device in a BiCMOS process, whereby no additional masking or other processing steps are necessarily required to be performed.
In accordance with the present invention, there is provided a method of fabricating a JFET device, the method comprising providing a semiconductor substrate, epitaxially depositing a first layer of semiconductor material of a first conductivity type on said substrate, and providing a second, relatively lightly-doped, layer of semiconductor material of a second conductivity type over said first layer, forming first and second diffused, relatively highly-doped regions of said second conductivity type in said second layer, wherein said first layer of material forms an internal gate region of said device, said first and second diffused regions forms a source and drain region respectively of said device, and said second layer of material forms a channel between said source and said drain regions.
Also in accordance with the present invention, there is provided a JFET device, comprising a substrate on which is epitaxially deposited a first layer of semiconductor material of a first conductivity type, a second, relatively lightly-doped layer of semiconductor material of a second conductivity type being provided over said first layer of material, and diffused, relatively highly-doped source and drain regions of said second conductivity type being provided in said second layer of material, wherein said first layer of material forms the internal gate of said device and said second layer of material forms the channel between said source and drain regions.
Still further in accordance with the present invention, there is provided a method of fabricating an integrated circuit in a BiCMOS process, the method comprising providing a substrate having a first region for supporting a vertical bipolar device and a second region for supporting a JFET device, said first region defining a collector region of a second conductivity type, the method comprising epitaxially depositing a first layer of semiconductor material of a first conductivity type on said substrate at said first and second regions thereof, providing a second, relatively lightly-doped layer of semiconductor material of a first conductivity type over said first layer of material, forming at least one, relatively highly-doped diffused region of said second conductivity type in said second layer of material at said first region, and forming at least two, relatively highly-doped diffused regions of said second conductivity type in said second layer of material at said second region, wherein said first layer of material forms an internal base region in respect of said vertical bipolar device at said first region and an internal gate region in respect of said JFET device at said second region, said at least one diffused region at said first region of said substrate forms an emitter of said vertical bipolar device and said at least two diffused regions at said second region of said substrate form source and drain regions respectively of said JFET device, and said second layer of material forms an emitter cap in respect of said vertical bipolar device and a channel between said source and drain regions of said JFET device.
The present invention extends to an integrated circuit fabricated according to the method defined above, and comprising at least one vertical bipolar transistor and at least one JFET device.
In view of the modified layout of the JFET device of the present invention, it is possible to integrate such a device in a standard BiCMOS process without any additional masking or other processing steps being required.
Preferably, the step of forming said diffused regions is performed substantially simultaneously in respect of both said first and second regions of said substrate.
In a preferred embodiment, the first layer of semiconductor material comprises SiGe or SiGe:C. The addition of Germanium enables the formation of high performance heterojunction bipolar transistors which can operate at speeds much higher than standard silicon bipolar transistors. In fact, such SiGe HBT's have been found to operate at speeds previously attainable only with gallium arsenide, yet have the advantage of being built in existing silicon fabs using standard silicon production tooling. The SiGe devices are also relatively easily integrated into standard CMOS logic technologies. Silicon Germanium:Carbon (SiGe:C), formed by adding small amounts of Germanium (Ge) and Carbon I to silicon, results in a heterojunction bipolar transistor offering still higher unity gain frequency, lower-noise Figure, higher collector current and better linearity than the conventional silicon bipolar transistor. Although the noise Figure of the resulting SiGe: C HBT devices is lower than that of conventional Si devices, the noise performance of the proposed additional JFET is still better and such performance is required and desired.
The step of forming said at least two diffused regions in respect of the JFET device beneficially includes the steps of providing at least two respective dummy emitters on said second layer of semiconductor material and providing a spacer in respect of each said dummy emitter, wherein the spacers overlap by a predetermined distance. The spacing between the spacers should ideally be large enough to accommodate the minimum space between two poly-emitter areas (i.e. between the source and the drain of the JFET device), including two times the minimum overlap for sufficient overlay and etching tolerance.
These and other aspects of the present invention will be apparent from, and elucidated with reference to, the embodiments described herein.
Embodiments of the present invention will now be described by way of example only and with reference to the accompanying drawings, in which:
a-3h illustrate schematically the principal steps involved in fabricating a JFET device according to an exemplary embodiment of the present invention;
a and 4b illustrate schematically some alternative layouts for JFET devices according to two respective exemplary embodiments of the present invention;
Referring to
Referring to
An exemplary process scheme for fabricating a JFET device according to the invention will now be described in detail. However, it will be appreciated that the present invention is not necessarily limited to this process scheme and, indeed, it is envisaged that the proposed new layout of the JFET device will enable it to be integrated into many different HBT processes, without additional masking, implantation or other processing steps necessarily being required.
Referring to
A silicon- (or germanium-)containing layer (not shown) is deposited on the surface 36, which layer grows epitaxially in a monocrystalline manner on the monocrystalline active region 32 and in a non-monocrystalline (i.e. amorphous or polycrystalline) manner on the seed layer 42 and insulation regions 34.
Thus, referring to
The base region 46 may be formed of silicon, but is more beneficially formed of SiGe or, more preferably of SiGeC, for the reasons given above.
Next, and referring to
Next, and referring to
g and 3h illustrate the final steps, i.e. patterning of the poly emitter as shown in
Thus, the finalised structure consists of two emitters that are used as the source 17 and drain 18 of the JFET device, and the base connection that is used as a gate 60 to pinch the n-type channel formed by the n-type emitter cap 46 between the two emitters.
As stated above, although an exemplary process flow for fabricating a JFET device according to the invention has been provided, the present invention is not necessarily limited to this integration scheme. The only requirement is a base epi-stack with a top layer of suitable conductivity type (i.e. the so-called emitter cap) that preferably has a minimum thickness of 5-10 nm. Fabrication of the JFET device requires no additional masking or processing steps relative to the fabrication of a vertical bipolar device in a BiCMOS process, which significant advantage relative to the prior art is achieved by the modification of the layout of the JFET.
Parasitic capacitance tends to be extremely critical for the device of the invention because the product of gate-source and source-drain capacitance with transconductance determine the cutoff frequency. The capacitance has a large contribution from direct overlap between the source and the gate. This is parasitic because it does not contribute to an increased transconductance.
The layout of the device is preferably optimised to minimise source-gate capacitance. Two examples are shown in
The overlap capacitance of the interdigitated device illustrated in
The emitter-over-active variation illustrated in
In
Should it prove necessary, it may be possible to include a second gate near the top of the proposed device structure to improve the noise performance of this device. In that case the channel would be pushed away from the oxide interface near the top of the device structure, which may be a source of low-frequency noise in the device.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be capable of designing many alternative embodiments without departing from the scope of the invention as defined by the appended claims. In the claims, any reference signs placed in parentheses shall not be construed as limiting the claims. The word “comprising” and “comprises”, and the like, does not exclude the presence of elements or steps other than those listed in any claim or the specification as a whole. The singular reference of an element does not exclude the plural reference of such elements and vice-versa. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
04 105037.8 | Oct 2004 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/53366 | 10/13/2005 | WO | 00 | 4/25/2008 |