Binding molecules for BCMA and CD3

Information

  • Patent Grant
  • 12281176
  • Patent Number
    12,281,176
  • Date Filed
    Tuesday, June 1, 2021
    4 years ago
  • Date Issued
    Tuesday, April 22, 2025
    a month ago
Abstract
The present invention relates to a binding molecule which is at least bispecific comprising a first and a second binding domain, wherein the first binding domain is capable of binding to epitope cluster 3 of BCMA, and the second binding domain is capable of binding to the T cell CD3 receptor complex. Moreover, the invention provides a nucleic acid sequence encoding the binding molecule, a vector comprising said nucleic acid sequence and a host cell transformed or transfected with said vector. Furthermore, the invention provides a process for the production of the binding molecule of the invention, a medical use of said binding molecule and a kit comprising said binding molecule.
Description
REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled SeqListingAPMOL028C2.TXT, which was created and last modified on Jun. 1, 2021, which is 1,048,255 bytes in size. The information in the electronic Sequence Listing is hereby incorporated by reference in its entirety.


The present invention relates to a binding molecule which is at least bispecific comprising a first and a second binding domain, wherein the first binding domain is capable of binding to epitope cluster 3 of BCMA, and the second binding domain is capable of binding to the T cell CD3 receptor complex. Moreover, the invention provides a nucleic acid sequence encoding the binding molecule, a vector comprising said nucleic acid sequence and a host cell transformed or transfected with said vector. Furthermore, the invention provides a process for the production of the binding molecule of the invention, a medical use of said binding molecule and a kit comprising said binding molecule.


BCMA (B-cell maturation antigen, TNFRSF17, CD269) is a transmembrane protein belonging to the TNF receptor super family. BCMA is originally reported as an integral membrane protein in the Golgi apparatus of human mature B lymphocytes, i.e., as an intracellular protein (Gras et al., (1995) International Immunol 7(7):1093-1105) showing that BCMA seems to have an important role during B-cell development and homeostasis. The finding of Gras et al. might be associated with the fact that the BCMA protein that was described in Gras et al. is, because of a chromosomal translocation, a fusion protein between BCMA and IL-2. Meanwhile BCMA is, however, established to be a B-cell marker that is essential for B-cell development and homeostasis (Schliemann et al., (2001) Science 293 (5537):2111-2114) due to its presumably essential interaction with its ligands BAFF (B cell activating factor), also designated as TALL-1 or TNFSF13B, and APRIL (A proliferation-inducing ligand).


BCMA expression is restricted to the B-cell lineage and mainly present on plasma cells and plasmablasts and to some extent on memory B-cells, but virtually absent on peripheral and naive B-cells. BCMA is also expressed on multiple myeloma (MM) cells. Together with its family members transmembrane activator and cyclophylin ligand interactor (TACI) and B cell activation factor of TNF family receptor (BAFF-R), BCMA regulates different aspects of humoral immunity, B-cell development and homeostasis. Expression of BCMA appears rather late in B-cell differentiation and contributes to the long term survival of plasmablasts and plasma cells in the bone marrow. Targeted deletion of the BCMA gene in mice does not affect the generation of mature B-cells, the quality and magnitude of humoral immune responses, formation of germinal center and the generation of short-lived plasma cells. However, such mice have significantly reduced numbers of long-lived plasma cells in the bone marrow, indicating the importance of BCMA for their survival (O'Connor et al., 2004).


In line with this finding, BCMA also supports growth and survival of multiple myeloma (MM) cells. Novak et al found that MM cell lines and freshly isolated MM cells express BCMA and TACI protein on their cell surfaces and have variable expression of BAFF-R protein on their cell surface (Novak et al., (2004) Blood 103(2):689-694).


Multiple myeloma (MM) is the second most common hematological malignancy and constitutes 2% of all cancer deaths. MM is a heterogenous disease and caused by mostly by chromosome translocations inter alia t(11;14),t(4;14),t(8;14),del(13),del(17) (Drach et al., (1998) Blood 92(3):802-809; Gertz et al., (2005) Blood 106(8):2837-2840; Facon et al., (2001) Blood 97(6):1566-1571). MM-affected patients may experience a variety of disease-related symptoms due to, bone marrow infiltration, bone destruction, renal failure, immunodeficiency, and the psychosocial burden of a cancer diagnosis. As of 2006, the 5-year relative survival rate for MM was approximately 34% highlighting that MM is a difficult-to-treat disease where there are currently no curative options.


Exciting new therapies such as chemotherapy and stem cell transplantation approaches are becoming available and have improved survival rates but often bring unwanted side effects, and thus MM remains still incurable (Lee et al., (2004) J Natl Compr Canc Netw 8 (4): 379-383). To date, the two most frequently used treatment options for patients with multiple myeloma are combinations of steroids, thalidomide, lenalidomide, bortezomib or various cytotoxic agents, and for younger patients high dose chemotherapy concepts with autologous stem cell transplantation.


Most transplants are of the autologous type, i.e. using the patient's own cells. Such transplants, although not curative, have been shown to prolong life in selected patients. They can be performed as initial therapy in newly diagnosed patients or at the time of relapse. Sometimes, in selected patients, more than one transplant may be recommended to adequately control the disease.


Chemotherapeutic agents used for treating the disease are Cyclophosphamid, Doxorubicin, Vincristin and Melphalan, combination therapies with immunomodulating agents such as thalidomide (Thalomid®), lenalidomide (Revlimid®), bortezomib (Velcade®) and corticosteroids (e.g. Dexamethasone) have emerged as important options for the treatment of myeloma, both in newly diagnosed patients and in patients with advanced disease in whom chemotherapy or transplantation have failed.


The currently used therapies are usually not curative. Stem cell transplantation may not be an option for many patients because of advanced age, presence of other serious illness, or other physical limitations. Chemotherapy only partially controls multiple myeloma, it rarely leads to complete remission. Thus, there is an urgent need for new, innovative treatments.


Bellucci et al. (Blood, 2005; 105(10) identified BCMA-specific antibodies in multiple myeloma patients after they had received donor lymphocyte infusions (DLI). Serum of these patients was capable of mediating BCMA-specific cell lysis by ADCC and CDC and was solely detected in patients with anti-tumor responses (4/9), but not in non-responding patients (0/6). The authors speculate that induction of BCMA-specific antibodies contributes to elimination of myeloma cells and long-term remission of patients.


Ryan et al. (Mol. Cancer Ther. 2007; 6(11) reported the generation of an antagonistic BCMA-specific antibody that prevents NF-κB activation which is associated with a potent pro-survival signaling pathway in normal and malignant B-cells. In addition, the antibody conferred potent antibody-dependent cell-mediated cytotoxicity (ADCC) to multiple myeloma cell lines in vitro which was significantly enhanced by Fc-engineering.


Other approaches in fighting blood-borne tumors or autoimmune disorders focus on the interaction between BAFF and APRIL, i.e., ligands of the TNF ligand super family, and their receptors TACI, BAFF-R and BCMA which are activated by BAFF and/or APRIL. For example, by fusing the Fc-domain of human immunoglobulin to TACI, Zymogenetics, Inc. has generated Atacicept (TACI-Ig) to neutralize both these ligands and prevent receptor activation. Atacicept is currently in clinical trials for the treatment of Systemic Lupus Erythematosus (SLE, phase Ill), multiple sclerosis (MS, phase II) and rheumatoid arthritis (RA, phase II), as well as in phase I clinical trials for the treatment of the B-cell malignancies chronic lymphocytic leukaemia (CLL), non-Hodgkins lymphoma (NHL) and MM. In preclinical studies atacicept reduces growth and survival of primary MM cells and MM cell lines in vitro (Moreaux et al, Blood, 2004, 103) and in vivo (Yaccoby et al, Leukemia, 2008, 22, 406-13), demonstrating the relevance of TACI ligands for MM cells. Since most MM cells and derived cell lines express BCMA and TACI, both receptors might contribute to ligand-mediated growth and survival. These data suggest that antagonizing both BCMA and TACI might be beneficial in the treatment of plasma cell disorders. In addition, BCMA-specific antibodies that cross react with TACI have been described (WO 02/066516).


Human Genome Sciences and GlaxoSmithKline have developed an antibody targeting BAFF which is called Belimumab. Belimumab blocks the binding of soluble BAFF to its receptors BAFF-R, BCMA and TACI on B cells. Belimumab does not bind B cells directly, but by binding BAFF, belimumab inhibits the survival of B cells, including autoreactive B cells, and reduces the differentiation of B cells into immunoglobulin-producing plasma cells.


Nevertheless, despite the fact that BCMA; BAFF-R and TACI, i.e., B cell receptors belonging to the TNF receptor super family, and their ligands BAFF and APRIL are subject to therapies in fighting against cancer and/or autoimmune disorders, there is still a need for having available further options for the treatment of such medical conditions.


Accordingly, there is provided herewith means and methods for the solution of this problem in the form of a binding molecule which is at least bispecific with one binding domain to cytotoxic cells, i.e., cytotoxic T cells, and with a second binding domain to BCMA.


Thus, in a first aspect the present invention provides a binding molecule which is at least bispecific comprising a first and a second binding domain, wherein

    • (a) the first binding domain is capable of binding to epitope cluster 3 of BCMA (CQLRCSSNTPPLTCQRYC) (SEQ ID NO:1016); and
    • (b) the second binding domain is capable of binding to the T cell CD3 receptor complex; and


wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002.


It must be noted that as used herein, the singular forms “a”, “an”, and “the”, include plural references unless the context clearly indicates otherwise. Thus, for example, reference to “a reagent” includes one or more of such different reagents and reference to “the method” includes reference to equivalent steps and methods known to those of ordinary skill in the art that could be modified or substituted for the methods described herein.


Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present invention.


The term “and/or” wherever used herein includes the meaning of “and”, “or” and “all or any other combination of the elements connected by said term”.


The term “about” or “approximately” as used herein means within ±20%, preferably within ±15%, more preferably within ±10%, and most preferably within ±5% of a given value or range.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. When used herein the term “comprising” can be substituted with the term “containing” or “including” or sometimes when used herein with the term “having”.


When used herein “consisting of” excludes any element, step, or ingredient not specified in the claim element. When used herein, “consisting essentially of” does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim.


In each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms.


Epitope cluster 3 is comprised by the extracellular domain of BCMA. The “BCMA extracellular domain” or “BCMA ECD” refers to a form of BCMA which is essentially free of transmembrane and cytoplasmic domains of BCMA. It will be understood by the skilled artisan that the transmembrane domain identified for the BCMA polypeptide of the present invention is identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain specifically mentioned herein. A preferred BCMA ECD is shown in SEQ ID NO: 1007.


The T cell CD3 receptor complex is a protein complex and is composed of four distinct chains. In mammals, the complex contains a CD3γ chain, a CD3δ chain, and two CD3ε (epsilon) chains. These chains associate with a molecule known as the T cell receptor (TCR) and the ζ chain to generate an activation signal in T lymphocytes.


The redirected lysis of target cells via the recruitment of T cells by bispecific molecules involves cytolytic synapse formation and delivery of perforin and granzymes. The engaged T cells are capable of serial target cell lysis, and are not affected by immune escape mechanisms interfering with peptide antigen processing and presentation, or clonal T cell differentiation; see, for example, WO 2007/042261.


The term “binding molecule” in the sense of the present disclosure indicates any molecule capable of (specifically) binding to, interacting with or recognizing the target molecules BCMA and CD3. According to the present invention, binding molecules are preferably polypeptides. Such polypeptides may include proteinaceous parts and non-proteinaceous parts (e.g. chemical linkers or chemical cross-linking agents such as glutaraldehyde).


A binding molecule, so to say, provides the scaffold for said one or more binding domains so that said binding domains can bind/interact with the target molecules BCMA and CD3. For example, such a scaffold could be provided by protein A, in particular, the Z-domain thereof (affibodies), ImmE7 (immunity proteins), BPTI/APPI (Kunitz domains), Ras-binding protein AF-6 (PDZ-domains), charybdotoxin (Scorpion toxin), CTLA-4, Min-23 (knottins), lipocalins (anticalins), neokarzinostatin, a fibronectin domain, an ankyrin consensus repeat domain or thioredoxin (Skerra, Curr. Opin. Biotechnol. 18, 295-304 (2005); Hosse et al., Protein Sci. 15, 14-27 (2006); Nicaise et al., Protein Sci. 13, 1882-1891 (2004); Nygren and Uhlen, Curr. Opin. Struc. Biol. 7, 463-469 (1997)). A preferred binding molecule is an antibody.


It is envisaged that the binding molecule is produced by (or obtainable by) phage-display or library screening methods rather than by grafting CDR sequences from a pre-existing (monoclonal) antibody into a scaffold, for example, a scaffold as disclosed herein.


The term “bispecific” as used herein refers to a binding molecule which comprises at least a first and a second binding domain, wherein the first binding domain is capable of binding to one antigen or target, and the second binding domain is capable of binding to another antigen or target. The “binding molecule” of the invention also comprises multispecific binding molecules such as e.g. trispecific binding molecules, the latter ones including three binding domains.


It is also envisaged that the binding molecule of the invention has, in addition to its function to bind to the target molecules BCMA and CD3, a further function. In this format, the binding molecule is a tri- or multifunctional binding molecule by targeting plasma cells through binding to BCMA, mediating cytotoxic T cell activity through CD3 binding and providing a further function such as a fully functional Fc constant domain mediating antibody-dependent cellular cytotoxicity through recruitment of effector cells like NK cells, a label (fluorescent etc.), a therapeutic agent such as, e.g. a toxin or radionuclide, and/or means to enhance serum half-life, etc.


The term “binding domain” characterizes in connection with the present invention a domain which is capable of specifically binding to/interacting with a given target epitope or a given target site on the target molecules BCMA and CD3.


Binding domains can be derived from a binding domain donor such as for example an antibody, protein A, ImmE7 (immunity proteins), BPTI/APPI (Kunitz domains), Ras-binding protein AF-6 (PDZ-domains), charybdotoxin (Scorpion toxin), CTLA-4, Min-23 (knottins), lipocalins (anticalins), neokarzinostatin, a fibronectin domain, an ankyrin consensus repeat domain or thioredoxin (Skerra, Curr. Opin. Biotechnol. 18, 295-304 (2005); Hosse et al., Protein Sci. 15, 14-27 (2006); Nicaise et al., Protein Sci. 13, 1882-1891 (2004); Nygren and Uhlen, Curr. Opin. Struc. Biol. 7, 463-469 (1997)). A preferred binding domain is derived from an antibody. It is envisaged that a binding domain of the present invention comprises at least said part of any of the aforementioned binding domains that is required for binding to/interacting with a given target epitope or a given target site on the target molecules BCMA and CD3.


It is envisaged that the binding domain of the aforementioned binding domain donors is characterized by that part of these donors that is responsible for binding the respective target, i.e. when that part is removed from the binding domain donor, said donor loses its binding capability. “Loses” means a reduction of at least 50% of the binding capability when compared with the binding donor. Methods to map these binding sites are well known in the art—it is therefore within the standard knowledge of the skilled person to locate/map the binding site of a binding domain donor and, thereby, to “derive” said binding domain from the respective binding domain donors.


The term “epitope” refers to a site on an antigen to which a binding domain, such as an antibody or immunoglobulin or derivative or fragment of an antibody or of an immunoglobulin, specifically binds. An “epitope” is antigenic and thus the term epitope is sometimes also referred to herein as “antigenic structure” or “antigenic determinant”. Thus, the binding domain is an “antigen-interaction-site”. Said binding/interaction is also understood to define a “specific recognition”. In one example, said binding domain which (specifically) binds to/interacts with a given target epitope or a given target site on the target molecules BCMA and CD3 is an antibody or immunoglobulin, and said binding domain is a VH and/or VL region of an antibody or of an immunoglobulin.


“Epitopes” can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein. A “linear epitope” is an epitope where an amino acid primary sequence comprises the recognized epitope. A linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids in a unique sequence.


A “conformational epitope”, in contrast to a linear epitope, is an epitope wherein the primary sequence of the amino acids comprising the epitope is not the sole defining component of the epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not necessarily recognized by the binding domain). Typically a conformational epitope comprises an increased number of amino acids relative to a linear epitope. With regard to recognition of conformational epitopes, the binding domain recognizes a three-dimensional structure of the antigen, preferably a peptide or protein or fragment thereof (in the context of the present invention, the antigen for one of the binding domains is comprised within the BCMA protein). For example, when a protein molecule folds to form a three-dimensional structure, certain amino acids and/or the polypeptide backbone forming the conformational epitope become juxtaposed enabling the antibody to recognize the epitope. Methods of determining the conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin labelling and electron paramagnetic resonance (EPR) spectroscopy. Moreover, the provided examples describe a further method to test whether a given binding domain binds to one or more epitope cluster(s) of a given protein, in particular BCMA.


In one aspect, the first binding domain of the present invention is capable of binding to epitope cluster 3 of human BCMA, preferably human BCMA ECD. Accordingly, when the respective epitope cluster in the human BCMA protein is exchanged with the respective epitope cluster of a murine BCMA antigen (resulting in a construct comprising human BCMA, wherein human epitope cluster 3 is replaced with murine epitope cluster 3; see SEQ ID NO: 1011), a decrease in the binding of the binding domain will occur. Said decrease is preferably at least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, 90%, 95% or even 100% in comparison to the respective epitope cluster in the human BCMA protein, whereby binding to the respective epitope cluster in the human BCMA protein is set to be 100%. It is envisaged that the aforementioned human BCMA/murine BCMA chimeras are expressed in CHO cells. It is also envisaged that the human BCMA/murine BCMA chimeras are fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM; see FIG. 2A.


A method to test this loss of binding due to exchange with the respective epitope cluster of a non-human (e.g. murine) BCMA antigen is described in the appended Examples, in particular in Examples 1-3. A further method to determine the contribution of a specific residue of a target antigen to the recognition by a given binding molecule or binding domain is alanine scanning (see e.g. Morrison K L & Weiss G A. Cur Opin Chem Biol. 2001 June; 5(3):302-7), where each residue to be analyzed is replaced by alanine, e.g. via site-directed mutagenesis. Alanine is used because of its non-bulky, chemically inert, methyl functional group that nevertheless mimics the secondary structure references that many of the other amino acids possess. Sometimes bulky amino acids such as valine or leucine can be used in cases where conservation of the size of mutated residues is desired. Alanine scanning is a mature technology which has been used for a long period of time.


As used herein, the term “epitope cluster” denotes the entirety of epitopes lying in a defined contiguous stretch of an antigen. An epitope cluster can comprise one, two or more epitopes. The epitope clusters that were defined—in the context of the present invention—in the extracellular domain of BCMA are described above and depicted in FIG. 1.


The terms “(capable of) binding to”, “specifically recognizing”, “directed to” and “reacting with” mean in accordance with this invention that a binding domain is capable of specifically interacting with one or more, preferably at least two, more preferably at least three and most preferably at least four amino acids of an epitope.


As used herein, the terms “specifically interacting”, “specifically binding” or “specifically bind(s)” mean that a binding domain exhibits appreciable affinity for a particular protein or antigen and, generally, does not exhibit significant reactivity with proteins or antigens other than BCMA or CD3. “Appreciable affinity” includes binding with an affinity of about 10−6M (KD) or stronger. Preferably, binding is considered specific when binding affinity is about 10−12 to 10−8 M, 10−12 to 10−9 M, 10−12 to 10−10 M, 10−11 to 10−8 M, preferably of about 10−11 to 10−9 M. Whether a binding domain specifically reacts with or binds to a target can be tested readily by, inter alia, comparing the reaction of said binding domain with a target protein or antigen with the reaction of said binding domain with proteins or antigens other than BCMA or CD3. Preferably, a binding domain of the invention does not essentially bind or is not capable of binding to proteins or antigens other than BCMA or CD3 (i.e. the first binding domain is not capable of binding to proteins other than BCMA and the second binding domain is not capable of binding to proteins other than CD3).


The term “does not essentially bind”, or “is not capable of binding” means that a binding domain of the present invention does not bind another protein or antigen other than BCMA or CD3, i.e., does not show reactivity of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or antigens other than BCMA or CD3, whereby binding to BCMA or CD3, respectively, is set to be 100%.


Specific binding is believed to be effected by specific motifs in the amino acid sequence of the binding domain and the antigen. Thus, binding is achieved as a result of their primary, secondary and/or tertiary structure as well as the result of secondary modifications of said structures. The specific interaction of the antigen-interaction-site with its specific antigen may result in a simple binding of said site to the antigen. Moreover, the specific interaction of the antigen-interaction-site with its specific antigen may alternatively or additionally result in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an oligomerization of the antigen, etc.


In one aspect, the first binding domain of the present invention binds to epitope cluster 3 of human BCMA and is further capable of binding to epitope cluster 3 of macaque BCMA such as BCMA from Macaca mulatta (SEQ ID NO:1017) or Macaca fascicularis (SEQ ID NO:1017). It is envisaged that the first binding domain does or does not bind to murine BCMA.


Accordingly, in one embodiment, a binding domain which binds to human BCMA, in particular to epitope cluster 3 of the extracellular protein domain of BCMA formed by amino acid residues 24 to 41 of the human sequence as depicted in SEQ ID NO: 1002, also binds to macaque BCMA, in particular to epitope cluster 3 of the extracellular protein domain of BCMA formed by amino acid residues 24 to 41 of the macaque BCMA sequence as depicted in SEQ ID NO: 1006.


In one embodiment, a first binding domain of a binding molecule is capable of binding to epitope cluster 3 of BCMA, wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002 (human BCMA full-length polypeptide) or SEQ ID NO: 1007 (human BCMA extracellular domain: amino acids 1-54 of SEQ ID NO: 1002).


In one aspect of the present invention, the first binding domain of the binding molecule is additionally or alternatively capable of binding to epitope cluster 3 of Callithrix jacchus, Saguinus oedipus and/or Saimiri sciureus BCMA.


Proteins (including fragments thereof, preferably biologically active fragments, and peptides, usually having less than 30 amino acids) comprise one or more amino acids coupled to each other via a covalent peptide bond (resulting in a chain of amino acids). The term “polypeptide” as used herein describes a group of molecules, which consist of more than 30 amino acids. Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e. consisting of more than one polypeptide molecule. Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. An example for a hereteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains.


The terms “polypeptide” and “protein” also refer to naturally modified polypeptides/proteins wherein the modification is effected e.g. by post-translational modifications like glycosylation, acetylation, phosphorylation and the like. A “polypeptide” when referred to herein may also be chemically modified such as pegylated. Such modifications are well known in the art.


In another aspect of the invention, the second binding domain is capable of binding to CD3 epsilon. In still another aspect of the invention, the second binding domain is capable of binding to human CD3 and to macaque CD3, preferably to human CD3 epsilon and to macaque CD3 epsilon. Additionally or alternatively, the second binding domain is capable of binding to Callithrix jacchus, Saguinus oedipus and/or Saimiri sciureus CD3 epsilon. According to these embodiments, one or both binding domains of the binding molecule of the invention are preferably cross-species specific for members of the mammalian order of primates. Cross-species specific CD3 binding domains are, for example, described in WO 2008/119567.


It is particularly preferred for the binding molecule of the present invention that the second binding domain capable of binding to the T cell CD3 receptor complex comprises a VL region comprising CDR-L1, CDR-L2 and CDR-L3 selected from:

    • (a) CDR-L1 as depicted in SEQ ID NO: 27 of WO 2008/119567, CDR-L2 as depicted in SEQ ID NO: 28 of WO 2008/119567 and CDR-L3 as depicted in SEQ ID NO: 29 of WO 2008/119567;
    • (b) CDR-L1 as depicted in SEQ ID NO: 117 of WO 2008/119567, CDR-L2 as depicted in SEQ ID NO: 118 of WO 2008/119567 and CDR-L3 as depicted in SEQ ID NO: 119 of WO 2008/119567; and
    • (c) CDR-L1 as depicted in SEQ ID NO: 153 of WO 2008/119567, CDR-L2 as depicted in SEQ ID NO: 154 of WO 2008/119567 and CDR-L3 as depicted in SEQ ID NO: 155 of WO 2008/119567.


In an alternatively preferred embodiment of the binding molecule of the present invention, the second binding domain capable of binding to the T cell CD3 receptor complex comprises a VH region comprising CDR-H 1, CDR-H2 and CDR-H3 selected from:

    • (a) CDR-H1 as depicted in SEQ ID NO: 12 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 13 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 14 of WO 2008/119567;
    • (b) CDR-H1 as depicted in SEQ ID NO: 30 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 31 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 32 of WO 2008/119567;
    • (c) CDR-H1 as depicted in SEQ ID NO: 48 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 49 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 50 of WO 2008/119567;
    • (d) CDR-H1 as depicted in SEQ ID NO: 66 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 67 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 68 of WO 2008/119567;
    • (e) CDR-H1 as depicted in SEQ ID NO: 84 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 85 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 86 of WO 2008/119567;
    • (f) CDR-H1 as depicted in SEQ ID NO: 102 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 103 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 104 of WO 2008/119567;
    • (g) CDR-H1 as depicted in SEQ ID NO: 120 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 121 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 122 of WO 2008/119567;
    • (h) CDR-H1 as depicted in SEQ ID NO: 138 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 139 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 140 of WO 2008/119567;
    • (i) CDR-H1 as depicted in SEQ ID NO: 156 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 157 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 158 of WO 2008/119567; and
    • (j) CDR-H1 as depicted in SEQ ID NO: 174 of WO 2008/119567, CDR-H2 as depicted in SEQ ID NO: 175 of WO 2008/119567 and CDR-H3 as depicted in SEQ ID NO: 176 of WO 2008/119567.


It is further preferred for the binding molecule of the present invention that the second binding domain capable of binding to the T cell CD3 receptor complex comprises a VL region selected from the group consisting of a VL region as depicted in SEQ ID NO: 35, 39, 125, 129, 161 or 165 of WO 2008/119567.


It is alternatively preferred that the second binding domain capable of binding to the T cell CD3 receptor complex comprises a VH region selected from the group consisting of a VH region as depicted in SEQ ID NO: 15, 19, 33, 37, 51, 55, 69, 73, 87, 91, 105, 109, 123, 127, 141, 145, 159, 163, 177 or 181 of WO 2008/119567.


More preferably, the binding molecule of the present invention is characterized by the second binding domain capable of binding to the T cell CD3 receptor complex comprising a VL region and a VH region selected from the group consisting of:

    • (a) a VL region as depicted in SEQ ID NO: 17 or 21 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 15 or 19 of WO 2008/119567;
    • (b) a VL region as depicted in SEQ ID NO: 35 or 39 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 33 or 37 of WO 2008/119567;
    • (c) a VL region as depicted in SEQ ID NO: 53 or 57 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 51 or 55 of WO 2008/119567;
    • (d) a VL region as depicted in SEQ ID NO: 71 or 75 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 69 or 73 of WO 2008/119567;
    • (e) a VL region as depicted in SEQ ID NO: 89 or 93 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 87 or 91 of WO 2008/119567;
    • (f) a VL region as depicted in SEQ ID NO: 107 or 111 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 105 or 109 of WO 2008/119567;
    • (g) a VL region as depicted in SEQ ID NO: 125 or 129 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 123 or 127 of WO 2008/119567;
    • (h) a VL region as depicted in SEQ ID NO: 143 or 147 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 141 or 145 of WO 2008/119567;
    • (i) a VL region as depicted in SEQ ID NO: 161 or 165 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 159 or 163 of WO 2008/119567; and
    • (j) a VL region as depicted in SEQ ID NO: 179 or 183 of WO 2008/119567 and a VH region as depicted in SEQ ID NO: 177 or 181 of WO 2008/119567.


According to a preferred embodiment of the binding molecule of the present invention, in particular the second binding domain capable of binding to the T cell CD3 receptor complex, the pairs of VH-regions and VL-regions are in the format of a single chain antibody (scFv). The VH and VL regions are arranged in the order VH-VL or VL-VH. It is preferred that the VH-region is positioned N-terminally to a linker sequence. The VL-region is positioned C-terminally of the linker sequence.


A preferred embodiment of the above described binding molecule of the present invention is characterized by the second binding domain capable of binding to the T cell CD3 receptor complex comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 23, 25, 41, 43, 59, 61, 77, 79, 95, 97, 113, 115, 131, 133, 149, 151, 167, 169, 185 or 187 of WO 2008/119567.


The affinity of the first binding domain for human BCMA is preferably ≤15 nM, more preferably ≤10 nM, even more preferably ≤5 nM, even more preferably ≤1 nM, even more preferably ≤0.5 nM, even more preferably ≤0.1 nM, and most preferably ≤0.05 nM. The affinity of the first binding domain for macaque BCMA is preferably ≤15 nM, more preferably ≤10 nM, even more preferably ≤5 nM, even more preferably ≤1 nM, even more preferably ≤0.5 nM, even more preferably ≤0.1 nM, and most preferably ≤0.05 nM or even ≤0.01 nM. The affinity can be measured for example in a Biacore assay or in a Scatchard assay, e.g. as described in the Examples. The affinity gap for binding to macaque BCMA versus human BCMA is preferably [1:10-1:5] or [5:1-10:1], more preferably [1:5-5:1], and most preferably [1:2-3:1] or even [1:1-3:1]. Other methods of determining the affinity are well-known to the skilled person.


Cytotoxicity mediated by BCMA/CD3 bispecific binding molecules can be measured in various ways. Effector cells can be e.g. stimulated enriched (human) CD8 positive T cells or unstimulated (human) peripheral blood mononuclear cells (PBMC). If the target cells are of macaque origin or express or are transfected with macaque BCMA, the effector cells should also be of macaque origin such as a macaque T cell line, e.g. 4119LnPx. The target cells should express (at least the extracellular domain of) BCMA, e.g. human or macaque BCMA. Target cells can be a cell line (such as CHO) which is stably or transiently transfected with BCMA, e.g. human or macaque BCMA. Alternatively, the target cells can be a BCMA positive natural expresser cell line, such as the human multiple myeloma cell line L363 or NCI-H929. Usually EC50-values are expected to be lower with target cell lines expressing higher levels of BCMA on the cell surface. The effector to target cell (E:T) ratio is usually about 10:1, but can also vary. Cytotoxic activity of BCMA/CD3 bispecific binding molecules can be measured in an 51-chromium release assay (incubation time of about 18 hours) or in a in a FACS-based cytotoxicity assay (incubation time of about 48 hours). Modifications of the assay incubation time (cytotoxic reaction) are also possible. Other methods of measuring cytotoxicity are well-known to the skilled person and comprise MTT or MTS assays, ATP-based assays including bioluminescent assays, the sulforhodamine B (SRB) assay, WST assay, clonogenic assay and the ECIS technology.


The cytotoxic activity mediated by BCMA/CD3 bispecific binding molecules of the present invention is preferably measured in a cell-based cytotoxicity assay. It is represented by the EC50 value, which corresponds to the half maximal effective concentration (concentration of the binding molecule which induces a cytotoxic response halfway between the baseline and maximum). Preferably, the EC50 value of the BCMA/CD3 bispecific binding molecules is ≤20.000 pg/ml, more preferably ≤5000 pg/ml, even more preferably ≤1000 pg/ml, even more preferably ≤500 pg/ml, even more preferably ≤350 pg/ml, even more preferably ≤320 pg/ml, even more preferably ≤250 pg/ml, even more preferably ≤100 pg/ml, even more preferably ≤50 pg/ml, even more preferably ≤10 pg/ml, and most preferably ≤5 pg/ml.


Any of the above given EC50 values can be combined with any one of the indicated scenarios of a cell-based cytotoxicity assay. For example, when (human) CD8 positive T cells or a macaque T cell line are used as effector cells, the EC50 value of the BCMA/CD3 bispecific binding molecule is preferably ≤1000 pg/ml, more preferably ≤500 pg/ml, even more preferably ≤250 pg/ml, even more preferably ≤100 pg/ml, even more preferably ≤50 pg/ml, even more preferably ≤10 pg/ml, and most preferably ≤5 pg/ml. If in this assay the target cells are (human or macaque) BCMA transfected cells such as CHO cells, the EC50 value of the BCMA/CD3 bispecific binding molecule is preferably ≤150 pg/ml, more preferably ≤100 pg/ml, even more preferably ≤50 pg/ml, even more preferably ≤30 pg/ml, even more preferably ≤10 pg/ml, and most preferably ≤5 pg/ml.


If the target cells are a BCMA positive natural expresser cell line, then the EC50 value is preferably ≤350 pg/ml, more preferably ≤320 pg/ml, even more preferably ≤250 pg/ml, even more preferably ≤200 pg/ml, even more preferably ≤100 pg/ml, even more preferably ≤150 pg/ml, even more preferably ≤100 pg/ml, and most preferably ≤50 pg/ml, or lower.


When (human) PBMCs are used as effector cells, the EC50 value of the BCMA/CD3 bispecific binding molecule is preferably ≤1000 pg/ml, more preferably ≤750 pg/ml, more preferably ≤500 pg/ml, even more preferably ≤350 pg/ml, even more preferably ≤320 pg/ml, even more preferably ≤250 pg/ml, even more preferably ≤100 pg/ml, and most preferably ≤50 pg/ml, or lower.


In a particularly preferred embodiment, the BCMA/CD3 bispecific binding molecules of the present invention are characterized by an EC50 of ≤350 pg/ml or less, more preferably ≤320 pg/ml or less. In that embodiment the target cells are L363 cells and the effector cells are unstimulated human PBMCs. The skilled person knows how to measure the EC50 value without further ado. Moreover, the specification teaches a specific instruction how to measure the EC50 value; see, for example, Example 8.3, below. A suitable protocol is as follows:

    • a) Prepare human peripheral blood mononuclear cells (PBMC) by Ficoll density gradient centrifugation from enriched lymphocyte preparations (buffy coats)
    • b) Optionally wash with Dulbecco's PBS (Gibco)
    • c) Remove remaining erythrocytes from PBMC via incubation with erythrocyte lysis buffer (155 mM NH4Cl, 10 mM KHCO3, 100 μM EDTA)
    • c) Remove platelets via the supernatant upon centrifugation of PBMC at 100×g
    • d) Deplete CD14+ cells and NK cells
    • e) Isolate CD14/CD56 negative cells using, e.g. LS Columns (Miltenyi Biotec, #130-042-401)
    • f) Culture PBMC w/o CD14+/CD56+ cells, e.g. in RPMI complete medium i.e. RPM11640 (Biochrom AG, #FG1215) supplemented with 10% FBS (Biochrom AG, #S0115), 1× non-essential amino acids (Biochrom AG, #K0293), 10 mM Hepes buffer (Biochrom AG, #L1613), 1 mM sodium pyruvate (Biochrom AG, #L0473) and 100 U/mL penicillin/streptomycin (Biochrom AG, #A2213) at 37° C. in an incubator until needed.
    • g) Label target cells
    • h) Mix effector and target cells, preferably at equal volumes, so as to have an E:T cell ratio of 10:1
    • i) Add the binding molecule, preferably in a serial dilution
    • j) Proceed for 48 hours in a 7% CO2 humidified incubator
    • k) Monitor target cell membrane integrity, e.g., by adding propidium iodide (PI) at a final concentration of 1 μg/mL, for example, by flow cytometry
    • l) Calculate EC50, e.g., according to the following formula:








Cytotoxicity

[
%
]

=



n

dead


targetcells



n
targetcells


×
1

0

0





n
=

number


of


events






Using GraphPad Prism 5 software (Graph Pad Software, San Diego), the percentage of cytotoxicity was plotted against the corresponding bispecific antibody concentrations. Dose response curves can be analyzed with the four parametric logistic regression models for evaluation of sigmoid dose response curves with fixed hill slope and EC50 values were calculated.


In view of the above, it is preferred that the binding molecule of the present invention is characterized by an EC50 (pg/ml) of 350 or less, preferably 320 or less.


The present invention also relates to binding molecules described herein which are characterized by an EC50 (pg/ml) which equates to the EC50 (pg/ml) of any one of the BCMA/CD3 bispecific binding molecules BCMA-83 x CD3, BCMA-62 x CD3, BCMA-5 x CD3, BCMA-98 x CD3, BCMA-71 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-20 x CD3. In order to determine as to whether the EC50 of a binding molecule as described herein equates to the EC50 of any one of BCMA-83 x CD3, BCMA-62 x CD3, BCMA-5 x CD3, BCMA-98 x CD3, BCMA-71 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-20 x CD3, it is envisaged that for the determination of the EC50 value the same assay is applied. The term “equates to” includes thereby a deviation of +/−10%, preferably +/−7.5%, more preferably +/−5%, even more preferably +/−2.5% of the respective EC50 value.


The BCMA/CD3 bispecific binding molecules BCMA-83 x CD3, BCMA-62 x CD3, BCMA-5 x CD3, BCMA-98 x CD3, BCMA-71 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-20 x CD3 that serve as “reference” binding molecules in the above described assay are preferably produced in CHO cells.


The difference in cytotoxic activity between the monomeric and the dimeric isoform of individual BCMA/CD3 bispecific binding molecules (such as antibodies) is referred to as “potency gap”. This potency gap can e.g. be calculated as ratio between EC50 values of the molecule's monomeric and dimeric form. Potency gaps of the BCMA/CD3 bispecific binding molecules of the present invention are preferably ≤5, more preferably ≤4, even more preferably ≤3, even more preferably ≤2 and most preferably ≤1.


Preferably, the BCMA/CD3 bispecific binding molecules of the present invention do not bind to, interact with, recognize or cross-react with human BAFF-R and/or human TACI. Methods to detect cross-reactivity with human BAFF-R and/or human TACI are disclosed in Example 9.


It is also preferred that the BCMA/CD3 bispecific binding molecules of the present invention present with very low dimer conversion after a number of freeze/thaw cycles. Preferably the dimer percentages are ≤5%, more preferably ≤4%, even more preferably ≤3%, even more preferably ≤2.5%, even more preferably ≤2%, even more preferably ≤1.5%, and most preferably ≤1%, for example after three freeze/thaw cycles. A freeze-thaw cycle and the determination of the dimer percentage can be carried out in accordance with Example 16.


The BCMA/CD3 bispecific binding molecules (such as antibodies) of the present invention preferably show a favorable thermostability with melting temperatures above 60° C.


To determine potential interaction of BCMA/CD3 bispecific binding molecules (such as antibodies) with human plasma proteins, a plasma interference test can be carried out (see e.g. Example 18). In a preferred embodiment, there is no significant reduction of target binding of the BCMA/CD3 bispecific binding molecules mediated by plasma proteins. The relative plasma interference value is preferably ≤2.


It is furthermore envisaged that the BCMA/CD3 bispecific binding molecules of the present invention are capable of exhibiting therapeutic efficacy or anti-tumor activity. This can be assessed e.g. in a study as disclosed in Example 19 (advanced stage human tumor xenograft model). The skilled person knows how to modify or adapt certain parameters of this study, such as the number of injected tumor cells, the site of injection, the number of transplanted human T cells, the amount of BCMA/CD3 bispecific binding molecules to be administered, and the timelines, while still arriving at a meaningful and reproducible result. Preferably, the tumor growth inhibition T/C [%] is 70 or 60 or lower, more preferably ≤0 or 40 or lower, even more preferably at least 30 or 20 or lower and most preferably 10 or lower, 5 or lower or even 2.5 or lower.


Preferably, the BCMA/CD3 bispecific binding molecules of the present invention do not induce/mediate lysis or do not essentially induce/mediate lysis of BCMA negative cells such as HL60, MES-SA, and SNU-16. The term “do not induce lysis”, “do not essentially induce lysis”, “do not mediate lysis” or “do not essentially mediate lysis” means that a binding molecule of the present invention does not induce or mediate lysis of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% of BCMA negative cells, whereby lysis of a BCMA positive cell line such as NCI-H929, L-363 or OPM-2 is set to be 100%. This applies for concentrations of the binding molecule of at least up to 500 nM. The skilled person knows how to measure cell lysis without further ado. Moreover, the specification teaches a specific instruction how to measure cell lysis; see e.g. Example 20 below.


In one embodiment, the first or the second binding domain is or is derived from an antibody. In another embodiment, both binding domains are or are derived from an antibody.


The definition of the term “antibody” includes embodiments such as monoclonal, chimeric, single chain, humanized and human antibodies. In addition to full-length antibodies, the definition also includes antibody derivatives and antibody fragments, like, inter alia, Fab fragments. Antibody fragments or derivatives further comprise F(ab′)2, Fv, scFv fragments or single domain antibodies such as domain antibodies or nanobodies, single variable domain antibodies or immunoglobulin single variable domain comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains; see, for example, Harlow and Lane (1988) and (1999), loc. cit.; Kontermann and Dübel, Antibody Engineering, Springer, 2nd ed. 2010 and Little, Recombinant Antibodies for Immunotherapy, Cambridge University Press 2009. Said term also includes diabodies or Dual-Affinity Re-Targeting (DART) antibodies. Further envisaged are (bispecific) single chain diabodies, tandem diabodies (Tandab's), “minibodies” exemplified by a structure which is as follows: (VH-VL-CH3)2, (scFv-CH3)2 or (scFv-CH3-scFv)2, “Fc DART” antibodies and “IgG DART” antibodies, and multibodies such as triabodies. Immunoglobulin single variable domains encompass not only an isolated antibody single variable domain polypeptide, but also larger polypeptides that comprise one or more monomers of an antibody single variable domain polypeptide sequence.


Various procedures are known in the art and may be used for the production of such antibodies and/or fragments. Thus, (antibody) derivatives can be produced by peptidomimetics. Further, techniques described for the production of single chain antibodies (see, inter alia, U.S. Pat. No. 4,946,778, Kontermann and Dübel (2010), loc. cit. and Little (2009), loc. cit.) can be adapted to produce single chain antibodies specific for elected polypeptide(s). Also, transgenic animals may be used to express humanized antibodies specific for polypeptides and fusion proteins of this invention. For the preparation of monoclonal antibodies, any technique, providing antibodies produced by continuous cell line cultures can be used. Examples for such techniques include the hybridoma technique (Köhler and Milstein Nature 256 (1975), 495-497), the trioma technique, the human B cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72) and the EBV hybridoma technique to produce human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), 77-96). Surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to an epitope of a target polypeptide, such as CD3 epsilon (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). It is also envisaged in the context of this invention that the term “antibody” comprises antibody constructs, which may be expressed in a host as described herein below, e.g. antibody constructs which may be transfected and/or transduced via, inter alia, viruses or plasmid vectors.


Furthermore, the term “antibody” as employed herein also relates to derivatives or variants of the antibodies described herein which display the same specificity as the described antibodies. Examples of “antibody variants” include humanized variants of non-human antibodies, “affinity matured” antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et al., Biochemistry 30, 10832-10837 (1991)) and antibody mutants with altered effector function(s) (see, e.g., U.S. Pat. No. 5,648,260, Kontermann and Dübel (2010), loc. cit. and Little (2009), loc. cit.).


The terms “antigen-binding domain”, “antigen-binding fragment” and “antibody binding region” when used herein refer to a part of an antibody molecule that comprises amino acids responsible for the specific binding between antibody and antigen. The part of the antigen that is specifically recognized and bound by the antibody is referred to as the “epitope” as described herein above. As mentioned above, an antigen-binding domain may typically comprise an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it does not have to comprise both. Fd fragments, for example, have two VH regions and often retain some antigen-binding function of the intact antigen-binding domain. Examples of antigen-binding fragments of an antibody include (1) a Fab fragment, a monovalent fragment having the VL, VH, CL and CH1 domains; (2) a F(ab′)2 fragment, a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; (3) an Fd fragment having the two VH and CH1 domains; (4) an Fv fragment having the VL and VH domains of a single arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which has a VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain Fv (scFv), the latter being preferred (for example, derived from a scFV-library). Although the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883). These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are evaluated for function in the same manner as are intact antibodies.


The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991), for example.


The monoclonal antibodies of the present invention specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is (are) identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984)). Chimeric antibodies of interest herein include “primitized” antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human constant region sequences.


“Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) of mostly human sequences, which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (also CDR) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, “humanized antibodies” as used herein may also comprise residues which are found neither in the recipient antibody nor the donor antibody. These modifications are made to further refine and optimize antibody performance. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525 (1986); Reichmann et al., Nature, 332: 323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2: 593-596 (1992).


The term “human antibody” includes antibodies having variable and constant regions corresponding substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (See Kabat et al. (1991) loc. cit.). The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, CDR3. The human antibody can have at least one, two, three, four, five, or more positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence.


As used herein, “in vitro generated antibody” refers to an antibody where all or part of the variable region (e.g., at least one CDR) is generated in a non-immune cell selection (e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen). This term thus preferably excludes sequences generated by genomic rearrangement in an immune cell.


A “bispecific” or “bifunctional” antibody or immunoglobulin is an artificial hybrid antibody or immunoglobulin having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315-321 (1990). Numerous methods known to those skilled in the art are available for obtaining antibodies or antigen-binding fragments thereof. For example, antibodies can be produced using recombinant DNA methods (U.S. Pat. No. 4,816,567). Monoclonal antibodies may also be produced by generation of hybridomas (see e.g., Kohler and Milstein (1975) Nature, 256: 495-499) in accordance with known methods. Hybridomas formed in this manner are then screened using standard methods, such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (BIACORE™) analysis, to identify one or more hybridomas that produce an antibody that specifically binds with a specified antigen. Any form of the specified antigen may be used as the immunogen, e.g., recombinant antigen, naturally occurring forms, any variants or fragments thereof, as well as antigenic peptide thereof.”


One exemplary method of making antibodies includes screening protein expression libraries, e.g., phage or ribosome display libraries. Phage display is described, for example, in Ladner et al., U.S. Pat. No. 5,223,409; Smith (1985) Science 228:1315-1317; Clackson et al. (1991) Nature, 352: 624-628.


In addition to the use of display libraries, the specified antigen can be used to immunize a non-human animal, e.g., a rodent, e.g., a mouse, hamster, or rat. In one embodiment, the non-human animal includes at least a part of a human immunoglobulin gene. For example, it is possible to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig loci. Using the hybridoma technology, antigen-specific monoclonal antibodies derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSE™, Green et al. (1994) Nature Genetics 7:13-21, US 2003-0070185, WO 96/34096, and WO96/33735.


A monoclonal antibody can be obtained from a non-human animal, and then modified, e.g., humanized, deimmunized, chimeric, may be produced using recombinant DNA techniques known in the art. A variety of approaches for making chimeric antibodies have been described. See e.g., Morrison et al., Proc. Natl. Acad. ScL U.S.A. 81:6851, 1985; Takeda et al., Nature 314:452, 1985, Cabilly et al., U.S. Pat. No. 4,816,567; Boss et al., U.S. Pat. No. 4,816,397; Tanaguchi et al., EP 0171496; EP 0173494, GB 2177096. Humanized antibodies may also be produced, for example, using transgenic mice that express human heavy and light chain genes, but are incapable of expressing the endogenous mouse immunoglobulin heavy and light chain genes. Winter describes an exemplary CDR-grafting method that may be used to prepare the humanized antibodies described herein (U.S. Pat. No. 5,225,539). All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR, or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.


Humanized antibodies or fragments thereof can be generated by replacing sequences of the Fv variable domain that are not directly involved in antigen binding with equivalent sequences from human Fv variable domains. Exemplary methods for generating humanized antibodies or fragments thereof are provided by Morrison (1985) Science 229:1202-1207; by Oi et al. (1986) BioTechniques 4:214; and by U.S. Pat. Nos. 5,585,089; 5,693,761; 5,693,762; 5,859,205; and 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable domains from at least one of a heavy or light chain. Such nucleic acids may be obtained from a hybridoma producing an antibody against a predetermined target, as described above, as well as from other sources. The recombinant DNA encoding the humanized antibody molecule can then be cloned into an appropriate expression vector.


A humanized antibody can be optimized by the introduction of conservative substitutions, consensus sequence substitutions, germline substitutions and/or back mutations. Such altered immunoglobulin molecules can be made by any of several techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80: 7308-7312, 1983; Kozbor et al., Immunology Today, 4: 7279, 1983; Olsson et al., Meth. Enzymol., 92: 3-16, 1982), and may be made according to the teachings of EP 239 400.


An antibody or fragment thereof may also be modified by specific deletion of human T cell epitopes or “deimmunization” by the methods disclosed in WO 98/52976 and WO 00/34317. Briefly, the heavy and light chain variable domains of an antibody can be analyzed for peptides that bind to MHC class II; these peptides represent potential T cell epitopes (as defined in WO 98/52976 and WO 00/34317). For detection of potential T cell epitopes, a computer modeling approach termed “peptide threading” can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes. Potential T-cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable domains, or preferably, by single amino acid substitutions. Typically, conservative substitutions are made. Often, but not exclusively, an amino acid common to a position in human germline antibody sequences may be used. Human germline sequences, e.g., are disclosed in Tomlinson, et al. (1992) J. Mol. Biol. 227:776-798; Cook, G. P. et al. (1995) Immunol. Today Vol. 16 (5): 237-242; and Tomlinson et al. (1995) EMBO J. 14: 14:4628-4638. The V BASE directory provides a comprehensive directory of human immunoglobulin variable region sequences (compiled by Tomlinson, L A. et al. MRC Centre for Protein Engineering, Cambridge, UK). These sequences can be used as a source of human sequence, e.g., for framework regions and CDRs. Consensus human framework regions can also be used, e.g., as described in U.S. Pat. No. 6,300,064.


The pairing of a VH and VL together forms a single antigen-binding site. The CH domain most proximal to VH is designated as CH1. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. The VH and VL domains consist of four regions of relatively conserved sequences called framework regions (FR1, FR2, FR3, and FR4), which form a scaffold for three regions of hypervariable sequences (complementarity determining regions, CDRs). The CDRs contain most of the residues responsible for specific interactions of the antibody with the antigen. CDRs are referred to as CDR 1, CDR2, and CDR3. Accordingly, CDR constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on the light chain are referred to as L1, L2, and L3.


The term “variable” refers to the portions of the immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the “variable domain(s)”). Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable” regions or “complementarity determining regions” (CDRs). The more conserved (i.e., non-hypervariable) portions of the variable domains are called the “framework” regions (FRM). The variable domains of naturally occurring heavy and light chains each comprise four FRM regions, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site (see Kabat et al., loc. cit.). The constant domains are not directly involved in antigen binding, but exhibit various effector functions, such as, for example, antibody-dependent, cell-mediated cytotoxicity and complement activation.


It is also preferred for the binding molecule of the invention that first and the second domain form a molecule that is selected from the group of (scFv)2, (single domain mAb)2, scFv-single domain mAb, diabody or oligomeres thereof.


The terms “CDR”, and its plural “CDRs”, refer to a complementarity determining region (CDR) of which three make up the binding character of a light chain variable region (CDRL1, CDRL2 and CDRL3) and three make up the binding character of a heavy chain variable region (CDRH1, CDRH2 and CDRH3). CDRs contribute to the functional activity of an antibody molecule and are separated by amino acid sequences that comprise scaffolding or framework regions. The exact definitional CDR boundaries and lengths are subject to different classification and numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or any other boundary definitions, including the numbering system described herein. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called “hypervariable regions” within the variable sequences. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See for example Kabat, Chothia, and/or MacCallum (Kabat et al., loc. cit.; Chothia et al., J. Mol. Biol, 1987, 196: 901; and MacCallum et al., J. Mol. Biol, 1996, 262: 732). However, the numbering in accordance with the so-called Kabat system is preferred.


The term “amino acid” or “amino acid residue” typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gln or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (He or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or WV); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired. Generally, amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gln, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).


The term “hypervariable region” (also known as “complementarity determining regions” or CDRs) when used herein refers to the amino acid residues of an antibody which are (usually three or four short regions of extreme sequence variability) within the V-region domain of an immunoglobulin which form the antigen-binding site and are the main determinants of antigen specificity. There are at least two methods for identifying the CDR residues: (1) An approach based on cross-species sequence variability (i.e., Kabat et al., loc. cit.); and (2) An approach based on crystallographic studies of antigen-antibody complexes (Chothia, C. et al., J. Mol. Biol. 196: 901-917 (1987)). However, to the extent that two residue identification techniques define regions of overlapping, but not identical regions, they can be combined to define a hybrid CDR. However, in general, the CDR residues are preferably identified in accordance with the so-called Kabat (numbering) system.


The term “framework region” refers to the art-recognized portions of an antibody variable region that exist between the more divergent (i.e., hypervariable) CDRs. Such framework regions are typically referred to as frameworks 1 through 4 (FR1, FR2, FR3, and FR4) and provide a scaffold for the presentation of the six CDRs (three from the heavy chain and three from the light chain) in three dimensional space, to form an antigen-binding surface.


Typically, CDRs form a loop structure that can be classified as a canonical structure. The term “canonical structure” refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol. Biol., 1987, 196: 901; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton, J. Mol. Biol, 1996, 263: 800, each of which is incorporated by reference in its entirety). Furthermore, there is a relationship between the adopted loop structure and the amino acid sequences surrounding it. The conformation of a particular canonical class is determined by the length of the loop and the amino acid residues residing at key positions within the loop, as well as within the conserved framework (i.e., outside of the loop). Assignment to a particular canonical class can therefore be made based on the presence of these key amino acid residues. The term “canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit.). The Kabat numbering scheme (system) is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner and is the preferred scheme applied in the present invention as also mentioned elsewhere herein. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al and/or revealed by other techniques, for example, crystallography and two or three-dimensional computational modeling. Accordingly, a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library). Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., loc. cit. and their implications for construing canonical aspects of antibody structure, are described in the literature.


CDR3 is typically the greatest source of molecular diversity within the antibody-binding site. H3, for example, can be as short as two amino acid residues or greater than 26 amino acids. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988. One of skill in the art will recognize that each subunit structure, e.g., a CH, VH, CL, VL, CDR, FR structure, comprises active fragments, e.g., the portion of the VH, VL, or CDR subunit the binds to the antigen, i.e., the antigen-binding fragment, or, e.g., the portion of the CH subunit that binds to and/or activates, e.g., an Fc receptor and/or complement. The CDRs typically refer to the Kabat CDRs, as described in Sequences of Proteins of immunological Interest, US Department of Health and Human Services (1991), eds. Kabat et al. Another standard for characterizing the antigen binding site is to refer to the hypervariable loops as described by Chothia. See, e.g., Chothia, et al. (1987; J. Mol. Biol. 227:799-817); and Tomlinson et al. (1995) EMBO J. 14: 4628-4638. Still another standard is the AbM definition used by Oxford Molecular's AbM antibody modeling software. See, generally, e.g., Protein Sequence and Structure Analysis of Antibody Variable Domains. In: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg). Embodiments described with respect to Kabat CDRs can alternatively be implemented using similar described relationships with respect to Chothia hypervariable loops or to the AbM-defined loops.


The sequence of antibody genes after assembly and somatic mutation is highly varied, and these varied genes are estimated to encode 1010 different antibody molecules (Immunoglobulin Genes, 2nd ed., eds. Jonio et al., Academic Press, San Diego, CA, 1995). Accordingly, the immune system provides a repertoire of immunoglobulins. The term “repertoire” refers to at least one nucleotide sequence derived wholly or partially from at least one sequence encoding at least one immunoglobulin. The sequence(s) may be generated by rearrangement in vivo of the V, D, and J segments of heavy chains, and the V and J segments of light chains. Alternatively, the sequence(s) can be generated from a cell in response to which rearrangement occurs, e.g., in vitro stimulation. Alternatively, part or all of the sequence(s) may be obtained by DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., U.S. Pat. No. 5,565,332. A repertoire may include only one sequence or may include a plurality of sequences, including ones in a genetically diverse collection.


In one embodiment, the first binding domain of the binding molecule of the invention comprises a VH region comprising CDR-H1, CDR-H2 and CDR-H3 and a VL region comprising CDR-11, CDR-L2 and CDR-L3 selected from the group consisting of:

    • (1) CDR-H1 as depicted in SEQ ID NO: 1, CDR-H2 as depicted in SEQ ID NO: 2, CDR-H3 as depicted in SEQ ID NO: 3, CDR-L1 as depicted in SEQ ID NO: 4, CDR-L2 as depicted in SEQ ID NO: 5 and CDR-L3 as depicted in SEQ ID NO: 6;
    • (2) CDR-H1 as depicted in SEQ ID NO: 11, CDR-H2 as depicted in SEQ ID NO: 12, CDR-H3 as depicted in SEQ ID NO: 13, CDR-L1 as depicted in SEQ ID NO: 14, CDR-L2 as depicted in SEQ ID NO: 15 and CDR-L3 as depicted in SEQ ID NO: 16;
    • (3) CDR-H1 as depicted in SEQ ID NO: 21, CDR-H2 as depicted in SEQ ID NO: 22, CDR-H3 as depicted in SEQ ID NO: 23, CDR-L1 as depicted in SEQ ID NO: 24, CDR-L2 as depicted in SEQ ID NO: 25 and CDR-L3 as depicted in SEQ ID NO: 26;
    • (4) CDR-H1 as depicted in SEQ ID NO: 31, CDR-H2 as depicted in SEQ ID NO: 32, CDR-H3 as depicted in SEQ ID NO: 33, CDR-L1 as depicted in SEQ ID NO: 34, CDR-L2 as depicted in SEQ ID NO: 35 and CDR-L3 as depicted in SEQ ID NO: 36;
    • (5) CDR-H1 as depicted in SEQ ID NO: 41, CDR-H2 as depicted in SEQ ID NO: 42, CDR-H3 as depicted in SEQ ID NO: 43, CDR-L1 as depicted in SEQ ID NO: 44, CDR-L2 as depicted in SEQ ID NO: 45 and CDR-L3 as depicted in SEQ ID NO: 46;
    • (6) CDR-H1 as depicted in SEQ ID NO: 51, CDR-H2 as depicted in SEQ ID NO: 52, CDR-H3 as depicted in SEQ ID NO: 53, CDR-L1 as depicted in SEQ ID NO: 54, CDR-L2 as depicted in SEQ ID NO: 55 and CDR-L3 as depicted in SEQ ID NO: 56;
    • (7) CDR-H1 as depicted in SEQ ID NO: 61, CDR-H2 as depicted in SEQ ID NO: 62, CDR-H3 as depicted in SEQ ID NO: 63, CDR-L1 as depicted in SEQ ID NO: 64, CDR-L2 as depicted in SEQ ID NO: 65 and CDR-L3 as depicted in SEQ ID NO: 66;
    • (8) CDR-H1 as depicted in SEQ ID NO: 71, CDR-H2 as depicted in SEQ ID NO: 72, CDR-H3 as depicted in SEQ ID NO: 73, CDR-L1 as depicted in SEQ ID NO: 74, CDR-L2 as depicted in SEQ ID NO: 75 and CDR-L3 as depicted in SEQ ID NO: 76;
    • (9) CDR-H1 as depicted in SEQ ID NO: 161, CDR-H2 as depicted in SEQ ID NO: 162, CDR-H3 as depicted in SEQ ID NO: 163, CDR-L1 as depicted in SEQ ID NO: 164, CDR-L2 as depicted in SEQ ID NO: 165 and CDR-L3 as depicted in SEQ ID NO: 166;
    • (10) CDR-H1 as depicted in SEQ ID NO: 171, CDR-H2 as depicted in SEQ ID NO: 172, CDR-H3 as depicted in SEQ ID NO: 173, CDR-L1 as depicted in SEQ ID NO: 174, CDR-L2 as depicted in SEQ ID NO: 175 and CDR-L3 as depicted in SEQ ID NO: 176;
    • (11) CDR-H1 as depicted in SEQ ID NO: 181, CDR-H2 as depicted in SEQ ID NO: 182, CDR-H3 as depicted in SEQ ID NO: 183, CDR-L1 as depicted in SEQ ID NO: 184, CDR-L2 as depicted in SEQ ID NO: 185 and CDR-L3 as depicted in SEQ ID NO: 186;
    • (12) CDR-H1 as depicted in SEQ ID NO: 191, CDR-H2 as depicted in SEQ ID NO: 192, CDR-H3 as depicted in SEQ ID NO: 193, CDR-L1 as depicted in SEQ ID NO: 194, CDR-L2 as depicted in SEQ ID NO: 195 and CDR-L3 as depicted in SEQ ID NO: 196;
    • (13) CDR-H1 as depicted in SEQ ID NO: 201, CDR-H2 as depicted in SEQ ID NO: 202, CDR-H3 as depicted in SEQ ID NO: 203, CDR-L1 as depicted in SEQ ID NO: 204, CDR-L2 as depicted in SEQ ID NO: 205 and CDR-L3 as depicted in SEQ ID NO: 206;
    • (14) CDR-H1 as depicted in SEQ ID NO: 211, CDR-H2 as depicted in SEQ ID NO: 212, CDR-H3 as depicted in SEQ ID NO: 213, CDR-L1 as depicted in SEQ ID NO:214, CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216;
    • (15) CDR-H1 as depicted in SEQ ID NO: 221, CDR-H2 as depicted in SEQ ID NO: 222, CDR-H3 as depicted in SEQ ID NO: 223, CDR-L1 as depicted in SEQ ID NO: 224, CDR-L2 as depicted in SEQ ID NO: 225 and CDR-L3 as depicted in SEQ ID NO: 226;
    • (16) CDR-H1 as depicted in SEQ ID NO: 311, CDR-H2 as depicted in SEQ ID NO: 312, CDR-H3 as depicted in SEQ ID NO: 313, CDR-L1 as depicted in SEQ ID NO: 314, CDR-L2 as depicted in SEQ ID NO: 315 and CDR-L3 as depicted in SEQ ID NO: 316;
    • (17) CDR-H1 as depicted in SEQ ID NO: 321, CDR-H2 as depicted in SEQ ID NO: 322, CDR-H3 as depicted in SEQ ID NO: 323, CDR-L1 as depicted in SEQ ID NO: 324, CDR-L2 as depicted in SEQ ID NO: 325 and CDR-L3 as depicted in SEQ ID NO: 326;
    • (18) CDR-H1 as depicted in SEQ ID NO: 331, CDR-H2 as depicted in SEQ ID NO: 332, CDR-H3 as depicted in SEQ ID NO: 333, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336;
    • (19) CDR-H1 as depicted in SEQ ID NO: 341, CDR-H2 as depicted in SEQ ID NO: 342, CDR-H3 as depicted in SEQ ID NO: 343, CDR-L1 as depicted in SEQ ID NO: 344, CDR-L2 as depicted in SEQ ID NO: 345 and CDR-L3 as depicted in SEQ ID NO: 346;
    • (20) CDR-H1 as depicted in SEQ ID NO: 351, CDR-H2 as depicted in SEQ ID NO: 352, CDR-H3 as depicted in SEQ ID NO: 353, CDR-L1 as depicted in SEQ ID NO: 354, CDR-L2 as depicted in SEQ ID NO: 355 and CDR-L3 as depicted in SEQ ID NO: 356;
    • (21) CDR-H1 as depicted in SEQ ID NO: 361, CDR-H2 as depicted in SEQ ID NO: 362, CDR-H3 as depicted in SEQ ID NO: 363, CDR-L1 as depicted in SEQ ID NO: 364, CDR-L2 as depicted in SEQ ID NO: 365 and CDR-L3 as depicted in SEQ ID NO: 366;
    • (22) CDR-H1 as depicted in SEQ ID NO: 371, CDR-H2 as depicted in SEQ ID NO: 372, CDR-H3 as depicted in SEQ ID NO: 373, CDR-L1 as depicted in SEQ ID NO: 374, CDR-L2 as depicted in SEQ ID NO: 375 and CDR-L3 as depicted in SEQ ID NO: 376;
    • (23) CDR-H1 as depicted in SEQ ID NO: 381, CDR-H2 as depicted in SEQ ID NO: 382, CDR-H3 as depicted in SEQ ID NO: 383, CDR-L1 as depicted in SEQ ID NO: 384, CDR-L2 as depicted in SEQ ID NO: 385 and CDR-L3 as depicted in SEQ ID NO: 386;
    • (24) CDR-H1 as depicted in SEQ ID NO: 581, CDR-H2 as depicted in SEQ ID NO: 582, CDR-H3 as depicted in SEQ ID NO: 583, CDR-L1 as depicted in SEQ ID NO: 584, CDR-L2 as depicted in SEQ ID NO: 585 and CDR-L3 as depicted in SEQ ID NO: 586;
    • (25) CDR-H1 as depicted in SEQ ID NO: 591, CDR-H2 as depicted in SEQ ID NO: 592, CDR-H3 as depicted in SEQ ID NO: 593, CDR-L1 as depicted in SEQ ID NO: 594, CDR-L2 as depicted in SEQ ID NO: 595 and CDR-L3 as depicted in SEQ ID NO: 596;
    • (26) CDR-H1 as depicted in SEQ ID NO: 601, CDR-H2 as depicted in SEQ ID NO: 602, CDR-H3 as depicted in SEQ ID NO: 603, CDR-L1 as depicted in SEQ ID NO: 604, CDR-L2 as depicted in SEQ ID NO: 605 and CDR-L3 as depicted in SEQ ID NO: 606;
    • (27) CDR-H1 as depicted in SEQ ID NO: 611, CDR-H2 as depicted in SEQ ID NO: 612, CDR-H3 as depicted in SEQ ID NO: 613, CDR-L1 as depicted in SEQ ID NO: 614, CDR-L2 as depicted in SEQ ID NO: 615 and CDR-L3 as depicted in SEQ ID NO: 616;
    • (28) CDR-H1 as depicted in SEQ ID NO: 621, CDR-H2 as depicted in SEQ ID NO: 622, CDR-H3 as depicted in SEQ ID NO: 623, CDR-L1 as depicted in SEQ ID NO: 624, CDR-L2 as depicted in SEQ ID NO: 625 and CDR-L3 as depicted in SEQ ID NO: 626;
    • (29) CDR-H1 as depicted in SEQ ID NO: 631, CDR-H2 as depicted in SEQ ID NO: 632, CDR-H3 as depicted in SEQ ID NO: 633, CDR-L1 as depicted in SEQ ID NO: 634, CDR-L2 as depicted in SEQ ID NO: 635 and CDR-L3 as depicted in SEQ ID NO: 636;
    • (30) CDR-H1 as depicted in SEQ ID NO: 641, CDR-H2 as depicted in SEQ ID NO: 642, CDR-H3 as depicted in SEQ ID NO: 643, CDR-L1 as depicted in SEQ ID NO: 644, CDR-L2 as depicted in SEQ ID NO: 645 and CDR-L3 as depicted in SEQ ID NO: 646;
    • (31) CDR-H1 as depicted in SEQ ID NO: 651, CDR-H2 as depicted in SEQ ID NO: 652, CDR-H3 as depicted in SEQ ID NO: 653, CDR-L1 as depicted in SEQ ID NO: 654, CDR-L2 as depicted in SEQ ID NO: 655 and CDR-L3 as depicted in SEQ ID NO: 656;
    • (32) CDR-H1 as depicted in SEQ ID NO: 661, CDR-H2 as depicted in SEQ ID NO: 662, CDR-H3 as depicted in SEQ ID NO: 663, CDR-L1 as depicted in SEQ ID NO: 664, CDR-L2 as depicted in SEQ ID NO: 665 and CDR-L3 as depicted in SEQ ID NO: 666;
    • (33) CDR-H1 as depicted in SEQ ID NO: 671, CDR-H2 as depicted in SEQ ID NO: 672, CDR-H3 as depicted in SEQ ID NO: 673, CDR-L1 as depicted in SEQ ID NO: 674, CDR-L2 as depicted in SEQ ID NO: 675 and CDR-L3 as depicted in SEQ ID NO: 676;
    • (34) CDR-H1 as depicted in SEQ ID NO: 681, CDR-H2 as depicted in SEQ ID NO: 682, CDR-H3 as depicted in SEQ ID NO: 683, CDR-L1 as depicted in SEQ ID NO: 684, CDR-L2 as depicted in SEQ ID NO: 685 and CDR-L3 as depicted in SEQ ID NO: 686;
    • (35) CDR-H1 as depicted in SEQ ID NO: 691, CDR-H2 as depicted in SEQ ID NO: 692, CDR-H3 as depicted in SEQ ID NO: 693, CDR-L1 as depicted in SEQ ID NO: 694, CDR-L2 as depicted in SEQ ID NO: 695 and CDR-L3 as depicted in SEQ ID NO: 696;
    • (36) CDR-H1 as depicted in SEQ ID NO: 701, CDR-H2 as depicted in SEQ ID NO: 702, CDR-H3 as depicted in SEQ ID NO: 703, CDR-L1 as depicted in SEQ ID NO: 704, CDR-L2 as depicted in SEQ ID NO: 705 and CDR-L3 as depicted in SEQ ID NO: 706;
    • (37) CDR-H1 as depicted in SEQ ID NO: 711, CDR-H2 as depicted in SEQ ID NO: 712, CDR-H3 as depicted in SEQ ID NO: 713, CDR-L1 as depicted in SEQ ID NO: 714, CDR-L2 as depicted in SEQ ID NO: 715 and CDR-L3 as depicted in SEQ ID NO: 716;
    • (38) CDR-H1 as depicted in SEQ ID NO: 721, CDR-H2 as depicted in SEQ ID NO: 722, CDR-H3 as depicted in SEQ ID NO: 723, CDR-L1 as depicted in SEQ ID NO: 724, CDR-L2 as depicted in SEQ ID NO: 725 and CDR-L3 as depicted in SEQ ID NO: 726;
    • (39) CDR-H1 as depicted in SEQ ID NO: 731, CDR-H2 as depicted in SEQ ID NO: 732, CDR-H3 as depicted in SEQ ID NO: 733, CDR-L1 as depicted in SEQ ID NO: 734, CDR-L2 as depicted in SEQ ID NO: 735 and CDR-L3 as depicted in SEQ ID NO: 736;
    • (40) CDR-H1 as depicted in SEQ ID NO: 741, CDR-H2 as depicted in SEQ ID NO: 742, CDR-H3 as depicted in SEQ ID NO: 743, CDR-L1 as depicted in SEQ ID NO: 744, CDR-L2 as depicted in SEQ ID NO: 745 and CDR-L3 as depicted in SEQ ID NO: 746;
    • (41) CDR-H1 as depicted in SEQ ID NO: 751, CDR-H2 as depicted in SEQ ID NO: 752, CDR-H3 as depicted in SEQ ID NO: 753, CDR-L1 as depicted in SEQ ID NO: 754, CDR-L2 as depicted in SEQ ID NO: 755 and CDR-L3 as depicted in SEQ ID NO: 756;
    • (42) CDR-H1 as depicted in SEQ ID NO: 761, CDR-H2 as depicted in SEQ ID NO: 762, CDR-H3 as depicted in SEQ ID NO: 763, CDR-L1 as depicted in SEQ ID NO: 764, CDR-L2 as depicted in SEQ ID NO: 765 and CDR-L3 as depicted in SEQ ID NO: 766;
    • (43) CDR-H1 as depicted in SEQ ID NO: 771, CDR-H2 as depicted in SEQ ID NO: 772, CDR-H3 as depicted in SEQ ID NO: 773, CDR-L1 as depicted in SEQ ID NO: 774, CDR-L2 as depicted in SEQ ID NO: 775 and CDR-L3 as depicted in SEQ ID NO: 776;
    • (44) CDR-H1 as depicted in SEQ ID NO: 781, CDR-H2 as depicted in SEQ ID NO: 782, CDR-H3 as depicted in SEQ ID NO: 783, CDR-L1 as depicted in SEQ ID NO: 784, CDR-L2 as depicted in SEQ ID NO: 785 and CDR-L3 as depicted in SEQ ID NO: 786;
    • (45) CDR-H1 as depicted in SEQ ID NO: 791, CDR-H2 as depicted in SEQ ID NO: 792, CDR-H3 as depicted in SEQ ID NO: 793, CDR-L1 as depicted in SEQ ID NO: 794, CDR-L2 as depicted in SEQ ID NO: 795 and CDR-L3 as depicted in SEQ ID NO: 796;
    • (46) CDR-H1 as depicted in SEQ ID NO: 801, CDR-H2 as depicted in SEQ ID NO: 802, CDR-H3 as depicted in SEQ ID NO: 803, CDR-L1 as depicted in SEQ ID NO: 804, CDR-L2 as depicted in SEQ ID NO: 805 and CDR-L3 as depicted in SEQ ID NO: 806;
    • (47) CDR-H1 as depicted in SEQ ID NO: 811, CDR-H2 as depicted in SEQ ID NO: 812, CDR-H3 as depicted in SEQ ID NO: 813, CDR-L1 as depicted in SEQ ID NO: 814, CDR-L2 as depicted in SEQ ID NO: 815 and CDR-L3 as depicted in SEQ ID NO: 816;
    • (48) CDR-H1 as depicted in SEQ ID NO: 821, CDR-H2 as depicted in SEQ ID NO: 822, CDR-H3 as depicted in SEQ ID NO: 823, CDR-L1 as depicted in SEQ ID NO: 824, CDR-L2 as depicted in SEQ ID NO: 825 and CDR-L3 as depicted in SEQ ID NO: 826;
    • (49) CDR-H1 as depicted in SEQ ID NO: 831, CDR-H2 as depicted in SEQ ID NO: 832, CDR-H3 as depicted in SEQ ID NO: 833, CDR-L1 as depicted in SEQ ID NO: 834, CDR-L2 as depicted in SEQ ID NO: 835 and CDR-L3 as depicted in SEQ ID NO: 836;
    • (50) CDR-H1 as depicted in SEQ ID NO: 961, CDR-H2 as depicted in SEQ ID NO: 962, CDR-H3 as depicted in SEQ ID NO: 963, CDR-L1 as depicted in SEQ ID NO: 964, CDR-L2 as depicted in SEQ ID NO: 965 and CDR-L3 as depicted in SEQ ID NO: 966;
    • (51) CDR-H1 as depicted in SEQ ID NO: 971, CDR-H2 as depicted in SEQ ID NO: 972, CDR-H3 as depicted in SEQ ID NO: 973, CDR-L1 as depicted in SEQ ID NO: 974, CDR-L2 as depicted in SEQ ID NO: 975 and CDR-L3 as depicted in SEQ ID NO: 976;
    • (52) CDR-H1 as depicted in SEQ ID NO: 981, CDR-H2 as depicted in SEQ ID NO: 982, CDR-H3 as depicted in SEQ ID NO: 983, CDR-L1 as depicted in SEQ ID NO: 984, CDR-L2 as depicted in SEQ ID NO: 985 and CDR-L3 as depicted in SEQ ID NO: 986; and
    • (53) CDR-H1 as depicted in SEQ ID NO: 991, CDR-H2 as depicted in SEQ ID NO: 992, CDR-H3 as depicted in SEQ ID NO: 993, CDR-L1 as depicted in SEQ ID NO: 994, CDR-L2 as depicted in SEQ ID NO: 995 and CDR-L3 as depicted in SEQ ID NO: 996.


In yet another embodiment, the first binding domain of the binding molecule comprises a VH region selected from the group consisting of a VH region as depicted in SEQ ID NO: 7, SEQ ID NO: 17, SEQ ID NO: 27, SEQ ID NO: 37, SEQ ID NO: 47, SEQ ID NO: 57, SEQ ID NO: 67, SEQ ID NO: 77, SEQ ID NO: 167, SEQ ID NO: 177, SEQ ID NO: 187, SEQ ID NO: 197, SEQ ID NO: 207, SEQ ID NO: 217, SEQ ID NO: 227, SEQ ID NO: 317, SEQ ID NO: 327, SEQ ID NO: 337, SEQ ID NO: 347, SEQ ID NO: 357, SEQ ID NO: 367, SEQ ID NO: 377, SEQ ID NO: 387, SEQ ID NO: 587, SEQ ID NO: 597, SEQ ID NO: 607, SEQ ID NO: 617, SEQ ID NO: 627, SEQ ID NO: 637, SEQ ID NO: 647, SEQ ID NO: 657, SEQ ID NO: 667, SEQ ID NO: 677, SEQ ID NO: 687, SEQ ID NO: 697, SEQ ID NO: 707, SEQ ID NO: 717, SEQ ID NO: 727, SEQ ID NO: 737, SEQ ID NO: 747, SEQ ID NO: 757, SEQ ID NO: 767, SEQ ID NO: 777, SEQ ID NO: 787, SEQ ID NO: 797, SEQ ID NO: 807, SEQ ID NO: 817, SEQ ID NO: 827, SEQ ID NO: 837, SEQ ID NO: 967, SEQ ID NO: 977, SEQ ID NO: 987, and SEQ ID NO: 997.


In another embodiment, the first binding domain of the binding molecule comprises a VL region selected from the group consisting of a VL region as depicted in SEQ ID in SEQ ID NO: 8, SEQ ID NO: 18, SEQ ID NO: 28, SEQ ID NO: 38, SEQ ID NO: 48, SEQ ID NO: 58, SEQ ID NO: 68, SEQ ID NO: 78, SEQ ID NO: 168, SEQ ID NO: 178, SEQ ID NO: 188, SEQ ID NO: 198, SEQ ID NO: 208, SEQ ID NO: 218, SEQ ID NO: 228, SEQ ID NO: 318, SEQ ID NO: 328, SEQ ID NO: 338, SEQ ID NO: 348, SEQ ID NO: 358, SEQ ID NO: 368, SEQ ID NO: 378, SEQ ID NO: 388, SEQ ID NO: 588, SEQ ID NO: 598, SEQ ID NO: 608, SEQ ID NO: 618, SEQ ID NO: 628, SEQ ID NO: 638, SEQ ID NO: 648, SEQ ID NO: 658, SEQ ID NO: 668, SEQ ID NO: 678, SEQ ID NO: 688, SEQ ID NO: 698, SEQ ID NO: 708, SEQ ID NO: 718, SEQ ID NO: 728, SEQ ID NO: 738, SEQ ID NO: 748, SEQ ID NO: 758, SEQ ID NO: 768, SEQ ID NO: 778, SEQ ID NO: 788, SEQ ID NO: 798, SEQ ID NO: 808, SEQ ID NO: 818, SEQ ID NO: 828, SEQ ID NO: 838, SEQ ID NO: 968, SEQ ID NO: 978, SEQ ID NO: 988, and SEQ ID NO: 998.


In one embodiment, the first binding domain of the binding molecule comprises a VH region and a VL region selected from the group consisting of:

    • (1) a VH region as depicted in SEQ ID NO: 7, and a VL region as depicted in SEQ ID NO: 8;
    • (2) a VH region as depicted in SEQ ID NO: 17, and a VL region as depicted in SEQ ID NO: 18;
    • (3) a VH region as depicted in SEQ ID NO: 27, and a VL region as depicted in SEQ ID NO: 28;
    • (4) a VH region as depicted in SEQ ID NO: 37, and a VL region as depicted in SEQ ID NO: 38;
    • (5) a VH region as depicted in SEQ ID NO: 47, and a VL region as depicted in SEQ ID NO: 48;
    • (6) a VH region as depicted in SEQ ID NO: 57, and a VL region as depicted in SEQ ID NO: 58;
    • (7) a VH region as depicted in SEQ ID NO: 67, and a VL region as depicted in SEQ ID NO: 68;
    • (8) a VH region as depicted in SEQ ID NO: 77, and a VL region as depicted in SEQ ID NO: 78;
    • (9) a VH region as depicted in SEQ ID NO: 167, and a VL region as depicted in SEQ ID NO: 168;
    • (10) a VH region as depicted in SEQ ID NO: 177, and a VL region as depicted in SEQ ID NO: 178;
    • (11) a VH region as depicted in SEQ ID NO: 187, and a VL region as depicted in SEQ ID NO: 188;
    • (12) a VH region as depicted in SEQ ID NO: 197, and a VL region as depicted in SEQ ID NO: 198;
    • (13) a VH region as depicted in SEQ ID NO: 207, and a VL region as depicted in SEQ ID NO: 208;
    • (14) a VH region as depicted in SEQ ID NO: 217, and a VL region as depicted in SEQ ID NO: 218;
    • (15) a VH region as depicted in SEQ ID NO: 227, and a VL region as depicted in SEQ ID NO: 228;
    • (16) a VH region as depicted in SEQ ID NO: 317, and a VL region as depicted in SEQ ID NO: 318;
    • (17) a VH region as depicted in SEQ ID NO: 327, and a VL region as depicted in SEQ ID NO: 328;
    • (18) a VH region as depicted in SEQ ID NO: 337, and a VL region as depicted in SEQ ID NO: 338;
    • (19) a VH region as depicted in SEQ ID NO: 347, and a VL region as depicted in SEQ ID NO: 348;
    • (20) a VH region as depicted in SEQ ID NO: 357, and a VL region as depicted in SEQ ID NO: 358;
    • (21) a VH region as depicted in SEQ ID NO: 367, and a VL region as depicted in SEQ ID NO: 368;
    • (22) a VH region as depicted in SEQ ID NO: 377, and a VL region as depicted in SEQ ID NO: 378;
    • (23) a VH region as depicted in SEQ ID NO: 387, and a VL region as depicted in SEQ ID NO: 388;
    • (24) a VH region as depicted in SEQ ID NO: 587, and a VL region as depicted in SEQ ID NO: 588;
    • (25) a VH region as depicted in SEQ ID NO: 597, and a VL region as depicted in SEQ ID NO: 598;
    • (26) a VH region as depicted in SEQ ID NO: 607, and a VL region as depicted in SEQ ID NO: 608;
    • (27) a VH region as depicted in SEQ ID NO: 617, and a VL region as depicted in SEQ ID NO: 618;
    • (28) a VH region as depicted in SEQ ID NO: 627, and a VL region as depicted in SEQ ID NO: 628;
    • (29) a VH region as depicted in SEQ ID NO: 637, and a VL region as depicted in SEQ ID NO: 638;
    • (30) a VH region as depicted in SEQ ID NO: 647, and a VL region as depicted in SEQ ID NO: 648;
    • (31) a VH region as depicted in SEQ ID NO: 657, and a VL region as depicted in SEQ ID NO: 658;
    • (32) a VH region as depicted in SEQ ID NO: 667, and a VL region as depicted in SEQ ID NO: 668;
    • (33) a VH region as depicted in SEQ ID NO: 677, and a VL region as depicted in SEQ ID NO: 678;
    • (34) a VH region as depicted in SEQ ID NO: 687, and a VL region as depicted in SEQ ID NO: 688;
    • (35) a VH region as depicted in SEQ ID NO: 697, and a VL region as depicted in SEQ ID NO: 698;
    • (36) a VH region as depicted in SEQ ID NO: 707, and a VL region as depicted in SEQ ID NO: 708;
    • (37) a VH region as depicted in SEQ ID NO: 717, and a VL region as depicted in SEQ ID NO: 718;
    • (38) a VH region as depicted in SEQ ID NO: 727, and a VL region as depicted in SEQ ID NO: 728;
    • (39) a VH region as depicted in SEQ ID NO: 737, and a VL region as depicted in SEQ ID NO: 738;
    • (40) a VH region as depicted in SEQ ID NO: 747, and a VL region as depicted in SEQ ID NO: 748;
    • (41) a VH region as depicted in SEQ ID NO: 757, and a VL region as depicted in SEQ ID NO: 758;
    • (42) a VH region as depicted in SEQ ID NO: 767, and a VL region as depicted in SEQ ID NO: 768;
    • (43) a VH region as depicted in SEQ ID NO: 777, and a VL region as depicted in SEQ ID NO: 778;
    • (44) a VH region as depicted in SEQ ID NO: 787, and a VL region as depicted in SEQ ID NO: 788;
    • (45) a VH region as depicted in SEQ ID NO: 797, and a VL region as depicted in SEQ ID NO: 798;
    • (46) a VH region as depicted in SEQ ID NO: 807, and a VL region as depicted in SEQ ID NO: 808;
    • (47) a VH region as depicted in SEQ ID NO: 817, and a VL region as depicted in SEQ ID NO: 818;
    • (48) a VH region as depicted in SEQ ID NO: 827, and a VL region as depicted in SEQ ID NO: 828;
    • (49) a VH region as depicted in SEQ ID NO: 837, and a VL region as depicted in SEQ ID NO: 838;
    • (50) a VH region as depicted in SEQ ID NO: 967, and a VL region as depicted in SEQ ID NO: 968;
    • (51) a VH region as depicted in SEQ ID NO: 977, and a VL region as depicted in SEQ ID NO: 978;
    • (52) a VH region as depicted in SEQ ID NO: 987, and a VL region as depicted in SEQ ID NO: 988; and
    • (53) a VH region as depicted in SEQ ID NO: 997, and a VL region as depicted in SEQ ID NO: 998.


In one example, the first binding domain comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 19, SEQ ID NO: 29, SEQ ID NO: 39, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 69, SEQ ID NO: 79, SEQ ID NO: 169, SEQ ID NO: 179, SEQ ID NO: 189, SEQ ID NO: 199, SEQ ID NO: 209, SEQ ID NO: 219, SEQ ID NO: 229, SEQ ID NO: 319, SEQ ID NO: 329, SEQ ID NO: 339, SEQ ID NO: 349, SEQ ID NO: 359, SEQ ID NO: 369, SEQ ID NO: 379, SEQ ID NO: 389, SEQ ID NO: 589, SEQ ID NO: 599, SEQ ID NO: 609, SEQ ID NO: 619, SEQ ID NO: 629, SEQ ID NO: 639, SEQ ID NO: 649, SEQ ID NO: 659, SEQ ID NO: 669, SEQ ID NO: 679, SEQ ID NO: 689, SEQ ID NO: 699, SEQ ID NO: 709, SEQ ID NO: 719, SEQ ID NO: 729, SEQ ID NO: 739, SEQ ID NO: 749, SEQ ID NO: 759, SEQ ID NO: 769, SEQ ID NO: 779, SEQ ID NO: 789, SEQ ID NO: 799, SEQ ID NO: 809, SEQ ID NO: 819, SEQ ID NO: 829, SEQ ID NO: 839, SEQ ID NO: 969, SEQ ID NO: 979, SEQ ID NO: 989, and SEQ ID NO: 999.


It is preferred that a binding molecule of the present invention has a CDR-H3 region of 12 amino acids in length, wherein a tyrosine (Y) residue is present at position 3, 4 and 12. A preferred CDR-H3 is shown in SEQ ID NOs: 43, 193, 333, 613, 703, 733, 823, or 973. Accordingly, a binding molecule of the present invention has in a preferred embodiment a CDR-H3 shown in of SEQ ID NOs: 43, 193, 333, 613, 703, 733, 823, or 973.


Preferred is a binding molecule having the amino acid sequence shown in SEQ ID NO: 340. Also preferred is a binding molecule having the amino acid sequence shown in or SEQ ID NO: 980.


The binding molecule of the present invention is preferably an “isolated” binding molecule. “Isolated” when used to describe the binding molecule disclosed herein, means a binding molecule that has been identified, separated and/or recovered from a component of its production environment. Preferably, the isolated binding molecule is free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the binding molecule will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Ordinarily, however, an isolated antibody will be prepared by at least one purification step.


Amino acid sequence modifications of the binding molecules described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the binding molecules are prepared by introducing appropriate nucleotide changes into the binding molecules nucleic acid, or by peptide synthesis.


Such modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the binding molecules. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the binding molecules, such as changing the number or position of glycosylation sites. Preferably, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids may be substituted in a CDR, while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in the framework regions (FRs). The substitutions are preferably conservative substitutions as described herein. Additionally or alternatively, 1, 2, 3, 4, 5, or 6 amino acids may be inserted or deleted in each of the CDRs (of course, dependent on their length), while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be inserted or deleted in each of the FRs.


A useful method for identification of certain residues or regions of the binding molecules that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells in Science, 244: 1081-1085 (1989). Here, a residue or group of target residues within the binding molecule is/are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the epitope.


Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se needs not to be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at a target codon or region and the expressed binding molecule variants are screened for the desired activity.


Preferably, amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. An insertional variant of the binding molecule includes the fusion to the N- or C-terminus of the antibody to an enzyme or a fusion to a polypeptide which increases the serum half-life of the antibody.


Another type of variant is an amino acid substitution variant. These variants have preferably at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid residues in the binding molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the CDRs of the heavy and/or light chain, in particular the hypervariable regions, but FR alterations in the heavy and/or light chain are also contemplated.


For example, if a CDR sequence encompasses 6 amino acids, it is envisaged that one, two or three of these amino acids are substituted. Similarly, if a CDR sequence encompasses 15 amino acids it is envisaged that one, two, three, four, five or six of these amino acids are substituted.


Generally, if amino acids are substituted in one or more or all of the CDRs of the heavy and/or light chain, it is preferred that the then-obtained “substituted” sequence is at least 60%, more preferably 65%, even more preferably 70%, particularly preferably 75%, more particularly preferably 80% identical to the “original” CDR sequence. This means that it is dependent of the length of the CDR to which degree it is identical to the “substituted” sequence. For example, a CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to have at least one amino acid substituted. Accordingly, the CDRs of the binding molecule may have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%, while CDRL3 may have 90%.


Preferred substitutions (or replacements) are conservative substitutions. However, any substitution (including non-conservative substitution or one or more from the “exemplary substitutions” listed in Table 1, below) is envisaged as long as the binding molecule retains its capability to bind to BCMA via the first binding domain and to CD3 epsilon via the second binding domain and/or its CDRs have an identity to the then substituted sequence (at least 60%, more preferably 65%, even more preferably 70%, particularly preferably 75%, more particularly preferably 80% identical to the “original” CDR sequence).


Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened for a desired characteristic.









TABLE 1







Amino Acid Substitutions









Original
Exemplary Substitutions
Preferred Substitutions





Ala (A)
val, leu, ile
val


Arg (R)
lys, gln, asn
lys


Asn (N)
gln, his, asp, lys, arg
gln


Asp (D)
glu, asn
glu


Cys (C)
ser, ala
ser


Gln (Q)
asn, glu
asn


Glu (E)
asp, gln
asp


Gly (G)
ala
ala


His (H)
asn, gln, lys, arg
arg


Ile (I)
leu, val, met, ala, phe
leu


Leu (L)
norleucine, ile, val, met, ala
ile


Lys (K)
arg, gln, asn
arg


Met (M)
leu, phe, ile
leu


Phe (F)
leu, val, ile, ala, tyr
tyr


Pro (P)
ala
ala


Ser (S)
thr
thr


Thr (T)
ser
ser


Trp (W)
tyr, phe
tyr


Tyr (Y)
trp, phe, thr, ser
phe


Val (V)
ile, leu, met, phe, ala
leu









Substantial modifications in the biological properties of the binding molecule of the present invention are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr; (3) acidic: asp, glu; (4) basic: asn, gin, his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic: trp, tyr, phe.


Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the binding molecule may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).


A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e. g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e. g. 6-7 sites) are mutated to generate all possible amino acid substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene Ill product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e. g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the binding domain and, e.g., human BCMA. Such contact residues and neighbouring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.


Other modifications of the binding molecule are contemplated herein. For example, the binding molecule may be linked to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The binding molecule may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).


The binding molecules disclosed herein may also be formulated as immuno-liposomes. A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al; Proc. Natl Acad. Sci. USA, 77: 4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO 97/38731 published Oct. 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81 (19) 1484 (1989).


When using recombinant techniques, the binding molecule can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the binding molecule is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli.


The binding molecule composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.


In a further aspect, the present invention relates to a nucleic acid sequence encoding a binding molecule of the invention. The term “nucleic acid” is well known to the skilled person and encompasses DNA (such as cDNA) and RNA (such as mRNA). The nucleic acid can be double stranded and single stranded, linear and circular. Said nucleic acid molecule is preferably comprised in a vector which is preferably comprised in a host cell. Said host cell is, e.g. after transformation or transfection with the nucleic acid sequence of the invention, capable of expressing the binding molecule. For that purpose the nucleic acid molecule is operatively linked with control sequences.


A vector is a nucleic acid molecule used as a vehicle to transfer (foreign) genetic material into a cell. The term “vector” encompasses—but is not restricted to—plasmids, viruses, cosmids and artificial chromosomes. In general, engineered vectors comprise an origin of replication, a multicloning site and a selectable marker. The vector itself is generally a nucleotide sequence, commonly a DNA sequence, that comprises an insert (transgene) and a larger sequence that serves as the “backbone” of the vector. Modern vectors may encompass additional features besides the transgene insert and a backbone: promoter, genetic marker, antibiotic resistance, reporter gene, targeting sequence, protein purification tag. Vectors called expression vectors (expression constructs) specifically are for the expression of the transgene in the target cell, and generally have control sequences such as a promoter sequence that drives expression of the transgene. Insertion of a vector into the target cell is usually called “transformation” for bacterial cells, “transfection” for eukaryotic cells, although insertion of a viral vector is also called “transduction”.


As used herein, the term “host cell” is intended to refer to a cell into which a nucleic acid encoding the binding molecule of the invention is introduced by way of transformation, transfection and the like. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


As used herein, the term “expression” includes any step involved in the production of a binding molecule of the invention including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.


The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.


A nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.


The terms “host cell,” “target cell” or “recipient cell” are intended to include any individual cell or cell culture that can be or has/have been recipients for vectors or the incorporation of exogenous nucleic acid molecules, polynucleotides and/or proteins. It also is intended to include progeny of a single cell, and the progeny may not necessarily be completely identical (in morphology or in genomic or total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. The cells may be prokaryotic or eukaryotic, and include but are not limited to bacterial cells, yeast cells, animal cells, and mammalian cells, e.g., murine, rat, macaque or human.


Suitable host cells include prokaryotes and eukaryotic host cells including yeasts, fungi, insect cells and mammalian cells.


The binding molecule of the invention can be produced in bacteria. After expression, the binding molecule of the invention, preferably the binding molecule is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size exclusion. Final purification can be carried out similar to the process for purifying antibody expressed e. g, in CHO cells.


In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the binding molecule of the invention. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC 24178), K. waltii (ATCC 56500), K. drosophilarum (ATCC 36906), K. thermotolerans, and K. marxianus; yarrowia (EP 402 226); Pichia pastoris (EP 183 070); Candida; Trichoderma reesia (EP 244 234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.


Suitable host cells for the expression of glycosylated binding molecule of the invention, preferably antibody derived binding molecules are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruit fly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.


Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco can also be utilized as hosts. Cloning and expression vectors useful in the production of proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature (1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 790-794, Artsaenko et al. (1995) The Plant J 8: 745-750, and Fecker et al. (1996) Plant Mol Biol 32: 979-986.


However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36: 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23: 243-251 (1980)); monkey kidney cells (CVI ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2,1413 8065); mouse mammary tumor (MMT 060562, ATCC CCL5 1); TRI cells (Mather et al., Annals N. Y Acad. Sci. 383: 44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).


When using recombinant techniques, the binding molecule of the invention can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the binding molecule is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.


The binding molecule of the invention prepared from the host cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.


The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly (styrenedivinyl) benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the binding molecule of the invention comprises a CH3 domain, the Bakerbond ABXMresin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.


In another aspect, processes are provided for producing binding molecules of the invention, said processes comprising culturing a host cell defined herein under conditions allowing the expression of the binding molecule and recovering the produced binding molecule from the culture.


The term “culturing” refers to the in vitro maintenance, differentiation, growth, proliferation and/or propagation of cells under suitable conditions in a medium.


In an alternative embodiment, compositions are provided comprising a binding molecule of the invention, or produced according to the process of the invention. Preferably, said composition is a pharmaceutical composition.


As used herein, the term “pharmaceutical composition” relates to a composition for administration to a patient, preferably a human patient. The particular preferred pharmaceutical composition of this invention comprises the binding molecule of the invention. Preferably, the pharmaceutical composition comprises suitable formulations of carriers, stabilizers and/or excipients. In a preferred embodiment, the pharmaceutical composition comprises a composition for parenteral, transdermal, intraluminal, intraarterial, intrathecal and/or intranasal administration or by direct injection into tissue. It is in particular envisaged that said composition is administered to a patient via infusion or injection. Administration of the suitable compositions may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. In particular, the present invention provides for an uninterrupted administration of the suitable composition. As a non-limiting example, uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of therapeutic agent into the body of the patient. The pharmaceutical composition comprising the binding molecule of the invention can be administered by using said pump systems. Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused. When exchanging the cartridge in such a pump system, a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue. In such a case, the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention together make up one “uninterrupted administration” of such therapeutic agent.


The continuous or uninterrupted administration of these binding molecules of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism. Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body. Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient. The pump system can be attached to the skin of the patient for 24 hours up to several days. The pump system may be of small size with a reservoir for small volumes. As a non-limiting example, the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.


The continuous administration may be transdermal by way of a patch worn on the skin and replaced at intervals. One of skill in the art is aware of patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.


The inventive compositions may further comprise a pharmaceutically acceptable carrier. Examples of suitable pharmaceutical carriers are well known in the art and include solutions, e.g. phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, liposomes, etc. Compositions comprising such carriers can be formulated by well known conventional methods. Formulations can comprise carbohydrates, buffer solutions, amino acids and/or surfactants. Carbohydrates may be non-reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol. In general, as used herein, “pharmaceutically acceptable carrier” means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g., Zn-protein complexes); biodegradable polymers, such as polyesters; salt-forming counter-ions, such as sodium, polyhydric sugar alcohols; amino acids, such as alanine, glycine, asparagine, 2-phenylalanine, and threonine; sugars or sugar alcohols, such as trehalose, sucrose, octasulfate, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; sulfur containing reducing agents, such as glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate; low molecular weight proteins, such as human serum albumin, bovine serum albumin, gelatin, or other immunoglobulins; and hydrophilic polymers, such as polyvinylpyrrolidone. Such formulations may be used for continuous administrations which may be intravenous or subcutaneous with and/or without pump systems. Amino acids may be charged amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or histidine. Surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a polyether, preferably with a molecular weight of >3 KD. Non-limiting examples for preferred detergents are Tween 20, Tween 40, Tween 60, Tween 80 or Tween 85. Non-limiting examples for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 or PEG 5000. Buffer systems used in the present invention can have a preferred pH of 5-9 and may comprise citrate, succinate, phosphate, histidine and acetate.


The compositions of the present invention can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the polypeptide of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques. As set forth above, the binding molecule of the invention exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans. These compositions can also be administered in combination with other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the polypeptide of the invention as defined herein or separately before or after administration of said polypeptide in timely defined intervals and doses. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently.


Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, inert gases and the like. In addition, the composition of the present invention might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the composition of the invention might comprise, in addition to the polypeptide of the invention defined herein, further biologically active agents, depending on the intended use of the composition. Such agents might be drugs acting on the gastro-intestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art. It is also envisaged that the binding molecule of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.


The biological activity of the pharmaceutical composition defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12). “Efficacy” or “in vivo efficacy” as used herein refers to the response to therapy by the pharmaceutical composition of the invention, using e.g. standardized NCI response criteria. The success or in vivo efficacy of the therapy using a pharmaceutical composition of the invention refers to the effectiveness of the composition for its intended purpose, i.e. the ability of the composition to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells. The in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration. In addition, various disease specific clinical chemistry parameters and other established standard methods may be used. Furthermore, computer-aided tomography, X-ray, nuclear magnetic resonance tomography (e.g. for National Cancer Institute-criteria based response assessment [Cheson B D, Horning S J, Coiffier B, Shipp M A, Fisher R I, Connors J M, Lister T A, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris N L, Armitage J O, Carter W, Hoppe R, Canellos G P. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999 April; 17(4):1244]), positron-emission tomography scanning, white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.


Another major challenge in the development of drugs such as the pharmaceutical composition of the invention is the predictable modulation of pharmacokinetic properties. To this end, a pharmacokinetic profile of the drug candidate, i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition, can be established. Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be influenced by each of the parameters mentioned above.


“Half-life” means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc.


By “hepatic first-pass metabolism” is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver.


“Volume of distribution” means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments.


“Degree of blood serum binding” means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.


Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered. “Bioavailability” means the amount of a drug in the blood compartment. “Lag time” means the time delay between the administration of the drug and its detection and measurability in blood or plasma.


“Tmax” is the time after which maximal blood concentration of the drug is reached, and “Cmax” is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters. Pharmacokinetic parameters of bispecific single chain antibodies exhibiting cross-species specificity, which may be determined in preclinical animal testing in non-chimpanzee primates as outlined above, are also set forth e.g. in the publication by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12).


The term “toxicity” as used herein refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.


The term “safety”, “in vivo safety” or “tolerability” as used herein defines the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug. “Safety”, “in vivo safety” or “tolerability” can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviations to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards. Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE). Laboratory parameters which may be tested include for instance hematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like. Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events. For example, adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods.


The term “effective dose” or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve the desired effect. The term “therapeutically effective dose” is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts effective for this use will depend upon the severity of the infection and the general state of the subject's own immune system. The term “patient” includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.


The term “effective and non-toxic dose” as used herein refers to a tolerable dose of an inventive binding molecule which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilization of disease without or essentially without major toxic effects. Such effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).


The above terms are also referred to e.g. in the Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on Jul. 16, 1997.


The appropriate dosage, or therapeutically effective amount, of the binding molecule of the invention will depend on the condition to be treated, the severity of the condition, prior therapy, and the patient's clinical history and response to the therapeutic agent. The proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient one time or over a series of administrations. The pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies such as anti-cancer therapies as needed.


The pharmaceutical compositions of this invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly, intravenously, intra-articular and/or intra-synovial. Parenteral administration can be by bolus injection or continuous infusion.


If the pharmaceutical composition has been lyophilized, the lyophilized material is first reconstituted in an appropriate liquid prior to administration. The lyophilized material may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization. Preferably, the binding molecule of the invention or produced by a process of the invention is used in the prevention, treatment or amelioration of a disease selected from a proliferative disease, a tumorous disease, or an immunological disorder.


An alternative embodiment of the invention provides a method for the prevention, treatment or amelioration of a disease selected from a proliferative disease, a tumorous disease, or an immunological disorder comprising the step of administering to a patient in the need thereof the binding molecule of the invention or produced by a process of the invention.


The formulations described herein are useful as pharmaceutical compositions in the treatment, amelioration and/or prevention of the pathological medical condition as described herein in a patient in need thereof. The term “treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.


Those “in need of treatment” include those already with the disorder, as well as those in which the disorder is to be prevented. The term “disease” is any condition that would benefit from treatment with the protein formulation described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disease in question. Non-limiting examples of diseases/disorders to be treated herein include proliferative disease, a tumorous disease, or an immunological disorder.


Preferably, the binding molecule of the invention is for use in the prevention, treatment or amelioration of B cell disorders that correlate with BCMA (over)expression such as plasma cell disorders, and/or autoimmune diseases. The autoimmune disease is, for example, systemic lupus erythematodes or rheumatoid arthritis.


Also provided by the present invention is a method for the treatment or amelioration of B cell disorders that correlate with BCMA (over)expression such as plasma cell disorders, and/or autoimmune diseases, comprising the step of administering to a subject in need thereof the binding molecule of the invention. The autoimmune disease is, for example, systemic lupus erythematodes or rheumatoid arthritis.


In plasma cell disorders, one clone of plasma cells multiplies uncontrollably. As a result, this clone produces vast amounts of a single (monoclonal) antibody known as the M-protein. In some cases, such as with monoclonal gammopathies, the antibody produced is incomplete, consisting of only light chains or heavy chains. These abnormal plasma cells and the antibodies they produce are usually limited to one type. Preferably, the plasma cell disorder is selected from the group consisting of multiple myeloma, plasmacytoma, plasma cell leukemia, macroglobulinemia, amyloidosis, Waldenstrom's macroglobulinemia, solitary bone plasmacytoma, extramedullary plasmacytoma, osteosclerotic myeloma, heavy chain diseases, monoclonal gammopathy of undetermined significance, and smoldering multiple myeloma.


In another aspect, kits are provided comprising a binding molecule of the invention, a nucleic acid molecule of the invention, a vector of the invention, or a host cell of the invention. The kit may comprise one or more vials containing the binding molecule and instructions for use. The kit may also contain means for administering the binding molecule of the present invention such as a syringe, pump, infuser or the like, means for reconstituting the binding molecule of the invention and/or means for diluting the binding molecule of the invention.


Furthermore, the present invention relates to the use of epitope cluster 3 of BCMA, preferably human BCMA, for the generation of a binding molecule, preferably an antibody, which is capable of binding to BCMA, preferably human BCMA. The epitope cluster 3 of BCMA preferably corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002.


In addition, the present invention provides a method for the generation of an antibody, preferably a bispecific binding molecule, which is capable of binding to BCMA, preferably human BCMA, comprising

    • (a) immunizing an animal with a polypeptide comprising epitope cluster 3 of BCMA, preferably human BCMA, wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002,
    • (b) obtaining said antibody, and
    • (c) optionally converting said antibody into a bispecific binding molecule which is capable of binding to human BCMA and preferably to the T cell CD3 receptor complex.


Preferably, step (b) includes that the obtained antibody is tested as follows:

    • when the respective epitope cluster in the human BCMA protein is exchanged with the respective epitope cluster of a murine BCMA antigen (resulting in a construct comprising human BCMA, wherein human epitope cluster 3 is replaced with murine epitope cluster 3; see SEQ ID NO: 1011), a decrease in the binding of the antibody will occur. Said decrease is preferably at least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, 90%, 95% or even 100% in comparison to the respective epitope cluster in the human BCMA protein, whereby binding to the respective epitope cluster in the human BCMA protein is set to be 100%. It is envisaged that the aforementioned human BCMA/murine BCMA chimeras are expressed in CHO cells. It is also envisaged that the human BCMA/murine BCMA chimeras are fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM; see FIG. 2A.


A method to test this loss of binding due to exchange with the respective epitope cluster of a non-human (e.g. murine) BCMA antigen is described in the appended Examples, in particular in Examples 1-3.


The method may further include testing as to whether the antibody binds to epitope cluster 3 of human BCMA and is further capable of binding to epitope cluster 3 of macaque BCMA such as BCMA from Macaca mulatta (SEQ ID NO:1017) or Macaca fascicularis (SEQ ID NO:1017).


The present invention also provides binding molecules comprising any one of the amino acid sequences shown in SEQ ID NOs: 1-1000 and 1022-1093.


Preferably, a binding molecule comprises three VH CDR sequences (named “VH CDR1” “VH CDR2”, “VH CDR3”, see 4th column of the appended Sequence Table) from a binding molecule termed “BCMA-(X)”, wherein X is 1-100 (see 2nd column of the appended Sequence Table) and/or three VL CDR sequences (named “VL CDR1”, “VH CDR2”, “VH CDR3”, see 4th column of the appended Sequence Table) from a binding molecule term BCMA-X, wherein X is 1-100 (see 2nd column of the appended Sequence Table).


Preferably, a binding molecule comprises a VH and/or VL sequence as is given in the appended Sequence Table (see 4th column of the appended Sequence Table: “VH” and “VL”).


Preferably, a binding molecule comprises a scFV sequence as is given in the appended Sequence Table (see 4th column of the appended Sequence Table: “scFv”).


Preferably, a binding molecule comprises a bispecific molecule sequence as is given in the appended Sequence Table (see 4th column of the appended Sequence Table: “bispecific molecule”).


The present invention also relates to a bispecific binding agent comprising at least two binding domains, comprising a first binding domain and a second binding domain, wherein said first binding domain binds to the B cell maturation antigen BCMA and wherein said second binding domain binds to CD3 (item 1) also including the following items:

    • Item 2. The bispecific binding agent of item 1, wherein said first binding domain binds to the extracellular domain of BCMA and said second binding domain binds to the ε chain of CD3.
    • Item 3. A bispecific binding agent of item 1 or 2 which is in the format of a full-length antibody or an antibody fragment.
    • Item 4. A bispecific binding agent of item 3 in the format of a full-length antibody, wherein said first BCMA-binding domain is derived from mouse said and wherein said second CD3-binding domain is derived from rat.
    • Item 5. A bispecific binding agent of item 3, which is in the format of an antibody fragment in the form of a diabody that comprises a heavy chain variable domain connected to a light chain variable domain on the same polypeptide chain such that the two domains do not pair.
    • Item 6. A bispecific binding agent of item 1 or 2 which is in the format of a bispecific single chain antibody that consists of two scFv molecules connected via a linker peptide or by a human serum albumin molecule.
    • Item 7. The bispecific binding agent of item 6, heavy chain regions (VH) and the corresponding variable light chain regions (VL) are arranged, from N-terminus to C-terminus, in the order
      • VH(BCMA)-VL(BCMA)-VH(CD3)-VL(CD3),
      • VH(CD3)-VL(CD3)-VH(BCMA)-VL(BCMA) or
      • VH CD3)-VL(CD3)-VL(BCMA)-VH(BCMA).
    • Item 8. A bispecific binding agent of item 1 or 2, which is in the format of a single domain immunoglobulin domain selected from VHHs or VHs.
    • Item 9. The bispecific binding agent of item 1 or 2, which is in the format of an Fv molecule that has four antibody variable domains with at least two binding domains, wherein at least one binding domain is specific to human BCMA and at least one binding domain is specific to human CD3.
    • Item 10. A bispecific binding agent of item 1 or 2, which is in the format of a single-chain binding molecule consisting of a first binding domain specific for BCMA, a constant sub-region that is located C-terminal to said first binding domain, a scorpion linker located C-terminal to the constant sub-region, and a second binding domain specific for CD3, which is located C-terminal to said constant sub-region.
    • Item 11. The bispecific binding agent of item 1 or 2, which is in the format of an antibody-like molecule that binds to BCMA via the two heavy chain/light chain Fv of an antibody or an antibody fragment and which binds to CD3 via a binding domain that has been engineered into non-CDR loops of the heavy chain or the light chain of said antibody or antibody fragment.
    • Item 12. A bispecific binding agent of item 1 which is in the format of a bispecific ankyrin repeat molecule.
    • Item 13. A bispecific binding agent of item 1, wherein said first binding domain has a format selected from the formats defined in any one of items 3 to 12 and wherein said second binding domain has a different format selected from the formats defined in any one of items 3 to 12.
    • Item 14. A bispecific binding agent of item 1 which is a bicyclic peptide.
    • Item 15. A pharmaceutical composition containing at least one bispecific binding agent of any one of items 1 to 14.
    • Item 16. A bispecific binding agent of any one of items 1 to 14 or a pharmaceutical composition of item 14 for the treatment of plasma cell disorders or other B cell disorders that correlate with BCMA expression and for the treatment of autoimmune diseases.
    • Item 17. A bispecific binding agent of any one of items 1 to 14 or a pharmaceutical composition of item 15 for the treatment of plasma cell disorders selected from plasmacytoma, plasma cell leukemia, multiple myeloma, macroglobulinemia, amyloidosis, Waldenstrom's macroglobulinemia, solitary bone plasmacytoma, extramedullary plasmacytoma, osteosclerotic myeloma, heavy chain diseases, monoclonal gammopathy of undetermined significance, smoldering multiple myeloma.


Variations of the above items are derivable from EP 10 191 418.2 which are also included herein.


It should be understood that the inventions herein are not limited to particular methodology, protocols, or reagents, as such can vary. The discussion and examples provided herein are presented for the purpose of describing particular embodiments only and are not intended to limit the scope of the present invention, which is defined solely by the claims.


All publications and patents cited throughout the text of this specification (including all patents, patent applications, scientific publications, manufacturer's specifications, instructions, etc.), whether supra or infra, are hereby incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1:


Sequence alignment of the extracellular domain (ECD) of human BCMA (amino acid residues 1-54 of the full-length protein) and murine BCMA (amino acid residues 1-49 of the full-length protein). Highlighted are the regions (domains or amino acid residues) which were exchanged in the chimeric constructs, as designated for the epitope clustering. Cysteines are depicted by black boxes. Disulfide bonds are indicated.



FIGS. 2A-B:


Epitope mapping of the BCMA constructs. Human and murine BCMA (FIG. 2A) as well as seven chimeric human-murine BCMA constructs (FIG. 2B) expressed on the surface of CHO cells as shown by flow cytometry. The expression of human BCMA on CHO was detected with a monoclonal anti-human BCMA antibody. Murine BCMA expression was detected with a monoclonal anti-murine BCMA-antibody. Bound monoclonal antibody was detected with an anti-rat IgG-Fc-gamma-specific antibody conjugated to phycoerythrin.



FIG. 3:


Examples of binding molecules specific for epitope cluster E3, as detected by epitope mapping of the chimeric BCMA constructs (see example 3).



FIGS. 4A-D:


Determination of binding constants of bispecific binding molecules (anti BCMA x anti CD3) on human and macaque BCMA using the Biacore system. Antigen was immobilized in low to intermediate density (100 RU) on CM5 chip. Dilutions of binders were floated over the chip surface and binding determined using BiaEval Software. Respective off-rates and the binding constant (KD) of the respective binders are depicted below every graph. FIG. 4A depicts the measured binding constant of BCMA-101 x CD3 on human BCMA. FIG. 4B depicts the measured binding constant of BCMA-101 x CD3 on macaque BCMA. FIG. 4C depicts the measured binding constant of BCMA-102 x CD3 on human BCMA. FIG. 4D depicts the measured binding constant of BCMA-102 x CD3 on macaque BCMA.



FIGS. 5A-B:


Cytotoxic activity of BCMA bispecific antibodies as measured in an 18-hour 51chromium release assay. Effector cells: stimulated enriched human CD8 T cells. Target cells: Human BCMA transfected CHO cells (FIG. 5A) and macaque BCMA transfected CHO cells (FIG. 5B). Effector to target cell (E:T) ratio: 10:1.



FIGS. 6A-H:


Determination of binding constants of BCMA/CD3 bispecific antibodies of epitope cluster E3 on human and macaque BCMA and on human and macaque CD3 using the Biacore system. Antigen was immobilized in low to intermediate density (100-200 RU) on CM5 chip. Dilutions of bispecific antibodies were floated over the chip surface and binding determined using BiaEval Software. Respective on- and off-rates and the resulting binding constant (KD) of the respective bispecific antibodies are depicted below every graph. FIG. 6A depicts a measured binding constant of BCMA-34 x CD3 on human BCMA. FIG. 6B depicts a measured binding constant of BCMA-34 x CD3 on macaque BCMA. FIG. 6C depicts a measured binding constant of BCMA-34 x CD3 on human CD3. FIG. 6D depicts a measured binding constant of BCMA-34 x CD3 on macaque CD3. FIG. 6E depicts a measured binding constant of BCMA-98 x CD3 on human BCMA. FIG. 6F depicts a measured binding constant of BCMA-98 x CD3 on macaque BCMA. FIG. 6G depicts a measured binding constant of BCMA-98 x CD3 on human CD3. FIG. 6H depicts a measured binding constant of BCMA-98 x CD3 on macaque CD3.



FIGS. 7A-F:


FACS analysis of BCMA/CD3 bispecific antibodies of epitope cluster E3 on indicated cell lines: human BCMA transfected CHO cells (FIG. 7A), human CD3 positive human T cell line HBP-ALL (FIG. 7B), macaque BCMA transfected CHO cells (FIG. 7C), macaque T cell line 4119 LnPx (FIG. 7D), BCMA-positive human multiple myeloma cell line NCI-H929 (FIG. 7E), and untransfected CHO cells (FIG. 7F). Negative controls [for FIGS. 7A-F]: detection antibodies without prior BCMA/CD3 bispecific antibody.



FIGS. 8A-D:


Scatchard analysis of BCMA/CD3 bispecific antibodies on BCMA-expressing cells. Cells were incubated with increasing concentrations of monomeric antibody until saturation. Antibodies were detected by flow cytometry. Values of triplicate measurements were plotted as hyperbolic curves and as sigmoid curves to demonstrate a valid concentration range used. Maximal binding was determined using Scatchard evaluation, and the respective KD values were calculated. FIG. 8A depicts a Scatchard analysis of BCMA-20 x CD3 on CHO cells expressing human BCMA as a hyperbolic curve. FIG. 8B depicts a Scatchard analysis of BCMA-20 x CD3 on CHO cells expressing human BCMA as a sigmoid curve. FIG. 8C depicts a Scatchard analysis of BCMA-20 x CD3 on CHO cells expressing macaque BCMA as a hyperbolic curve. FIG. 8D depicts a Scatchard analysis of BCMA-20 x CD3 on CHO cells expressing macaque BCMA as a sigmoid curve.



FIGS. 9A-B:


Cytotoxic activity of BCMA/CD3 bispecific antibodies of epitope cluster E3, as measured in an 18-hour 51-chromium release assay against CHO cells transfected with human BCMA. Effector cells: stimulated enriched human CD8 T cells. Effector to target cell (E:T) ratio: 10:1. FIG. 9A depicts a measured 51-chromium release assay of BCMA-97 x CD3, BCMA-98 x CD3, BCMA-99 x CD3, and BCMA-100 x CD3 on CHO cells expressing human BCMA. FIG. 9B depicts a measured 51-chromium release assay of BCMA-82 x CD3, BCMA-83 x CD3, and BCMA-84 x CD3 on CHO cells expressing human BCMA.



FIG. 10:


Cytotoxic activity of BCMA/CD3 bispecific antibodies of epitope cluster E3 as measured in a 48-hour FACS-based cytotoxicity assay. Effector cells: unstimulated human PBMC. Target cells: CHO cells transfected with human BCMA. Effector to target cell (E:T)-ratio: 10:1.



FIGS. 11A-H:


FACS analysis of BCMA/CD3 bispecific antibodies of epitope cluster E3 on BAFF-R and TACI transfected CHO cells. Cell lines: 1) human BAFF-R transfected CHO cells, 2) human TACI transfected CHO cells 3) multiple myeloma cell line L363; negative controls: detection antibodies without prior BCMA/CD3 bispecific antibody. Positive controls: BAFF-R detection: goat anti hu BAFF-R (R&D AF1162; 1:20) detected by anti-goat antibody-PE (Jackson 705-116-147; 1:50) TACI-detection: rabbit anti TACI antibody (abcam AB 79023; 1:100) detected by goat anti rabbit-antibody PE (Sigma P9757; 1:20). FIG. 11A depicts FACS analysis of CHO cells expressing human BAFF-R treated with BCMA-98. FIG. 11B depicts FACS analysis of CHO cells expressing human TACI treated with BCMA-98. FIG. 11C depicts FACS analysis of L393 cells treated with BCMA-98. FIG. 11D depicts FACS analysis of CHO cells expressing human BAFF-R treated with BCMA-34. FIG. 11E depicts FACS analysis of CHO cells expressing human TACI treated with BCMA-34. FIG. 11F depicts FACS analysis of L393 cells treated with BCMA-34. FIG. 11G depicts a positive control FACS analysis of CHO cells expressing human BAFF-R with an anti-BAFF-R antibody. FIG. 11H depicts a positive control FACS analysis of CHO cells expressing human TACI with an anti-TACI antibody.



FIG. 12:


Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in an 18-hour 51-chromium release assay. Effector cells: stimulated enriched human CD8 T cells. Target cells: BCMA-positive human multiple myeloma cell line L363 (i.e. natural expresser). Effector to target cell (E:T) ratio: 10:1.



FIG. 13:


Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in a 48-hour FACS-based cytotoxicity assay. Effector cells: unstimulated human PBMC. Target cells: human multiple myeloma cell line L363 (natural BCMA expresser). Effector to target cell (E:T)-ratio: 10:1.



FIG. 14:


Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in a 48-hour FACS-based cytotoxicity assay. Effector cells: unstimulated human PBMC. Target cells: BCMA-positive human multiple myeloma cell line NCI-H929. Effector to target cell (E:T)-ratio: 10:1.



FIG. 15:


Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in a 48-hour FACS-based cytotoxicity assay. Effector cells: macaque T cell line 4119LnPx. Target cells: CHO cells transfected with macaque BCMA. Effector to target cell (E:T) ratio: 10:1.



FIG. 16:


Anti-tumor activity of BCMA/CD3 bispecific antibodies of epitope cluster E3 in an advanced-stage NCI-H929 xenograft model (see Example 16).



FIGS. 17A-F:


FACS-based cytotoxicity assay using human multiple myeloma cell lines NCI-H929, L-363 and OPM-2 as target cells and human PBMC as effector cells (48 h; E:T=10:1). The figure depicts the cytokine levels [pg/ml] which were determined for Il-2, IL-6, IL-10, TNF and IFN-gamma at increasing concentrations of the BCMA/CD3 bispecific antibodies of epitope cluster E3 (see Example 22). FIG. 17A depicts a measured cytotoxicity assay of NCI-H929 cells treated with BCMA-98 x CD3. FIG. 17B depicts a measured cytotoxicity assay of NCI-H929 cells treated with BCMA-34 x CD3. FIG. 17C depicts a measured cytotoxicity assay of OPM-2 cells treated with BCMA-98 x CD3. FIG. 17D depicts a measured cytotoxicity assay of OPM-2 cells treated with BCMA-34 x CD3. FIG. 17E depicts a measured cytotoxicity assay of L-363 cells treated with BCMA-98 x CD3. FIG. 17F depicts a measured cytotoxicity assay of L-363 cells treated with BCMA-34 x CD3.





EXAMPLES

The following examples illustrate the invention. These examples should not be construed as to limit the scope of this invention. The examples are included for purposes of illustration, and the present invention is limited only by the claims.


Example 1

Generation of CHO Cells Expressing Chimeric BCMA


For the construction of the chimeric epitope mapping molecules, the amino acid sequence of the respective epitope domains or the single amino acid residue of human BCMA was changed to the murine sequence. The following molecules were constructed:

    • Human BCMA ECD/E1 murine (SEQ ID NO: 1009)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope cluster 1 (amino acid residues 1-7 of SEQ ID NO: 1002 or 1007) is replaced by the respective murine cluster (amino acid residues 1-4 of SEQ ID NO: 1004 or 1008)

    • → deletion of amino acid residues 1-3 and G6Q mutation in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E2 murine (SEQ ID NO: 1010)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope cluster 2 (amino acid residues 8-21 of SEQ ID NO: 1002 or 1007) is replaced by the respective murine cluster (amino acid residues 5-18 of SEQ ID NO: 1004 or 1008)

    • → S9F, Q10H, and N11S mutations in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E3 murine (SEQ ID NO: 1011)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope cluster 3 (amino acid residues 24-41 of SEQ ID NO: 1002 or 1007) is replaced by the respective murine cluster (amino acid residues 21-36 of SEQ ID NO: 1004 or 1008)

    • → deletion of amino acid residues 31 and 32 and Q25H, S30N, L35A, and R39P mutation in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E4 murine (SEQ ID NO: 1012)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope cluster 4 (amino acid residues 42-54 of SEQ ID NO: 1002 or 1007) is replaced by the respective murine cluster (amino acid residues 37-49 of SEQ ID NO: 1004 or 1008)

    • → N42D, A43P, N47S, N53Y and A54T mutations in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E5 murine (SEQ ID NO: 1013)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein the amino acid residue at position 22 of SEQ ID NO: 1002 or 1007 (isoleucine) is replaced by its respective murine amino acid residue of SEQ ID NO: 1004 or 1008 (lysine, position 19)

    • → I22K mutation in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E6 murine (SEQ ID NO: 1014)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein the amino acid residue at position 25 of SEQ ID NO: 1002 or 1007 (glutamine) is replaced by its respective murine amino acid residue of SEQ ID NO: 1004 or 1008 (histidine, position 22)

    • → Q25H mutation in SEQ ID NO: 1002 or 1007
    • Human BCMA ECD/E7 murine (SEQ ID NO: 1015)


Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein the amino acid residue at position 39 of SEQ ID NO: 1002 or 1007 (arginine) is replaced by its respective murine amino acid residue of SEQ ID NO: 1004 or 1008 (proline, position 34)

    • → R39P mutation in SEQ ID NO: 1002 or 1007


A) The cDNA constructs were cloned into the mammalian expression vector pEF-DHFR and stably transfected into CHO cells. The expression of human BCMA on CHO cells was verified in a FACS assay using a monoclonal anti-human BCMA antibody. Murine BCMA expression was demonstrated with a monoclonal anti-mouse BCMA-antibody. The used concentration of the BCMA antibodies was 10 μg/ml in PBS/2% FCS. Bound monoclonal antibodies were detected with an anti-rat-IgG-Fcy-PE (1:100 in PBS/2% FCS; Jackson-Immuno-Research #112-116-071). As negative control, cells were incubated with PBS/2% FCS instead of the first antibody. The samples were measured by flow cytometry on a FACSCanto II instrument (Becton Dickinson) and analyzed by FlowJo software (Version 7.6). The surface expression of human-murine BCMA chimeras, transfected CHO cells were analyzed and confirmed in a flow cytometry assay with different anti-BCMA antibodies (FIGS. 2A-B).


B) For the generation of CHO cells expressing human, macaque, mouse and human/mouse chimeric transmembrane BCMA, the coding sequences of human, macaque, mouse BCMA and the human-mouse BCMA chimeras (BCMA sequences as published in GenBank, accession numbers NM_001192 [human]; NM_011608 [mouse] and XM_001106892 [macaque]) were obtained by gene synthesis according to standard protocols. The gene synthesis fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino acid immunoglobulin leader peptide, followed in frame by the coding sequence of the BCMA proteins respectively in case of the chimeras with the respective epitope domains of the human sequence exchanged for the murine sequence.


Except for the human BCMA ECD/E4 murine and human BCMA constructs the coding sequence of the extracellular domain of the BCMA proteins was followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker followed by the intracellular domain of human EpCAM (amino acids 226-314; sequence as published in GenBank accession number NM_002354).


All coding sequences were followed by a stop codon. The gene synthesis fragments were also designed as to introduce suitable restriction sites. The gene synthesis fragments were cloned into a plasmid designated pEF-DHFR (pEF-DHFR is described in Raum et al. Cancer Immunol Immunother 50 (2001) 141-150). All aforementioned procedures were carried out according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, 3rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York (2001)). For each antigen a clone with sequence-verified nucleotide sequence was transfected into DHFR deficient CHO cells for eukaryotic expression of the constructs. Eukaryotic protein expression in DHFR deficient CHO cells was performed as described by Kaufman R. J. (1990) Methods Enzymol. 185, 537-566. Gene amplification of the constructs was induced by increasing concentrations of methotrexate (MTX) to a final concentration of up to 20 nM MTX.


Example 2

2.1 Transient Expression in HEK 293 Cells


Clones of the expression plasmids with sequence-verified nucleotide sequences were used for transfection and protein expression in the FreeStyle 293 Expression System (Invitrogen GmbH, Karlsruhe, Germany) according to the manufacturer's protocol. Supernatants containing the expressed proteins were obtained, cells were removed by centrifugation and the supernatants were stored at −20 C.


2.2 Stable Expression in CHO Cells


Clones of the expression plasmids with sequence-verified nucleotide sequences were transfected into DHFR deficient CHO cells for eukaryotic expression of the constructs. Eukaryotic protein expression in DHFR deficient CHO cells was performed as described by Kaufman R. J. (1990) Methods Enzymol. 185, 537-566. Gene amplification of the constructs was induced by increasing concentrations of methotrexate (MTX) to a final concentration of 20 nM MTX. After two passages of stationary culture the cells were grown in roller bottles with nucleoside-free HyQ PF CHO liquid soy medium (with 4.0 mM L-Glutamine with 0.1% Pluronic F-68; HyClone) for 7 days before harvest. The cells were removed by centrifugation and the supernatant containing the expressed protein was stored at −20 C.


2.3 Protein Purification


Purification of soluble BCMA proteins was performed as follows: Akta® Explorer System (GE Healthcare) and Unicorn® Software were used for chromatography. Immobilized metal affinity chromatography (“IMAC”) was performed using a Fractogel EMD Chelate® (Merck) which was loaded with ZnCl2 according to the protocol provided by the manufacturer. The column was equilibrated with buffer A (20 mM sodium phosphate buffer pH 7.2, 0.1 M NaCl) and the filtrated (0.2 μm) cell culture supernatant was applied to the column (10 ml) at a flow rate of 3 ml/min. The column was washed with buffer A to remove unbound sample. Bound protein was eluted using a two-step gradient of buffer B (20 mM sodium phosphate buffer pH 7.2, 0.1 M NaCl, 0.5 M imidazole) according to the following procedure:

    • Step 1: 10% buffer B in 6 column volumes
    • Step 2: 100% buffer B in 6 column volumes


Eluted protein fractions from step 2 were pooled for further purification. All chemicals were of research grade and purchased from Sigma (Deisenhofen) or Merck (Darmstadt).


Gel filtration chromatography was performed on a HiLoad 16/60 Superdex 200 prep grade column (GE/Amersham) equilibrated with Equi-buffer (10 mM citrate, 25 mM lysine-HCl, pH 7.2 for proteins expressed in HEK cells and PBS pH 7.4 for proteins expressed in CHO cells). Eluted protein samples (flow rate 1 ml/min) were subjected to standard SDS-PAGE and Western Blot for detection. Protein concentrations were determined using OD280 nm.


Proteins obtained via transient expression in HEK 293 cells were used for immunizations. Proteins obtained via stable expression in CHO cells were used for selection of binders and for measurement of binding.


Example 3

Epitope Clustering of Murine scFv-Fragments


Cells transfected with human or murine BCMA, or with chimeric BCMA molecules were stained with crude, undiluted periplasmic extract containing scFv binding to human/macaque BCMA. Bound scFv were detected with 1 μg/ml of an anti-FLAG antibody (Sigma F1804) and a R-PE-labeled anti-mouse Fc gamma-specific antibody (1:100; Dianova #115-116-071). All antibodies were diluted in PBS with 2% FCS. As negative control, cells were incubated with PBS/2% FCS instead of the periplasmic extract. The samples were measured by flow cytometry on a FACSCanto II instrument (Becton Dickinson) and analyzed by FlowJo software (Version 7.6); see FIG. 3.


Example 4

Procurement of Different Recombinant Forms of Soluble Human and Macaque BCMA


A) The coding sequences of human and rhesus BCMA (as published in GenBank, accession numbers NM_001192 [human], XM_001106892 [rhesus]) coding sequences of human albumin, human Fcγ1 and murine albumin were used for the construction of artificial cDNA sequences encoding soluble fusion proteins of human and macaque BCMA respectively and human albumin, human IgG1 Fc and murine albumin respectively as well as soluble proteins comprising only the extracellular domains of BCMA. To generate the constructs for expression of the soluble human and macaque BCMA proteins, cDNA fragments were obtained by PCR mutagenesis of the full-length BCMA cDNAs described above and molecular cloning according to standard protocols.


For the fusions with human albumin, the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs followed by the coding sequence of the human and rhesus (or Macaca mulatta) BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to 53 corresponding to the extracellular domain of human and rhesus BCMA, respectively, followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, followed in frame by the coding sequence of human serum albumin, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


For the fusions with murine IgG1, the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs followed by the coding sequence of the human and macaque BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to 53 corresponding to the extracellular domain of human and rhesus BCMA, respectively, followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, followed in frame by the coding sequence of the hinge and Fc gamma portion of human IgG1, followed in frame by the coding sequence of a hexahistidine tag and a stop codon.


For the fusions with murine albumin, the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs followed by the coding sequence of the human and macaque BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to 53 corresponding to the extracellular domain of human and rhesus BCMA, respectively, followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, followed in frame by the coding sequence of murine serum albumin, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


For the soluble extracellular domain constructs, the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs followed by the coding sequence of the human and macaque BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to 53 corresponding to the extracellular domain of human and rhesus BCMA, respectively, followed in frame by the coding sequence of an artificial Ser1-Gly1-linker, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


The cDNA fragments were also designed to introduce restriction sites at the beginning and at the end of the fragments. The introduced restriction sites, EcoRI at the 5′ end and SalI at the 3′ end, were utilized in the following cloning procedures. The cDNA fragments were cloned via EcoRI and SalI into a plasmid designated pEF-DHFR (pEF-DHFR is described in Raum et al. Cancer Immunol Immunother 50 (2001) 141-150). The aforementioned procedures were all carried out according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, 3rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York (2001)).


B) The coding sequences of human and macaque BCMA as described above and coding sequences of human albumin, human Fcγ1, murine Fcγ1, murine Fcγ2a, murine albumin, rat albumin, rat Fcγ1 and rat Fcγ2b were used for the construction of artificial cDNA sequences encoding soluble fusion proteins of human and macaque BCMA respectively and human albumin, human IgG1 Fc, murine IgG1 Fc, murine IgG2a Fc, murine albumin, rat IgG1 Fc, rat IgG2b and rat albumin respectively as well as soluble proteins comprising only the extracellular domains of BCMA. To generate the constructs for expression of the soluble human and macaque BCMA proteins cDNA fragments were obtained by PCR mutagenesis of the full-length BCMA cDNAs described above and molecular cloning according to standard protocols.


For the fusions with albumins the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino acid immunoglobulin leader peptide, followed in frame by the coding sequence of the extracellular domain of the respective BCMA protein followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, followed in frame by the coding sequence of the respective serum albumin, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


For the fusions with IgG Fcs the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino acid immunoglobulin leader peptide, followed in frame by the coding sequence of the extracellular domain of the respective BCMA protein followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, except for human IgG1 Fc where an artificial Ser1-Gly1-linker was used, followed in frame by the coding sequence of the hinge and Fc gamma portion of the respective IgG, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


For the soluble extracellular domain constructs the modified cDNA fragments were designed as to contain first a Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino acid immunoglobulin leader peptide, followed in frame by the coding sequence of the extracellular domain of the respective BCMA protein followed in frame by the coding sequence of an artificial Ser1-Gly1-linker, followed in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH (SEQ ID NO. 1094)) and a stop codon.


For cloning of the constructs suitable restriction sites were introduced. The cDNA fragments were all cloned into a plasmid designated pEF-DHFR (pEF-DHFR is described in Raum et al. 2001). The aforementioned procedures were all carried out according to standard protocols (Sambrook, 2001).


The following constructs were designed to enable directed panning on distinct epitopes. The coding sequence of murine-human BCMA chimeras and murine-macaque BCMA chimeras (mouse, human and macaque BCMA sequences as described above) and coding sequences of murine albumin and murine Fcγ1 were used for the construction of artificial cDNA sequences encoding soluble fusion proteins of murine-human and murine-macaque BCMA chimeras respectively and murine IgG1 Fc and murine albumin, respectively. To generate the constructs for expression of the soluble murine-human and murine-macaque BCMA chimeras cDNA fragments of murine BCMA (amino acid 1-49) with the respective epitope domains mutated to the human and macaque sequence respectively were obtained by gene synthesis according to standard protocols. Cloning of constructs was carried out as described above and according to standard protocols (Sambrook, 2001).


The following molecules were constructed:

    • amino acid 1-4 human, murine IgG1 Fc
    • amino acid 1-4 human, murine albumin
    • amino acid 1-4 rhesus, murine IgG1 Fc
    • amino acid 1-4 rhesus, murine albumin
    • amino acid 5-18 human, murine IgG1 Fc
    • amino acid 5-18 human, murine albumin
    • amino acid 5-18 rhesus, murine IgG1 Fc
    • amino acid 5-18 rhesus, murine albumin
    • amino acid 37-49 human, murine IgG1 Fc
    • amino acid 37-49 human, murine albumin
    • amino acid 37-49 rhesus, murine IgG1 Fc
    • amino acid 37-49 rhesus, murine albumin


Example 5

5.1 Biacore-Based Determination of Bispecific Antibody Affinity to Human and Macaque BCMA and CD3


Biacore analysis experiments were performed using recombinant BCMA fusion proteins with human serum albumin (ALB) to determine BCMA target binding. For CD3 affinity measurements, recombinant fusion proteins having the N-terminal 27 amino acids of the CD3 epsilon (CD3e) fused to human antibody Fc portion were used. This recombinant protein exists in a human CD3e1-27 version and in a cynomolgous CD3e version, both bearing the epitope of the CD3 binder in the bispecific antibodies.


In detail, CM5 Sensor Chips (GE Healthcare) were immobilized with approximately 100 to 150 RU of the respective recombinant antigen using acetate buffer pH4.5 according to the manufacturer's manual. The bispecific antibody samples were loaded in five concentrations: 50 nM, 25 nM, 12.5 nM, 6.25 nM and 3.13 nM diluted in HBS-EP running buffer (GE Healthcare). Flow rate was 30 to 35 μl/min for 3 min, then HBS-EP running buffer was applied for 8 min again at a flow rate of 30 to 35 μl/ml. Regeneration of the chip was performed using 10 mM glycine 0.5 M NaCl pH 2.45. Data sets were analyzed using BiaEval Software (see FIGS. 4A-D). In general two independent experiments were performed.


5.2 Binding Affinity to Human and Macaque BCMA


Binding affinities of BCMA/CD3 bispecific antibodies to human and macaque BCMA were determined by Biacore analysis using recombinant BCMA fusion proteins with mouse albumin (ALB).


In detail, CM5 Sensor Chips (GE Healthcare) were immobilized with approximately 150 to 200 RU of the respective recombinant antigen using acetate buffer pH4.5 according to the manufacturer's manual. The bispecific antibody samples were loaded in five concentrations: 50 nM, 25 nM, 12.5 nM, 6.25 nM and 3.13 nM diluted in HBS-EP running buffer (GE Healthcare). For BCMA affinity determinations the flow rate was 35 μl/min for 3 min, then HBS-EP running buffer was applied for 10, 30 or 60 min again at a flow rate of 35 μl/ml. Regeneration of the chip was performed using a buffer consisting of a 1:1 mixture of 10 mM glycine 0.5 M NaCl pH 1.5 and 6 M guanidine chloride solution. Data sets were analyzed using BiaEval Software (see FIGS. 6A-H). In general two independent experiments were performed.


Confirmative human and macaque CD3 epsilon binding was performed in single experiments using the same concentrations as applied for BCMA binding; off-rate determination was done for 10 min dissociation time.


All BCMA/CD3 bispecific antibodies of epitope cluster E3 showed high affinities to human BCMA in the sub-nanomolar range down to 1-digit picomolar range. Binding to macaque BCMA was balanced, also showing affinities in the 1-digit nanomolar down to subnanomolar range. Affinities and affinity gaps of BCMA/CD3 bispecific antibodies are shown in Table 2.









TABLE 2







Affinities of BCMA/CD3 bispecific antibodies of the epitope


cluster E3 to human and macaque BCMA as determined by Biacore


analysis, and calculated affinity gaps (ma BCMA:hu BCMA).










BCMA/CD3
hu BCMA
ma BCMA
Affinity gap


bispecific antibody
[nM]
[nM]
ma BCMA:hu BCMA













BCMA-83
0.031
0.077
2.5


BCMA-98
0.025
0.087
3.5


BCMA-71
0.60
2.2
3.7


BCMA-34
0.051
0.047
1:1.1


BCMA-74
0.088
0.12
1.4


BCMA-20
0.0085
0.016
1.9










5.3 Biacore-Based Determination of the Bispecific Antibody Affinity to Human and Macaque BCMA


The affinities of BCMA/CD3 bispecific antibodies to recombinant soluble BCMA on CM5 chips in Biacore measurements were repeated to reconfirm KDs and especially off-rates using longer dissociation periods (60 min instead of 10 min as used in the previous experiment). All of the tested BCMA/CD3 bispecific antibodies underwent two independent affinity measurements with five different concentrations each.


The affinities of the BCMA/CD3 bispecific antibodies of the epitope cluster E3 were clearly subnanomolar down to 1-digit picomolar, see examples in Table 3.









TABLE 3







Affinities (KD) of BCMA/CD3 bispecific antibodies of the


epitope cluster E3 from Biacore experiments using extended


dissociation times (two independent experiments each).











BCMA/CD3
KD [nM]
KD [nM]



bispecific antibody
human BCMA
macaque BCMA







BCMA-83
0.053 ± 0.017
0.062 ± 0.011



BCMA-98
0.025 ± 0.003
0.060 ± 0.001



BCMA-71
0.242 ± 0.007
0.720 ± 0.028



BCMA-34
0.089 ± 0.019
0.056 ± 0.003



BCMA-74
0.076 ± 0.002
0.134 ± 0.010



BCMA-20
0.0095 ± 0.0050
0.0060 ± 0.0038










Example 6

Bispecific Binding and Interspecies Cross-Reactivity


For confirmation of binding to human and macaque BCMA and CD3, bispecific antibodies were tested by flow cytometry using CHO cells transfected with human and macaque BCMA, respectively, the human multiple myeloma cell line NCI-H929 expressing native human BCMA, CD3-expressing human T cell leukemia cell line HPB-ALL (DSMZ, Braunschweig, ACC483) and the CD3-expressing macaque T cell line 4119LnPx (Knappe A, et al., Blood, 2000, 95, 3256-3261). Moreover, untransfected CHO cells were used as negative control.


For flow cytometry 200,000 cells of the respective cell lines were incubated for 30 min on ice with 50 μl of purified bispecific antibody at a concentration of 5 μg/ml. The cells were washed twice in PBS/2% FCS and binding of the constructs was detected with a murine PentaHis antibody (Qiagen; diluted 1:20 in 50 μl PBS/2% FCS). After washing, bound PentaHis antibodies were detected with an Fc gamma-specific antibody (Dianova) conjugated to phycoerythrin, diluted 1:100 in PBS/2% FCS. Samples were measured by flow cytometry on a FACSCanto II instrument and analyzed by FACSDiva software (both from Becton Dickinson).


The BCMA/CD3 bispecific antibodies of epitope cluster E3 stained CHO cells transfected with human and macaque BCMA, the human BCMA-expressing multiple myeloma cell line NCI-H929 as well as human and macaque T cells. Moreover, there was no staining of untransfected CHO cells (see FIGS. 7A-F).


Example 7

Scatchard-Based Determination of Bispecific-Antibody Affinity to Human and Macaque BCMA


For Scatchard analysis, saturation binding experiments are performed using a monovalent detection system developed at Micromet (anti-His Fab/Alexa 488) to precisely determine monovalent binding of the bispecific antibodies to the respective cell line.


2×104 cells of the respective cell line (recombinantly human BCMA-expressing CHO cell line, recombinantly macaque BCMA-expressing CHO cell line) are incubated with each 50 μl of a triplet dilution series (eight dilutions at 1:2) of the respective BCMA bispecific antibody starting at 100 nM followed by 16 h incubation at 4° C. under agitation and one residual washing step. Then, the cells are incubated for further 30 min with 30 μl of an anti-His Fab/Alexa488 solution (Micromet; 30 μg/ml). After one washing step, the cells are resuspended in 150 μl FACS buffer containing 3.5% formaldehyde, incubated for further 15 min, centrifuged, resuspended in FACS buffer and analyzed using a FACS Cantoll machine and FACS Diva software. Data are generated from two independent sets of experiments. Values are plotted as hyperbole binding curves. Respective Scatchard analysis is calculated to extrapolate maximal binding (Bmax). The concentrations of bispecific antibodies at half-maximal binding are determined reflecting the respective KDs. Values of triplicate measurements are plotted as hyperbolic curves. Maximal binding is determined using Scatchard evaluation and the respective KDs are calculated.


The affinities of BCMA/CD3 bispecific antibodies to CHO cells transfected with human or macaque BCMA were determined by Scatchard analysis as the most reliable method for measuring potential affinity gaps between human and macaque BCMA.


Cells expressing the BCMA antigen were incubated with increasing concentrations of the respective monomeric BCMA/CD3 bispecific antibody until saturation was reached (16 h). Bound bispecific antibody was detected by flow cytometry. The concentrations of BCMA/CD3 bispecific antibodies at half-maximal binding were determined reflecting the respective KDs.


Values of triplicate measurements were plotted as hyperbolic curves and as S-shaped curves to demonstrate proper concentration ranges from minimal to optimal binding. Maximal binding (Bmax) was determined (FIGS. 8A-D) using Scatchard evaluation and the respective KDs were calculated. Values depicted in Table 4 were derived from two independent experiments per BCMA/CD3 bispecific antibody.


Cell based Scatchard analysis confirmed that the BCMA/CD3 bispecific antibodies of the epitope cluster E3 are subnanomolar in affinity to human BCMA and present with a small interspecies BCMA affinity gap of below five.









TABLE 4







Affinities (KD) of BCMA/CD3 bispecific antibodies of


the epitope cluster E3 from cell based Scatchard analysis


(two independent experiments each) with the calculated


affinity gap KD macaque BCMA/KD human BCMA.













x-fold KD





difference


BCMA/CD3
KD [nM]
KD [nM]
KD ma vs.


bispecific antibody
human BCMA
macaque BCMA
KD hu BCMA













BCMA-83
0.40 ± 0.13
1.22 ± 0.25
3.1


BCMA-98
0.74 ± 0.02
1.15 ± 0.64
1.6


BCMA-71
0.78 ± 0.07
3.12 ± 0.26
4.0


BCMA-34
0.77 ± 0.11
0.97 ± 0.33
1.3


BCMA-74
0.67 ± 0.03
0.95 ± 0.06
1.4


BCMA-20
0.78 ± 0.10
0.85 ± 0.01
1.1









Example 8

Cytotoxic Activity


8.1 Chromium Release Assay with Stimulated Human T Cells


Stimulated T cells enriched for CD8+ T cells were obtained as described below.


A petri dish (145 mm diameter, Greiner bio-one GmbH, Kremsmunster) was coated with a commercially available anti-CD3 specific antibody (OKT3, Orthoclone) in a final concentration of 1 μg/ml for 1 hour at 37° C. Unbound protein was removed by one washing step with PBS. 3-5×107 human PBMC were added to the precoated petri dish in 120 ml of RPMI 1640 with stabilized glutamine/10% FCS/IL-2 20 U/ml (Proleukin®, Chiron) and stimulated for 2 days. On the third day, the cells were collected and washed once with RPMI 1640. IL-2 was added to a final concentration of 20 U/ml and the cells were cultured again for one day in the same cell culture medium as above.


CD8+ cytotoxic T lymphocytes (CTLs) were enriched by depletion of CD4+ T cells and CD56+ NK cells using Dynal-Beads according to the manufacturer's protocol.


Macaque or human BCMA-transfected CHO target cells were washed twice with PBS and labeled with 11.1 MBq 51Cr in a final volume of 100 μl RPMI with 50% FCS for 60 minutes at 37° C. Subsequently, the labeled target cells were washed 3 times with 5 ml RPMI and then used in the cytotoxicity assay. The assay was performed in a 96-well plate in a total volume of 200 μl supplemented RPMI with an E:T ratio of 10:1. A starting concentration of 0.01-1 μg/ml of purified bispecific antibody and threefold dilutions thereof were used. Incubation time for the assay was 18 hours. Cytotoxicity was determined as relative values of released chromium in the supernatant relative to the difference of maximum lysis (addition of Triton-X) and spontaneous lysis (without effector cells). All measurements were carried out in quadruplicates. Measurement of chromium activity in the supernatants was performed in a Wizard 3″ gamma counter (Perkin Elmer Life Sciences GmbH, Köln, Germany). Analysis of the results was carried out with Prism 5 for Windows (version 5.0, GraphPad Software Inc., San Diego, California, USA). EC50 values calculated by the analysis program from the sigmoidal dose response curves were used for comparison of cytotoxic activity (see FIGS. 5A-B).


8.2 Potency of Redirecting Stimulated Human Effector T Cells Against Human BCMA-Transfected CHO Cells


The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a 51-chromium (51Cr) release cytotoxicity assay using CHO cells transfected with human BCMA as target cells, and stimulated enriched human CD8 T cells as effector cells. The experiment was carried out as described in Example 8.1.


All BCMA/CD3 bispecific antibodies of epitope cluster E3 showed very potent cytotoxic activity against human BCMA transfected CHO cells with EC50-values in the 1-digit pg/ml range or even below (FIGS. 9A-B and Table 5). So the epitope cluster E3 presents with a very favorable epitope-activity relationship supporting very potent bispecific antibody mediated cytotoxic activity.









TABLE 5







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies of the


epitope cluster E3 analyzed in a 51-chromium (51Cr) release cytotoxicity


assay using CHO cells transfected with human BCMA as target cells,


and stimulated enriched human CD8 T cells as effector cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value















BCMA-83
0.38
0.79



BCMA-98
0.27
0.85



BCMA-71
3.2
0.85



BCMA-34
3.4
0.81



BCMA-74
0.73
0.80



BCMA-20
0.83
0.82











8.3 FACS-Based Cytotoxicity Assay with Unstimulated Human PBMC


Isolation of Effector Cells


Human peripheral blood mononuclear cells (PBMC) were prepared by Ficoll density gradient centrifugation from enriched lymphocyte preparations (buffy coats), a side product of blood banks collecting blood for transfusions. Buffy coats were supplied by a local blood bank and PBMC were prepared on the same day of blood collection. After Ficoll density centrifugation and extensive washes with Dulbecco's PBS (Gibco), remaining erythrocytes were removed from PBMC via incubation with erythrocyte lysis buffer (155 mM NH4Cl, 10 mM KHCO3, 100 μM EDTA). Platelets were removed via the supernatant upon centrifugation of PBMC at 100×g. Remaining lymphocytes mainly encompass B and T lymphocytes, NK cells and monocytes. PBMC were kept in culture at 37° C./5% CO2 in RPMI medium (Gibco) with 10% FCS (Gibco).


Depletion of CD14+ and CD56+ Cells


For depletion of CD14+ cells, human CD14 MicroBeads (Milteny Biotec, MACS, #130-050-201) were used, for depletion of NK cells human CD56 MicroBeads (MACS, #130-050-401). PBMC were counted and centrifuged for 10 min at room temperature with 300×g. The supernatant was discarded and the cell pellet resuspended in MACS isolation buffer [80 μL/107 cells; PBS (Invitrogen, #20012-043), 0.5% (v/v) FBS (Gibco, #10270-106), 2 mM EDTA (Sigma-Aldrich, #E-6511)]. CD14 MicroBeads and CD56 MicroBeads (20 μL/107 cells) were added and incubated for 15 min at 4-8° C. The cells were washed with MACS isolation buffer (1-2 mL/107 cells). After centrifugation (see above), supernatant was discarded and cells resuspended in MACS isolation buffer (500 μL/108 cells). CD14/CD56 negative cells were then isolated using LS Columns (Miltenyi Biotec, #130-042-401). PBMC w/o CD14+/CD56+ cells were cultured in RPMI complete medium i.e. RPMI1640 (Biochrom AG, #FG1215) supplemented with 10% FBS (Biochrom AG, #S0115), 1× non-essential amino acids (Biochrom AG, #K0293), 10 mM Hepes buffer (Biochrom AG, #L1613), 1 mM sodium pyruvate (Biochrom AG, #L0473) and 100 U/mL penicillin/streptomycin (Biochrom AG, #A2213) at 37° C. in an incubator until needed.


Target Cell Labeling


For the analysis of cell lysis in flow cytometry assays, the fluorescent membrane dye DiOC18 (DiO) (Molecular Probes, #V22886) was used to label human BCMA- or macaque BCMA-transfected CHO cells as target cells and distinguish them from effector cells. Briefly, cells were harvested, washed once with PBS and adjusted to 106 cell/mL in PBS containing 2% (v/v) FBS and the membrane dye DiO (5 μL/106 cells). After incubation for 3 min at 37° C., cells were washed twice in complete RPMI medium and the cell number adjusted to 1.25×105 cells/mL. The vitality of cells was determined using 0.5% (v/v) isotonic EosinG solution (Roth, #45380).


Flow Cytometry Based Analysis


This assay was designed to quantify the lysis of macaque or human BCMA-transfected CHO cells in the presence of serial dilutions of BCMA bispecific antibodies.


Equal volumes of DiO-labeled target cells and effector cells (i.e., PBMC w/o CD14+ cells) were mixed, resulting in an E:T cell ratio of 10:1. 160 μL of this suspension were transferred to each well of a 96-well plate. 40 μL of serial dilutions of the BCMA bispecific antibodies and a negative control bispecific (an CD3-based bispecific antibody recognizing an irrelevant target antigen) or RPMI complete medium as an additional negative control were added. The bispecific antibody-mediated cytotoxic reaction proceeded for 48 hours in a 7% CO2 humidified incubator. Then cells were transferred to a new 96-well plate and loss of target cell membrane integrity was monitored by adding propidium iodide (PI) at a final concentration of 1 μg/mL. PI is a membrane impermeable dye that normally is excluded from viable cells, whereas dead cells take it up and become identifiable by fluorescent emission.


Samples were measured by flow cytometry on a FACSCanto II instrument and analyzed by FACSDiva software (both from Becton Dickinson).


Target cells were identified as DiO-positive cells. PI-negative target cells were classified as living target cells. Percentage of cytotoxicity was calculated according to the following formula:








Cytotoxicity

[
%
]

=



n

dead


targetcells



n
targetcells


×
1

0

0





n
=

number


of


events






Using GraphPad Prism 5 software (Graph Pad Software, San Diego), the percentage of cytotoxicity was plotted against the corresponding bispecific antibody concentrations. Dose response curves were analyzed with the four parametric logistic regression models for evaluation of sigmoid dose response curves with fixed hill slope and EC50 values were calculated.


8.4 Unstimulated Human PBMC Against Human BCMA-Transfected Target Cells


The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a FACS-based cytotoxicity assay using CHO cells transfected with human BCMA as target cells, and unstimulated human PBMC as effector cells. The assay was carried out as described above (Example 8.3).


The results of the FACS-based cytotoxicity assays with unstimulated human PBMC as effector cells and human BCMA-transfected CHO cells as targets are shown in FIG. 10 and Table 6.









TABLE 6







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies


of epitope cluster E3 as measured in a 48-hour FACS-based


cytotoxicity assay with unstimulated human PBMC as effector


cells and CHO cells transfected with human BCMA as target cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value















BCMA-83
212
0.97



BCMA-7
102
0.97



BCMA-5
58.4
0.94



BCMA-98
53.4
0.95



BCMA-71
208
0.94



BCMA-34
149
0.94



BCMA-74
125
0.97



BCMA-20
176
0.98










Example 9

9.1 Exclusion of Cross-Reactivity with BAFF-Receptor


For flow cytometry, 200,000 cells of the respective cell lines were incubated for 30 min on ice with 50 μl of purified bispecific molecules at a concentration of 5 μg/ml. The cells were washed twice in PBS with 2% FCS and binding of the constructs was detected with a murine PentaHis antibody (Qiagen; diluted 1:20 in 50 μl PBS with 2% FCS). After washing, bound PentaHis antibodies were detected with an Fc gamma-specific antibody (Dianova) conjugated to phycoerythrin, diluted 1:100 in PBS with 2% FCS. Samples were measured by flow cytometry on a FACSCanto II instrument and analyzed by FACSDiva software (both from Becton Dickinson). The bispecific binders were shown to not be cross-reactive with BAFF receptor.


9.2 Exclusion of BCMA/CD3 Bispecific Antibody Cross-Reactivity with Human BAFF-Receptor (BAFF-R) and TACI


For exclusion of binding to human BAFF-R and TACI, BCMA/CD3 bispecific antibodies were tested by flow cytometry using CHO cells transfected with human BAFF-R and TACI, respectively. Moreover, L363 multiple myeloma cells were used as positive control for binding to human BCMA. Expression of BAFF-R and TACI antigen on CHO cells was confirmed by two positive control antibodies. Flow cytometry was performed as described in the previous example.


Flow cytometric analysis confirmed that none of the BCMA/CD3 bispecific antibodies of the epitope cluster E3 cross-reacts with human BAFF-R or human TACI (see FIGS. 11A-H).


Example 10

Cytotoxic Activity


The potency of human-like BCMA bispecific antibodies in redirecting effector T cells against BCMA-expressing target cells is analyzed in five additional in vitro cytotoxicity assays:

    • 1. The potency of BCMA bispecific antibodies in redirecting stimulated human effector T cells against a BCMA-positive (human) tumor cell line is measured in a 51-chromium release assay.
    • 2. The potency of BCMA bispecific antibodies in redirecting the T cells in unstimulated human PBMC against human BCMA-transfected CHO cells is measured in a FACS-based cytotoxicity assay.
    • 3. The potency of BCMA bispecific antibodies in redirecting the T cells in unstimulated human PBMC against a BCMA-positive (human) tumor cell line is measured in a FACS-based cytotoxicity assay.
    • 4. For confirmation that the cross-reactive BCMA bispecific antibodies are capable of redirecting macaque T cells against macaque BCMA-transfected CHO cells, a FACS-based cytotoxicity assay is performed with a macaque T cell line as effector T cells.
    • 5. The potency gap between monomeric and dimeric forms of BCMA bispecific antibodies is determined in a 51-chromium release assay using human BCMA-transfected CHO cells as target cells and stimulated human T cells as effector cells.


Example 11

Stimulated Human T Cells Against the BCMA-Positive Human Multiple Myeloma Cell Line L363


The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a 51-chromium (51Cr) release cytotoxicity assay using the BCMA-positive human multiple myeloma cell line L363 (DSMZ No. ACC49) as source of target cells, and stimulated enriched human CD8 T cells as effector cells. The assay was carried out as described in Example 8.1.


In accordance with the results of the 51-chromium release assays with stimulated enriched human CD8 T lymphocytes as effector cells and human BCMA-transfected CHO cells as targets, BCMA/CD3 bispecific antibodies of epitope cluster E3 are very potent in cytotoxic activity (FIG. 12 and Table 7).


Another group of antibodies was identified during epitope clustering (see Examples 1 and 3), which is capable of binding to epitope clusters 1 and 4 of BCMA (“E1/E4”). Unexpectedly, BCMA/CD3 bispecific antibodies of epitope cluster E1/E4—although potent in cytotoxic activity against CHO cell transfected with human BCMA—proved to be rather weakly cytotoxic against the human multiple myeloma cell line L363 expressing native BCMA at low density on the cell surface (FIG. 12 and Table 7). Without wishing to be bound by theory, the inventors believe that the E1/E4 epitope of human BCMA might be less well accessible on natural BCMA expressers than on BCMA-transfected cells.









TABLE 7







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies


of epitope clusters E1/E4 (rows 1 and 2) and E3 (rows 3 to 8)


analyzed in an 18-hour 51-chromium (51Cr) release cytotoxicity


assay with the BCMA-positive human multiple myeloma cell


line L363 as source of target cells, and stimulated enriched


human CD8 T cells as effector cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value














1
BCMA-54
685
0.84


2
BCMA-53
1107
0.82


3
BCMA-83
28
0.83


4
BCMA-98
10
0.81


5
BCMA-71
125
0.86


6
BCMA-34
42
0.81


7
BCMA-74
73
0.79


8
BCMA-20
21
0.85









Example 12

Unstimulated Human PBMC Against the BCMA-Positive Human Multiple Myeloma Cell Line L363


The cytotoxic activity of BCMA/CD3 bispecific antibodies was furthermore analyzed in a FACS-based cytotoxicity assay using the BCMA-positive human multiple myeloma cell line L363 (DSMZ, ACC49)—showing the weakest surface expression of native BCMA of all tested target T cell lines—as source of target cells and unstimulated human PBMC as effector cells. The assay was carried out as described above (Example 8.3).


As observed in the 51-chromium release assay with stimulated enriched human CD8 T lymphocytes against the human multiple myeloma cell line L363, the BCMA/CD3 bispecific antibodies of epitope cluster E1/E4—in contrast to their potent cytotoxic activity against CHO cell transfected with human BCMA—proved to be again less potent in redirecting the cytotoxic activity of unstimulated PBMC against the human multiple myeloma cell line L363 expressing native BCMA at low density on the cell surface. This is in line with the theory provided hereinabove, i.e., the E1/E4 epitope of human BCMA may be less well accessible on natural BCMA expressers than on BCMA-transfected cells. BCMA/CD3 bispecific antibodies of the epitope cluster E3 presented with 3-digit pg/ml EC50-values in this assay (see FIG. 13 and Table 8).









TABLE 8







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies


of epitope clusters E1/E4 (rows 1 and 2) and E3 (rows 3 to


8) as measured in a 48-hour FACS-based cytotoxicity assay


with unstimulated human PBMC as effector cells and the human


multiple myeloma cell line L363 as source of target cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value














1
BCMA-54
3162
0.99


2
BCMA-53
2284
0.98


3
BCMA-83
241
0.99


4
BCMA-98
311
0.99


5
BCMA-71
284
0.99


6
BCMA-34
194
0.99


7
BCMA-74
185
0.99


8
BCMA-20
191
0.99









Expectedly, EC50-values were higher in cytotoxicity assays with unstimulated PBMC as effector cells than in cytotoxicity assays using enriched stimulated human CD8 T cells.


Example 13

Unstimulated Human PBMC Against the BCMA-Positive Human Multiple Myeloma Cell Line NCI-H929


The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a FACS-based cytotoxicity assay using the BCMA-positive human multiple myeloma cell line NCI-H929 (ATCC CRL-9068) as source of target cells and unstimulated human PBMC as effector cells. The assay was carried out as described above (Example 8.3).


The results of this assay with another human multiple myeloma cell line (i.e. NCI-H929) expressing native BCMA on the cell surface confirm those obtained with human multiple myeloma cell line L363. Again, BCMA/CD3 bispecific antibodies of epitope cluster E1/E4—in contrast to their potent cytotoxic activity against CHO cell transfected with human BCMA—proved to be less potent in redirecting the cytotoxic activity of unstimulated PBMC against human multiple myeloma cells confirming the theory that the E1/E4 epitope of human BCMA may be less well accessible on natural BCMA expressers than on BCMA-transfected cells. Such an activity gap between BCMA-transfected target cells and natural expressers as seen for the E1/E4 binders was not found for the E3. BCMA/CD3 bispecific antibodies of the epitope cluster E3 presented with 2- to 3-digit pg/ml EC50-values and hence redirected unstimulated PBMC against NCI-H929 target cells with very good EC50-values (see FIG. 14 and Table 9).









TABLE 9







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies


of epitope clusters E1/E4 (rows 1 and 2) and E3 (rows 3 to


8) as measured in a 48-hour FACS-based cytotoxicity assay


with unstimulated human PBMC as effector cells and the human


multiple myeloma cell line NCI-H929 as source of target cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value














1
BCMA-54
2604
0.99


2
BCMA-53
2474
0.99


3
BCMA-83
154
0.93


4
BCMA-98
67.6
0.87


5
BCMA-71
50.7
0.96


6
BCMA-34
227
0.99


7
BCMA-74
103
0.97


8
BCMA-20
123
0.97









As expected, EC50-values were lower with the human multiple myeloma cell line NCI-H929, which expresses higher levels of BCMA on the cell surface compared to L363.


Example 14

Macaque T Cells Against Macaque BCMA-Expressing Target Cells


Finally, the cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a FACS-based cytotoxicity assay using CHO cells transfected with macaque BCMA as target cells, and a macaque T cell line as source of effector cells.


The macaque T cell line 4119LnPx (Knappe et al. Blood 95:3256-61 (2000)) was used as source of effector cells. Target cell labeling of macaque BCMA-transfected CHO cells and flow cytometry based analysis of cytotoxic activity was performed as described above.


Macaque T cells from cell line 4119LnPx were induced to efficiently kill macaque BCMA-transfected CHO cells by BCMA/CD3 bispecific antibodies of the E3 epitope cluster. The antibodies presented very potently with 1-digit to low 2-digit pg/ml EC50-values in this assay, confirming that these antibodies are very active in the macaque system. On the other hand, BCMA/CD3 bispecific antibodies of the epitope cluster E1/E4 showed a significantly weaker potency with EC50-values in the 2-digit to 3-digit pg/ml range (see FIG. 15 and Table 10). The E3 specific antibodies are hence about 3 to almost 100 times more potent in the macaque system.









TABLE 10







EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies


of epitope clusters E1/E4 (rows 1 and 2) and E3 (rows 3


to 8) as measured in a 48-hour FACS-based cytotoxicity


assay with macaque T cell line 4119LnPx as effector cells


and CHO cells transfected with macaque BCMA as target cells.











BCMA/CD3





bispecific antibody
EC50 [pg/ml]
R square value














1
BCMA-54
78.5
0.98


2
BCMA-53
183
0.96


3
BCMA-83
10.9
0.97


4
BCMA-98
2.5
0.89


5
BCMA-71
3.2
0.97


6
BCMA-34
2.1
0.95


7
BCMA-74
2.0
0.95


8
BCMA-20
26
0.98









Example 15

Potency Gap Between BCMA/CD3 Bispecific Antibody Monomer and Dimer


In order to determine the difference in cytotoxic activity between the monomeric and the dimeric isoform of individual BCMA/CD3 bispecific antibodies (referred to as potency gap), a 51-chromium release cytotoxicity assay as described hereinabove (Example 8.1) was carried out with purified BCMA/CD3 bispecific antibody monomer and dimer. The potency gap was calculated as ratio between EC50 values of the bispecific antibody's monomer and dimer. Potency gaps of the tested BCMA/CD3 bispecific antibodies of the epitope cluster E3 were between 0.03 and 1.2. There is hence no substantially more active dimer compared to its respective monomer.


Example 16

Monomer to Dimer Conversion after Three Freeze/Thaw Cycles


Bispecific BCMA/CD3 antibody monomer were subjected to three freeze/thaw cycles followed by high performance SEC to determine the percentage of initially monomeric antibody, which had been converted into antibody dimer.


15 μg of monomeric antibody were adjusted to a concentration of 250 μg/ml with generic buffer and then frozen at −80° C. for 30 min followed by thawing for 30 min at room temperature. After three freeze/thaw cycles the dimer content was determined by HP-SEC. To this end, 15 μg aliquots of the monomeric isoforms of the antibodies were thawed and equalized to a concentration of 250 μg/ml in the original SEC buffer (10 mM citric acid—75 mM lysine HCl—4% trehalose—pH 7.2) followed by incubation at 37° C. for 7 days. A high resolution SEC Column TSK Gel G3000 SWXL (Tosoh, Tokyo-Japan) was connected to an Äkta Purifier 10 FPLC (GE Lifesciences) equipped with an A905 Autosampler. Column equilibration and running buffer consisted of 100 mM KH2PO4-200 mM Na2SO4 adjusted to pH 6.6. After 7 days of incubation, the antibody solution (15 μg protein) was applied to the equilibrated column and elution was carried out at a flow rate of 0.75 ml/min at a maximum pressure of 7 MPa. The whole run was monitored at 280, 254 and 210 nm optical absorbance. Analysis was done by peak integration of the 210 nm signal recorded in the Äkta Unicorn software run evaluation sheet. Dimer content was calculated by dividing the area of the dimer peak by the total area of monomer plus dimer peak.


The BCMA/CD3 bispecific antibodies of the epitope cluster E3 presented with dimer percentages of 0.7 to 1.1% after three freeze/thaw cycles, which is considered good. However, the dimer conversion rates of BCMA/CD3 bispecific antibodies of the epitope cluster E1/E4 reached unfavorably high values, exceeding the threshold to disadvantageous dimer values of ≥2.5% (4.7% and 3.8%, respectively), see Table 11.









TABLE 11







Percentage of monomeric versus dimeric BCMA/CD3 bispecific


antibodies of epitope clusters E1/E4 (rows 1 and 2) and E3


(rows 3 to 8) after three freeze/thaw cycles as determined


by High Performance Size Exclusion Chromatography (HP-SEC).











BCMA/CD3





bispecific antibody
Monomer [%]
Dimer [%]














1
BCMA-54
95.3
4.7


2
BCMA-53
96.2
3.8


3
BCMA-83
99.1
0.9


4
BCMA-98
99.1
0.9


5
BCMA-71
99.1
0.9


6
BCMA-34
98.9
1.1


7
BCMA-74
99.3
0.7


8
BCMA-20
99.2
0.8









Example 17

Thermostability


Temperature melting curves were determined by Differential Scanning Calorimetry (DSC) to determine intrinsic biophysical protein stabilities of the BCMA/CD3 bispecific antibodies. These experiments were performed using a MicroCal LLC (Northampton, MA, U.S.A.) VP-DSC device. The energy uptake of a sample containing BCMA/CD3 bispecific antibody was recorded from 20 to 90° C. compared to a sample which just contained the antibody's formulation buffer.


In detail, BCMA/CD3 bispecific antibodies were adjusted to a final concentration of 250 μg/ml in storage buffer. 300 μl of the prepared protein solutions were transferred into a deep well plate and placed into the cooled autosampler rack position of the DSC device. Additional wells were filled with the SEC running buffer as reference material for the measurement. For the measurement process the protein solution was transferred by the autosampler into a capillary. An additional capillary was filled with the SEC running buffer as reference. Heating and recording of required heating energy to heat up both capillaries at equal temperature ranging from 20 to 90° C. was done for all samples.


For recording of the respective melting curve, the overall sample temperature was increased stepwise. At each temperature T energy uptake of the sample and the formulation buffer reference was recorded. The difference in energy uptake Cp (kcal/mole/° C.) of the sample minus the reference was plotted against the respective temperature. The melting temperature is defined as the temperature at the first maximum of energy uptake.


All tested BCMA/CD3 bispecific antibodies of the epitope cluster E3 showed favorable thermostability with melting temperatures above 60° C., more precisely between 61.62° C. and 63.05° C.


Example 18

Exclusion of Plasma Interference by Flow Cytometry


To determine potential interaction of BCMA/CD3 bispecific antibodies with human plasma proteins, a plasma interference test was established. To this end, 10 μg/ml of the respective BCMA/CD3 bispecific antibodies were incubated for one hour at 37° C. in 90% human plasma. Subsequently, the binding to human BCMA expressing CHO cells was determined by flow cytometry.


For flow cytometry, 200,000 cells of the respective cell lines were incubated for 30 min on ice with 50 μl of purified antibody at a concentration of 5 μg/ml. The cells were washed twice in PBS/2% FCS and binding of the constructs was detected with a murine PentaHis antibody (Qiagen; diluted 1:20 in 50 μl PBS/2% FCS). After washing, bound PentaHis antibodies were detected with an Fc gamma-specific antibody (Dianova) conjugated to phycoerythrin, diluted 1:100 in PBS/2% FCS. Samples were measured by flow cytometry on a FACSCanto II instrument and analyzed by FACSDiva software (both from Becton Dickinson).


The obtained data were compared with a control assay using PBS instead of human plasma. Relative binding was calculated as follows:

(signal PBS sample/signal w/o detection agent)/(signal plasma sample/signal w/o detection agent).


In this experiment it became obvious that there was no significant reduction of target binding of the respective BCMA/CD3 bispecific antibodies of the epitope cluster E3 mediated by plasma proteins. The relative plasma interference value was below a value of 2 in all cases, more precisely between 1.29±0.25 and 1.70±0.26 (with a value of “2” being considered as lower threshold for interference signals).


Example 19

Therapeutic Efficacy of BCMA/CD3 Bispecific Antibodies in Human Tumor Xenograft Models


On day 1 of the study, 5×106 cells of the human cancer cell line NCI-H929 were subcutaneously injected in the right dorsal flank of female NOD/SCID mice.


On day 9, when the mean tumor volume had reached about 100 mm3, in vitro expanded human CD3+ T cells were transplanted into the mice by injection of about 2×107 cells into the peritoneal cavity of the animals. Mice of vehicle control group 1 (n=5) did not receive effector cells and were used as an untransplanted control for comparison with vehicle control group 2 (n=10, receiving effector cells) to monitor the impact of T cells alone on tumor growth.


The antibody treatment started on day 13, when the mean tumor volume had reached about 200 mm3. The mean tumor size of each treatment group on the day of treatment start was not statistically different from any other group (analysis of variance). Mice were treated with 0.5 mg/kg/day of the BCMA/CD3 bispecific antibodies BCMA-98 x CD3 (group 3, n=7) or BCMA-34 x CD3 (group 4, n=6) by intravenous bolus injection for 17 days.


Tumors were measured by caliper during the study and progress evaluated by intergroup comparison of tumor volumes (TV). The tumor growth inhibition T/C [%] was determined by calculating TV as T/C %=100×(median TV of analyzed group)/(median TV of control group 2). The results are shown in Table 12 and FIG. 16.









TABLE 12







Median tumor volume (TV) and tumor growth inhibition (T/C) at days 13 to 30.



















Dose














group
Data
d13
d14
d15
d16
d18
d19
d21
d23
d26
d28
d30






















1 Vehi.
med. TV
238
288
395
425
543
632
863
1067
1116
1396
2023


control
[mm3]













w/o
T/C [%]
120
123
127
118
104
114
122
113
87
85
110


T cells














2
med. TV
198
235
310
361
525
553
706
942
1290
1636
1839


Vehicle
[mm3]













control
T/C [%]
100
100
100
100
100
100
100
100
100
100
100


3
med. TV
207
243
248
235
164
137
93.5
46.2
21.2
0.0
0.0


BCMA-
[mm3]













98
T/C [%]
105
104
79.7
65.0
31.2
24.7
13.2
4.9
1.6
0.0
0.0


4
med. TV
206
233
212
189
154
119
56.5
17.4
0.0
0.0
0.0


BCMA-
[mm3]













34
T/C [%]
104
99.2
68.2
52.3
29.4
21.5
8.0
1.8
0.0
0.0
0.0









Example 20

Exclusion of Lysis of Target Negative Cells


An in vitro lysis assay was carried out using the BCMA-positive human multiple myeloma cell line NCI-H929 and purified T cells at an effector to target cell ratio of 5:1 and with an incubation time of 24 hours. BCMA/CD3 bispecific antibodies of epitope cluster E3 (BCMA-34 and BCMA-98) showed high potency and efficacy in the lysis of NCI-H929. However, no lysis was detected in the BCMA negative cell lines HL60 (AML/myeloblast morphology), MES-SA (uterus sarcoma, fibroblast morphology), and SNU-16 (stomach carcinoma, epithelial morphology) for up to 500 nM of the respective antibody.


Example 21

Induction of T Cell Activation of Different PBMC Subsets


A FACS-based cytotoxicity assay (48 h; E:T=10:1) was carried out using human multiple myeloma cell lines NCI-H929, L-363 and OPM-2 as target cells and different subsets of human PBMC (CD4+/CD8+/CD25+/CD69+) as effector cells. The results (see Table 13) show that the degree of activation, as measured by the EC50 value, is essentially in the same range for the different analyzed PBMC subsets.









TABLE 13







EC50 values [ng/ml] of BCMA/CD3 bispecific antibodies of


epitope cluster E3 as measured in a 48-hour FACS-based cytotoxicity


assay with different subsets of human PBMC as effector cells


and different human multiple myeloma cell lines as target cells.









EC50 [ng/ml]










Cell line
PBMC
BCMA-98 × CD3
BCMA-34 × CD3













NCI-H929
CD4+/CD25+
1.46
1.20



CD8+/CD25+
0.53
0.49



CD4+/CD69+
0.59
0.47



CD8+/CD69+
0.21
0.21


OPM-2
CD4+/CD25+
2.52
4.88



CD8+/CD25+
1.00
1.20



CD4+/CD69+
1.65
2.27



CD8+/CD69+
0.48
0.42


L-363
CD4+/CD25+
0.54
0.62



CD8+/CD25+
0.24
0.28



CD4+/CD69+
0.35
0.34



CD8+/CD69+
0.12
0.11









Example 22

Induction of Cytokine Release


A FACS-based cytotoxicity assay (48 h; E:T=10:1) was carried out using human multiple myeloma cell lines NCI-H929, L-363 and OPM-2 as target cells and human PBMC as effector cells. The levels of cytokine release [pg/mi] were determined at increasing concentrations of BCMA/CD3 bispecific antibodies of epitope cluster E3. The following cytokines were analyzed: II-2, IL-6, IL-10, TNF and IFN-gamma. The results are shown in Table 14 and FIGS. 17A-F.









TABLE 14







Release of IL-2, IL-6, IL-10, TNF and IFN-gamma [pg/ml]


induced by 2.5 μg/ml of BCMA/CD3 bispecific antibodies of


epitope cluster E3 (BCMA-98 and BCMA-34) in a 48-hour FACS-based


cytotoxicity assay with human PBMC as effector cells and different


human multiple myeloma cell lines as target cells (E:T = 10:1).










Cytokine levels [pg/ml]














IL-2
IL-6
IL-10
TNF
IFN-gamma













NCI-H929












BCMA-98
1357
699
2798
10828
73910


BCMA-34
1327
631
3439
6675
77042









OPM-2












BCMA-98
41
118
990
5793
33302


BCMA-34
28
109
801
4913
23214









L-363












BCMA-98
97
314
2433
5397
64981


BCMA-34
168
347
2080
5930
75681
























SEQ ID







NO
Designation
Designation
Format/source
Type
Sequence




















1
BCMA-1
BC 5G9 91-
VH CDR1
aa
NYDMA




C7-B10








2
BCMA-1
BC 5G9 91-
VH CDR2
aa
SIITSGDATYYRDSVKG




C7-B10








3
BCMA-1
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




C7-B10








4
BCMA-1
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




C7-B10








5
BCMA-1
BC 5G9 91-
VL CDR2
aa
GASNRHT




C7-B10








6
BCMA-1
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




C7-B10








7
BCMA-1
BC 5G9
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




91-C7-B10


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





8
BCMA-1
BC 5G9 91-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




C7-B10


GREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





9
BCMA-1
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




C7-B10


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





10
BCMA-1 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR



CD3 HL
C7-B10 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





11
BCMA-2
BC 5G9 91-
VH CDR1
aa
NYDMA




C7-D8








12
BCMA-2
BC 5G9 91-
VH CDR2
aa
SIITSGDMTYYRDSVKG




C7-D8








13
BCMA-2
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




C7-D8








14
BCMA-2
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




C7-D8








15
BCMA-2
BC 5G9 91-
VL CDR2
aa
GASNRHT




C7-D8








16
BCMA-2
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




C7-D8








17
BCMA-2
BC 5G9 91-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




C7-D8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





18
BCMA-2
BC 5G9 91-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




C7-D8


GREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





19
BCMA-2
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




C7-D8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





20
BCMA-2 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR



CD3 HL
C7-D8 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





21
BCMA-3
BC 5G9 91-
VH CDR1
aa
NYDMA




E4-B10








22
BCMA-3
BC 5G9 91-
VH CDR2
aa
SIITSGDATYYRDSVKG




E4-B10








23
BCMA-3
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




E4-B10








24
BCMA-3
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




E4-B10








25
BCMA-3
BC 5G9 91-
VL CDR2
aa
GASNRHT




E4-B10








26
BCMA-3
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




E4-B10








27
BCMA-3
BC 5G9 91-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




E4-B10


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





28
BCMA-3
BC 5G9 91-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




E4-B10


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





29
BCMA-3
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




E4-B10


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





30
BCMA-3 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR



CD3 HL
E4-B10 HL ×
molecule

FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





31
BCMA-4
BC 5G9 91-
VH CDR1
aa
NYDMA




E4-D8








32
BCMA-4
BC 5G9 91-
VH CDR2
aa
SIITSGDMTYYRDSVKG




E4-D8








33
BCMA-4
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




E4-D8








34
BCMA-4
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




E4-D8








35
BCMA-4
BC 5G9 91-
VL CDR2
aa
GASNRHT




E4-D8








36
BCMA-4
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




E4-D8








37
BCMA-4
BC 5G9 91-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




E4-D8


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





38
BCMA-4
BC 5G9 91-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




E4-D8


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





39
BCMA-4
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




E4-D8


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





40
BCMA-4 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR



CD3 HL
E4-D8 HL ×
molecule

FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





41
BCMA-5
BC 5G9 91-
VH CDR1
aa
NYDMA




D2-B10








42
BCMA-5
BC 5G9 91-
VH CDR2
aa
SIITSGDATYYRDSVKG




D2-B10








43
BCMA-5
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




D2-B10








44
BCMA-5
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




D2-B10








45
BCMA-5
BC 5G9 91-
VL CDR2
aa
GASNRHT




D2-B10








46
BCMA-5
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




D2-B10








47
BCMA-5
BC 5G9 91-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




D2-B10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





48
BCMA-5
BC 5G9 91-
VL
aa
EIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




D2-B10


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





49
BCMA-5
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




D2-B10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





50
BCMA-5 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR



CD3 HL
D2-B10 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





51
BCMA-6
BC 5G9 91-
VH CDR1
aa
NYDMA




D2-D8








52
BCMA-6
BC 5G9 91-
VH CDR2
aa
SIITSGDMTYYRDSVKG




D2-D8








53
BCMA-6
BC 5G9 91-
VH CDR3
aa
HDYYDGSYGFAY




D2-D8








54
BCMA-6
BC 5G9 91-
VL CDR1
aa
KASQSVGINVD




D2-D8








55
BCMA-6
BC 5G9 91-
VL CDR2
aa
GASNRHT




D2-D8








56
BCMA-6
BC 5G9 91-
VL CDR3
aa
LQYGSIPFT




D2-D8








57
BCMA-6
BC 5G9 91-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




D2-D8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





58
BCMA-6
BC 5G9 91-
VL
aa
EIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




D2-D8


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





59
BCMA-6
BC 5G9 91-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




D2-D8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





60
BCMA-6 HL ×
BC 5G9 91-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR



CD3 HL
D2-D8 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





61
BCMA-7
BC 5G9 92-
VH CDR1
aa
NYDMA




E10-B10








62
BCMA-7
BC 5G9 92-
VH CDR2
aa
SIITSGDATYYRDSVKG




E10-B10








63
BCMA-7
BC 5G9 92-
VH CDR3
aa
HDYYDGSYGFAY




E10-B10








64
BCMA-7
BC 5G9 92-
VL CDR1
aa
KASQSVGINVD




E10-B105








65
BCMA-7
BC 5G9 92-
VL CDR2
aa
GASNRHT




E10-B10








66
BCMA-7
BC 5G9 92-
VL CDR3
aa
LQYGSIPFT




E10-B10








67
BCMA-7
BC 5G9 92-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




E10-B10


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





68
BCMA-7
BC 5G9 92-
VL
aa
GTEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




E10-B10


GTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





69
BCMA-7
BC 5G9 92-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR




E10-B10


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





70
BCMA-7 HL ×
BC 5G9 92-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDATYYRDSVKGR



CD3 HL
E10B10 HL ×
molecule

FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





71
BCMA-8
BC 5G9 92-
VH CDR1
aa
NYDMA




E10-D8








72
BCMA-8
BC 5G9 92-
VH CDR2
aa
SIITSGDMTYYRDSVKG




E10-D8








73
BCMA-8
BC 5G9 92-
VH CDR3
aa
HDYYDGSYGFAY




E10-D8








74
BCMA-8
BC 5G9 92-
VL CDR1
aa
KASQSVGINVD




E10-D8








75
BCMA-8
BC 5G9 92-
VL CDR2
aa
GASNRHT




E10-D8








76
BCMA-8
BC 5G9 92-
VL CDR3
aa
LQYGSIPFT




E10-D8








77
BCMA-8
BC 5G9 92-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




E10-D8


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





78
BCMA-8
BC 5G9 92-
VL
aa
EIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




E10-D8


GTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





79
BCMA-8
BC 5G9 92-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR




E10-D8


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





80
BCMA-8 HL ×
BC 5G9 92-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGDMTYYRDSVKGR



CD3 HL
E10-D8 HL ×
molecule

FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





81
BCMA-9
BC H1 38-
VH CDR1
aa
NYWIH




D2-A4








82
BCMA-9
BC H1 38-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




D2-A4








83
BCMA-9
BC H1 38-
VH CDR3
aa
SSYYYDGSLFAS




D2-A4








84
BCMA-9
BC H1 38-
VL CDR1
aa
RSSQSIVHSNGNTYLY




D2-A4








85
BCMA-9
BC H1 38-
VL CDR2
aa
RVSNRFS




D2-A4








86
BCMA-9
BC H1 38-
VL CDR3
aa
FQGSTLPFT




D2-A4








87
BCMA-9
BC H1 38-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




D2-A4


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





88
BCMA-9
BC H1 38-
VL
aa
DIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




D2-A4


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





89
BCMA-9
BC H1 38-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




D2-A4


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





90
BCMA-9 HL ×
BC H1 38-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK



CD3 HL
D2-A4 HL ×
molecule

VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





91
BCMA-10
BC H1 38-
VH CDR1
aa
NYWIH




D2-F12








92
BCMA-10
BC H1 38-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




D2-F12








93
BCMA-10
BC H1 38-
VH CDR3
aa
SSYYYDGSLFAS




D2-F12








94
BCMA-10
BC H1 38-
VL CDR1
aa
RSSQSIVHSNGNTYLY




D2-F12








95
BCMA-10
BC H1 38-
VL CDR2
aa
RVSNRFS




D2-F12








96
BCMA-10
BC H1 38-
VL CDR3
aa
FQGSHLPFT




D2-F12








97
BCMA-10
BC H1 38-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




D2-F12


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





98
BCMA-10
BC H1 38-
VL
aa
DIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




D2-F12


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





99
BCMA-10
BC H1 38-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




D2-F12


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





100
BCMA-10 HL ×
BC H1 38-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK



CD3 HL
D2-F12 HL ×
molecule

VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVSPGQPASISCRSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





101
BCMA-11
BC H1 38-
VH CDR1
aa
NYWIH




C1-A4








102
BCMA-11
BC H1 38-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




C1-A4








103
BCMA-11
BC H1 38-
VH CDR3
aa
SSYYYDGSLFAS




C1-A4








104
BCMA-11
BC H1 38-
VL CDR1
aa
KSSQSIVHSNGNTYLY




C1-A4








105
BCMA-11
BC H1 38-
VL CDR2
aa
RVSNRFS




C1-A4








106
BCMA-11
BC H1 38-
VL CDR3
aa
FQGSTLPFT




C1-A4








107
BCMA-11
BC H1 38-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




C1-A4


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





108
BCMA-11
BC H1 38-
VL
aa
DIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




C1-A4


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





109
BCMA-11
BC H1 38-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




C1-A4


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





110
BCMA-11 HL ×
BC H1 38-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK



CD3 HL
C1-A4 HL ×
molecule

VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





111
BCMA-12
BC H1 38-
VH CDR1
aa
NYWIH




C1-F12








112
BCMA-12
BC H1 38-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




C1-F12








113
BCMA-12
BC H1 38-
VH CDR3
aa
SSYYYDGSLFAS




C1-F12








114
BCMA-12
BC H1 38-
VL CDR1
aa
KSSQSIVHSNGNTYLY




C1-F12








115
BCMA-12
BC H1 38-
VL CDR2
aa
RVSNRFS




C1-F12








116
BCMA-12
BC H1 38-
VL CDR3
aa
FQGSHLPFT




C1-F12








117
BCMA-12
BC H1 38-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




C1-F12


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





118
BCMA-12
BC H1 38-
VL
aa
DIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




C1-F12


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





119
BCMA-12
BC H1 38-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK




C1-F12


VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





120
BCMA-12 HL ×
BC H1 38-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGK



CD3 HL
C1-F12 HL ×
molecule

VTITRDTSASTAYMELSSLTSEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





121
BCMA-13
BC H1 39-
VH CDR1
aa
NYWIH




B2-A4








122
BCMA-13
BC H1 39-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




B2-A4








123
BCMA-13
BC H1 39-
VH CDR3
aa
SSYYYDGSLFAS




B2-A4








124
BCMA-13
BC H1 39-
VL CDR1
aa
KSSQSIVHSNGNTYLY




B2-A4








125
BCMA-13
BC H1 39-
VL CDR2
aa
RVSNRFS




B2-A4








126
BCMA-13
BC H1 39-
VL CDR3
aa
FQGSTLPFT




B2-A4








127
BCMA-13
BC H1 39-
VH
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR




B2-A4


VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





128
BCMA-13
BC H1 39-
VL
aa
DIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




B2-A4


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





129
BCMA-13
BC H1 39-
scFv
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR




B2-A4


VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





130
BCMA-13 HL ×
BC H1 39-
bispecific
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR



CD3 HL
B2-A4 HL ×
molecule

VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





131
BCMA-14
BC H1 39-
VH CDR1
aa
NYWIH




B2-F12








132
BCMA-14
BC H1 39-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




B2-F12








133
BCMA-14
BC H1 39-
VH CDR3
aa
SSYYYDGSLFAS




B2-F12








134
BCMA-14
BC H1 39-
VL CDR1
aa
KSSQSIVHSNGNTYLY




B2-F12








135
BCMA-14
BC H1 39-
VL CDR2
aa
RVSNRFS




B2-F12








136
BCMA-14
BC H1 39-
VL CDR3
aa
FQGSHLPFT




B2-F12








137
BCMA-14
BC H1 39-
VH
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR




B2-F12


VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSS





138
BCMA-14
BC H1 39-
VL
aa
DIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




B2-F12


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





139
BCMA-14
BC H1 39-
scFv
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR




B2-F12


VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





140
BCMA-14 HL ×
BC H1 39-
bispecific
aa
QVQLVQSGAVVAKPGASVKVSCKASGYTFTNYWIHWVKQAPGQRLEWMGAIYPGNSDTHYNQKFQGR



CD3 HL
B2-F12 HL ×
molecule

VTLTTDTSASTAYMELSSLRNEDTAVYYCTRSSYYYDGSLFASWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVTPGQQASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





141
BCMA-15
BC H1 39-
VH CDR1
aa
SYWIH




C9-A4








142
BCMA-15
BC H1 39-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




C9-A4








143
BCMA-15
BC H1 39-
VH CDR3
aa
SSYYYDGSLFAD




C9-A4








144
BCMA-15
BC H1 39-
VL CDR1
aa
KSSQSIVHSNGNTYLY




C9-A4








145
BCMA-15
BC H1 39-
VL CDR2
aa
RVSNRFS




C9-A4








146
BCMA-15
BC H1 39-
VL CDR3
aa
FQGSTLPFT




C9-A4








147
BCMA-15
BC H1 39-
VH
aa
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR




C9-A4


VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSS





148
BCMA-15
BC H1 39-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




C9-A4


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK





149
BCMA-15
BC H1 39-
scFv
aa
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR




C9-A4


VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIK










QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR







VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD





150
BCMA-15 HL ×
BC H1 39-
bispecific
aa
RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSTLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP



CD3 HL
C9-A4 HL ×
molecule

GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA




CD3 HL


YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





151
BCMA-16
BC H1 39-
VH CDR1
aa
SYWIH




C9-F12








152
BCMA-16
BC H1 39-
VH CDR2
aa
AIYPGNSDTHYNQKFQG




C9-F12








153
BCMA-16
BC H1 39-
VH CDR3
aa
SSYYYDGSLFAD




C9-F12








154
BCMA-16
BC H1 39-
VL CDR1
aa
KSSQSIVHSNGNTYLY




C9-F12








155
BCMA-16
BC H1 39-
VL CDR2
aa
RVSNRFS




C9-F12








156
BCMA-16
BC H1 39-
VL CDR3
aa
FQGSHLPFT




C9-F12








157
BCMA-16
BC H1 39-
VH
aa
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR




C9-F12


VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSS





158
BCMA-16
BC H1 39-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPDRF




C9-F12


SGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





159
BCMA-16
BC H1 39-
scFv
aa
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR




C9-F12


VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSSGGGGSGGGGSGGG







GSDIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIK





160
BCMA-16 HL ×
BC H1 39-
bispecific
aa
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTSYWIHWVKQAPGQRLEWIGAIYPGNSDTHYNQKFQGR



CD3 HL
C9-F12 HL ×
molecule

VTLTRDTSASTAYMELSSLRSEDSAVYYCTRSSYYYDGSLFADWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIVMTQTPLSLSVTPGQPASISCKSSQSIVHSNGNTYLYWYLQKPGQPPQLLIYRVSNRFSGVPD







RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHLPFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQP







GGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA







YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEP







SLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAAL







TLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





161
BCMA-17
BC C3 33-
VH CDR1
aa
NFDMA




D7-E6








162
BCMA-17
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




D7-E6








163
BCMA-17
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




D7-E6C3








164
BCMA-17
BC C3 33-
VL CDR1
aa
RASQGISNYLN




D7-E6








165
BCMA-17
BC C3 33-
VL CDR2
aa
YTSNLQS




D7-E6








166
BCMA-17
BC C3 33-
VL CDR3
aa
QQYDISSYT




D7-E6








167
BCMA-17
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




D7-E6


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





168
BCMA-17
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




D7-E6


GTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





169
BCMA-17
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




D7-E6


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





170
BCMA-17 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



CD3 HL
D7-E6 HL ×
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





171
BCMA-18
BC C3 33-
VH CDR1
aa
NFDMA




D7-E6B1








172
BCMA-18
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




D7-E6B1








173
BCMA-18
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




D7-E6B1








174
BCMA-18
BC C3 33-
VL CDR1
aa
RASQGISNYLN




D7-E6B1








175
BCMA-18
BC C3 33-
VL CDR2
aa
YTSNLQS




D7-E6B1








176
BCMA-18
BC C3 33-
VL CDR3
aa
MGQTISSYT




D7-E6B1








177
BCMA-18
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




D7-E6B1


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





178
BCMA-18
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




D7-E6B1


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





179
BCMA-18
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




D7-E6B1


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





180
BCMA-18 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



CD3 HL
D7-E6B1
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





181
BCMA-19
BC C3 33-
VH CDR1
aa
NFDMA




F8-E6








182
BCMA-19
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




F8-E6








183
BCMA-19
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




F8-E6








184
BCMA-19
BC C3 33-
VL CDR1
aa
RASQGISNYLN




F8-E6








185
BCMA-19
BC C3 33-
VL CDR2
aa
YTSNLQS




F8-E6








186
BCMA-19
BC C3 33-
VL CDR3
aa
QQYDISSYT




F8-E6








187
BCMA-19
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




F8-E6


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





188
BCMA-19
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F8-E6


GTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





189
BCMA-19
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




F8-E6


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





190
BCMA-19 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



CD3 HL
F8-E6 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





191
BCMA-20
BC C3 33-
VH CDR1
aa
NFDMA




F8-E6B1








192
BCMA-20
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




F8-E6B1








193
BCMA-20
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




F8-E6B1








194
BCMA-20
BC C3 33-
VL CDR1
aa
RASQGISNYLN




F8-E6B1








195
BCMA-20
BC C3 33-
VL CDR2
aa
YTSNLQS




F8-E6B1








196
BCMA-20
BC C3 33-
VL CDR3
aa
MGQTISSYT




F8-E6B1








197
BCMA-20
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




F8-E6B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





198
BCMA-20
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F8-E6B1


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





199
BCMA-20
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



F8-E6B1



FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





200
BCMA-20 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



CD3 HL
F8-E6B1
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





201
BCMA-21
BC C3 33-
VH CDR1
aa
NFDMA




F9-E6








202
BCMA-21
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




F9-E6








203
BCMA-21
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




F9-E6








204
BCMA-21
BC C3 33-
VL CDR1
aa
RASQGISNYLN




F9-E6








205
BCMA-21
BC C3 33-
VL CDR2
aa
YTSNLQS




F9-E6








206
BCMA-21
BC C3 33-
VL CDR3
aa
QQYDISSYT




F9-E6








207
BCMA-21
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




F9-E6


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





208
BCMA-21
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F9-E6


GTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





209
BCMA-21
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR




F9-E6


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIK





210
BCMA-21 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYADSVKGR



CD3 HL
F9-E6 HL ×
molecule

FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYDISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





211
BCMA-22
BC C3 33-
VH CDR1
aa
NFDMA




F9-E6B1-E








212
BCMA-22
BC C3 33-
VH CDR2
aa
SITTGADHAIYAESVKG




F9-E6B1-E








213
BCMA-22
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




F9-E6B1-E








214
BCMA-22
BC C3 33-
VL CDR1
aa
RASQGISNYLN




F9-E6B1-E








215
BCMA-22
BC C3 33-
VL CDR2
aa
YTSNLQS




F9-E6B1-E








216
BCMA-22
BC C3 33-
VL CDR3
aa
MGQTISSYT




F9-E6B1-E








217
BCMA-22
BC C3 33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYAESVKGR




F9-E6B1-E


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





218
BCMA-22
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F9-E6B1-E


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





219
BCMA-22
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYAESVKGR




F9-E6B1-E


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





220
BCMA-22 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGADHAIYAESVKGR



CD3 HL
F9-E6B1-E
molecule

FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





221
BCMA-23
BC C3 33-
VH CDR1
aa
NFDMA




F10-E6B1








222
BCMA-23
BC C3 33-
VH CDR2
aa
SITTGADHAIYADSVKG




F10-E6B1








223
BCMA-23
BC C3 33-
VH CDR3
aa
HGYYDGYHLFDY




F10-E6B1








224
BCMA-23
BC C3 33-
VL CDR1
aa
RASQGISNYLN




F10-E6B1








225
BCMA-23
BC C3 33-
VL CDR2
aa
YTSNLQS




F10-E6B1








226
BCMA-23
BC C3 33-
VL CDR3
aa
MGQTISSYT




F10-E6B1








227
BCMA-23
BC C3 33-
VH
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGADHAIYADSVKGR




F10-E6B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





228
BCMA-23
BC C3 33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F10-E6B1


GTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





229
BCMA-23
BC C3 33-
scFv
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGADHAIYADSVKGR




F10-E6B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





230
BCMA-23 HL ×
BC C3 33-
bispecific
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGADHAIYADSVKGR



CD3 HL
F10-E6B1
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





231
BCMA-24
BC B6 64-
VH CDR1
aa
DYYIN




H5-A4








232
BCMA-24
BC B6 64-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H5-A4








233
BCMA-24
BC B6 64-
VH CDR3
aa
LYDYDWYFDV




H5-A4








234
BCMA-24
BC B6 64-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H5-A4








235
BCMA-24
BC B6 64-
VL CDR2
aa
KVSNRFS




H5-A4








236
BCMA-24
BC B6 64-
VL CDR3
aa
AETSHVPWT




H5-A4








237
BCMA-24
BC B6 64-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H5-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





238
BCMA-24
BC B6 64-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H5-A4


SGSGSGTDFTLKINRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





239
BCMA-24
BC B6 64-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H5-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKINRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





240
BCMA-24 HL ×
BC B6 64-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H5-A4 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKINRVEAEDVGVYYCAETSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





241
BCMA-25
BC B6 64-
VH CDR1
aa
DYYIN




H5-H9








242
BCMA-25
BC B6 64-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H5-H9








243
BCMA-25
BC B6 64-
VH CDR3
aa
LYDYDWYFDV




H5-H9








244
BCMA-25
BC B6 64-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H5-H9








245
BCMA-25
BC B6 64-
VL CDR2
aa
KVSNRFS




H5-H9








246
BCMA-25
BC B6 64-
VL CDR3
aa
LTTSHVPWT




H5-H9








247
BCMA-25
BC B6 64-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H5-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





248
BCMA-25
BC B6 64-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H5-H9


SGSGSGTDFTLKINRVEAEDVGVYYCLITSHVPWTFGQGTKLEIK





249
BCMA-25
BC B6 64-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H5-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKINRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





250
BCMA-25 HL ×
BC B6 64-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H5-H9 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKINRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





251
BCMA-26
BC B6 65-
VH CDR1
aa
DYYIN




B5-A4








252
BCMA-26
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




B5-A4








253
BCMA-26
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




B5-A4








254
BCMA-26
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




B5-A4








255
BCMA-26
BC B6 65-
VL CDR2
aa
KVSNRFS




B5-A4








256
BCMA-26
BC B6 65-
VL CDR3
aa
AETSHVPWT




B5-A4








257
BCMA-26
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




B5-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





258
BCMA-26
BC B6 65-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




B5-A4


SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





259
BCMA-26
BC B6 65-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




B5-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





260
BCMA-26 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
B5-A4 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





261
BCMA-27
BC B6 65-
VH CDR1
aa
DYYIN




B5-H9








262
BCMA-27
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




B5-H9








263
BCMA-27
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




B5-H9








264
BCMA-27
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




B5-H9








265
BCMA-27
BC B6 65-
VL CDR2
aa
KVSNRFS




B5-H9








266
BCMA-27
BC B6 65-
VL CDR3
aa
LTTSHVPWT




B5-H9








267
BCMA-27
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




B5-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





268
BCMA-27
BC B6 65-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




B5-H9


SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





269
BCMA-27
BC B6 65-
scFv
aaz
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




B5-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





270
BCMA-27 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
B5-H9 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





271
BCMA-28
BC B6 65-
VH CDR1
aa
DYYIN




H7-A4








272
BCMA-28
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H7-A4








273
BCMA-28
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




H7-A4








274
BCMA-28
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H7-A4








275
BCMA-28
BC B6 65-
VL CDR2
aa
KVSNRFS




H7-A4








276
BCMA-28
BC B6 65-
VL CDR3
aa
AETSHVPWT




H7-A4








277
BCMA-28
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H7-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





278
BCMA-28
BC B6 65-
VL
aa
DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H7-A4


SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





279
BCMA-28
BC B6 65-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H7-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





280
BCMA-28 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H7-A4 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





281
BCMA-29
BC B6 65-
VH CDR1
aa
DYYIN




H7-H9








282
BCMA-29
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H7-H9








283
BCMA-29
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




H7-H9








284
BCMA-29
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H7-H9








285
BCMA-29
BC B6 65-
VL CDR2
aa
KVSNRFS




H7-H9








286
BCMA-29
BC B6 65-
VL CDR3
aa
LTTSHVPWT




H7-H9








287
BCMA-29
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H7-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





288
BCMA-29
BC B6 65-
VL
aa
DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H7-H9


SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





289
BCMA-29
BC B6 65-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H7-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





290
BCMA-29 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H7-H9 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVSPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





291
BCMA-30
BC B6 65-
VH CDR1
aa
DYYIN




H8-A4








292
BCMA-30
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H8-A4








293
BCMA-30
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




H8-A4








294
BCMA-30
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H8-A4








295
BCMA-30
BC B6 65-
VL CDR2
aa
KVSNRFS




H8-A4








296
BCMA-30
BC B6 65-
VL CDR3
aa
AETSHVPWT




H8-A4








297
BCMA-30
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H8-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





298
BCMA-30
BC B6 65-
VL
aa
DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H8-A4


SGSGSGADFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





299
BCMA-30
BC B6 65-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H8-A4


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGADFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIK





300
BCMA-30 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H8-A4 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGADFTLKISRVEAEDVGVYYCAETSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





301
BCMA-31
BC B6 65-
VH CDR1
aa
DYYIN




H8-H9








302
BCMA-31
BC B6 65-
VH CDR2
aa
WIYFASGNSEYNQKFTG




H8-H9








303
BCMA-31
BC B6 65-
VH CDR3
aa
LYDYDWYFDV




H8-H9








304
BCMA-31
BC B6 65-
VL CDR1
aa
KSSQSLVHSNGNTYLH




H8-H9








305
BCMA-31
BC B6 65-
VL CDR2
aa
KVSNRFS




H8-H9








306
BCMA-31
BC B6 65-
VL CDR3
aa
LTTSHVPWT




H8-H9








307
BCMA-31
BC B6 65-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H8-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





308
BCMA-31
BC B6 65-
VL
aa
DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




H8-H9


SGSGSGADFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





309
BCMA-31
BC B6 65-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




H8-H9


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGADFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIK





310
BCMA-31 HL ×
BC B6 65-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
H8-H9 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGEPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGADFTLKISRVEAEDVGVYYCLTTSHVPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYMANWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





311
BCMA-32
BC A7 27-
VH CDR1
aa
NHIIH




A6-G7








312
BCMA-32
BC A7 27-
VH CDR2
aa
YINPYPGYHAYNEKFQG




A6-G7








313
BCMA-32
BC A7 27-
VH CDR3
aa
DGYYRDTDVLDY




A6-G7








314
BCMA-32
BC A7 27-
VL CDR1
aa
QASQDISNYLN




A6-G7








315
BCMA-32
BC A7 27-
VL CDR2
aa
YTSRLHT




A6-G7








316
BCMA-32
BC A7 27-
VL CDR3
aa
QQGNTLPWT




A6-G7








317
BCMA-32
BC A7 27-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR




A6-G7


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSS





318
BCMA-32
BC A7 27-
VL
aa
DIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




A6-G7


GTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





319
BCMA-32
BC A7 27-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR




A6-G7


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





320
BCMA-32 HL ×
BC A7 27-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR



CD3 HL
A6-G7 HL ×
molecule

ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





321
BCMA-33
BC A7 27-
VH CDR1
aa
NHIIH




A6-H11








322
BCMA-33
BC A7 27-
VH CDR2
aa
YINPYDGWGDYNEKFQG




A6-H11








323
BCMA-33
BC A7 27-
VH CDR3
aa
DGYYRDADVLDY




A6-H11








324
BCMA-33
BC A7 27-
VL CDR1
aa
QASQDISNYLN




A6-H11








325
BCMA-33
BC A7 27-
VL CDR2
aa
YTSRLHT




A6-H11








326
BCMA-33
BC A7 27-
VL CDR3
aa
QQGNTLPWT




A6-H11








327
BCMA-33
BC A7 27-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR




A6-H11


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSS





328
BCMA-33
BC A7 27-
VL
aa
DIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




A6-H11


GTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





329
BCMA-33
BC A7 27-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR




A6-H11


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





330
BCMA-33 HL ×
BC A7 27-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR



CD3 HL
A6-H11 HL ×
molecule

ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





331
BCMA-34
BC A7 27-
VH CDR1
aa
NHIIH




C4-G7








332
BCMA-34
BC A7 27-
VH CDR2
aa
YINPYPGYHAYNEKFQG




C4-G7








333
BCMA-34
BC A7 27-
VH CDR3
aa
DGYYRDTDVLDY




C4-G7








334
BCMA-34
BC A7 27-
VL CDR1
aa
QASQDISNYLN




C4-G7








335
BCMA-34
BC A7 27-
VL CDR2
aa
YTSRLHT




C4-G7








336
BCMA-34
BC A7 27-
VL CDR3
aa
QQGNTLPWT




C4-G7








337
BCMA-34
BC A7 27-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR




C4-G7


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSS





338
BCMA-34
BC A7 27-
VL
aa
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




C4-G7


GTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





339
BCMA-34
BC A7 27-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR




C4-G7


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





340
BCMA-34 HL ×
BC A7 27-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYPGYHAYNEKFQGR



CD3 HL
C4-G7 HL ×
molecule

ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





341
BCMA-35
BC A7 27-
VH CDR1
aa
NHIIH




C4-H11








342
BCMA-35
BC A7 27-
VH CDR2
aa
YINPYDGWGDYNEKFQG




C4-H11








343
BCMA-35
BC A7 27-
VH CDR3
aa
DGYYRDADVLDY




C4-H11








344
BCMA-35
BC A7 27-
VL CDR1
aa
QASQDISNYLN




C4-H11








345
BCMA-35
BC A7 27-
VL CDR2
aa
YTSRLHT




C4-H11








346
BCMA-35
BC A7 27-
VL CDR3
aa
QQGNTLPWT




C4-H11








347
BCMA-35
BC A7 27-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR




C4-H11


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSS





348
BCMA-35
BC A7 27-
VL
aa
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




C4-H11


GTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





349
BCMA-35
BC A7 27-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR




C4-H11


ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





350
BCMA-35 HL ×
BC A7 27-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHIIHWVRQAPGQGLEWMGYINPYDGWGDYNEKFQGR



CD3 HL
C4-H11 HL ×
molecule

ATMTSDTSTSTVYMELSSLRSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





351
BCMA-36
BC A7 15-
VH CDR1
aa
NHIIH




H2-G7








352
BCMA-36
BC A7 15-
VH CDR2
aa
YINPYPGYHAYNQKFQG




H2-G7








353
BCMA-36
BC A7 15-
VH CDR3
aa
DGYYRDTDVLDY




H2-G7








354
BCMA-36
BC A7 15-
VL CDR1
aa
QASQDISNYLN




H2-G7








355
BCMA-36
BC A7 15-
VL CDR2
aa
YTSRLHT




H2-G7








356
BCMA-36
BC A7 15-
VL CDR3
aa
QQGNTLPWT




H2-G7








357
BCMA-36
BC A7 15-
VH
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTTFTNIIHWVRQKPGQGLEWMGYINPYPGYHAYNQKFQGR




H2-G7


VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSS





358
BCMA-36
BC A7 15-
VL
aa
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGSGS




H2-G7


GTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





359
BCMA-36
BC A7 15-
scFv
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWMGYINPYPGYHAYNQKFQGR




H2-G7


VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGS







GSGTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





360
BCMA-36 HL ×
BC A7 15-
bispecific
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWMGYINPYPGYHAYNQKFQGR



CD3 HL
H2-G7 HL ×
molecule

VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGS







GSGTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





361
BCMA-37
BC A7 15-
VH CDR1
aa
NHIIH




H2-H11








362
BCMA-37
BC A7 15-
VH CDR2
aa
YINPYDGWGDYNQKFQG




H2-H11








363
BCMA-37
BC A7 15-
VH CDR3
aa
DGYYRDADVLDY




H2-H11








364
BCMA-37
BC A7 15-
VL CDR1
aa
QASQDISNYLN




H2-H11








365
BCMA-37
BC A7 15-
VL CDR2
aa
YTSRLHT




H2-H11








366
BCMA-37
BC A7 15-
VL CDR3
aa
QQGNTLPWT




H2-H11








367
BCMA-37
BC A7 15-
VH
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWMGYINPYDGWGDYNQKFQGR




H2-H11


VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSS





368
BCMA-37
BC A7 15-
VL
aa
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGSGS




H2-H11


GTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





369
BCMA-37
BC A7 15-
scFv
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWMGYINPYDGWGDYNQKFQGR




H2-H11


VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGS







GSGTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





370
BCMA-37 HL ×
BC A7 15-
bispecific
aa
QVQLVQSGAKVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWMGYINPYDGWGDYNQKFQGR



CD3 HL
H2-H11 HL ×
molecule

VTMTRDKSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGRAPKLLIYYTSRLHTGVPSRFSGS







GSGTDYSFTISSLQPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





371
BCMA-38
BC A7 15-
VH CDR1
aa
NHIIH




H8-G7








372
BCMA-38
BC A7 15-
VH CDR2
aa
YINPYPGYHAYNQKFQG




H8-G7








373
BCMA-38
BC A7 15-
VH CDR3
aa
DGYYRDTDVLDY




H8-G7








374
BCMA-38
BC A7 15-
VL CDR1
aa
QASQDISNYLN




H8-G7








375
BCMA-38
BC A7 15-
VL CDR2
aa
YTSRLHT




H8-G7








376
BCMA-38
BC A7 15-
VL CDR3
aa
QQGNTLPWT




H8-G7








377
BCMA-38
BC A7 15-
VH
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYPGYHAYNQKFQGK




H8-G7


VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSS





378
BCMA-38
BC A7 15-
VL
aa
DIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




H8-G7


GTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





379
BCMA-38
BC A7 15-
scFv
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYPGYHAYNQKFQGK




H8-G7


VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





380
BCMA-38 HL ×
BC A7 15-
bispecific
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYPGYHAYNQKFQGK



CD3 HL
H8-G7 HL ×
molecule

VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDTDVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGIVTLICGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





381
BCMA-39
BC A7 15-
VH CDR1
aa
NHIIH




H8-H11








382
BCMA-39
BC A7 15-
VH CDR2
aa
YINPYDGWGDYNQKFQG




H8-H11








383
BCMA-39
BC A7 15-
VH CDR3
aa
DGYYRDADVLDY




H8-H11








384
BCMA-39
BC A7 15-
VL CDR1
aa
QASQDISNYLN




H8-H11








385
BCMA-39
BC A7 15-
VL CDR2
aa
YTSRLHT




H8-H11








386
BCMA-39
BC A7 15-
VL CDR3
aa
QQGNTLPWT




H8-H11








387
BCMA-39
BC A7 15-
VH
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYDGWGDYNQKFQGK




H8-H11


VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSS





388
BCMA-39
BC A7 15-
VL
aa
DIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGSGS




H8-H11


GTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





389
BCMA-39
BC A7 15-
scFv
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYDGWGDYNQKFQGK




H8-H11


VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIK





390
BCMA-39 HL ×
BC A7 15-
bispecific
aa
QVQLVQSGAEVIKPGASVKVSCKASGYTFTNHIIHWVRQKPGQGLEWIGYINPYDGWGDYNQKFQGK



CD3 HL
H8-H11 HL ×
molecule

VTMTRDTSTSTVYMELSSLTSEDTAVYYCARDGYYRDADVLDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYYTSRLHTGVPSRFSGS







GSGTDFTFTISSLQQEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





391
BCMA-40
BC 7A4 96-
VH CDR1
aa
DYYIN




D4-A12








392
BCMA-40
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




D4-A12








393
BCMA-40
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




D4-A12








394
BCMA-40
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




D4-A12








395
BCMA-40
BC 7A4 96-
VL CDR2
aa
KVSNRFS




D4-A12








396
BCMA-40
BC 7A4 96-

aa
SQSSTAPWT




D4-A12
VL CDR3







397
BCMA-40
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-A12


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





398
BCMA-40
BC 7A4 96-
VL
aa
DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




D4-A12


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





399
BCMA-40
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-A12


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





400
BCMA-40 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
D4-A12 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





401
BCMA-41
BC 7A4 96-
VH CDR1
aa
DYYIN




D4-D7








402
BCMA-41
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




D4-D7








403
BCMA-41
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




D4-D7








404
BCMA-41
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




D4-D7








405
BCMA-41
BC 7A4 96-
VL CDR2
aa
KVSNRFS




D4-D7








406
BCMA-41
BC 7A4 96-
VL CDR3
aa
SQSSIYPWT




D4-D7








407
BCMA-41
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-D7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





408
BCMA-41
BC 7A4 96-
VL
aa
DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




D4-D7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





409
BCMA-41
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-D7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





410
BCMA-41 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
D4-D7 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





411
BCMA-42
BC 7A4 96-
VH CDR1
aa
DYYIN




D4-E7








412
BCMA-42
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




D4-E7








413
BCMA-42
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




D4-E7








414
BCMA-42
BC 7A4 96-
VL CDR1
aa





D4-E7


KSSQSLVHSNGNTYLH





415
BCMA-42
BC 7A4 96-
VL CDR2
aa
KVSNRFS




D4-E7








416
BCMA-42
BC 7A4 96-
VL CDR3
aa
SQSTYPEFT




D4-E7








417
BCMA-42
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-E7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





418
BCMA-42
BC 7A4 96-
VL
aa
DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




D4-E7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





419
BCMA-42
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




D4-E7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





420
BCMA-42 HL ×
BC 7A496-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
D4-E7 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLPVTLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





421
BCMA-43
BC 7A4 96-
VH CDR1
aa
DYYIN




F4-A12








422
BCMA-43
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




F4-A12








423
BCMA-43
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




F4-A12








424
BCMA-43
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




F4-A12








425
BCMA-43
BC 7A4 96-
VL CDR2
aa
KVSNRFS




F4-A12








426
BCMA-43
BC 7A4 96-
VL CDR3
aa
SQSSTAPWT




F4-A12








427
BCMA-43
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-A12


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





428
BCMA-43
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




F4-A12


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





429
BCMA-43
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-A12


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





430
BCMA-43 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
F4-A12 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





431
BCMA-44
BC 7A4 96-
VH CDR1
aa
DYYIN




F4-D7








432
BCMA-44
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




F4-D7








433
BCMA-44
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




F4-D7








434
BCMA-44
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




F4-D7








435
BCMA-44
BC 7A4 96-
VL CDR2
aa
KVSNRFS




F4-D7








436
BCMA-44
BC 7A4 96-
VL CDR3
aa
SQSSIYPWT




F4-D7








437
BCMA-44
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-D7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





438
BCMA-44
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




F4-D7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





439
BCMA-44
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-D7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





440
BCMA-44 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
F4-D7 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYMANWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





441
BCMA-45
BC 7A4 96-
VH CDR1
aa
DYYIN




F4-E7








442
BCMA-45
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNQKFTG




F4-E7








443
BCMA-45
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




F4-E7








444
BCMA-45
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




F4-E7








445
BCMA-45
BC 7A4 96-
VL CDR2
aa
KVSNRFS




F4-E7








446
BCMA-45
BC 7A4 96-
VL CDR3
aa
SQSTYPEFT




F4-E7








447
BCMA-45
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-E7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





448
BCMA-45
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




F4-E7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





449
BCMA-45
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




F4-E7


VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





450
BCMA-45 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
F4-E7 HL ×
molecule

VTMTRDTSISTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





451
BCMA-46
BC 7A4 96-
VH CDR1
aa
DYYIN




G2-A12








452
BCMA-46
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNEKFTG




G2-A12








453
BCMA-46
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




G2-A12








454
BCMA-46
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




G2-A12








455
BCMA-46
BC 7A4 96-
VL CDR2
aa
KVSNRFS




G2-A12








456
BCMA-46
BC 7A4 96-
VL CDR3
aa
SQSSTAPWT




G2-A12








457
BCMA-46
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-A12


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





458
BCMA-46
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




G2-A12


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





459
BCMA-46
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-A12


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIK





460
BCMA-46 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR



CD3 HL
G2-A12 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSTAPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





461
BCMA-47
BC 7A4 96-
VH CDR1
aa
DYYIN




G2-D7








462
BCMA-47
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNEKFTG




G2-D7








463
BCMA-47
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




G2-D7








464
BCMA-47
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




G2-D7








465
BCMA-47
BC 7A4 96-
VL CDR2
aa
KVSNRFS




G2-D7








466
BCMA-47
BC 7A4 96-
VL CDR3
aa
SQSSIYPWT




G2-D7








467
BCMA-47
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-D7


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





468
BCMA-47
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




G2-D7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





469
BCMA-47
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-D7


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIK





470
BCMA-47 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR



CD3 HL
G2-D7 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSSIYPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





471
BCMA-48
BC 7A4 96-
VH CDR1
aa
DYYIN




G2-E7








472
BCMA-48
BC 7A4 96-
VH CDR2
aa
WIYFASGNSEYNEKFTG




G2-E7








473
BCMA-48
BC 7A4 96-
VH CDR3
aa
LYDYDWYFDV




G2-E7








474
BCMA-48
BC 7A4 96-
VL CDR1
aa
KSSQSLVHSNGNTYLH




G2-E7








475
BCMA-48
BC 7A4 96-
VL CDR2
aa
KVSNRFS




G2-E7








476
BCMA-48
BC 7A4 96-
VL CDR3
aa
SQSTYPEFT




G2-E7








477
BCMA-48
BC 7A4 96-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-E7


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





478
BCMA-48
BC 7A4 96-
VL
aa
DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




G2-E7


SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





479
BCMA-48
BC 7A4 96-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR




G2-E7


VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIK





480
BCMA-48 HL ×
BC 7A4 96-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNEKFTGR



CD3 HL
G2-E7 HL ×
molecule

VTMTRDTSSSTAYMELSSLRSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVSLGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGVYYCSQSTYPEFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





481
BCMA-49
BC 7A4 97-
VH CDR1
aa
DYYIN




A3-A12








482
BCMA-49
BC 7A4 97-
VH CDR2
aa
WIYFASGNSEYNQKFTG




A3-A12








483
BCMA-49
BC 7A4 97-
VH CDR3
aa
LYDYDWYFDV




A3-A12








484
BCMA-49
BC 7A4 97-
VL CDR1
aa
KSSQSLVHSNGNTYLH




A3-A12








485
BCMA-49
BC 7A4 97-
VL CDR2
aa
KVSNRFS




A3-A12








486
BCMA-49
BC 7A4 97-
VL CDR3
aa
SQSSTAPWT




A3-A12








487
BCMA-49
BC 7A4 97-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-A12


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





488
BCMA-49
BC 7A4 97-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




A3-A12


SGSGSGTDFTLKISRVEAEDVGIYYCSQSSTAPWTFGQGTKLEIK





489
BCMA-49
BC 7A4 97-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-A12


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSSTAPWTFGQGTKLEIK





490
BCMA-49 HL ×
BC 7A4 97-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
A3-A12 HL ×
molecule

VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSSTAPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





491
BCMA-50
BC 7A4 97-
VH CDR1
aa
DYYIN




A3-D7








492
BCMA-50
BC 7A4 97-
VH CDR2
aa
WIYFASGNSEYNQKFTG




A3-D7








493
BCMA-50
BC 7A4 97-
VH CDR3
aa
LYDYDWYFDV




A3-D7








494
BCMA-50
BC 7A4 97-
VL CDR1
aa
KSSQSLVHSNGNTYLH




A3-D7








495
BCMA-50
BC 7A4 97-
VL CDR2
aa
KVSNRFS




A3-D7








496
BCMA-50
BC 7A4 97-
VL CDR3
aa
SQSSIYPWT




A3-D7








497
BCMA-50
BC 7A4 97-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-D7


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





498
BCMA-50
BC 7A4 97-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




A3-D7


SGSGSGTDFTLKISRVEAEDVGIYYCSQSSIYPWTFGQGTKLEIK





499
BCMA-50
BC 7A4 97-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-D7


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSSIYPWTFGQGTKLEIK





500
BCMA-50 HL ×
BC 7A4 97-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
A3-D7 HL ×
molecule

VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSSIYPWTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYMANWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





501
BCMA-51
BC 7A4 97-
VH CDR1
aa
DYYIN




A3-E7








502
BCMA-51
BC 7A4 97-
VH CDR2
aa
WIYFASGNSEYNQKFTG




A3-E7








503
BCMA-51
BC 7A4 97-
VH CDR3
aa
LYDYDWYFDV




A3-E7








504
BCMA-51
BC 7A4 97-
VL CDR1
aa
KSSQSLVHSNGNTYLH




A3-E7








505
BCMA-51
BC 7A4 97-
VL CDR2
aa
KVSNRFS




A3-E7








506
BCMA-51
BC 7A4 97-
VL CDR3
aa
SQSTYPEFT




A3-E7








507
BCMA-51
BC 7A4 97-
VH
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-E7


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSS





508
BCMA-51
BC 7A4 97-
VL
aa
DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF




A3-E7


SGSGSGTDFTLKISRVEAEDVGIYYCSQSTYPEFTFGQGTKLEIK





509
BCMA-51
BC 7A4 97-
scFv
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR




A3-E7


VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS







DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSTYPEFTFGQGTKLEIK





510
BCMA-51 HL ×
BC 7A4 97-
bispecific
aa
QVQLVQSGAEVKKPGASVKVSCKASGYSFPDYYINWVRQAPGQGLEWMGWIYFASGNSEYNQKFTGR



CD3 HL
A3-E7 HL ×
molecule

VTMTRDTSINTAYMELSSLTSEDTAVYFCASLYDYDWYFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




CD3 HL


DIVMTQTPLSLSVTPGQPASISCKSSQSLVHSNGNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRF







SGSGSGTDFTLKISRVEAEDVGIYYCSQSTYPEFTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGG







SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL







QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSL







TVSPGGIVTLICGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL







SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL





511
BCMA-52
BC E11 19-
VH CDR1
aa
NAWMD




F11-F8








512
BCMA-52
BC E11 19-
VH CDR2
aa
QITAKSNNYATYYAEPVKG




F11-F8








513
BCMA-52
BC E11 19-
VH CDR3
aa
DGYH




F11-F8








514
BCMA-52
BC E11 19-
VL CDR1
aa
RASEDIRNGLA




F11-F8








515
BCMA-52
BC E11 19-
VL CDR2
aa
NANSLHT




F11-F8








516
BCMA-52
BC E11 19-
VL CDR3
aa
EDTSKYPYT




F11-F8








517
BCMA-52
BC E11 19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK




F11-F8


GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSS





518
BCMA-52
BC E11 19-
VL
aa
AIQMTQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGS




F11-F8


GTEFTLKISSLQPEDEATYYCEDTSKYPYTFGQGTKLEIK





519
BCMA-52
BC E11 19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK




F11-F8


GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTEF







TLKISSLQPEDEATYYCEDTSKYPYTFGQGTKLEIK





520
BCMA-52 HL ×
BC E11 19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK



CD3 HL
F11-F8 HL × 
molecule

GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTEF







TLKISSLQPEDEATYYCEDTSKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





521
BCMA-53
BC E11 19-
VH CDR1
aa
NAWMD




G3-F8








522
BCMA-53
BC E11 19-
VH CDR2
aa
QITAKSNNYATYYAAPVKG




G3-F8








523
BCMA-53
BC E11 19-
VH CDR3
aa
DGYH




G3-F8








524
BCMA-53
BC E11 19-
VL CDR1
aa
RASEDIRNGLA




G3-F8








525
BCMA-53
BC E11 19-
VL CDR2
aa
NANSLHS




G3-F8








526
BCMA-53
BC E11 19-
VL CDR3
aa
EDTSKYPYT




G3-F8








527
BCMA-53
BC E11 19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




G3-F8


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSS





528
BCMA-53
BC E11 19-
VL
aa
AIQMTQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGS




G3-F8


GTDFTLTISSMQPEDEGTYYCEDTSKYPYTFGQGTKLEIK





529
BCMA-53
BC E11 19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




G3-F8


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGSGTDF







TLTISSMQPEDEGTYYCEDTSKYPYTFGQGTKLEIK





530
BCMA-53 HL ×
BC E11 19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK



CD3 HL
G3-F8 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGSGTDF







TLTISSMQPEDEGTYYCEDTSKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





531
BCMA-54
BC E11 19-
VH CDR1
aa
NAWMD




B2-F8








532
BCMA-54
BC E11 19-
VH CDR2
aa
QITAKSNNYATYYAAPVKG




B2-F8








533
BCMA-54
BC El1 19-
VH CDR3
aa
DGYH




B2-F8








534
BCMA-54
BC E11 19-
VL CDR1
aa
RASEDIRNGLA




B2-F8








535
BCMA-54
BC E11 19-
VL CDR2
aa
NANSLHT




B2-F8








536
BCMA-54
BC E11 19-
VL CDR3
aa
EDTSKYPYT




B2-F8








537
BCMA-54
BC E11 19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




B2-F8


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSS





538
BCMA-54
BC E11 19-
VL
aa
AIQMTQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGS




B2-F8


GTDFTLTISSLQPEDEAIYYCEDTSKYPYTFGQGTKLEIK





539
BCMA-54
BC E11 19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




B2-F8


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISSLQPEDEAIYYCEDTSKYPYTFGQGTKLEIK





540
BCMA-54 HL ×
BC E11 19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK



CD3 HL
B2-F8 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISSLQPEDEAIYYCEDTSKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





541
BCMA-55
BC E11-20-
VH CDR1
aa
NAWMD




H9-E9








542
BCMA-55
BC E11-20-
VH CDR2
aa
QITAKSNNYATYYAAPVKG




H9-E9








543
BCMA-55
BC E11-20-
VH CDR3
aa
DGYH




H9-E9








544
BCMA-55
BC E11-20-
VL CDR1
aa
RASEDIRNGLA




H9-E9








545
BCMA-55
BC E11-20-
VL CDR2
aa
NANSLHT




H9-E9








546
BCMA-55
BC E11-20-
VL CDR3
aa
EETLKYPYT




H9-E9








547
BCMA-55
BC E11-20-
VH
aa
EVQLVESGGSLVKPGGSLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAAPVK




H9-E9


GRFTISRDDSKNTLYLQMNSLKEEDTAVYYCTDDGYHWGQGTLVTVSS





548
BCMA-55
BC E11-20-
VL
aa
AIQMTQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGS




H9-E9


GTDFTLTISNLQPEDEATYYCEETLKYPYTFGQGTKLEIK





549
BCMA-55
BC E11-20-
scFv
aa
EVQLVESGGSLVKPGGSLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAAPVK




H9-E9


GRFTISRDDSKNTLYLQMNSLKEEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISNLQPEDEATYYCEETLKYPYTFGQGTKLEIK





550
BCMA-55 HL ×
BC E11-20-
bispecific
aa
EVQLVESGGSLVKPGGSLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAAPVK



CD3 HL
H9-E9 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKEEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISNLQPEDEATYYCEETLKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





551
BCMA-56
BC E11-19-
VH CDR1
aa
NAWMD




F11-E9








552
BCMA-56
BC E11-19-
VH CDR2
aa
QITAKSNNYATYYAEPVKG




F11-E9








553
BCMA-56
BC E11-19-
VH CDR3
aa
DGYH




F11-E9








554
BCMA-56
BC E11-19-
VL CDR1
aa
RASEDIRNGLA




F11-E9








555
BCMA-56
BC E11-19-
VL CDR2
aa
NANSLHT




F11-E9








556
BCMA-56
BC E11-19-
VL CDR3
aa
EETLKYPYT




F11-E9








557
BCMA-56
BC E11-19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK




F11-E9


GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSS





558
BCMA-56
BC E11-19-
VL
aa
AIQMTQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGS




F11-E9


GTEFTLKISSLQPEDEATYYCEETLKYPYTFGQGTKLEIK





559
BCMA-56
BC E11-19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK




F11-E9


GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTEF







TLKISSLQPEDEATYYCEETLKYPYTFGQGTKLEIK





560
BCMA-56 HL ×
BC E11-19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWVAQITAKSNNYATYYAEPVK



CD3 HL
F11-E9 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGETVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTEF







TLKISSLQPEDEATYYCEETLKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





561
BCMA-57
BC E11-19-
VH CDR1
aa
NAWMD




B2-E9








562
BCMA-57
BC E11-19-
VH CDR2
aa
QITAKSNNYATYYAAPVKG




B2-E9








563
BCMA-57
BC E11-19-
VH CDR3
aa
DGYH




B2-E9








564
BCMA-57
BC E11-19-
VL CDR1
aa
RASEDIRNGLA




B2-E9








565
BCMA-57
BC E11-19-
VL CDR2
aa
NANSLHT




B2-E9








566
BCMA-57
BC E11-19-
VL CDR3
aa
EETLKYPYT




B2-E9








567
BCMA-57
BC E11-19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




B2-E9


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSS





568
BCMA-57
BC E11-19-
VL
aa
AIQMTQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGS




B2-E9


GTDFTLTISSLQPEDEAIYYCEETLKYPYTFGQGTKLEIK





569
BCMA-57
BC E11-19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




B2-E9


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISSLQPEDEAIYYCEETLKYPYTFGQGTKLEIK





570
BCMA-57 HL ×
BC E11-19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK



CD3 HL
B2-E9 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGDRVTIACRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHTGVPSRFSGSGSGTDF







TLTISSLQPEDEAIYYCEETLKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







TLCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





571
BCMA-58
BC E11-19-
VH CDR1
aa
NAWMD




G3-E9








572
BCMA-58
BC E11-19-
VH CDR2
aa
QITAKSNNYATYYAAPVKG




G3-E9








573
BCMA-58
BC E11-19-
VH CDR3
aa
DGYH




G3-E9








574
BCMA-58
BC E11-19-
VL CDR1
aa
RASEDIRNGLA




G3-E9








575
BCMA-58
BC E11-19-
VL CDR2
aa
NANSLHS




G3-E9








576
BCMA-58
BC E11-19-
VL CDR3
aa
EETLKYPYT




G3-E9








577
BCMA-58
BC E11-19-
VH
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK




G3-E9


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSS





578
BCMA-58
BC E11-19-
VL
aa
AIQMTQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGS




G3-E9


GTDFTLTISSMQPEDEGTYYCEETLKYPYTFGQGTKLEIK





579
BCMA-58
BC E11-19-
scFv
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQ ITAKSNNYATYYAAPVK




G3-E9


GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM







TQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGSGTDF







TLTISSMQPEDEGTYYCEETLKYPYTFGQGTKLEIK





580
BCMA-58 HL ×
BC E11-19-
bispecific
aa
EVQLVESGGGLVKPGESLRLSCAASGFTFSNAWMDWVRQAPGKRLEWIAQITAKSNNYATYYAAPVK



CD3 HL
G3-E9 HL ×
molecule

GRFTISRDDSKNTLYLQMNSLKKEDTAVYYCTDDGYHWGQGTLVTVSSGGGGSGGGGSGGGGSAIQM




CD3 HL


TQSPSSLSASVGDRVTIKCRASEDIRNGLAWYQQKPGKAPKLLIYNANSLHSGVPSRFSGSGSGTDF







TLTISSMQPEDEGTYYCEETLKYPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS







GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED







TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT







LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEA







EYYCVLWYSNRWVFGGGTKLTVL





581
BCMA-59
BC 5G9-
VH CDR1
aa
NYDMA




91-D2








582
BCMA-59
BC 5G9-
VH CDR2
aa
SIITSGGDNYYRDSVKG




91-D2








583
BCMA-59
BC 5G9-
VH CDR3
aa
HDYYDGSYGFAY




91-D2








584
BCMA-59
BC 5G9-
VL CDR1
aa
KASQSVGINVD




91-D2








585
BCMA-59
BC 5G9-
VL CDR2
aa
GASNRHT




91-D2








586
BCMA-59
BC 5G9-
VL CDR3
aa
LQYGSIPFT




91-D2








587
BCMA-59
BC 5G9-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-D2


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





588
BCMA-59
BC 5G9-
VL
aa
EIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




91-D2


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





589
BCMA-59
BC 5G9-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-D2


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





590
BCMA-59 HL ×
BC 5G9-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR



CD3 HL
91-D2 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPASMSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





591
BCMA-60
BC 5G9-
VH CDR1
aa
NYDMA




91-C7








592
BCMA-60
BC 5G9-
VH CDR2
aa
SIITSGGDNYYRDSVKG




91-C7








593
BCMA-60
BC 5G9-
VH CDR3
aa
HDYYDGSYGFAY




91-C7








594
BCMA-60
BC 5G9-
VL CDR1
aa
KASQSVGINVD




91-C7








595
BCMA-60
BC 5G9-
VL CDR2
aa
GASNRHT




91-C7








596
BCMA-60
BC 5G9-
VL CDR3
aa
LQYGSIPFT




91-C7








597
BCMA-60
BC 5G9-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-C7


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





598
BCMA-60
BC 5G9-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




91-C7


GREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





599
BCMA-60
BC 5G9-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-C7


FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





600
BCMA-60 HL ×
BC 5G9-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR



CD3 HL
91-C7 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGREFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





601
BCMA-61
BC 5G9-
VH CDR1
aa
NYDMA




91-E4








602
BCMA-61
BC 5G9-
VH CDR2
aa
SIITSGGDNYYRDSVKG




91-E4








603
BCMA-61
BC 5G9-
VH CDR3
aa
HDYYDGSYGFAY




91-E4








604
BCMA-61
BC 5G9-
VL CDR1
aa
KASQSVGINVD




91-E4








605
BCMA-61
BC 5G9-
VL CDR2
aa
GASNRHT




91-E4








606
BCMA-61
BC 5G9-
VL CDR3
aa
LQYGSIPFT




91-E4








607
BCMA-61
BC 5G9-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-E4


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





608
BCMA-61
BC 5G9-
VL
aa
EIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




91-E4


GTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





609
BCMA-61
BC 5G9-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




91-E4


FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIK





610
BCMA-61 HL ×
BC 5G9-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR



CD3 HL
91-E4 HL ×
molecule

FTISRDNSKNTLYLQMNSLRSEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERVTLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQSEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





611
BCMA-62
BC 5G9-
VH CDR1
aa
NYDMA




92-E10








612
BCMA-62
BC 5G9-
VH CDR2
aa
SIITSGGDNYYRDSVKG




92-E10








613
BCMA-62
BC 5G9-
VH CDR3
aa
HDYYDGSYGFAY




92-E10








614
BCMA-62
BC 5G9-
VL CDR1
aa
KASQSVGINVD




92-E10








615
BCMA-62
BC 5G9-
VL CDR2
aa
GASNRHT




92-E10








616
BCMA-62
BC 5G9-
VL CDR3
aa
LQYGSIPFT




92-E10








617
BCMA-62
BC 5G9-
VH
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




92-E10


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSS





618
BCMA-62
BC 5G9-
VL
aa
EIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGSGS




92-E10


GTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





619
BCMA-62
BC 5G9-
scFv
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR




92-E10


FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIK





620
BCMA-62 HL ×
BC 5G9-
bispecific
aa
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVASIITSGGDNYYRDSVKGR



CD3 HL
92-E10 HL ×
molecule

FTVSRDNSKNTLYLQMNSLRAEDTAVYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSEIVMTQSPATLSVSPGERATLSCKASQSVGINVDWYQQKPGQAPRLLIYGASNRHTGIPARFSGS







GSGTEFTLTISSLQAEDFAVYYCLQYGSIPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





621
BCMA-63
BC 3A4-37-
VH CDR1
aa
NYDMA




C8








622
BCMA-63
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C8








623
BCMA-63
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C8








624
BCMA-63
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C8








625
BCMA-63
BC 3A4-37-
VL CDR2
aa
GASSLQD




C8








626
BCMA-63
BC 3A4-37-
VL CDR3
aa
QQSYKYPLT




C8








627
BCMA-63
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





628
BCMA-63
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C8


GTDYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIK





629
BCMA-63
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIK





630
BCMA-63 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C8 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





631
BCMA-64
BC 3A4-37-
VH CDR1
aa
NYDMA




C9








632
BCMA-64
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C9








633
BCMA-64
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C9








634
BCMA-64
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C9








635
BCMA-64
BC 3A4-37-
VL CDR2
aa
GASSLQD




C9








636
BCMA-64
BC 3A4-37-
VL CDR3
aa
QQSYKYPLT




C9








637
BCMA-64
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9


FTISRDNSKNTLYLQMNSLRAE DTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





638
BCMA-64
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C9


GTDFTLTISSMQPEDEATYYCQQSYKYPLTFGGGTKVEIK





639
BCMA-64
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCQQSYKYPLTFGGGTKVEIK





640
BCMA-64 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C9 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCQQSYKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





641
BCMA-65
BC 3A4-37-
VH CDR1
aa
NYDMA




E11








642
BCMA-65
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




E11








643
BCMA-65
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




E11








644
BCMA-65
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




E11








645
BCMA-65
BC 3A4-37-
VL CDR2
aa
GASSLQD




E11








646
BCMA-65
BC 3A4-37-
VL CDR3
aa
QQSYKYPLT




E11








647
BCMA-65
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





648
BCMA-65
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




E11


GTHYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIK





649
BCMA-65
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIK





650
BCMA-65 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
E11 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCQQSYKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





651
BCMA-66
BC 3A4-37-
VH CDR1
aa
NYDMA




C8-G1








652
BCMA-66
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C8-G1








653
BCMA-66
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C8-G1








654
BCMA-66
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C8-G1








655
BCMA-66
BC 3A4-37-
VL CDR2
aa
GASSLQD




C8-G1








656
BCMA-66
BC 3A4-37-
VL CDR3
aa
AGPHKYPLT




C8-G1








657
BCMA-66
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8-G1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





658
BCMA-66
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C8-G1


GTDYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





659
BCMA-66
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8-G1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





660
BCMA-66 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C8-G1 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





661
BCMA-67
BC 3A4-37-
VH CDR1
aa
NYDMA




E11-G1








662
BCMA-67
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




E11-G1








663
BCMA-67
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




E11-G1








664
BCMA-67
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




E11-G1








665
BCMA-67
BC 3A4-37-
VL CDR2
aa
GASSLQD




E11-G1








666
BCMA-67
BC 3A4-37-
VL CDR3
aa
AGPHKYPLT




E11-G1








667
BCMA-67
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





668
BCMA-67
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




E11-G1


GTHYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





669
BCMA-67
BC 3A4-37- 
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





670
BCMA-67 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
E11-G1 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





671
BCMA-68
BC 3A4-37-
VH CDR1
aa
NYDMA




C8-G8








672
BCMA-68
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C8-G8








673
BCMA-68
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C8-G8








674
BCMA-68
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C8-G8








675
BCMA-68
BC 3A4-37-
VL CDR2
aa
GASSLQD




C8-G8








676
BCMA-68
BC 3A4-37-
VL CDR3
aa
QQSRNYQQT




C8-G8








677
BCMA-68
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8-G8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





678
BCMA-68
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C8-G8


GTDYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





679
BCMA-68
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C8-G8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





680
BCMA-68 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C8-G8 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDTVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





681
BCMA-69
BC 3A4-37-
VH CDR1
aa
NYDMA




E11-G8








682
BCMA-69
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




E11-G8








683
BCMA-69
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




E11-G8








684
BCMA-69
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




E11-G8








685
BCMA-69
BC 3A4-37-
VL CDR2
aa
GASSLQD




E11-G8








686
BCMA-69
BC 3A4-37-
VL CDR3
aa
QQSRNYQQT




E11-G8








687
BCMA-69
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





688
BCMA-69
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




E11-G8


GTHYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





689
BCMA-69
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




E11-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





690
BCMA-69 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
E11-G8 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTHYTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





691
BCMA-70
BC 3A4-37-
VH CDR1
aa
NYDMA




A11-G8








692
BCMA-70
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




A11-G8








693
BCMA-70
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




A11-G8








694
BCMA-70
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




A11-G8








695
BCMA-70
BC 3A4-37-
VL CDR2
aa
GASSLQD




A11-G8








696
BCMA-70
BC 3A4-37-
VL CDR3
aa
QQSRNYQQT




A11-G8








697
BCMA-70
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




A11-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





698
BCMA-70
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




A11-G8


GTEFTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





699
BCMA-70
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




A11-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTEFTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIK





700
BCMA-70 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
A11-G8 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTEFTLTISSLQPEDEATYYCQQSRNYQQTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





701
BCMA-71
BC 3A4-37-
VH CDR1
aa
NYDMA




A11-G1








702
BCMA-71
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




A11-G1








703
BCMA-71
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




A11-G1








704
BCMA-71
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




A11-G1








705
BCMA-71
BC 3A4-37-
VL CDR2
aa
GASSLQD




A11-G1








706
BCMA-71
BC 3A4-37-
VL CDR3
aa
AGPHKYPLT




A11-G1








707
BCMA-71
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




A11-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





708
BCMA-71
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




A11-G1


GTEFTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





709
BCMA-71
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




A11-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTEFTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIK





710
BCMA-71 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
A11-G1 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTEFTLTISSLQPEDEATYYCAGPHKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





711
BCMA-72
BC 3A4-37-
VH CDR1
aa
NYDMA




C9-G1








712
BCMA-72
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C9-G1








713
BCMA-72
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C9-G1








714
BCMA-72
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C9-G1








715
BCMA-72
BC 3A4-37-
VL CDR2
aa
GASSLQD




C9-G1








716
BCMA-72
BC 3A4-37-
VL CDR3
aa
AGPHKYPLT




C9-G1








717
BCMA-72
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





718
BCMA-72
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C9-G1


GTDFTLTISSMQPEDEATYYCAGPHKYPLTFGGGTKVEIK





719
BCMA-72
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9-G1


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCAGPHKYPLTFGGGTKVEIK





720
BCMA-72 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C9-G1 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCAGPHKYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





721
BCMA-73
BC 3A4-37-
VH CDR1
aa
NYDMA




C9-G8








722
BCMA-73
BC 3A4-37-
VH CDR2
aa
SISTRGDITSYRDSVKG




C9-G8








723
BCMA-73
BC 3A4-37-
VH CDR3
aa
QDYYTDYMGFAY




C9-G8








724
BCMA-73
BC 3A4-37-
VL CDR1
aa
RASEDIYNGLA




C9-G8








725
BCMA-73
BC 3A4-37-
VL CDR2
aa
GASSLQD




C9-G8








726
BCMA-73
BC 3A4-37-
VL CDR3
aa
QQSRNYQQT




C9-G8








727
BCMA-73
BC 3A4-37-
VH
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSS





728
BCMA-73
BC 3A4-37-
VL
aa
AIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGSGS




C9-G8


GTDFTLTISSMQPEDEATYYCQQSRNYQQTFGGGTKVEIK





729
BCMA-73
BC 3A4-37-
scFv
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR




C9-G8


FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG







GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCQQSRNYQQTFGGGTKVEIK





730
BCMA-73 HL ×
BC 3A4-37-
bispecific
aa
EVQLLESGGGLVQPGRSLRLSCAASGFTFSNYDMAWVRQAPGKGLEWVSSISTRGDITSYRDSVKGR



CD3 HL
C9-G8 HL ×
molecule

FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSAIQMTQSPSSLSASVGDRVTITCRASEDIYNGLAWYQQKPGKAPKLLIYGASSLQDGVPSRFSGS







GSGTDFTLTISSMQPEDEATYYCQQSRNYQQTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





731
BCMA-74
BC C3-33-
VH CDR1
aa
NFDMA




D7-B1








732
BCMA-74
BC C3-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




D7-B1








733
BCMA-74
BC C3-33-
VH CDR3
aa
HGYYDGYHLFDY




D7-B1








734
BCMA-74
BC C3-33-
VL CDR1
aa
RASQGISNYLN




D7-B1








735
BCMA-74
BC C3-33-
VL CDR2
aa
YTSNLQS




D7-B1








736
BCMA-74
BC C3-33-
VL CDR3
aa
MGQTISSYT




D7-B1








737
BCMA-74
BC C3-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




D7-B1


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





738
BCMA-74
BC C3-33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




D7-B1


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





739
BCMA-74
BC C3-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




D7-B1


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





740
BCMA-74 HL ×
BC C3-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
D7-B1 HL ×
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





741
BCMA-75
BC C3-33-
VH CDR1
aa
NFDMA




F8-B1








742
BCMA-75
BC C3-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




F8-B1








743
BCMA-75
BC C3-33-
VH CDR3
aa
HGYYDGYHLFDY




F8-B1








744
BCMA-75
BC C3-33-
VL CDR1
aa
RASQGISNYLN




F8-B1








745
BCMA-75
BC C3-33-
VL CDR2
aa
YTSNLQS




F8-B1








746
BCMA-75
BC C3-33-
VL CDR3
aa
MGQTISSYT




F8-B1








747
BCMA-75
BC C3-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




F8-B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





748
BCMA-75
BC C3-33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F8-B1


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





749
BCMA-75
BC C3-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




F8-B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





750
BCMA-75 HL ×
BC C3-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
F8-B1 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





751
BCMA-76
BC C3-33-
VH CDR1
aa
NFDMA




F9-B1








752
BCMA-76
BC C3-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




F9-B1








753
BCMA-76
BC C3-33-
VH CDR3
aa
HGYYDGYHLFDY




F9-B1








754
BCMA-76
BC C3-33-
VL CDR1
aa
RASQGISNYLN




F9-B1








755
BCMA-76
BC C3-33-
VL CDR2
aa
YTSNLQS




F9-B1








756
BCMA-76
BC C3-33-
VL CDR3
aa
MGQTISSYT




F9-B1








757
BCMA-76
BC C3-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




F9-B1


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





758
BCMA-76
BC C3-33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F9-B1


GTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





759
BCMA-76
BC C3-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




F9-B1


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





760
BCMA-76 HL ×
BC C3-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
F9-B1 HL ×
molecule

FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





761
BCMA-77
BC C3-33-
VH CDR1
aa
NFDMA




F10B1








762
BCMA-77
BC C3-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




F10B1








763
BCMA-77
BC C3-33-
VH CDR3
aa
HGYYDGYHLFDY




F10B1








764
BCMA-77
BC C3-33-
VL CDR1
aa
RASQGISNYLN




F10B1








765
BCMA-77
BC C3-33-
VL CDR2
aa
YTSNLQS




F10B1








766
BCMA-77
BC C3-33-
VL CDR3
aa
MGQTISSYT




F10B1








767
BCMA-77
BC C3-33-
VH
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




F10B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





768
BCMA-77
BC C3-33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




F10B1


GTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





769
BCMA-77
BC C3-33-
scFv
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




F10B1


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIK





770
BCMA-77 HL ×
BC C3-33-
bispecific
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR



CD3 HL
F10B1 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCMGQTISSYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQE PSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





771
BCMA-78
BC E5-33-
VH CDR1
aa
NFDMA




A11-A10








772
BCMA-78
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




A11-A10








773
BCMA-78
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




A11-A10








774
BCMA-78
BC E5-33-
VL CDR1
aa
RASQGISNHLN




A11-A10








775
BCMA-78
BC E5-33-
VL CDR2
aa
YTSNLQS




A11-A10








776
BCMA-78
BC E5-33-
VL CDR3
aa
QQYFDRPYT




A11-A10








777
BCMA-78
BC E5-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A11-A10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





778
BCMA-78
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGSGS




A11-A10


GTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





779
BCMA-78
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A11-A10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





780
BCMA-78 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
A11-A10
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





781
BCMA-79
BC E5-33-
VH CDR1
aa
NFDMA




B11-A10








782
BCMA-79
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




B11-A10








783
BCMA-79
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




B11-A10








784
BCMA-79
BC E5-33-
VL CDR1
aa
RASQGISNHLN




B11-A10








785
BCMA-79
BC E5-33-
VL CDR2
aa
YTSNLQS




B11-A10








786
BCMA-79
BC E5-33-
VL CDR3
aa
QQYFDRPYT




B11-A10








787
BCMA-79
BC E5-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




B11-A10


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





788
BCMA-79
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




B11-A10


GTDYTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





789
BCMA-79
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




B11-A10


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





790
BCMA-79 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
B11-A10
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDYTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





791
BCMA-80
BC E5-33-
VH CDR1
aa
NFDMA




G11-A10








792
BCMA-80
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




G11-A10








793
BCMA-80
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




G11-A10








794
BCMA-80
BC E5-33-
VL CDR1
aa
RASQGISNHLN




G11-A10








795
BCMA-80
BC E5-33-
VL CDR2
aa
YTSNLQS




G11-A10








796
BCMA-80
BC E5-33-
VL CDR3
aa
QQYFDRPYT




G11-A10








797
BCMA-80
BC E5-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




G11-A10


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





798
BCMA-80
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQGISNHLNWFQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




G11-A10


GTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





799
BCMA-80
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




G11-A10


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQGISNHLNWFQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





800
BCMA-80 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
G11-A10
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGDRVTITCRASQGISNHLNWFQQKPGKAPKPLIYYTSNLQSGVPSRFSGS




HL


GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





801
BCMA-81
BC E5-33-
VH CDR1
aa
NFDMA




G12-A10








802
BCMA-81
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




G12-A10








803
BCMA-81
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




G12-A10








804
BCMA-81
BC E5-33-
VL CDR1
aa
RASQGISNHLN




G12-A10








805
BCMA-81
BC E5-33-
VL CDR2
aa
YTSNLQS




G12-A10








806
BCMA-81
BC E5-33-
VL CDR3
aa
QQYFDRPYT




G12-A10








807
BCMA-81
BC E5-33-
VH
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




G12-A10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





808
BCMA-81
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGSGS




G12-A10


GTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





809
BCMA-81
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




G12-A10


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIK





810
BCMA-81 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR



CD3 HL
G12-A10
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




HL × CD3


GSDIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS




HL


GSGTDFTLTISSLQPEDFATYYCQQYFDRPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





811
BCMA-82
BC E5-33-
VH CDR1
aa
NFDMA




A11-B8








812
BCMA-82
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




A11-B8








813
BCMA-82
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




A11-B8








814
BCMA-82
BC E5-33-
VL CDR1
aa
RASQGISNHLN




A11-B8








815
BCMA-82
BC E5-33-
VL CDR2
aa
YTSNLQS




A11-B8








816
BCMA-82
BC E5-33-
VL CDR3
aa
QQYSNLPYT




A11-B8








817
BCMA-82
BC E5-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A11-B8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





818
BCMA-82
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGSGS




A11-B8


GTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





819
BCMA-82
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A11-B8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





820
BCMA-82 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
A11-B8 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWFQQKPGRAPKPLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





821
BCMA-83
BC E5-33-
VH CDR1
aa
NFDMA




B11-B8








822
BCMA-83
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




B11-B8








823
BCMA-83
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




B11-B8








824
BCMA-83
BC E5-33-
VL CDR1
aa
RASQGISNHLN




B11-B8








825
BCMA-83
BC E5-33-
VL CDR2
aa
YTSNLQS




B11-B8








826
BCMA-83
BC E5-33-
VL CDR3
aa
QQYSNLPYT




B11-B8








827
BCMA-83
BC E5-33- 
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




B11-B8


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





828
BCMA-83
BC E5-33-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




B11-B8


GTDYTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





829
BCMA-83
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




B11-B8


FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





830
BCMA-83 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
B11-B8 HL ×
molecule

FTISRDNAKNTLYLQMDSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQGISNHLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





831
BCMA-84
BC E5-33-
VH CDR1
aa
NFDMA




G12-B8








832
BCMA-84
BC E5-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




G12-B8








833
BCMA-84
BC E5-33-
VH CDR3
aa
HGYYDGYHLFDY




G12-B8








834
BCMA-84
BC E5-33-
VL CDR1
aa
RASQGISNHLN




G12-B8








835
BCMA-84
BC E5-33-
VL CDR2
aa
YTSNLQS




G12-B8








836
BCMA-84
BC E5-33-
VL CDR3
aa
QQYSNLPYT




G12-B8








837
BCMA-84
BC E5-33-
VH
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




G12-B8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





838
BCMA-84
BC E5-33- 
VL
aa
DIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGSGS




G12-B8


GTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





839
BCMA-84
BC E5-33-
scFv
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR




G12-B8


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIK





840
BCMA-84 HL ×
BC E5-33-
bispecific
aa
EVQLVESGGGLVQPGRSLRLSCAASGFTFSNFDMAWVRQAPAKGLEWVSSITTGGGDTYYADSVKGR



CD3 HL
G12-B8 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGERVTITCRASQGISNHLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDFTLTISSLQPEDFATYYCQQYSNLPYTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





841
BCMA-85
BC C6-97-
VH CDR1
aa
NFGMN




G5








842
BCMA-85
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




G5








843
BCMA-85
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




G5








844
BCMA-85
BC C6-97-
VL CDR1
aa
RASQDISNYLN




G5








845
BCMA-85
BC C6-97-
VL CDR2
aa
YTSRLHS




G5








846
BCMA-85
BC C6-97-
VL CDR3
aa
QQGNTLPWT




G5








847
BCMA-85
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





848
BCMA-85
BC C6-97-
VL
aa
DIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGSGS




G5


GTDYTLTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





849
BCMA-85
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIK





850
BCMA-85 HL ×
BC C6-97-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
G5 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





851
BCMA-86
BC C6-98-
VH CDR1
aa
NFGMN




C8








852
BCMA-86
BC C6-98-
VH CDR2
aa
WINTYTGESIYADDFKG




C8








853
BCMA-86
BC C6-98-
VH CDR3
aa
GGVYGGYDAMDY




C8








854
BCMA-86
BC C6-98-
VL CDR1
aa
RASQDISNYLN




C8








855
BCMA-86
BC C6-98-
VL CDR2
aa
YTSRLHS




C8








856
BCMA-86
BC C6-98-
VL CDR3
aa
QQGNTLPWT




C8








857
BCMA-86
BC C6-98-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSS





858
BCMA-86
BC C6-98-
VL
aa
DIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGSGS




C8


GTDYSLTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





859
BCMA-86
BC C6-98-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





860
BCMA-86 HL ×
BC C6-98-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
C8 HL ×
molecule

FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





861
BCMA-87
BC C6-97-
VH CDR1
aa
NFGMN




A6








862
BCMA-87
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




A6








863
BCMA-87
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




A6








864
BCMA-87
BC C6-97-
VL CDR1
aa
RASQDISNYLN




A6








865
BCMA-87
BC C6-97-
VL CDR2
aa
YTSRLHS




A6








866
BCMA-87
BC C6-97-
VL CDR3
aa
QQGNTLPWT




A6








867
BCMA-87
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





868
BCMA-87
BC C6-97-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A6


GTDYTLTISSLEQEDIATYFCQQGNTLPWTFGQGTKVEIK





869
BCMA-87
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQQGNTLPWTFGQGTKVEIK





870
BCMA-87 HL ×
BC C6-97-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A6 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





871
BCMA-88
BC C6-98-
VH CDR1
aa
NFGMN




C8-E3








872
BCMA-88
BC C6-98-
VH CDR2
aa
WINTYTGESIYADDFKG




C8-E3








873
BCMA-88
BC C6-98-
VH CDR3
aa
GGVYGGYDAMDY




C8-E3








874
BCMA-88
BC C6-98-
VL CDR1
aa
RASQDISNYLN




C8-E3








875
BCMA-88
BC C6-98-
VL CDR2
aa
YTSRLHS




C8-E3








876
BCMA-88
BC C6-98-
VL CDR3
aa
QSFATLPWT




C8-E3








877
BCMA-88
BC C6-98-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8-E3


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSS





878
BCMA-88
BC C6-98-
VL
aa
DIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGSGS




C8-E3


GTDYSLTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIK





879
BCMA-88
BC C6-98-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8-E3


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIK





880
BCMA-88 HL ×
BC C6-98-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
C8-E3 HL ×
molecule

FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





881
BCMA-89
BC C6-98-
VH CDR1
aa
NFGMN




A1-E3








882
BCMA-89
BC C6-98-
VH CDR2
aa
WINTYTGESIYADDFKG




A1-E3








883
BCMA-89
BC C6-98-
VH CDR3
aa
GGVYGGYDAMDY




A1-E3








884
BCMA-89
BC C6-98-
VL CDR1
aa
RASQDISNYLN




A1-E3








885
BCMA-89
BC C6-98-
VL CDR2
aa
YTSRLHS




A1-E3








886
BCMA-89
BC C6-98-
VL CDR3
aa
QSFATLPWT




A1-E3








887
BCMA-89
BC C6-98-
VH
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1-E3


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





888
BCMA-89
BC C6-98-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A1-E3


GTDYTFTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIK





889
BCMA-89
BC C6-98-
scFv
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1-E3


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIK





890
BCMA-89 HL ×
BC C6-98-
bispecific
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A1-E3 HL ×
molecule

FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYYCQSFATLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





891
BCMA-90
BC C6-97-
VH CDR1
aa
NFGMN




G5-E3








892
BCMA-90
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




G5-E3








893
BCMA-90
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




G5-E3








894
BCMA-90
BC C6-97-
VL CDR1
aa
RASQDISNYLN




G5-E3








895
BCMA-90
BC C6-97-
VL CDR2
aa
YTSRLHS




G5-E3








896
BCMA-90
BC C6-97-
VL CDR3
aa
QSFATLPWT




G5-E3








897
BCMA-90
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5-E3


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





898
BCMA-90
BC C6-97-
VL
aa
DIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGSGS




G5-E3


GTDYTLTISSLEPEDIATYYCQSFATLPWTFGQGTKVEIK





899
BCMA-90
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5-E3


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQSFATLPWTFGQGTKVEIK





900
BCMA-90 HL ×
BC C6-97-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
G5-E3 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQSFATLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





901
BCMA-91
BC C6-97-
VH CDR1
aa
NFGMN




A6-E3








902
BCMA-91
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




A6-E3








903
BCMA-91
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




A6-E3








904
BCMA-91
BC C6-97-
VL CDR1
aa
RASQDISNYLN




A6-E3








905
BCMA-91
BC C6-97-
VL CDR2
aa
YTSRLHS




A6-E3








906
BCMA-91
BC C6-97-
VL CDR3
aa
QSFATLPWT




A6-E3








907
BCMA-91
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6-E3


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





908
BCMA-91
BC C6-97-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A6-E3


GTDYTLTISSLEQEDIATYFCQSFATLPWTFGQGTKVEIK





909
BCMA-91
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6-E3


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQSFATLPWTFGQGTKVEIK





910
BCMA-91 HL ×
BC C6-97-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A6-E3 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQSFATLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





911
BCMA-92
BC C6-97-
VH CDR1
aa
NFGMN




G5-G9








912
BCMA-92
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




G5-G9








913
BCMA-92
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




G5-G9








914
BCMA-92
BC C6-97-
VL CDR1
aa
RASQDISNYLN




G5-G9








915
BCMA-92
BC C6-97-
VL CDR2
aa
YTSRLHS




G5-G9








916
BCMA-92
BC C6-97-
VL CDR3
aa
QHFRTLPWT




G5-G9








917
BCMA-92
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5-G9


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





918
BCMA-92
BC C6-97-
VL
aa
DIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGSGS




G5-G9


GTDYTLTISSLEPEDIATYYCQHFRTLPWTFGQGTKVEIK





919
BCMA-92
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




G5-G9


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQHFRTLPWTFGQGTKVEIK





920
BCMA-92 HL ×
BC C697-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
G5-G9 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPDKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEPEDIATYYCQHFRTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





921
BCMA-93
BC C6-98-
VH CDR1
aa
NFGMN




C8-G9








922
BCMA-93
BC C6-98-
VH CDR2
aa
WINTYTGESIYADDFKG




C8-G9








923
BCMA-93
BC C6-98-
VH CDR3
aa
GGVYGGYDAMDY




C8-G9








924
BCMA-93
BC C6-98-
VL CDR1
aa
RASQDISNYLN




C8-G9








925
BCMA-93
BC C6-98-
VL CDR2
aa
YTSRLHS




C8-G9








926
BCMA-93
BC C6-98-
VL CDR3
aa
QHFRTLPWT




C8-G9








927
BCMA-93
BC C6-98-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8-G9


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSS





928
BCMA-93
BC C6-98-
VL
aa
DIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGSGS




C8-G9


GTDYSLTISNLQPEDIATYYCQHFRTLPWTFGQGTKVEIK





929
BCMA-93
BC C6-98-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




C8-G9


FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQHFRTLPWTFGQGTKVEIK





930
BCMA-93 HL ×
BC C6-98-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
C8-G9 HL ×
molecule

FVFSSDTSVSTAYLQINSLKAEDTAVYFCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQTPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKALKLLIYYTSRLHSGVPSRFSGS







GSGTDYSLTISNLQPEDIATYYCQHFRTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





931
BCMA-94
BC C6-97-
VH CDR1
aa
NFGMN




A6-G9








932
BCMA-94
BC C6-97-
VH CDR2
aa
WINTYTGESIYADDFKG




A6-G9








933
BCMA-94
BC C6-97-
VH CDR3
aa
GGVYGGYDAMDY




A6-G9








934
BCMA-94
BC C6-97-
VL CDR1
aa
RASQDISNYLN




A6-G9








935
BCMA-94
BC C6-97-
VL CDR2
aa
YTSRLHS




A6-G9








936
BCMA-94
BC C6-97-
VL CDR3
aa
QHFRTLPWT




A6-G9








937
BCMA-94
BC C6-97-
VH
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6-G9


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





938
BCMA-94
BC C6-97-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A6-G9


GTDYTLTISSLEQEDIATYFCQHFRTLPWTFGQGTKVEIK





939
BCMA-94
BC C6-97-
scFv
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A6-G9


FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQHFRTLPWTFGQGTKVEIK





940
BCMA-94 HL ×
BC C6-97-
bispecific
aa
QVQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A6-G9 HL ×
molecule

FVFSLDTSVTTAYLQINSLKDEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTLTISSLEQEDIATYFCQHFRTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





941
BCMA-95
BC C6-98-
VH CDR1
aa
NFGMN




A1-G9








942
BCMA-95
BC C6-98-
VH CDR2
aa
WINTYTGESIYADDFKG




A1-G9








943
BCMA-95
BC C6-98-
VH CDR3
aa
GGVYGGYDAMDY




A1-G9








944
BCMA-95
BC C6-98-
VL CDR1
aa
RASQDISNYLN




A1-G9








945
BCMA-95
BC C6-98-
VL CDR2
aa
YTSRLHS




A1-G9








946
BCMA-95
BC C6-98-
VL CDR3
aa
QHFRTLPWT




A1-G9








947
BCMA-95
BC C6-98-
VH
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1-G9


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





948
BCMA-95
BC C6-98-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A1-G9


GTDYTFTISNLQPEDIATYFCQHFRTLPWTFGQGTKVEIK





949
BCMA-95
BC C6-98-
scFv
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1-G9


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYFCQHFRTLPWTFGQGTKVEIK





950
BCMA-95 HL ×
BC C6-98-
bispecific
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A1-G9 HL ×
molecule

FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYFCQHFRTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





951
BCMA-96
BC C6 98-
VH CDR1
aa
NFGMN




A1








952
BCMA-96
BC C6 98-
VH CDR2
aa
WINTYTGESIYADDFKG




A1








953
BCMA-96
BC C6 98-
VH CDR3
aa
GGVYGGYDAMDY




A1








954
BCMA-96
BC C6 98-
VL CDR1
aa
RASQDISNYLN




A1








955
BCMA-96
BC C6 98-
VL CDR2
aa
YTSRLHS




A1








956
BCMA-96
BC C6 98-
VL CDR3
aa
QQGNTLPWT




A1








957
BCMA-96
BC C6 98-
VH
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSS





958
BCMA-96
BC C6 98-
VL
aa
DIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGS




A1


GTDYTFTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





959
BCMA-96
BC C6 98-
scFv
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR




A1


FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIK





960
BCMA-96 HL ×
BC C6 98-
bispecific
aa
QVQLVQSGSELKKPGASVKISCKASGYTFTNFGMNWVRQAPGQGLEWMGWINTYTGESIYADDFKGR



CD3 HL
A1 HL ×
molecule

FVFSSDTSVSTAYLQINNLKAEDTAVYYCARGGVYGGYDAMDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTISCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGS







GSGTDYTFTISNLQPEDIATYYCQQGNTLPWTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





961
BCMA-97
BC B12-33-
VH CDR1
aa
NFDMA




G2-B2








962
BCMA-97
BC B12-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




G2-B2








963
BCMA-97
BC B12-33-
VH CDR3
aa
HGYYDGYHLFDY




G2-B2








964
BCMA-97
BC B12-33-
VL CDR1
aa
RASQGISNNLN




G2-B2








965
BCMA-97
BC B12-33-
VL CDR2
aa
YTSNLQS




G2-B2








966
BCMA-97
BC B12-33-
VL CDR3
aa
QQFTSLPYT




G2-B2








967
BCMA-97
BC B12-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




G2-B2


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





968
BCMA-97
BC B12-33-
VL
aa
DIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGSGS




G2-B2


GTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





969
BCMA-97
BC B12-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




G2-B2


FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





970
BCMA-97 HL ×
BC B12-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
G2-B2 HL ×
molecule

FTISRDNAKNTLYLQMNSLRAEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





971
BCMA-98
BC B12-33-
VH CDR1
aa
NFDMA




A4-B2








972
BCMA-98
BC B12-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




A4-B2








973
BCMA-98
BC B12-33-
VH CDR3
aa
HGYYDGYHLFDY




A4-B2








974
BCMA-98
BC B12-33-
VL CDR1
aa
RANQGISNNLN



A4-B2









975
BCMA-98
BC B12-33-
VL CDR2
aa
YTSNLQS




A4-B2








976
BCMA-98
BC B12-33-
VL CDR3
aa
QQFTSLPYT




A4-B2








977
BCMA-98
BC B12-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A4-B2


FTISRDNAKSTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





978
BCMA-98
BC B12-33-
VL
aa
DIQMTQSPSSLSASVGDRVTITCRANQGISNNLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGSGS




A4-B2


GTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





979
BCMA-98
BC B12-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A4-B2


FTISRDNAKSTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSLSASVGDRVTITCRANQGISNNLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





980
BCMA-98 HL ×
BC B12-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
A4-B2 HL ×
molecule

FTISRDNAKSTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSLSASVGDRVTITCRANQGISNNLNWYQQKPGKAPKPLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





981
BCMA-99
BC B12-33-
VH CDR1
aa
NFDMA




A5-B2








982
BCMA-99
BC B12-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




A5-B2








983
BCMA-99
BC B12-33-
VH CDR3
aa
HGYYDGYHLFDY




A5-B2








984
BCMA-99
BC B12-33-
VL CDR1
aa
RASQGISNNLN




A5-B2








985
BCMA-99
BC B12-33-
VL CDR2
aa
YTSNLQS




A5-B2








986
BCMA-99
BC B12-33-
VL CDR3
aa
QQFTSLPYT




A5-B2








987
BCMA-99
BC B12-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A5-B2


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





988
BCMA-99
BC B12-33-
VL
aa
DIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGSGS




A5-B2


GTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





989
BCMA-99
BC B12-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A5-B2


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIK





990
BCMA-99 HL ×
BC B12-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
A5-B2 HL ×
molecule

FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFTSLPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL





991
BCMA-100
BC B12-33-
VH CDR1
aa
NFDMA




A5-C10








992
BCMA-100
BC B12-33-
VH CDR2
aa
SITTGGGDTYYADSVKG




A5-C10








993
BCMA-100
BC B12-33-
VH CDR3
aa
HGYYDGYHLFDY




A5-C10








994
BCMA-100
BC B12-33-
VL CDR1
aa
RASQGISNNLN




A5-C10








995
BCMA-100
BC B12-33-
VL CDR2
aa
YTSNLQS




A5-C10








996
BCMA-100
BC B12-33-
VL CDR3
aa
QQFAHLPYT




A5-C10








997
BCMA-100
BC B12-33-
VH
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A5-C10


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSS





998
BCMA-100
BC B12-33-
VL
aa
DIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGSGS




A5-C10


GTDYTLTISSLQPEDFATYYCQQFAHLPYTFGQGTKLEIK





999
BCMA-100
BC B12-33-
scFv
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR




A5-C10


FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG







GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFAHLPYTFGQGTKLEIK





1000
BCMA-100 HL ×
BC B12-33-
bispecific
aa
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFDMAWVRQAPGKGLVWVSSITTGGGDTYYADSVKGR



CD3 HL
A5-C10 HL ×
molecule

FTISRDNAKNTLYLQMDSLRSEDTAVYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGGG




CD3 HL


GSDIQMTQSPSSMSASVGDRVTITCRASQGISNNLNWYQQKPGKAPKSLIYYTSNLQSGVPSRFSGS







GSGTDYTLTISSLQPEDFATYYCQQFAHLPYTFGQGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLK







LSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMN







NLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVS







PGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGV







QPEDEAEYYCVLWYSNRWVFGGGTKLTVL














1001
human BCMA
human
na
atgttgcagatggctgggcagtgctcccaaaatgaatattttgacagtttgttgcatgcttgcatac






cttgtcaacttcgatgttcttctaatactcctcctctaacatgtcagcgttattgtaatgcaagtgt






gaccaattcagtgaaaggaacgaatgcgattctctggacctgtttgggactgagcttaataatttct






ttggcagttttcgtgctaatgtttttgctaaggaagataaactctgaaccattaaaggacgagttta






aaaacacaggatcaggtctcctgggcatggctaacattgacctggaaaagagcaggactggtgatga






aattattcttccgagaggcctcgagtacacggtggaagaatgcacctgtgaagactgcatcaagagc






aaaccgaaggtcgactctgaccattgctttccactcccagctatggaggaaggcgcaaccattcttg






tcaccacgaaaacgaatgactattgcaagagcctgccagctgctttgagtgctacggagatagagaa






atcaatttctgctaggtaa





1002
human BCMA
human
aa
MLQMAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNAILWTCLGLSLIIS






LAVFVLMFLLRKINSEPLKDEFKNTGSGLLGMANIDLEKSRTGDEIILPRGLEYTVEECTCEDCIKS






KPKVDSDHCFPLPAMEEGATILVTTKTNDYCKSLPAALSATEIEKSISAR





1003
mouse BCMA
murine
na
atggcgcaacagtgtttccacagtgaatattttgacagtctgctgcatgcttgcaaaccgtgtcact






tgcgatgttccaaccctcctgcaacctgtcagccttactgtgatccaagcgtgaccagttcagtgaa






agggacgtacacggtgctctggatcttcttggggctgaccttggtcctctctttggcacttttcaca






atctcattcttgctgaggaagatgaaccccgaggccctgaaggacgagcctcaaagcccaggtcagc






ttgacggatcggctcagctggacaaggccgacaccgagctgactaggatcagggctggtgacgacag






gatctttccccgaagcctggagtatacagtggaagagtgcacctgtgaggactgtgtcaagagcaaa






cccaagggggattctgaccatttcttcccgcttccagccatggaggagggggcaaccattcttgtca






ccacaaaaacgggtgactacggcaagtcaagtgtgccaactgctttgcaaagtgtcatggggatgga






gaagccaactcacactagataa





1004
mouse BCMA
murine
aa
MAQQCFHSEYFDSLLHACKPCHLRCSNPPATCQPYCDPSVTSSVKGTYTVLWIFLGLTLVLSLALFT






ISFLLRKMNPEALKDEPQSPGQLDGSAQLDKADTELTRIRAGDDRIFPRSLEYTVEECTCEDCVKSK






PKGDSDHFFPLPAMEEGATILVTTKTGDYGKSSVPTALQSVMGMEKPTHTR





1005
macaque BCMA
rhesus
na
atgttgcagatggctcggcagtgctcccaaaatgaatattttgacagtttgttgcatgattgcaaac






cttgtcaacttcgatgttctagtactcctcctctaacatgtcagcgttattgcaatgcaagtatgac






caattcagtgaaaggaatgaatgcgattctctggacctgtttgggactgagcttgataatttctttg






gcagttttcgtgctaacgtttttgctaaggaagatgagctctgaaccattaaaggatgagtttaaaa






acacaggatcaggtctcctgggcatggctaacattgacctggaaaagggcaggactggtgatgaaat






tgttcttccaagaggcctggagtacacggtggaagaatgcacctgtgaagactgcatcaagaataaa






ccaaaggttgattctgaccattgctttccactcccagccatggaggaaggcgcaaccattctcgtca






ccacgaaaacgaatgactattgcaatagcctgtcagctgctttgagtgttacggagatagagaaatc






aatttctgctaggtaa





1006
macaque BCMA
rhesus
aa
MLQMARQCSQNEYFDSLLHDCKPCQLRCSSTPPLTCQRYCNASMINSVKGMNAILWTCLGLSLIISL






AVFVLTFLLRKMSSEPLKDEFKNTGSGLLGMANIDLEKGRTGDEIVLPRGLEYTVEECTCEDCIKNK






PKVDSDHCFPLPAMEEGATILVTTKTNDYCNSLSAALSVTEIEKSISAR





1007
hu BCMA ECD = positions
human
aa
MLQMAGQCSQNEYFDSLLHACIPCQLRCSSNIPPLTCQRYCNASVINSVKGTNA



1-54 of SEQ ID NO: 1002








1008
mu BCMA ECD = positions
murine
aa
MAQQCFHSEYFDSLLHACKPCHLRCSNPPATCQPYCDPSVTSSVKGTYT



1-49 of SEQ ID NO: 1004








1009
hu BCMA ECD/E1 murine
chimeric
aa
MAQQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNA




hu/mu







1010
hu BCMA ECD/E2 murine
chimeric
aa
MLQMAGQCFHSEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNA




hu/mu







1011
hu BCMA ECD/E3 murine
chimeric
aa
MLQMAGQCSQNEYFDSLLHACIPCHLRCSNPPATCQPYCNASVTNSVKGTNA




hu/mu







1012
hu BCMA ECD/E4 murine
chimeric
aa
MLQMAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCDPSVTSSVKGTYT




hu/mu







1013
hu BCMA ECD/E5 murine
chimeric
aa
MLQMAGQCSQNEYFDSLLHACKPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNA




hu/mu







1014
hu BCMA ECD/E6 murine
chimeric
aa
MLQMAGQCSQNEYFDSLLHACIPCHLRCSSNTPPLTCQRYCNASVTNSVKGTNA




hu/mu







1015
hu BCMA ECD/E7 murine
chimeric
aa
MLQMAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQPYCNASVTNSVKGTNA




hu/mu







1016
hu BCMA epitope cluster 3
human
aa
CQLRCSSNTPPLTCQRYC





1017
mac BCMA epitope cluster 3
macaque
aa
CQLRCSSTPPLTCQRYC





1018
hu BCMA epitope cluster 1
human
aa
MLQMAGQ





1019
hu BCMA epitope cluster 4
human
aa
NASVTNSVKGTNA





1020
mac BCMA epitope cluster 1
macaque
aa
MLQMARQ





1021
mac BCMA epitope cluster 4
macaque
aa
NASMTNSVKGMNA















1022
BCMA-101
BC 5G9
VH CDR1
aa
GFTFSNYDMA





1023
BCMA-101
BC 5G9
VH CDR2
aa
SIITSGGDNYYRDSVKG





1024
BCMA-101
BC 5G9
VH CDR3
aa
HDYYDGSYGFAY





1025
BCMA-101
BC 5G9
VL CDR1
aa
KASQSVGINVD





1026
BCMA-101
BC 5G9
VL CDR2
aa
GASNRHT





1027
BCMA-101
BC 5G9
VL CDR3
aa
LQYGSIPFT





1028
BCMA-101
BC 5G9
VH
aa
EVQLVESGGGLVQPGRSLKLSCAASGFTFSNYDMAWVRQAPTKGLEWVASIITSGGDNYYRDSVKGR







FTVSRDNAKSTLYLQMDSLRSEDTATYYCVRHDYYDGSYGFAYWGQGTLVTVSS





1029
BCMA-101
BC 5G9
VL
aa
ETVMTQSPTSMSTSIGERVTLNCKASQSVGINVDWYQQTPGQSPKLLIYGASNRHTGVPDRFTGSGF







GRDFTLTISNVEAEDLAVYYCLQYGSIPFTFGSGTKLELK





1030
BCMA-101
BC 5G9
scFv
aa
EVQLVESGGGLVQPGRSLKLSCAASGFTFSNYDMAWVRQAPTKGLEWVASIITSGGDNYYRDSVKGR







FTVSRDNAKSTLYLQMDSLRSEDTATYYCVRHDYYDGSYGFAYWGQGTLVTVSSGGGGSGGGGGSGG







GGSETVMTQSPTSMSTSIGERVTLNCKASQSVGINVDWYQQTPGQSPKLLIYGASNRHTGVPDRFTG







SGFGRDFTLTISNVEAEDLAVYYCLQYGSIPFTFGSGTKLELK





1031
BCMA-102
BC 244-A7
VH CDR1
aa
GYTFTNHIIH





1032
BCMA-102
BC 244-A7
VH CDR2
aa
YINPYNDDTEYNEKFKG





1033
BCMA-102
BC 244-A7
VH CDR3
aa
DGYYRDMDVMDY





1034
BCMA-102
BC 244-A7
VL CDR1
aa
RASQDISNYLN





1035
BCMA-102
BC 244-A7
VL CDR2
aa
YTSRLHS





1036
BCMA-102
BC 244-A7
VL CDR3
aa
QQGNTLPWT





1037
BCMA-102
BC 244-A7
VH
aa
EVQLVEQSGPELVKPGASVKMSCKASGYTFTNHIIHWVKQKPGQGLEWIGYINPYNDDTEYNEKFKG







KATLTSDKSSTTAYMELSSLTSEDSAVYYCARDGYYRDMDVMDYWGQGTTVTVSS





1038
BCMA-102
BC 244-A7
VL
aa
ELVMTQTPSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGS







GTDYSLTISNLEQEDIATYFCQQGNTLPWTFGGGTKLEIK





1039
BCMA-102
BC 244-A7
scFv
aa
EVQLVEQSGPELVKPGASVKMSCKASGYTFTNHIIHWVKQKPGQGLEWIGYINPYNDDTEYNEKFKG







KATLTSDKSSTTAYMELSSLTSEDSAVYYCARDGYYRDMDVMDYWGQGTTVTVSSGGGGSGGGGSGG







GGSELVMTQTPSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSG







SGSGTDYSLTISNLEQEDIATYFCQQGNTLPWTFGGGTKLEIK





1040
BCMA-103
BC 263-A4
VH CDR1
aa
GFTFSNYDMA





1041
BCMA-103
BC 263-A4
VH CDR2
aa
SISTRGDITSYRDSVKG





1042
BCMA-103
BC 263-A4
VH CDR3
aa
QDYYTDYMGFAY





1043
BCMA-103
BC 263-A4
VL CDR1
aa
RASEDIYNGLA





1044
BCMA-103
BC 263-A4
VL CDR2
aa
GASSLQD





1045
BCMA-103
BC 263-A4
VL CDR3
aa
QQSYKYPLT





1046
BCMA-103
BC 263-A4
VH
aa
EVQLVEESGGGLLQPGRSLKLSCAASGFTFSNYDMAWVRQAPTKGLEWVASISTRGDITSYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCARQDYYTDYMGFAYWGQGTLVTVSS





1047
BCMA-103
BC 263-A4
VL
aa
ELVMTQSPASLSASLGETVTIECRASEDIYNGLAWYQQKPGKSPQLLIYGASSLQDGVPSRFSGSGS







GTQYSLKISGMQPEDEANYFCQQSYKYPLTFGSGTKLELK





1048
BCMA-103
BC 263-A4
scFv
aa
EVQLVEESGGGLLQPGRSLKLSCAASGFTFSNYDMAWVRQAPTKGLEWVASISTRGDITSYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCARQDYYTDYMGFAYWGQGTLVTVSSGGGGSGGGGSGG







GELVMTQSPASLSASLGETVTIECRASEDIYNGLAWYQQKPGKSPQLLIYGASSLQDGVPSRFSGSG







SGTQYSLKISGMQPEDEANYFCQQSYKYPLTFGSGTKLELKGS





1049
BCMA-104
BC 271-C3
VH CDR1
aa
GFTFSNFDMA





1050
BCMA-104
BC 271-C3
VH CDR2
aa
SITTGGGDTYYRDSVKG





1051
BCMA-104
BC 271-C3
VH CDR3
aa
HGYYDGYHLFDY





1052
BCMA-104
BC 271-C3
VL CDR1
aa
RASQGISNYL





1053
BCMA-104
BC 271-C3
VL CDR2
aa
YTSNLQS





1054
BCMA-104
BC 271-C3
VL CDR3
aa
QQYDISSYT





1055
BCMA-104
BC 271-C3
VH
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGASVTVSS





1056
BCMA-104
BC 271-C3
VL
aa
ELVMTQTPSSMPASLGERVTISCRASQGISNYLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSGSGS







GTDYSLTINSLEPEDFAVYYCQQYDISSYTFGAGTKLEIK





1057
BCMA-104
BC 271-C3
scFv
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGASVTVSSGGGGSGGGGSGG







GGSELVMTQTPSSMPASLGERVTISCRASQGISNYLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSG







SGSGTDYSLTINSLEPEDFAVYYCQQYDISSYTFGAGTKLEIK





1058
BCMA-105
BC 265-E5
VH CDR1
aa
GFTFSNFDMA





1059
BCMA-105
BC 265-E5
VH CDR2
aa
SITTGGGDTYYRDSVKG





1060
BCMA-105
BC 265-E5
VH CDR3
aa
HGYYDGYHLFDY





1061
BCMA-105
BC 265-E5
VL CDR1
aa
RASQGISNHLN





1062
BCMA-105
BC 265-E5
VL CDR2
aa
YTSNLQS





1063
BCMA-105
BC 265-E5
VL CDR3
aa
QQYDSFPLT





1064
BCMA-105
BC 265-E5
VH
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGTLVTVSS





1065
BCMA-105
BC 265-E5
VL
aa
ELVMTQTPSSMPASLGERVTISCRASQGISNHLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSGSGS







GTDYSLTISSLEPEDFAMYYCQQYDSFPLTFGSGTKLEIK





1066
BCMA-105
BC 265-E5
scFv
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGTLVTVSSGGGGSGGGGSGG







GGSELVMTQTPSSMPASLGERVTISCRASQGISNHLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSG







SGSGTDYSLTISSLEPEDFAMYYCQQYDSFPLTFGSGTKLEIK





1067
BCMA-106
BC271-B12
VH CDR1
aa
GFTFSNFDMA





1068
BCMA-106
BC271-B12
VH CDR2
aa
SITTGGGDTYYRDSVKG





1069
BCMA-106
BC271-B12
VH CDR3
aa
HGYYDGYHLFDY





1070
BCMA-106
BC271-B12
VL CDR1
aa
RASQGISNNLN





1071
BCMA-106
BC271-B12
VL CDR2
aa
YTSNLQS





1072
BCMA-106
BC271-B12
VL CDR3
aa
QQFDTSPYT





1073
BCMA-106
BC271-B12
VH
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGVMVTVSS





1074
BCMA-106
BC271-B12
VL
aa
ELVMTQTPSSMPASLGERVTISCRASQGISNNLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSGSGS







GTDYSLTISSLEPEDFAMYYCQQFDTSPYTFGAGTKLEIK





1075
BCMA-106
BC271-B12
scFv
aa
EVQLVEESGGGLVQPGRSLKLSCAASGFTFSNFDMAWVRQAPTRGLEWVASITTGGGDTYYRDSVKG







RFTISRDNAKSTLYLQMDSLRSEDTATYYCVRHGYYDGYHLFDYWGQGVMVTVSSGGGGSGGGGSGG







GGSELVMTQTPSSMPASLGERVTISCRASQGISNNLNWYQQKPDGTIKPLIYYTSNLQSGVPSRFSG







SGSGTDYSLTISSLEPEDFAMYYCQQFDTSPYTFGAGTKLEIK





1076
BCMA-107
BC 247-A4
VH CDR1
aa
GYSFPDYYIN





1077
BCMA-107
BC 247-A4
VH CDR2
aa
WIYFASGNSEYNE





1078
BCMA-107
BC 247-A4
VH CDR3
aa
LYDYDWYFDV





1079
BCMA-107
BC 247-A4
VL CDR1
aa
RSSQSLVHSNGNTYLH





1080
BCMA-107
BC 247-A4
VL CDR2
aa
KVSNRFS





1081
BCMA-107
BC 247-A4
VL CDR3
aa
SQSTHVPYT





1082
BCMA-107
BC 247-A4
VH
aa
EVQLVEQSGPELVKPGASVKISCKVSGYSFPDYYINWVKQRPGQGLEWIGWIYFASGNSEYNERFTG







KATLTVDTSSNTAYMQLSSLTSEDTAVYFCASLYDYDWYFDVWGQGTTVTVSS





1083
BCMA-107
BC 247-A4
VL
aa
ELVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRF







SGSGSGADFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK





1084
BCMA-107
BC 247-A4
scFv
aa
EVQLVEQSGPELVKPGASVKISCKVSGYSFPDYYINWVKQRPGQGLEWIGWIYFASGNSEYNERFTG







KATLTVDTSSNTAYMQLSSLTSEDTAVYFCASLYDYDWYFDVWGQGTTVTVSSGGGGSGGGGSGGGG







SELVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDR







FSGSGSGADFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK





1085
BCMA-108
BC 246-B6
VH CDR1
aa
GYSFPDYYIN





1086
BCMA-108
BC 246-B6
VH CDR2
aa
WIYFASGNSEYNE





1087
BCMA-108
BC 246-B6
VH CDR3
aa
LYDYDWYFDV





1088
BCMA-108
BC 246-B6
VL CDR1
aa
RSSQSLVHSNGNTYLH





1089
BCMA-108
BC 246-B6
VL CDR2
aa
KVSNRFS





1090
BCMA-108
BC 246-B6
VL CDR3
aa
FQGSHVPWT





1091
BCMA-108
BC 246-B6
VH
aa
EVQLVEQSGPQLVKPGASVKISCKVSGYSFPDYYINWVKQRPGQGLEWIGWIYFASGNSEYNERFTG







KATLTVDTSSNTAYMQLSSLTSEDTAVYFCASLYDYDWYFDVWGQGTTVTVSS





1092
BCMA-108
BC 246-B6
VL
aa
ELVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPGRF







SGSGSGTDFTLKINRVEAEDLGVYYCFQGSHVPWTFGGGTKLEIK





1093
BCMA-108
BC 246-B6
scFv
aa
EVQLVEQSGPQLVKPGASVKISCKVSGYSFPDYYINWVKQRPGQGLEWIGWIYFASGNSEYNERFTG







KATLTVDTSSNTAYMQLSSLTSEDTAVYFCASLYDYDWYFDVWGQGTTVTVSSGGGGSGGGGSGGGG







SELVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPGR







FSGSGSGTDFTLKINRVEAEDLGVYYCFQGSHVPWTFGGGTKLEIK








Claims
  • 1. An antibody comprising: a binding domain that binds to human CD3; andfurther a polypeptide comprising the amino acid sequence of SEQ ID NO: 737 with 0, 1, 2, 3, 4, 5, or 6 amino acid substitutions and 0, 1, or 2 amino acid insertions or deletions to SEQ ID NOs: 731, 732 and/or 733 contained within SEQ ID NO: 737, and0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 amino acid substitutions and 0, 1, 2, 3 or 4 amino acid insertions or deletions to the remainder of SEQ ID NO: 737.
  • 2. The antibody of claim 1, wherein the antibody is human or humanized.
  • 3. The antibody of claim 1, further comprising an IgG framework.
  • 4. The antibody of claim 1, further comprising an Fc constant domain.
  • 5. The antibody of claim 1, wherein every amino acid substitution is a naturally occurring amino acid.
  • 6. The antibody of claim 1, wherein the binding domain that binds to human CD3 is linked to the polypeptide via at least one disulfide bond.
  • 7. The antibody of claim 1, wherein the antibody is human or humanized, and further comprises an Fc constant domain.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. patent application Ser. No. 17/011,849, filed Sep. 3, 2020, which is a Continuation Application of U.S. patent application Ser. No. 14/358,511, filed May 15, 2014, now U.S. Pat. No. 10,766,969, which is the National Phase of International Application PCT/EP2012/072699, filed Nov. 15, 2012, designating the United States and published in the English language, which claims the benefit of priority to U.S. Provisional Application 61/651,486, filed May 24, 2012, U.S. Provisional Application 61/651,474, filed May 24, 2012, U.S. Provisional Application 61/560,183, filed Nov. 15, 2011, U.S. Provisional Application 61/560,162, filed Nov. 15, 2011, U.S. Provisional Application 61/560,149, filed Nov. 15, 2011, U.S. Provisional Application 61/560,144, filed Nov. 15, 2011, and U.S. Provisional Application 61/560,178, filed Nov. 15, 2011, each of which is hereby expressly incorporated by reference in its entirety.

US Referenced Citations (191)
Number Name Date Kind
3691016 Patel et al. Sep 1972 A
3773919 Boswell et al. Nov 1973 A
3969287 Jaworek et al. Jul 1976 A
4179337 Davis et al. Dec 1979 A
4195128 Hildebrand et al. Mar 1980 A
4229537 Hodgins et al. Oct 1980 A
4247642 Hirohara et al. Jan 1981 A
4263428 Apple et al. Apr 1981 A
4281061 Zuk et al. Jul 1981 A
4301144 Iwashita et al. Nov 1981 A
4330440 Ayers et al. May 1982 A
4439196 Higuchi Mar 1984 A
4447224 DeCant, Jr. et al. Mar 1984 A
4447233 Mayfield May 1984 A
4475916 Himmelstein Oct 1984 A
4485045 Regen Nov 1984 A
4486194 Ferrara Dec 1984 A
4487603 Harris Dec 1984 A
4496689 Mitra Jan 1985 A
4544545 Ryan et al. Oct 1985 A
4596556 Morrow et al. Jun 1986 A
4615885 Nakagame et al. Oct 1986 A
4619794 Hauser Oct 1986 A
4640835 Shimizu et al. Feb 1987 A
4670417 Iwasaki et al. Jun 1987 A
4694778 Learn et al. Sep 1987 A
4751180 Cousens et al. Jun 1988 A
4767628 Hutchinson Aug 1988 A
4790824 Morrow et al. Dec 1988 A
4791192 Nakagawa et al. Dec 1988 A
4816397 Boss et al. Mar 1989 A
4816567 Cabilly et al. Mar 1989 A
4879231 Stroman et al. Nov 1989 A
4935233 Bell et al. Jun 1990 A
4941880 Burns Jul 1990 A
4946778 Ladner et al. Aug 1990 A
5013556 Woodle et al. May 1991 A
5064413 McKinnon et al. Nov 1991 A
5223409 Ladner et al. Jun 1993 A
5225539 Winter Jul 1993 A
5260203 Ladner et al. Nov 1993 A
5292658 Cormier et al. Mar 1994 A
5312335 McKinnon et al. May 1994 A
5383851 McKinnon et al. Jan 1995 A
5399163 Peterson et al. Mar 1995 A
5418155 Cormier et al. May 1995 A
5470582 Supersaxo et al. Nov 1995 A
5476786 Huston Dec 1995 A
5476996 Wilson et al. Dec 1995 A
5545806 Lonberg et al. Aug 1996 A
5545807 Surani et al. Aug 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5569825 Lonberg et al. Oct 1996 A
5585089 Queen et al. Dec 1996 A
5591669 Krimpenfort et al. Jan 1997 A
5612205 Kay et al. Mar 1997 A
5625126 Lonberg et al. Apr 1997 A
5633425 Lonberg et al. May 1997 A
5643763 Dunn et al. Jul 1997 A
5648260 Winter et al. Jul 1997 A
5661016 Lonberg et al. Aug 1997 A
5683888 Campbell Nov 1997 A
5693761 Queen et al. Dec 1997 A
5693762 Queen et al. Dec 1997 A
5698767 Wilson et al. Dec 1997 A
5721367 Kay et al. Feb 1998 A
5731168 Carter et al. Mar 1998 A
5741668 Ward et al. Apr 1998 A
5770429 Lonberg et al. Jun 1998 A
5777079 Tsien et al. Jul 1998 A
5789215 Berns et al. Aug 1998 A
5789650 Lonberg et al. Aug 1998 A
5804387 Cormack et al. Sep 1998 A
5814318 Lonberg et al. Sep 1998 A
5821337 Carter et al. Oct 1998 A
5859205 Adair et al. Jan 1999 A
5874299 Lonberg et al. Feb 1999 A
5874304 Zolotukhin et al. Feb 1999 A
5876995 Bryan Mar 1999 A
5877397 Lonberg et al. Mar 1999 A
5925558 Tsien et al. Jul 1999 A
5939598 Kucherlapati et al. Aug 1999 A
5958765 Brams et al. Sep 1999 A
5976796 Szalay et al. Nov 1999 A
5977322 Marks et al. Nov 1999 A
5981175 Loring et al. Nov 1999 A
6023010 Krimpenfort et al. Feb 2000 A
6037453 Jardieu et al. Mar 2000 A
6075181 Kucherlapati et al. Jun 2000 A
6114598 Kucherlapati et al. Sep 2000 A
6146826 Chalfie et al. Nov 2000 A
6150584 Kucherlapati et al. Nov 2000 A
6162963 Kucherlapati et al. Dec 2000 A
6214388 Benz et al. Apr 2001 B1
6255458 Lonberg et al. Jul 2001 B1
6300064 Knappik et al. Oct 2001 B1
6407213 Carter et al. Jun 2002 B1
6458547 Bryan et al. Oct 2002 B1
6673986 Kucherlapati et al. Jan 2004 B1
6774106 Theill et al. Aug 2004 B2
6833268 Green et al. Dec 2004 B1
7112324 Dorken et al. Sep 2006 B1
7125689 Carr et al. Oct 2006 B2
7435871 Green et al. Oct 2008 B2
7625472 Kufer et al. Dec 2009 B2
7728114 Mach et al. Jun 2010 B2
8076459 Hofmeister et al. Dec 2011 B2
8105603 Kelley et al. Jan 2012 B2
8236308 Kischel et al. Aug 2012 B2
8784821 Kufer et al. Jul 2014 B1
8790645 Kufer et al. Jul 2014 B2
9034324 Kalled et al. May 2015 B2
9150664 Kufer Oct 2015 B2
9260522 Kufer et al. Feb 2016 B2
9340621 Kufer May 2016 B2
9410994 Heo et al. Aug 2016 B2
9598500 Kufer Mar 2017 B2
9725506 Dillon et al. Aug 2017 B2
9850320 Bernett et al. Dec 2017 B2
9856327 Bernett et al. Jan 2018 B2
10059766 Xiao et al. Aug 2018 B2
10294300 Raum et al. May 2019 B2
10301391 Raum May 2019 B2
10519241 Raum et al. Dec 2019 B2
10683351 Raum et al. Jun 2020 B2
10752694 Kufer Aug 2020 B2
10766969 Kufer Sep 2020 B2
10781264 Raum et al. Sep 2020 B2
10851170 Raum et al. Dec 2020 B2
10981998 Kufer et al. Apr 2021 B2
11352433 Raum Jun 2022 B2
11434302 Raum et al. Sep 2022 B2
11447567 Raum et al. Sep 2022 B2
11472886 Kufer et al. Oct 2022 B2
11591396 Raum et al. Feb 2023 B2
20020173629 Jakobovits et al. Nov 2002 A1
20030070185 Jakobovits et al. Apr 2003 A1
20030078385 Arathoon et al. Apr 2003 A1
20030091561 van de Winkel et al. May 2003 A1
20040052783 Weiner et al. Mar 2004 A1
20050076395 Kucherlapati et al. Apr 2005 A1
20050249723 Lazar et al. Nov 2005 A1
20050265993 Mach et al. Dec 2005 A1
20060193852 Dorken et al. Aug 2006 A1
20070212733 Martin Sep 2007 A1
20070264687 Chou et al. Nov 2007 A1
20080260738 Moore et al. Oct 2008 A1
20080299129 Lewis et al. Dec 2008 A1
20080311078 Gokarn et al. Dec 2008 A1
20090252683 Kischel et al. Oct 2009 A1
20090252729 Farrington et al. Oct 2009 A1
20090304696 Lawson et al. Dec 2009 A1
20090325196 Dillon et al. Dec 2009 A1
20100150918 Kufer et al. Jun 2010 A1
20100183615 Kufer et al. Jul 2010 A1
20110123532 Gurney et al. May 2011 A1
20110212094 Ghayur et al. Sep 2011 A1
20110274685 Keler et al. Nov 2011 A1
20110293579 Nielsen et al. Dec 2011 A1
20110294619 Kufer et al. Dec 2011 A1
20120034228 Kufer et al. Feb 2012 A1
20120244162 Kufer et al. Sep 2012 A1
20130078249 Ast et al. Mar 2013 A1
20130078250 Ast et al. Mar 2013 A1
20130129723 Blankenship et al. May 2013 A1
20130273055 Borges et al. Oct 2013 A1
20140112914 Nezu et al. Apr 2014 A1
20140154253 Ng et al. Jun 2014 A1
20140288275 Moore et al. Sep 2014 A1
20140302035 Harms et al. Oct 2014 A1
20140302037 Borges et al. Oct 2014 A1
20140308285 Yan et al. Oct 2014 A1
20150376287 Vu et al. Dec 2015 A1
20160122436 Kufer et al. May 2016 A1
20160152707 Kufer et al. Jun 2016 A1
20160257748 Michaels et al. Sep 2016 A1
20170029502 Raum et al. Feb 2017 A1
20170037149 Raum et al. Feb 2017 A1
20170165373 Armitage et al. Jun 2017 A1
20170218078 Raum et al. Aug 2017 A1
20170349668 Rattel et al. Dec 2017 A1
20180142021 Weiss et al. May 2018 A1
20190151448 Abel et al. May 2019 A1
20190169310 Kufer et al. Jun 2019 A1
20190263920 Vu et al. Aug 2019 A1
20200048357 Raum Feb 2020 A1
20200095319 Kufer et al. Mar 2020 A1
20220064336 Kufer Mar 2022 A1
20220251243 Kufer et al. Aug 2022 A1
20220356268 Kufer et al. Nov 2022 A1
20230357444 Kufer et al. Nov 2023 A1
Foreign Referenced Citations (69)
Number Date Country
0133988 Mar 1985 EP
0171496 Feb 1986 EP
0173494 Mar 1986 EP
0239400 Sep 1987 EP
0244234 Nov 1987 EP
0402226 Dec 1990 EP
0773288 May 1997 EP
0843961 May 1998 EP
1223964 Apr 2007 EP
1806143 Jul 2007 EP
2520590 Nov 2012 EP
2762497 Aug 2014 EP
2780375 Sep 2019 EP
2177096 Jan 1987 GB
WO 1987005330 Sep 1987 WO
WO 1991006319 May 1991 WO
WO 1992015673 Sep 1992 WO
WO 1992022645 Dec 1992 WO
WO 1992022647 Dec 1992 WO
WO 1992022670 Dec 1992 WO
WO 1996034096 Oct 1996 WO
WO 199901556 Jan 1999 WO
WO 199966951 Dec 1999 WO
WO 2000006605 Feb 2000 WO
WO 2000034317 Jun 2000 WO
WO 2000040716 Jul 2000 WO
WO 2000041474 Jul 2000 WO
WO 2001012812 Feb 2001 WO
WO 2001024811 Apr 2001 WO
WO 2001087977 Nov 2001 WO
WO 2002053596 Jul 2002 WO
WO 2002066516 Aug 2002 WO
WO 2003040170 May 2003 WO
WO-2003047336 Jun 2003 WO
WO 2003087131 Oct 2003 WO
WO 2004106381 Dec 2004 WO
WO 2004106383 Dec 2004 WO
WO 2005040220 May 2005 WO
WO 2005056606 Jun 2005 WO
WO 2005061547 Jul 2005 WO
WO 2005075511 Aug 2005 WO
WO 2005118635 Dec 2005 WO
WO 2006031370 Mar 2006 WO
WO-2006138181 Dec 2006 WO
WO 2007009064 Jan 2007 WO
WO 2007033230 Jan 2007 WO
WO 2007042261 Apr 2007 WO
WO 2007097812 Aug 2007 WO
WO 2007146968 Dec 2007 WO
WO 2008119565 Oct 2008 WO
WO 2008119566 Oct 2008 WO
WO 2008119567 Oct 2008 WO
WO 2009132058 Oct 2009 WO
WO 2010037835 Apr 2010 WO
WO 2010037836 Apr 2010 WO
WO 2010037837 Apr 2010 WO
WO 2010037838 Apr 2010 WO
WO 2010060486 Jun 2010 WO
WO 2010104949 Sep 2010 WO
WO 2012066058 May 2012 WO
WO 2012163805 Dec 2012 WO
WO 2013072406 May 2013 WO
WO 2013072415 May 2013 WO
WO 2014047231 Mar 2014 WO
WO 2014089335 Jun 2014 WO
WO 2012088461 Aug 2014 WO
WO 2014122143 Aug 2014 WO
WO 2014138449 Sep 2014 WO
WO 2017134134 Aug 2017 WO
Non-Patent Literature Citations (433)
Entry
Rudikoff et al., PNAS 79: 1979-1983 (Year: 1982).
Ito et al., FEBS Letters 309(1): 85-88 (Year: 1992).
Wu et al., J Mol Biol 294: 151-162 (Year: 1999).
Lloyd et al., Protein Engineering, Design & Selection 22:159-168 (Year: 2009).
Edwards et al., J Mol Biol. 334(1): 103-118 (Year: 2003).
Piche-Nicholas et al., MABS 10(1): 81-94 (Year: 2018).
Baeuerle et al., “Bispecific T-Cell Engaging Antibodies for Cancer Therapy”, Cancer Res, 2009, vol. 69, No. 12, pp. 4941-4944.
Bargou et al., “Tumor Regression in Cancer Patients by Very Low Doses of a T Ceil-Engaging Antibody”, Science, 2008, vol. 321, pp. 974-976.
Bellucci et al., “Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens”, Blood, 2004, vol. 103, No. 2, pp. 656-663.
Bellucci et al., “Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor”, Blood, 2005, vol. 105, No. 10, pp. 3945-3950.
Bio-Techne, “Human BCMA-TNFRSF17 antibody—technical sheet” bio-techne (R&D Systems), MAB193, Aug. 15, 2016, 1 page.
Bodmer et al., “The molecular architecture of the TNF superfamily”, Trends in Biochemical Sciences, 2002, vol. 27, No. 1, pp. 19-26.
Bossen et al., “BAFF, APRIL and their receptors: Structure, function and signaling”, Seminars in Immunology, vol. 18, pp. 263-275.
Casset et al., “A Peptide Mimetic of an Anti-CD4 Monoclonal Antibody by Rational Design,” Biochemical and Biophysical Research Communications, 2003, vol. 307, pp. 198-205.
Chames et al., “Bispecific antibodies for cancer therapy—The light at the end of the tunnel?” rnAbs, 2009, vol. 1, No. 6, pp. 539-547.
Chames et al., “Bispecific antibodies for cancer therapy”, Curr Opin Drug Disc Devel., 2009, vol. 12, No. 2, pp. 276-283.
Chen et al., “Selection and Analysis of an Optimized Anti-VEGF Antibody: Crystal Structure of an Affinity Matured Fab in Complex with Antigen,” J. Mol. Biol., 1999, vol. 293, pp. 865-881.
Choi et al., “Bispecific antibodies engage T cells for antitumor immunotherapy”, Expert Opin Bio Ther., 2011, vol. 11, pp. 843-853.
Clayton et al., “CD311 and CD3' are alternatively spliced products of a common genetic locus and are 17 transcriptionally and/ or post-transcriptionally regulated during T-cell development”, PNAS, 1991, vol. 88, pp. 5202-5206.
Colman, “Effects of amino acid sequence changes on antibody-antigen interactions,” Research in Immunology, vol. 145, pp. 33-36, 1994.
De Pascalis et al., “Grafting of ‘Abbreviated’ Complementarity Determining Regions Containing|Specificity Determining Residues Essential for Ligand Contact to Engineer a Less Immunogenic Humanized Monoclonal Antibody,” J Immunol., 2002, vol. 169, pp. 3076-3084.
Dillon et al., “An April to remember: novel TNF ligands as therapeutic targets”, Nature Reviews, 2006, vol. 5, pp. 235-246.
Enzo—Santa Cruz Biotechnology, Inc., “BCMA (Vicky-1): sc-57037—Product Data Sheet”, Dec. 20, 2019, 4 pages.
Fitzgerald et al., “Gene structure”, The Cytokine FactsBook, 2001, 5 pages.
Frank, A., Immunology and Evolution of Infectious Disease, Princeton University Press, 2002, 33 pages.
GenBank accession No. NM _000733, Homo sapiens CD3e molecule (CD3E), rnRNA, 4 pages.
GenBank—Homo sapiens gene for BCMA, complete cds, Sep. 25, 2002, 3 pages.
Guy et al., “Organization of proximal signal initiation at the TCR: CD3 complex”, Immunol Review, 2009, vol. 232, Issue 1, pp. 7-21.
Hager-Braun et al., “Determination of protein-derived epitopes by mass spectrometry”, Expert Rev Proteomics, 2005, vol. 2, pp. 745-756.
Hipp et al., “A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo”, Leukemia, 2017, vol. 31, Issue 8, pp. 1743-1751.
Hönemann et al., “A novel recombinant bispecific single-chain antibody, bscWue-1 x CD3, induces T-cell-mediated cytotoxicity towards human multiple myeloma cells”, Leukemia, 2004, vol. 18, Issue 3, pp. 636-644.
Huang et al., “Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I c 1ain-reiated A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry”, Analytical and Bioanalytical Chemistry, 2020, vol. 412, pp. 1693-1700.
Hymowitz, S.G., et al., “Structures of April-Receptor Complexes”, J Biol Chem., 2005, vol. 280, pp. 7218-7227.
Ito, W. et al., “The His-probe method: effects of histidine residues introduced into the complementary- determining regions of antibodies on antigen-antibody interactions at different pH values”, FEBS, Aug. 1992, vol. 309(1), pp. 85-88.
Kellner et al., “Effector Cell Recruitment by Bispecific Antibodies”, in Bispecific Antibodies, Springer: Berlin/Heidelberg, 2011, Chapter 13, pp. 217-241.
Kjer-Nielsen, L. et al., “Crystal structure of the human T cell receptor CD3ay heterodimer complexed to the therapeutic mAb OKT3”, PNAS, May 2004, vol. 101, Issue 20, pp. 7675-7680.
Koarada et al., “Autoantibody-producing RP105(-) B cells, from patients with systemic lupus erythematosus, showed more preferential expression of BCMA compared with BAFF-R than normal subjects”, Rheumatology, 2010, vol. 49, Issue 4, pp. 662-670.
Kontermann R.E., “Recombinant bispecific antibodies for cancer therapy”, Acta Pharmacologica Sinica, 2005, vol. 26, Issue 1, pp. 1-9.
Kontermann R.E., “Bispecific Antibodies: Developments and Current Perspectives”, in Bispecific Antibodies, Springer, Berlin/Heidelberg 2011, Chapter 1, pp. 1-28.
Kontermann R.E., “Bispecific Antibodies: Developments and Current Perspectives”, in Bispecific Antibodies, Springer, Berlin/Heidelberg 2011, Chapter 1, 152 pages.
Kufer, “A revival of bispecific antibodies”, Trends in Biotechnology, 2004, vol. 22, Issue 5, pp. 238-244.
Kuhns et al., “Deconstructing the Form and Function of the TCR/CD3 Complex” Immunity, 2006, vol. 24, pp. 133-139.
Lamminmaki et al., “Crystal Structure of a Recombinant Anti-estradiol Fab Fragment in Complex with 17ß-Estradiol,” The Journal of Biological Chemistry, vol. 276 (39), Sep. 28, 2001, pp. 36687-36694.
Leiba et al., “Activation of B-cell Maturation Antigen (BCMA)on Human Multiple Myeloma Cells by Proliferation-Inducing Ligand (APRIL) Promotes Myeloma Cell Function in the Bone Marrow Microenvironment”, Blood, 2007, vol. 110, Issue 11, 1503.
Li et al., “Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with Hydrogen/Deuterium Exchange, Fast photochemical Oxidation of Proteins Mass Spectrometry, and Alanine Shave Mutagenesis”, Analyt Chem., 2017, vol. 89, Issue 4, pp. 2250-2258.
Liu, Y., et al., “Ligand-receptor binding revealed by the TNF family member TALL-1.”, Nature, 2003, vol. 423, Issue 6935, pp. 49-56.
Löfblom et al., “Alternative Scaffolds as Bispecific Antibody Mimetics”, in Bispecific Antibodies, Springer—Berlin/Heidelberg 2011, Chapter 7, p. 115-133.
Maccallum et al., “Antibody-antigen Interactions: Contact Analysis and Binding Site Topography,” J Mol Biol., 1996, vol. 262, pp. 732-745.
Müller et al., “Recombinant bispecific antibodies for cellular cancer immunotherapy”, Curr Opin Mol Thera., 2006, vol. 9, pp. 319-326.
Müller et al., “Recombinant Bispecific Antibodies for Cancer Therapy”, in Antibody Expression and Production, Springer: Dordrecht, 2011, Chapter 11, pp. 235-249.
NCBI Reference Sequence NP 001183 (Apr. 26, 2014).
Neisig et al., “Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain”, J Immunol., 1993, vol. 151, pp. 870-879.
Novak et al., “Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival”, Blood, 2004, vol. 103, pp. 689-694.
Padlan et al., “Structure of an Antibody-Antigen Complex: Crystal Structure of the HyHEL 10 Fab-Lysozyme Complex,” Proc. Natl. Acad. Sci., vol. 86, Aug. 1989, pp. 5938-5942.
Panowski et al., “Preclinical Efficacy and Safety Comparison of CD3 Bispecific and ADC Modalities Targeting BCMA for the Treatment of Multiple Myeloma”, Molecular Cancer Therapeutics, 2019, vol. 18, No. 11, pp. 2008-2020.
Patel et al., “Engineering an April-specific B cell maturation antigen”, J Biol Chem., 2004, vol. 279, Issue 16, pp. 16727-16735.
Pelekanou et al., “Expression of TNF-superfamily members BAFF and April in breast cancer . . . ” BMC Cancer, 2008, vol. 8, No. 76, pp. 1-9.
Puchades et al., “Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS”, Sci Rep., 2019, vol. 9, Issue 1, 4735 in 10 pages.
Ramadoss, et al., “An Anti-B Cell Maturation Antigen Bispecific Antibody for Multiple Myeloma,” J Am Chem Soc., 2015, vol. 137, pp. 5288-5291.
Rennert et al., “A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor|family member April, inhibits tumor cell growth.” J Exp Med., 2000, vol. 192, Issue 11, pp. 1677-1683.
Rudikoff et al. “Single Amino Acid Substitution Altering Antigen Binding Specificity”, Proc. Natl. Acad. Sci., 1982, vol. 79, pp. 1979-1983.
Ryan, M.C., et al., “Antibody targeting of B-cell maturation antigen on malignant plasma cells”, Mol Cancer Ther, 2007, vol. 6, Issue 11, pp. 3009-3018.
Sequence alignment of BCMA extracellular domain; human, rhesus macaque, 1 page.
Sequence alignment of CD3 epsilon N-term aal-27; human, crab eating macaque, rhesus macaque, 1 page.
Sequence alignment of CD3 epsilon; crab-eating macaque, rhesus macaque, 1 page.
Terpos et al., “TRACP-5b: A Novel Marker for Monitoring Bisphosphonates Treatment in Multiple Myeloma”, Myeloma Biology II, 2002, Abstract #3204, p. 811a.
Thakur et al., “Cancer therapy with bispecific antibodies: Clinical experience.” Curr Opin Mol Ther., 2010, vol. 12, No. 3, pp. 340-349.
Vidal-Laliena et al., “Characterization of antibodies submitted to the B cell section of the 8th Human Leukocyte Differentiation . . . ”, Cellular Immunol., 2005, vol. 236, Issue 1-2, pp. 6-16.
Vajdos et al., “Comprehensive Functional Maps of the Antigen Binding Site of an Anti ErbB2 Antibody Obtained with Shotgun Scanning Mutagenesis,” J. Mol. Biol., 2002, vol. 320, pp. 415-428.
Wallweber et al., “The crystal structure of a proliferation—inducing ligand, April.”, J Mol Biol., 2004, vol. 343, Issue 2, pp. 283-290.
Walters et al., “Minimizing back exchange in the hydrogen exchange—mass spectrometry experiment.” J Am Soc Mass Spectrom., 2012, vol. 23, No. 12, pp. 2132-2139.
Wu et al., “Humanization of a Murine Monoclonal Antibody by Simultaneous Optimization of Framework and CDR Residues,” J. Mol. Biol., 1999, vol. 294, pp. 151-162.
Yu, L., et al., “Interaction between Bevacizumab and Murine VEGF-A: A Reassessment”, Investigative Ophthalmology & Visual Science, 2008, vol. 49, pp. 522-527.
Zhang et al., “Epitope mapping of a 95 kDa antigen in complex with antibody by solution—phase amide backbone hydrogen/deuterium exchange . . . ” Analytical Chemistry, 2011, vol. 83, Issue 18, pp. 7129-7136.
Zhang et al., “Epitope Mapping by HDX-MS Elucidates the Surface Coverage of Antigens Associated with High Blocking . . . ” Anal Chem., 2018, vol. 90, Issue 19, 11315-11323.
Zhang et al., “Epitope and Paratope Mapping of PD-1/Nivolumab by Mass Spectrometry-based Hydrogen/Deuterium Exchange, Cross-linking, and Molecular Docking”, Anal Chem., May 2020 online, vol. 92, Issue 13, pp. 9086-9094.
Declaration of Dr. Rui Zhu, Jun. 9, 2020, 34 pages.
Declaration Nathan D. Trinklein, Ph.D., Jun. 8, 2020, 22 pages.
Declaration of Kevin C. Lindquist, Jun. 9, 2020, 11 pages.
International Search Report and Written Opinion and International Search Report for International Application No. PCT/EP2012/072699; mailed on Mar. 27, 2013 in 14 pages. (WO 2013/072406).
Angeletti R., “Design of useful peptide antigens”, J Biomol Tech., 1999, vol. 10, Issue 1, pp. 2-10.
Carter et al., “Humanization of an anti-p185HER2 antibody for human cancer therapy”, Proc Natl Acad Sci. USA, 1992, vol. 89, Issue 10, pp. 4285-4289.
Chen et al., “Enhancement and Destruction of Antibody Function by Somatic Mutation: Unequal Occurrence is Controlled by V Gene Combinatorial Associations”, The EMBO Journal, vol. 14, No. 12, 1995, pp. 2784-2794.
Chien et al., “Significant structural and functional change of an antigen-binding site by a distant amino acid substitution: Proposal of a structural mechanism”, Proc. Natl. Acad. Sci. USA, Jul. 1989, vol. 86, pp. 5532-5536.
Cochran et al., “Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments”, Journal of Immunological Methods, 2004, vol. 287, pp. 147-158.
Criado et al., “Variability of invariant mouse CD3epsilon chains detected by anti-CD3 antibodies ”, Eur J Immunol., 2000, vol. 30, Issue 5, pp. 1469-1479.
Da Costa et al., “Immune recruitment by bispecific antibodies for the treatment of Hodgkin disease”, Cancer Chemo Pharmacol., Springer Verlag, Berlin, 2000, vol. 46, No. Suppl, pp. S35-S36.
Dufner et al., “Harnessing phage and ribosome display for antibody optimisation”, Trends in Biotechnology, 2006, vol. 24, Issue 11, pp. 523-529.
Edwards et al., “The Remarkable Flexibility of the Human Antibody Repertoire; Isolation of Over One Thousand Different Antibodies to a Single Protein, BLyS”, J. Mol. Biol. vol. 334, No. 1, 2003, pp. 103-118.
Enzo Life Sciences, Inc. “BCMA (human) monoclonal antibody (Vicky-1)”, Product Data Sheet ALX-804-151, rev. Dec. 23, 2016 in 2 pages.
Gall, J. et al., “T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro”, Exper Hematol., Apr. 2005, vol. 33, Issue 4, pp. 452-459.
Gallart et al., “Anti-Sia-lb (anti-Gd) cold agglutinins bind the domain NeuNAc alpha2-3Gal in sialyl Lewis(x), sialyl Lewis(a), and related carbohydrates on nucleated cells and in soluble cancer-associated mucins”, Blood, 1997, vol. 90, Issue 4, pp. 1576-1587.
Golay et al., “Mechanism of action of therapeutic monoclonalantibodies:Promises and pitfalls of invitroandinvivo assays”, Archives of Biochemistry and Biophysics, vol. 526, 2012, pp. 146-153.
Harlow et al., Anibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999, TOC (p. 4).
Hay et al., “Cinical development success rates for investigational drugs”, Nature Biotechnology, vol. 32, Issue 1, Jan. 2014, pp. 40-51.
Hayashi et al., “A highly effective and stable bispecific diabody for cancer immunotherapy: cure of xenografted tumors by bispecific diabody and T-LAK cells”, Cancer Immunology, Immunotherapy: CII, Jun. 2004, vol. 53, No. 6, Jun. 1, 2004, pp. 497-509.
Kumar et al., “Preclinical models for pediatric solid tumor drug discovery: current trends, challenges and the scopes for improvement”, Expert Opinion Drug Discovery, 2012, vol. 7, No. 11, pp. 1093-1106.
Kussie et al., “A Single Engineered Amino Acid Substitution Changes Antibody Fine Specificity”, J Immunol., 1994, vol. 152, pp. 146-152.
Levine M.N., “Trastuzumab cardiac side effects: only time will tell”, J Clin Oncol. 2005, vol. 23, Issue 31, pp. 7775-7776.
Lloyd, C. et al. Modelling the Human Immune Response: Performance of a 1011 Human Antibody|Repertoire Against a Broad Panel of Therapeutically Relevant Antigens, Protein Engineering, Design & Selection, 2009, vol. 22, Issue 3, pp. 159-168.
Reusch, U. et al., “Effect of tetravalent bispecific CD19xCD3 recombinant antibody construct and CD28 costimulation on lysis of malignant B cells from patients with chronic lymphocytic leukemia by autologous T cells”, Int. J. Cancer., Nov. 2004, vol. 112(3), pp. 509-518.
Shalaby et al., “Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene”, J Exp Med., 1992, vol. 175, Issue 1, pp. 217-225.
Uniprot “Tumor necrosis factor receptor superfamily member 17”, Q02223-TNR17, Jul. 27, 2011, 8 pages.
Winkler et al., “Changing the Antigen Binding Specificity by Single Point Mutations of an Anti-p24 (HIV-1) Antibody”, The Journal of Immunology, 2000, vol. 165:4505-4514.
Yoshino et al., “Upgrading of flow cytometric analysis for absolute counts, cytokines and other antigenic molecules of cynomolgus monkeys (Macaca fascicularis) by using anti-human cross-reactive antibodies”, Exp Anim. 2000, vol. 49, Issue 2, pp. 97-110.
International Search Report and Written Opinion for International Application No. PCT/EP2012/072730; mailed on Mar. 27, 2013 in 14 pages. (WO 2013/072415).
International Search Report and Written Opinion and for International Application No. PCT/EP2011/070301; mailed on Jan. 6, 2012 in 11 pages. (WO 2012/066058).
Ansell et al., “Phase I/II Study of an Anti-CD30 Monoclonal Antibody (MDX-060) in Hodgkin's Lymphoma and Anaplastic Large-Cell Lymphoma”, J Clin Oncol., 2007, vol. 25, Issue 19, pp. 2764-2769, Opposition Exhibit D109.
Amgen—In-house data showing the KD of E1/E4-BCMA/CD3 Bispecific Antibodies and E3-BCMA/CD3 Bispecific Antibodies, 1 page, Feb. 1, 2021, Opposition Exhibit D101.
Bluemel et al., “Epitope Distance to the Target Cell Membrane and Antigen Size Determine the Potency of T Cell-mediated Lysis by BiTE Antibodies Specific for a Large Melanoma Surface Antigen”, Cancer Immunol Immunother. 2010, vol. 59, pp. 1197-1209, Opposition Exhibit D110.
Declaration—Dr. Robert Saller, Amgen Research Executive Director, Jan. 2, 2010, 1 page, Opposition Exhibit D102.
Declaration—Dr. Kara Olson, Regeneron Senior Staff Scientist, 5 pages, May 14, 2021, Opposition Exhibit D107.
Caldas et al., “Humanization of the anti-CD18 antibody 6.7: an unexpected effect of a framework residue in binding to antigen”, Mol Immunol., 2003, vol. 39, pp. 941-952.
European Medicines Agency, The [EMA], “Herceptin: EPAR—Scientific Discussion”, EMA Oct. 21, 2005, pp. 1-42.
Even-Desrumeaux et al., “State of the Art in Tumor Antigen and Biomarker Discovery”, Cancers 2011, vol. 3, pp. 2554-2596, Opposition Exhibit D116.
Frank S.A., “Specificity and Cross-Reactivity” in Immunology and Evolution of Infectious Disease, Princeton University Press, 2002, Chapter 4, 2 pages, Opposition Exhibit D106.
Genbank—Accession No. AB052772.1, “Homo sapiens gene for BCMA, complete cds”, Sep. 25, 2002, 3 pages.
Genentech, Inc., Package Insert for Herceptin® (Trastuzumab), Sep. 26, 2003, pp. 1-14.
Gruss et al., “Structural and Biological Features of the TNF Receptor and TNF Ligand Superfamilies: Interactive Signals in the Pathobiology of Hodgkin's Disease”, Anals Oncol. 1996, vol. 7, (Suppl.4), pp. S19-S26, Opposition Exhibit D93.
Hansen et al., “Treatment of CD30-positive Diseases, Such as Hodgkin's Lymphoma, by Administration of a Combination of Sheddase Inhibitor and Anti-CD30 Immunotherapeutic Agents”, Exp Opin Ther Patents, 2008, vol. 18, Issue 6, pp. 671-676, Opposition Exhibit D114.
Janeway et al. [Eds.], Figure 6.8, “The T-cell receptor complex is made up of antigen-recognition proteins and invariant signaling proteins”, in Immunobiology: The Immune System in Health and Disease, 5th Edition, Garland Science, 1 page, Opposition Exhibit D104.
Jubala et al., “CD20 Expression in Normal Canine B Cells and in Canine non-Hodgkin Lymphoma”, Vet Pathol., 2005, vol. 42, 468-476.
Kapoor et al., “Anti-CD20 Monoclonal Antibody Therapy in Multiple Myeloma”, Br J Haematol. 2008, vol. 141, Issue 2, pp. 135-148, Opposition Exhibit D103.
Levine S.J., “Mechanisms of Soluble Cytokine Receptor”, J Immunol., 2004, vol. 173, pp. 5343-5348, Opposition Exhibit D95.
Matthey et al., “Metalloproteinase Inhibition Augments Antitumor Efficacy of the Anti-DC30 Immunotoxin Ki-3(scFv)-ETA' Against Human Lymphomas In Vivo”, Int J Cancer, 2004, vol. 111, pp. 568-574, Opposition Exhibit D113.
Moreaux et al., “April and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop”, European J Haematol., 2009, vol. 83, Issue 2, pp. 119-129, Opposition Exhibit D34.
Muller et al., “The Minimum Anticipated Biological Effect Level (MABEL) for Selection of First Human Dose in Clinical Trials with Monoclonal Antibodies”, Curr Opin Biotech. 2009, vol. 20, pp. 722-729, Opposition Exhibit D115.
Reichert et al., “Development Trends for Monoclonal Antibody Cancer Therapeutics”, Nat Reviews Drug Disc., May 2007, vol. 6, pp. 349-356, Opposition Exhibit D96.
Sanchez et al., “Serum B-cell Maturation Antigen is Elevated in Multiple Myeloma and Correlates with Disease Status and Survival”, Br J Haematol. 2012, vol. 158, Issue 6, pp. 727-728, Opposition Exhibit D97.
Tarte et al., “BAFF Is a Survival Factor for Multiple Myeloma Cells”, Myeloma Biology II, Abstract #3203/623-III, p. 811a, 2002, Opposition Exhibit D39.
Topp et al., “Anti-B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma”, J Clin Oncol. 2020, vol. 38, pp. 775-783, Opposition Exhibit D98.
Verkleij et al., “T-cell Redirecting Bispecific Antibodies Targeting BCMA for the Treatment of Multiple Myeloma”, Oncotarget, 2020, vol. 11, Issue 45, pp. 4076-4081, Opposition Exhibit D118.
Vonderheide et al., “Clinical Activity and Immune Modulation in Cancer Patients Treated with CP-870,893, a Novel CD40 Agonist Monoclonal Antibody”, J Clin Oncol. 2007, vol. 25, Issue 7, pp. 876-883, Opposition Exhibit D108.
Who, International Nonproprietary Names for Pharmaceutical Substances (Proposed INN)—List 123 ‘Pacanalotamab’, WHO Drug Information, 2020, vol. 34, Issue 2, in 5 pages, Opposition Exhibit D100.
Zhang et al., “Epitope and Paratope Mapping of PD-1/Nivolumab by Mass Spectrometry-based Hydrogen/Deuterium Exchange, Cross-linking, and Molecular Docking”, Anal Chem. May 22, 2020, vol. 92, Issue 13, 9086-9094, Opposition Exhibit D56c.
EP Notice of Opposition by AbbVie Inc. [O1] filed Mar. 6, 2020 against EP 2780375, granted Sep. 11, 2019, 9 pages.
EP Opposition Brief by AbbVie Inc. [O1] filed Jun. 11, 2020 in opposition to EP 2780375, 109 pages.
EP Communication Re Supplementary Submissions by AbbVie Inc. [O1] and Regeneron Pharmaceuticals, Inc. [05] filed May 18 & 19, 2021 in opposition to EP 2780375, 110 pages.
EP Notice of Opposition by Janssen Biotech, Inc. [O2] filed Apr. 14, 2020 against EP 2780375, granted Sep. 11, 2019, 7 pages.
EP Opposition Brief by Janssen Biotech, Inc. [O2] filed Apr. 14, 2020 in opposition to EP 2780375, 74 pages.
EP Communication Re Janssen Biotech, Inc. [02] Supplemental Letter filed Jan. 20, 2021 in opposition to EP 2780375, 15 pages.
EP Notice of Opposition by Pfizer, Inc. [O3] filed May 4, 2020 against EP 2780375, granted Sep. 11, 2019, 6 pages.
EP Opposition Brief by Pfizer, Inc. [O3] filed Jun. 10, 2020 against EP 2780375, granted Sep. 11, 2019, 34 pages.
EP Notice of Opposition/Brief by Teneobio, Inc. [O4] filed Jun. 10, 2020 against EP 2780375, granted Sep. 11, 2019, 87 pages.
EP Notice of Opposition/Brief by Regeneron Pharmaceuticals, Inc. [O5] filed Jun. 11, 2020 against EP 2780375, granted Sep. 11, 2019, 25 pages.
EP Communication Re Supplementary Submission by Regeneron Pharmaceuticals, Inc. [O5] filed May 19, 2021 in opposition to EP 2780375, 13 pages.
EP Notice of Opposition/Brief by James Poole Limited [O6] filed Jun. 11, 2020 against EP 2780375, granted Sep. 11, 2019, 32 pages.
EP Notice of Opposition/Brief by Mathys & Squire LLP [O7] filed Jun. 11, 2020 against EP 2780375, granted Sep. 11, 2019, 27 pages.
EP Notice of Opposition/Brief by Sanofi [O8] filed Jun. 12, 2020 against EP 2780375, granted Sep. 11, 2019, 67 pages.
EP Response by Patentee filed Feb. 1, 2021 on the Notices of Oppositions by eight Opponents against EP 2780375, granted Sep. 11, 2019, 109 pages.
EP Communication Re Oppositions Auxiliary Requests 1 32 filed Feb. 1, 2021 in opposition against EP 2780375, 354 pages.
EP Response by Patentee filed Dec. 1, 2021 to O5's supplemental submission in opposition against EP 2780375, 6 pages.
EPO Consolidated List of Opposition Documents dated May 19, 2021 in EP 2780375, granted Sep. 11, 2019, 8 pages.
EP Response by Patentee to O1 and O5's supplemental submission, filed Aug. 23, 2021 in opposition against EP 2780375, 37 pages.
Altschul et al., “Basic local alignment tool”. J Mol Biol. (1990) 215: 403-410.
Altschul S., “Local alignment statistics”. Meth Enzymol. (1996) 266: 460-480.
Altschul et al., “Gapped Blast and Psi-Blast: A new generation of protein database search programs”. Nucl Acids Res. (1997) 25(17): 3389-3402.
Aplin et al., “Preparation, properties, and applications of carbohydrate conjugates of proteins and lipids”. CRC Critic Rev Biochem. Jan. 1, 1981; 10(4): 259-306. (1981 ).
Artsaenko et al., “The expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transaenic tobacco”. The Plant J. Nov. 1995; 8(5): 745-750.
Asano et al., “Humanization of the bispecific epidermal grown factor receptorx CD3 diabody and its efficacy as a potential clinical reagent”. Clin Cancer Res. Jul. 1, 2006;12(13): 4036-4042.
Bird et al., “Single-chain antigen-binding proteins”. Science Oct. 21, 1988;242(4877): 423-426.
Bork P., “Powers and pitfalls in sequence analysis: The 70% hurdle”. Genome Res. Apr. 1, 2000;10(4): 398-400.
Bork et al., “Go hunting in sequence databases but watch out for the traps”. Trends Gen. Oct. 1, 1996;12(10): 425-427.
Brinkmann et al., “The making of bispecific antibodies”, Mabs., Feb. 17, 2017;9(2): 182-212.
Brenner S.E., “Errors in genome function”. Trends Genet. Apr. 1999;15(4): 132-133.
Brok et al., “An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets in the common marmoset and the cotten-top tamarin”. Cytometry, (2001) 45: 294-303.
Brühl et al., “Depletion of CCR5-expressing cells with bispecific antibodies and chemokine toxins: A|new strategy in the treatment of chronic inflammatory diseases and HIV”. Immunol. Feb. 15, 2001;166(4): 2420-2426.
Brummell et al., “Probing the combining site of an anti-carbohydrate antibody by saturation-mutagenesis: role of the heavy-chain CDR3 residuesBiochem”. Feb. 2, 1993;32(4): 1180-1187.
Burks et al., “In vitro scanning saturation mutagenesis of an antibody binding pocket”. PNAS. Jan. 21, 1997;94(2): 412-417.
Carpenter et al., “B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma”. Clin Cancer Res. Apr. 15, 2013;19(8): 2048-2060.
Carter et al., “High level Escherichia coli expression and production of a bivalent humanized antibody fragment”. Biotech. Feb. 1992;10(2): 163-167.
Carter et al., “Potent antibody therapeutics by design”. Nat Rev Immunol. (2006) 6: 343-357.
Chalfie et al., “Green fluorescent protein as a marker for gene expression”. Science Feb. 11, 1994;263(5148): 802-805.
Chothia et al., “Canonical structures for the hypervariable regions of immunoglobulins”. J Mol Biol. Aug. 20, 1987;196(4): 901-917.
Chothia et al., “Conformation of immunoglobulin hypervariable regions”. Nature Dec. 21, 1989; 342(6252): 877-883.
Clackson et al., “Making antibody fragments using phage display libraries”. Letts Nature Aug. 1991;352(6336): 624-628.
Conrad et al., “TCR and CD3 antibody cross-reactivity in 44 species”. J Int Soc Anal Cytol. Nov. 2007;71(11): 925-933.
Cook et al., “The human immunoglobulin VH repertoire”. Immunol Today Jan. 1, 1995; 16(5): 237-242.
Coquery et al., “Regulatory roles of the tumor necrosis factor receptor BCMA”. Crit Rev Immunol. (2012) 32(4): 287-305.
Doerks et al., “Protein annotation: Detective work for function prediction”. Trends Genetics. (1998) 14(6): 248-250.
Duskin et al., Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem. Mar. 25, 1982;257(6): 3105-3109.
Edge et al., “Deglycosylation of glycoproteins by trifluoromethanesulfonic acid”. Anal Biochem. Nov. 15, 1981;118(1): 131-137.
Eppstein et al., “Biological activity of liposome-encapsulated murine interferon y is mediated by a cell membrane receptor”. PNAS. USA Jun. 1, 1985;82(11): 3688-3692.
Feng et al., “Progressive sequence alignment as a prerequisite to correct phylogenetic trees”. J Mol Evol. Aug. 1987;25(4): 351-360.
Gabizon et al., “Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times”. J Nat Cancer Inst. Oct. 4, 1989; 81(19): 1484-1488.
Gilliland et al., “Universal bispecific antibody for targeting tumor cells for destruction by cytotoxic T cells.” PNAS. Oct. 1, 1988;85(20): 7719-7723.
Graham et al., “Characteristics of a human cell line transformed by DNA from human adenovirus type 5”. J Gen Virol. Jul. 1, 1977;36(1): 59-74.
Green et al., “Antigen-specific human monoclonal antibodies from mice engineered with human lg heavy and light chain YACs”. Nat Genet. May 1994;7(1): 13-21.
Green et al., “Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes”. J Exp Med. Aug. 3, 1998;188(3): 483-495.
Gussow et al., “Humanization of monoclonal antibodies”, Meth Enzymol. Jan. 1, 1991;203: 99-121.
Ha et al., “Immunoglobulin Fc heterodimer platform technology: From design to applications in therapeutic antibodies and proteins”, Front Immunol., Oct. 6, 2016;7(394) in 16 pages.
Hawes et al., “Reactivity of Human Trophoblast Monoclonal Antibodies with Marmoset Monkey Trophoblast Cultures”, Human Repro. 1998, vol. 5, Issue 5, pp. 1169-1174.
Hawkins et al., “Selection of phage antibodies by binding affinity: mimicking affinity maturation”. J Mol Biol. Aug. 5, 1992;226(3): 889-896.
Heim et al., “Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer”. Curr Biol. Feb. 1, 1996;6(2): 178-182.
Higgins et al., “Fast and sensitive multiple sequence alignments on a microcomputer”. Bioinformatics. Apr. 1, 1989;5(2): 151-153.
Holliger et al., “Diabodies”: small bivalent and bispecific antibody fragments. PNAS USA Jul. 15, 1993;90(14): 6444-6448.
Holm et al., “Functional mapping and single chain construction of the anti-cytokeratin 8 monoclonal antibody TS1”, Mol Immunol. Feb. 1, 2007;44(6): 1075-1084.
Huntington et al., “A BAFF antagonist suppresses experimental autoimmune encephalomyelitis by targeting cell-mediated and humoral immune responses”. Int Immunol., Oct. 1, 2006;18(10): 1473-1485.
Huston et al., “Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single-chain Fv analogue produced in Escherichia coli”. PNAS USA Aug. 1, 1988;85(16): 5879-5883.
Hwang et al., “Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: A kinetic study”. PNAS USA Jul. 1, 1980;77(7): 4030-4034.
Jang et al., “The structural basis for DNA binding by an anti-DNA autoantibody”. Mol Immunol. Dec. 15, 1998; 35(18): 1207-1217.
Jones et al., “Replacing the complementarity-determine regions in a human antibody with those from a mouse”. Nature May 1986; 321(6069): 522-525.
Karlin et al., “Applications and statistics for multiple high-scoring segments in molecular sequences”. PNAS USA Jun. 15, 1993;90(12): 5873-5877.
Kipriyanov et al., “Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics”. J Mol Biol. Oct. 15, 1999;293(1): 41-56.
Kobayashi et al., “Tryptophan H33 plays an important role in pyrimidine (6-4) pyrimidone photoproduct binding by a high-affinity antibody”. Protein Eng. Oct. 1999;12(10): 879-844.
Köhler et al., “Continuous cultures of fused cells secreting antibody of predefined specificity”. Nature Aug. 7, 1975;256(5517): 495-497.
Kontermann R.E., “Dual targeting strategies with bispecific antibodies”. mAbs. Mar. 1, 2012; 4(2): 182-197.
Kozbor et al., “The production of monoclonal antibodies from human lymphocytes”. Immunol Today, Mar. 1, 1983;4(3): 72-79.
Kumar et al., “Molecular cloning and expression of the Fabs of human autoantibodies in Escherichia coli”. J Biol Chem. Nov. 10, 2000;275(45): 35129-35136.
Löffler et al., “A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes”. Blood Mar. 15, 2000;95(6): 2098-2103.
Loisel et al., “Relevance, advantages and limitations of animal models used in the development of monoclonal antibodies for cancer treatment”. Crit Rev Oncol Hematol. Apr. 1, 2007;62(1): 34-42.
Lowman et al., “Selecting high-affinity binding proteins by monovalent phage display”. Biochem. Nov. 1, 1991;30(45): 10832-10837.
Mack et al., “A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity”. PNAS USA Jul. 18, 1995;92(15): 7021-7025.
Mack et al., “Biologic properties of a bispecific single-chain antibody directed against 17-1 A (EpCAM) and CD3: Tumor cell-dependent T cell stimulation and cytotoxic activity”. J Immunol. Apr. 15, 1997;158(8): 3965-3970.
Mansfield K., “Marmoset models commonly used in biomedical research”. Comp Med. (2003) 53(4): 383-392.
Mariuzza et al., “The structural basis of antigen-antibody recognition”, Annu Rev Biophys Biophysical Chem., 1987, 16: 139-159.
Marks et al., “By-passing immunization: Human antibodies from V-gene libraries displayed on phage”. J Mol Biol. Dec. 5, 1991;222(3): 581-597.
Martin et al., “Irreversible coupling of immunoglobulin fragments to preformed vesicles: An improved method for liposome targeting”. J Biol Chem. Jan. 10, 1982;257(1): 286-288.
Mather J.P., Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod. 1980;23: 243-251.
Mendez et al., “Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice”. Nat Genet. Feb. 1997;15(2): 146-156.
Moisini et al., “BAFF: A local and system target in autoimmune disease”. Clin Exp Immunol., Nov. 2009;158(2): 155-163.
Morrison et al., “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”. PNAS USA Nov. 1, 1984;81(21): 6851-6855.
Morrison S.L., “Transfectomas provide novel chimeric antibodies”. Science Sep. 20, 1985;229(4719): 1202-1207.
Needleman et al., “A general method applicable to the search for similarities in the amino acid sequence of two proteins”. J Mol Biol. Mar. 28, 1970;48(3): 443-453.
Ngo et al., “Computational complexity, protein structure prediction, and the Levinthal paradox”. In The Protein Folding Problem and Teriary Structure Prediction, Birkhäuser Boston, (1994); Chapter 14, pp. 491-495.
Nolan et al., “Fluorescence-activated cell analysis and sorting of viable mammalian cells based on ß-D-galactosidase activity after transduction of Escherichia coli lacZ”. PNAS USA Apr. 1, 1988;85(8): 2603-2607.
Padlan E.A., “Anatomy of the antibody molecule”, Mol Immunol. 1994;31(3): 169-217.
Paul W.E., Fundamental Immunology, 3rd Edition, Raven Press, New York, Dec. 3, 2012; Chapter 8, pp. 292-295.
Pearson et al., “Improved tools for biological sequence comparison”. PNAS USA, Apr. 1, 1988;85(8): 2444-2448.
Pelletier et al., “Comparison of soluble decoy IgG fusion proteins of BAFF-R and BCMA as antagnists for BAFF”. J Biol Chem. Aug. 29, 2003;278(35): 33127-33133.
Pessano et al., “The T3/T cell receptor complex: Antigenic distinction between the two 20-KD T3 ( T3-δ amd T3-ε) subunits”, EMBO J., (1985) 4(2): 337-344.
Presta L.G., “Antibody engineering”. Curr Opin Struct Biol. Aug. 1, 1992;2(4): 593-596.
Portolano et al., “Lack of promiscuity in autoantigen-specific H and L chain combinations as revealed by human H and L chain ‘roulette’”, J Immunol. 1993, vol. 150, Issue 3, pp. 880-887.
Raag et al., “Single-chain Fvs”. FASEB J. Jan. 1995;9(1): 73-80.
Reusch et al., “Anti-CD3 x anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancer in vitro and in an animal model”, Clin Cancer Res., (2006) 12(1 ): 183-190.
Riechmann et al., “Reshaping human antibodies for therapy”. Nature Mar. 1988;332: 323-329.
Rogers et al., “IgG Fe receptor III homologues in nonhuman primate species: Genetic characterization and ligand interactions”. J Immunol., Sep. 15, 2006;177(6): 3848-3856.
Schier et al., “Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections”. Hum Antibod Hybridomas Jan. 1, 1996;7(3): 97-105.
Skerra et al., “Assembly of a functional immunoglobulin Fv fragment in Escherichia coli”. Science May 20, 1988;240(4855): 1038-1041.
Skolnick et al., “From genes to protein structure and function: Novel applications of computational approaches in the genomic era”. Trends Biotech. Jan. 1, 2000;18(1): 34-39.
Smith et al., “Comparison of biosequences”. Adv Appl Math. Dec. 1, 1981;2(4): 482-489.
Smith G.P., “Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface”. Science Jun. 14, 1985;228(4705): 1315-1357.
Smith et al., “The challenges of genome sequence annotation or ‘The devil is in the details’”. Nature Biotech. Nov. 1997;15(12): 1222-1223.
Songsivilai et al., “Bispecific antibody: A tool for diagnosis and treatment of disease”. Clin Exp Immunol. Mar. 1990;79(3): 315-321.
Stauber et al., “Development and applications of enhanced green fluorescent protein mutants”. BioTechniques Mar. 1998;24(3): 462-471.
Tai et al., “Targeting B-cell maturation factor antigen in multiple myeloma”. Immunother. Nov. 2015;7(11): 1187-1199.
Takeda et al., “Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences”. Nature Apr. 1985;314(6010): 452-454.
Teng et al., “Construction and testing of mouse--human heteromyelomas for human monoclonal antibody production”. PNAS USA Dec. 1, 1983;80(23): 7308-7312.
Tokuriki et al., “Stability effects of mutations and protein evolvability”. Curr Opin Structural Biol. Oct. 1, 2009;19(5): 594-604.
Tomlinson et al., “The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops”. J Mol Biol. Oct. 5, 1992;227(3): 776-798.
Tomlinson et al., “The structural repertoire of the human VK domain”. EMBO J. Sep. 1995;14(18): 4628-4638.
Urlaub et al., “Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity”. PNAS USA Jul. 1, 1980;77(7): 4216-4220.
Ward et al., “Binding activities of a repertoire of single immunoglobin variable domains secreted from Escherichia coli”. Nature. Oct. 1989;341(6242): 544-546.
Wells J.A., “Additivity of mutational effects in proteins”. Biochem Sep. 18, 1990;29(37): 8509-8517.
Zhou et al., “Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery”, Biomater. Feb. 1, 2017;117: 24-31.
Zou et al., “Immunotherapy based on bispecific T-cell engager with hlgG1 Fc sequence as a new therapeutic strategy in multiple myeloma”, Cancer Sci. May 2015;106(5): 512-521.
U.S. Office Action dated May 24, 2012 in related U.S. Appl. No. 12/594,713 in 10 pages.
U.S. Office Action dated Aug. 30, 2012 in related U.S. Appl. No. 12/594,713 in 24 pages.
U.S. Office Action dated May 7, 2013 in related U.S. Appl. No. 12/594,713 in 27 pages.
U.S. Office Action dated Nov. 18, 2014 in related U.S. Appl. No. 12/594,713 in 14 pages.
U.S. Office Action dated Jun. 17, 2015 in related U.S. Appl. No. 12/594,713 in 15 pages.
U.S. Office Action dated Aug. 5, 2016 in related U.S. Appl. No. 12/594,713 in 17 pages.
U.S. Office Action dated May 9, 2017 in related U.S. Appl. No. 12/594,713 in 13 pages.
U.S. Office Action dated Sep. 28, 2017 in related U.S. Appl. No. 12/594,713 in 20 pages.
U.S. Office Action dated Mar. 27, 2018 in related U.S. Appl. No. 12/594,713 in 16 pages.
U.S. Office Action dated Jul. 17, 2018 in related U.S. Appl. No. 12/594,713 in 7 pages.
U.S. Office Action dated Apr. 4, 2019 in related U.S. Appl. No. 12/594,713 in 9 pages.
U.S. Office Action dated Dec. 10, 2019 in related U.S. Appl. No. 12/594,713 in 8 pages.
U.S. Office Action dated Nov. 3, 2020 in related U.S. Appl. No. 12/594,713 in 9 pages.
U.S. Office Action dated May 11, 2021 in related U.S. Appl. No. 12/594,713 in 7 pages.
U.S. Office Action dated Dec. 7, 2021 in related U.S. Appl. No. 12/594,713 in 7 pages.
U.S. Office Action dated Nov. 30, 2011 in related U.S. Appl. No. 12/594,729 in 10 pages.
U.S. Office Action dated Aug. 17, 2012 in related U.S. Appl. No. 13/408,363 in 8 pages.
U.S. Office Action dated Jan. 24, 2013 in related U.S. Appl. No. 13/408,363 in 19 pages.
U.S. Office Action dated Sep. 30, 2013 in related U.S. Appl. No. 13/408,363 in 17 pages.
U.S. Office Action dated May 20, 2015 in related U.S. Appl. No. 13/408,363 in 13 pages.
U.S. Office Action dated Jul. 8, 2013 in related U.S. Appl. No. 13/678,247 in 10 pages.
U.S. Office Action dated Nov. 18, 2013 in related U.S. Appl. No. 13/678,247 in 32 pages.
U.S. Office Action dated Jul. 3, 2014 in related U.S. Appl. No. 13/678,247 in 40 pages.
U.S. Office Action dated Jun. 16, 2015 in related U.S. Appl. No. 13/678,247 in 25 pages.
U.S. Office Action dated Jun. 20, 2013 in related U.S. Appl. No. 13/678,264 in 9 pages.
U.S. Office Action dated Sep. 9, 2013 in related U.S. Appl. No. 13/678,264 in 10 pages.
U.S. Office Action dated Feb. 19, 2014 in related U.S. Appl. No. 13/678,264 in 12 pages.
U.S. Office Action dated Nov. 6, 2014 in related U.S. Appl. No. 13/678,264 in 22 pages.
U.S. Office Action dated Mar. 13, 2015 in related U.S. Appl. No. 13/885,646 in 8 pages.
U.S. Office Action dated Jun. 4, 2015 in related U.S. Appl. No. 13/885,646 in 37 pages.
U.S. Office Action dated Jan. 4, 2016 in related U.S. Appl. No. 13/885,646 in 74 pages.
U.S. Office Action dated Oct. 14, 2016 in related U.S. Appl. No. 13/885,646 in 34 pages.
U.S. Office Action dated Jun. 21, 2017 in related U.S. Appl. No. 13/885,646 in 8 pages.
U.S. Office Action dated Mar. 9, 2018 in related U.S. Appl. No. 13/885,646 in 17 pages.
U.S. Office Action dated Nov. 13, 2018 in related U.S. Appl. No. 13/885,646 in 15 pages.
U.S. Office Action dated Mar. 25, 2020 in related U.S. Appl. No. 13/885,646 in 23 pages.
U.S. Office Action dated Apr. 29, 2021 in related U.S. Appl. No. 13/885,646 in 26 pages.
U.S. Office Action dated Nov. 26, 2021 in related U.S. Appl. No. 13/885,646 in 22 pages.
U.S. Office Action dated Aug. 27, 2015 in related U.S. Appl. No. 14/358,520 in 11 pages.
U.S. Office Action dated Jun. 7, 2016 in related U.S. Appl. No. 14/358,520 in 27 pages.
U.S. Office Action dated Oct. 23, 2017 in related U.S. Appl. No. 14/947,902 in 11 pages.
U.S. Office Action dated Jan. 5, 2018 in related U.S. Appl. No. 14/947,902 in 23 pages.
U.S. Office Action dated May 30, 2018 in related U.S. Appl. No. 14/947,902 in 9 pages.
U.S. Office Action dated Oct. 5, 2017 in related U.S. Appl. No. 15/422,619 in 7 pages.
U.S. Office Action dated Mar. 8, 2018 in related U.S. Appl. No. 15/422,619 in 30 pages.
U.S. Office Action dated Mar. 3, 2021 in related U.S. Appl. No. 16/373,083 in 16 pages.
EPO Summons to Attend Oral Proceedings for Opposers O1-O8 dated Apr. 26, 2022 in EP 2780375, granted Sep. 11, 2019, 105 pages.
Baeuerle et al., “BiTE: a new class of antibodies t 1at recruit T-cells”, Drugs Future, 2008, vol. 33, Issue 2, pp. 1-11.
Baeuerle et al., “BiTE Teaching antibodies to engage T-cells for cancer therapy”, Curr Opin Mol Thera, 2009, vol. 11, pp. 22-30.
Bellucci et al., “Complete Response to Donor Lymphocyte Infusion in Patients with Multiple Myeloma is Associated with Antibody Response to BCMA, a Plasma Celi Membrane Receptor”, Blood, 2003, vol. 102; pp. 192a-193a, Abstract #671.
Betts et al., “Amino Acid Properties and Consequences of Substitutions”, Bioinformatics for Geneticists, 2003, Chapter 14, pp. 289-316.
Choi et al., “Bispecific antibodies engage T cells for antitumor immunotherapy”, Expert Opin Bio Ther., Jul. 1, 2011;11(7): 843-853.
Dillon et al., “An April to remember: Novel TNF ligands as therapeutic targets”, Nature Rev Drug Disc. Mar. 2006;5(3): 235-246.
GenBank accession No. NM _000733, Homo sapiens CD3e molecule (CD3E), rnRNA, Feb. 28, 2007, 4 pages.
Hansen et al., “Treatment of CD30-positive diseases, such as Hodgkin's lymphoma, by administration of a combination of sheddase inhibitor and anti-CD30 immunotherapeutic agents: Incyte Corporation: WO2007143600”. Exp Opin Thera Patents. Jun. 1, 2008;18(6): 671-676.
Müller et al., “Recombinant bispecific antibodies for cellular cancer immunotherapy”, Curr Opin Mol Thera. Aug. 1, 2006;9(4): 319-326.
Neisig et al., “Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain”, J Immunol. Jul. 15, 1993;151(2): 870-879.
Wallweber et al., “The crystal structure of a proliferation-inducing ligand, April.”, J Mol Biol., Oct. 15, 2004;343(2): 283-290.
EP Letter by Opposer James Poole Limited [O6] with Citations 119 & 120 [Experimental Report 1 & 2] filed Jun. 27, 2022 against EP 2780375, 16 pages.
EPO Preliminary Opinion for Opposers O1-O8 dated Sep. 21, 2022 in EP2780375, granted Sep. 11, 2019, 50 pages.
EPO Consolidated List of Opposition Documents dated Sep. 22, 2022 in EP 2780375, granted Sep. 11, 2019, 8 pages.
EPO Preliminary Opinion for Opposers O1-O7 dated Sep. 21, 2022 in EP2780374, granted Aug. 21, 2019, 77 pages.
EPO Consolidated List of Opposition Documents dated Sep. 27, 2022 in EP 2780374, granted Aug. 21, 2019, 6 pages.
Alexaki et al., Adipocytes as Immune Cells: Differential Expression of Tweak, BAFF, and April and Their Receptors (Fn14, BAFF-R, TACI, and BCMA) at Different Stages of Normal and Pathological Adipose Tissue Development. J Immunol. Nov. 1, 2009;183(9): 5948-5956.
Alibaud et al., “A new monoclonal anti-CD3epsilon antibody reactive on paraffin sections”. J Histochem Cytochem. Dec. 2000;48(12):1609-1612.
Arnett et al., “Crystal structure of a human CD3-ϵ/δ dimer in complex with a UCHT1 single-chain antibody fragment”. PNAS Nov. 16, 2004;101(46):16268-16273.
Beeram et al., A Phase I Study of Trastuzumab-MCC-DM1 (T-DM1), a First-in-class HER2 Antibody-drug Conjugate (ADC), in Patients (pts) with HER2+ Metastatic Breast Cancer (BC). J Clin Oncol. Jun. 20, 2007;25(18_suppl):1042 Abstract.
Bello et al., “Loss of N-terminal charged residues of mouse CD3ϵ chains generates isoforms modulating antigen T cell receptor-mediated signals and T cell receptor-CD3 interactions”. J Biol Chem. Aug. 3, 2007;282(31):22324-22334.
Berkhout et al., “Transfection of genes encoding the T cell receptor-associated CD3 complex into COS cells results in assembly of the macromolecular structure”. J Biol Chem. Jun. 15, 1988;263(17): 8528-8536.
Blumberg et al., “Structure of the T-cell antigen receptor: Evidence for two CD3ϵ subunits in the T-cell receptor-CD3 complex”. PNAS U.S.A. Sep. 1990;87(18):7220-7224.
Bortoletto et al., “Optimizing anti-DC3 affinity for effective T cell targeting against tumor cells”. Eur J Immunol. Nov. 2002;32(11):3102-3107.
Chatenoud et al., “CD3 Monoclonal Antibodies: A First Step Towards Operational Immune Tolerance in the Clinic”. Rev Diab Studies: RDS. Dec. 2012;9(4): 372-381.
Choi et al., “Detection of Epidermal Growth Factor Receptor in the Serum of Gastric Carcinoma Patients”. Cancer May 15, 1997;79(10): 1879-1883.
Declaration of Christine E. Tinberg Ph.D. (Amgen), Feb. 21, 2023, 2 pages.
Declaration of Christoph Dahlhoff Ph.D. (Amgen), Mar. 8, 2023, 5 pages.
Di Paola et al., A Recombinant Immunotoxin Derived from a Humanized Epithelial Cell Adhesion Molecule-specific Single-chain Antibody Fragment has Potent and Selective Antitumor Activity. Clin Cancer Res. Jul. 1, 2003;9(7): 2837-2848.
Dong et al., “Structural Basis of Assembly of the Human T Cell Receptor—CD3 Complex”. Nature. Sep. 26, 2019;573(7775): 546-552.
Du et al., “Potentiating T Cell Activity Against Multiple Myeloma Through SUMOylation Inhibition”. Int'l Myeloma Society, 19th Annual Meeting and Exposition, Aug. 25-27, 2022; in 222 pages.
Fornier et al., Serum HER2 Extracellular Domain in Metastatic Breast Cancer Patients Treated with Weekly Trastuzumab and Paclitaxel: Association with HER2 Status by Immunohistochemistry and Fluorescence in situ Hybridization and with Response Rate. Ann Oncol. Feb. 1, 2005;16(2): 234-239.
Hagner et al., “Targeting B-Cell Maturation Antigen (BCMA) with CC-93269, a 2+1 T Cell Engager, Elicits Significant Apoptosis in Diffuse Large B-Cell Lymphoma Preclinical Models”. Blood. Nov. 13, 2019;134: 1580.
Hamann et al., An Anti-MUC1 Antibody—Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Choice of Linker. Bioconj. Chem. Jan. 16, 2002;13(1): 40-46.
Jumper et al., “Highly Accurate Protein Structure Prediction with AlphaFold”. Nature. Aug. 2021;596(7873): 583-589.
Keyt et al., “Human Antibody Drug Conjugates Specific to the Mutant EGF Receptor (EGFRvIII) Inhibit Tumor Growth Observed with in vitro and in vivo Models of Glioma”. Cancer Res. Apr. 1, 2004;64(7_Supplement):162 Abstract.
Kishimoto et al., “Physical Dissociation of the TCR-CD3 Complex Accompanies Receptor Ligation”. J Exper Med. Dec. 1, 1995;182(6): 1997-2006.
Mailankody et al., “T-Cell Engagers—Modern Immune-Based Therapies for Multiple Myeloma”. New Engl J Med. Aug. 11, 2022;387(6): 558-561.
McPherson et al., “Introduction to Protein Crystallization”. Methods 2004;34: 254-265.
Moreau et al., “Teclistamab in Relapsed or Refractory Multiple Myeloma”. New Engl J Med. Aug. 11, 2022;387(6): 495-505.
Okeley et al., “Specific Tumor Targeting and Potent Bystander Killing with SGN-35, and Anti-DC30 Antibody Drug Conjugate”. Blood Nov. 2006; 108(11): 231 Abstract.
Pirrone et al., “Applications of Hydrogen/Deuterium Exchange MS from 2012 to 2014”. Analy Chem. Jan. 6, 2015;87(1): 99-118.
Müller et al., “Improved Pharmacokinetics of Recombinant Bispecific Antibody Molecules by Fusion to Human Serum Albumin”, J Biol Chem 2007, vol. 282, Issue 17, pp. 12650-12660.
Ridgway et al., “‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization”, Protein Eng. 1996, vol. 9, Issue 7, pp. 617-621.
Ristamaki et al., Serum CD44 in Malignant Lymphoma: An Association with Treatment Response. Blood Jul. 1994;84(1): 238-243.
Rogers et al., “Identification and characterization of macaque CD89 (immunoglobulin A Fc receptor)”. Immunol. Oct. 2004;113(2): 178-186.
Rossi et al., “Differential antibody binding to the surface αβTCR-CD3 complex of CD4+ and CD8+ T lymphocytes is conserved in mammals and associated with differential glycosylation”. Int Immunol. Oct. 1, 2008;20-(10):1247-1258.
Sancho et al., “CD3-ζ surface expression is required for CD4-p56lck_mediciated up-regulation of T cell antigen receptor-CD3 signaling in T cells”. J Biol Chem. (1992) 267(11 ): 7871-7879.
Sandusky et al., Use of Monoclonal Antibodies to Human Lymphocytes to Identify Lumphocyte Subsets in Lymph Nodes of the Rhesus Monkey and the Dog. J Med. Primatol. Dec. 1986; 15(6): 441- 451.
Scheuermann et al., “CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy”. [Abstract] Leuk Lymphoma. Jan. 1, 1995;18(15): 385-397.
Schlereth et al., “Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct”. Cancer Res. Apr. 1, 2005;65(7): 2882-2889.
Soares et al., “Transient Global T Cell Activation After Vaccination of Rhesus Macaques with a DNA-Poxvirus Vaccine Regiment for HIV”. Vaccine. Jul. 9, 2015;33(30): 3435-3439.
Sun et al., “Solution structure of the CD3ϵδ ectodomain and comparison with CD3ϵγ as a basis for modeling T cell receptor topology and signaling”. PNAS U.S.A., Nov. 30, 2004;101(48): 16867-16872.
U.S. Department of Health & Human Services, Food & Drug Administration, Center for Biologics Evaluation and Research, “Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use”, Feb. 28, 1997, pp. 1-50.
Valle et al., “The Proteolytic Cleavage of EGFR is Mediated by Metalloproteases”. Cancer Res. Apr. 15, 2006;66(8_Suppl): 18 Abstract.
Varadi et al., AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucl Acids Res. Jan. 7, 2022;50(D1): D439-D444.
Vergilis et al., “Presence and Prognostic Significance of Melanoma-associated Antigens CYT-MAA and HMW-MAA in Serum of Patients with Melanoma”. J Invest Derma. Sep. 1, 2005;125(3): 526-531.
Witte et al., “Monoclonal antibodies targeting the VEGF receptor-2 (FIK1/KDR) as an anti-angiogenic therapeutic strategy”, Cancer Metast Rev. 1998;17: 155-161.
Závada et al., Soluble Form of Carbonic Anhydrase IX (CA IX) in the Serum and Urine of Renal Carcinoma Patients. Br. J Cancer. Sep. 2003;89(6): 1067-1071.
U.S. Office Action dated Jun. 22, 2022 in related U.S. Appl. No. 12/594,713 in 7 pages.
U.S. Office Action dated Jun. 23, 2023 in related U.S. Appl. No. 12/594,713 in 11 pages.
U.S. Office Action dated Aug. 5, 2022 in related U.S. Appl. No. 13/885,646 in 22 pages.
U.S. Office Action dated Mar. 6, 2023 in related U.S. Appl. No. 13/885,646 in 17 pages.
U.S. Office Action dated Sep. 28, 2021 in related U.S. Appl. No. 16/373,083 in 8 pages.
U.S. Office Action dated Feb. 15, 2022 in related U.S. Appl. No. 16/373,083 in 7 pages.
U.S. Office Action dated Sep. 29, 2022 in related U.S. Appl. No. 17/011,849 in 14 pages.
U.S. Office Action dated Apr. 26, 2023 in related U.S. Appl. No. 17/011,849 in 21 pages.
U.S. Office Action dated Jun. 15, 2022 in related U.S. Appl. No. 17/672,546 in 36 pages.
EPO Opposition Decision on Revocation of EP 2780375 B2 dated Jun. 30, 2023, including Grounds for the Decision, Minutes of Oral Proceedings and Transmittal to Parties, in 119 pages.
EP Submission in Opposition Proceeding following Summons to Attend Oral Proceedings by Patentee, filed Mar. 8, 2023 for EP 2780374, granted Aug. 21, 2019, in 4 pages.
EP Submission in Opposition Proceeding following Summons to Attend Oral Proceedings and Main Requests by Opposers Pfizer Inc., Janssen Biotech, Inc. & James Poole, filed Mar. 8, 2023 for EP 2780374, granted Aug. 21, 2019, in 56 pages.
EPO Opposition Decision Re Revocation of EP 2780374 B2 dated May 9, 2023 sent to Opposers O1-O7, in 16 pages.
Graziano et al., “Chemical Production of bispecific antibodies”, In Bioconjugation Protocols. Humana Press 2004, vol. 283, Chapter 5, pp. 71-85.
Ichiki et al., “Regulation of the expression of human C epsilon germline transcript. Identification of a novel IL-4 responsive element”. J Immunol. (1993) 150: 5408-5417.
Langer R., “Polymeric delivery systems”. Target of Drugs 2: Optimization Strategies. 1990; pp. 165-175; Abstract.
Morrison et al., “Combinatorial alanine-scanning”. Curr Opin Chem Biol. Jun. 2001;5(3): 302-307; Abstract.
Ramadoss, et al., “An Anti-B Cell Maturation Antigen Bispecific Antibody for Multiple Myeloma,” J Am Chem Soc., Apr. 29, 2015;137(16): 5288-5291 and Supplemental Data in 12 pages.
Sutherland et al., “Targeting BAFF: Immunomodulation for autoimmune diseases and lymphomas”. Pharma Therapeutics, Dec. 1, 2006;112(3): 774-786; Abstract.
U.S. Office Action dated Nov. 30, 2023 in U.S. Appl. No. 13/885,646 in 12 pages.
U.S. Office Action dated Oct. 26, 2023 in U.S. Appl. No. 17/011,849 in 32 pages.
Acqua et al., “Contribution of domain interface residues to the stability of antibody CH3 domain homodimers”. Biochemistry Jun. 20, 1998;37(26): 9266-9273.
Arakawa et al., “Solvent interactions in pharmaceutical formulations”. Pharm Res. Mar. 1991;8(3): 285-291.
BD Pharmingen, “CD3-Purified mouse anti-human monoclonal antibody”, Technical Data Sheet Dec. 27, 2001 [retrieved on Apr. 17, 2013]. <URL:http://www.ebiotrade.com/buyf/products/BDPharmingen/556610.pdf>, 1 page.
BD Biosciences, Drug discovery tools for immunotoxicology research (2003); 28 pages.
BD Biosciences, Pharmingen, “FITC anti-human CD3 epsilon”, Material Safety data Sheet; Apr. 22, 2024, 5 pages.
Campana et al., “The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage”. J Immunol. (1987)138(2): 648-655 (Abstract).
Cheadle et al., “Cloning and expression of the variable regions of mouse myeloma protein MOPC315 in E. coli: Recovery of active FV fragments”. Mol Immunol. Jan. 1, 1992;29(1): 21-30.
Cheson et al., “Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas”. J Clin Oncol. Apr. 1999; 17(4): 1244-1253.
Contamin et al., “Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). ” J Immunol Meth. Feb. 1, 2005;297(1-2): 61-71.
Fecker et al., “Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana”. Plant Mol Biol. Dec. 1996;32(5): 979-986.
Guo et al., “The Development of New Formats in Engineered Bispecific Antibodies”, in Trends In Immunology Research. Veskler B. [Ed], 2005, Chapter 3, pp. 33-54.
Hager-Braun et al., “Determination of protein-derived epitopes by mass spectrometry”, Exp Rev Proteomics. Oct. 1, 2005;2(5): 745-756.
Hermanson et al. (Eds.), “Antibody Modification on Conjugation”, in Bioconjugate Techniques, 1st Edition, (1996), Chapter 10, p. 456.
Hexham et al., “Influence of relative binding affinity on efficacy in a panel of anti-CD3 scFv immunotoxins”, Mol Immunol., 2001, vol. 38, Issue 5, pp. 397-408.
Hiatt et al., “Production of antibodies in transgenic plants”. Nature Nov. 2, 1989;342(6245): 76-78.
Huang et al., “Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I c 1ain-reiated A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry”, Anal Bioanal Chem. Mar. 2020;412(&): 1693-1700.
Hwang et al., “Use of human germline genes in a CDR homology-based approach to antibody humanization”. Methods May 1, 2005;36(1): 35-42.
Kontermann et al., “Production of recombinant bispecific antibodies”. In Antibody Engineering, Chapter 13, Humana Press (2004) 248: 227-242.
Kornacker et al., “The apoptotic and proliferative fate of cytokine-induced killer cells after redirection to tumor cells with bispecific ab”, Cytotherapy, 2006, 8(1): 13-23.
Kufer et al., “Construction and biological activity of a recombinant bispecific single-chain antibody designed for therapy of minimal residual colorectal cancer”. Cancer Immunol Immunother. Nov. 1997;45(3): 193-197.
Langer R., “Controlled release of macromolecules”. J Control Release. Nov. 1, 1982;2: 98-105.
Liao et al., “Preparation and application of anti-HBx/anti-CD3 bispecific monoclonal antibody (BsAb) retargeting effector cells for lysis of human hepatoma xenografts in nude mice”. Oncol. Rep. Jul. 1, 1996;3(4): 637-644.
Lippincott-Schwartz, “Antibodies as Cell Biological Tools”, in Current Protocols in Cell Biology, John Wiley & Sons, Inc. 2002, Chapter 16.0.1-16.0.2.
Malmborg et al., “BIAcore™ as a tool in antibody engineering”. J Immunol Meth. Jun. 1, 19954; 183(1): 7-13.
Martin et al., “Structural families in loops of homologous proteins: Automatic classification, modelling and application to antibodies”. J Mol Biol. Nov. 15, 1996;263(5): 800-815.
Mather et al., “Culture of testicular cells in hormone-supplemented serum-free medium”. Ann. N. Y. Acad Sci. Jun. 1982;383(1): 44-68.
Moreno et al., “Bispecific antibodies retarget murine T cells cytotoxicity against syngeneic breast cancer in vitro and in vivo”, Cancer Immun., Immunother. May 1995;40(3): 182-190.
Müller et al., “Bispecific Antibodies for Cancer Immunotherapy”, BioDrugs, 2010, vol. 24, Issue 2, pp. 89-98.
Olsson et al., “Human-human monoclonal antibody-producing hybridomas: Technical aspects”. Meth Enzymol. Jan. 1, 1983;92: 3-16.
Owen et al., “Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco”. Bio/Technology Jul. 1992; 10(7): 790-794.
Randolph et al., “Surfactant-protein interactions”. Pharm Biotechnol. 2002; 13: 159-75.
Research Antibody Catalog, 1999, Neo Markers, p. 37.
Roitt I.M., (Ed), “Molecules which recognize antigen”, in Essential Immunology, 7th Edition, pp. 63-64 (2000).
Salmerón et al., “A conformational epitope expressed upon association of CD3ϵ with either CD3-ζ or CD3-γ is the main target for recognition by anti-DC3 monoclonal antibodies”. J Immunol. 1991; 147: 3047-3052.
Schiemann et al., “An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway”. Science Sep. 14, 2001;293(5537): 2111-2114.
Schlereth et al., “T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct”. Cancer Immunol Immunother. May 2006;55(5): 503-514.
Sidman et al., “Controlled release of macromolecules and pharmaceuticals from synthetic polypeptides based on glutamic acid”. Biopolymers: Original Res on Biomol. Jan. 1983;22(1): 547-556.
Smith-Gill et al., “Contributions of immunoglobulin heavy and light chains to antibody specificity for lysozyme and two haptens”. J Immunol. Dec. 15, 1987;139(12): 4135-4144.
Sojar et al., “A chemical method for the deglycosylation of proteins”. Arch Biochem Biophys. Nov. 15, 1987;259(1): 52-57.
Song et al., “Light chain of natural antibody plays a dominant role in protein antigen binding”. Biochem Biophys Res Comm. Feb. 16, 2000;268(2): 390-394.
Thotakura et al., “Enzymatic deglycosylation of glycoproteins”. Meth Enzymol. Jan. 1, 1987;138: 350-359.
Uda et al., “Identification of an amino acid responsible for the CD3 plymorphism in cynomolgus monkeys (Macaca fascicularis)”. J Med Primatol. Apr. 2003;32(2): 105-110.
Wang et al., “Expression and characterization of recombinant soluble monkey CD3 molecules: Mapping the FN18 polymorphic epitope”. Mol. Immunol. Mar. 1, 2004;40(16): 1179-1188.
Wilson et al., “Selection of monoclonal antibodies for the identification of lymphocyte surface antigens in the New World primate Saguinus oedipus oedipus (cotton top tamarin)”. J Immunol Meth. (1995) 178(2): 195-200.
Wolf et al., “BiTEs: Bispecific antibody contructs with unique anti-tumor activity”. Drug Discov Today Sep. 2005; 10(18): 1237-1244.
Wu A.M., “Engineering multivalent antibody fragments for in vivo targeting”. In Antibody Engineering, Humana Press, Chapter 12 (2004) 248: 209-225.
EPO Notice of Appeal by Amgen et al. and Statement of Grounds for Appeal Re Revocation of EP 2780375 B1 filed Sep. 12 & Nov. 11, 2023, in 222 pages.
EPO Appeal Replies by Opposers O1, O2, O5, O6, and O7 to Amgen et al. Appeal Re Revocation of EP 2780375 B1 filed Mar. 20, 2024, in 338 pages. (two-part document).
U.S. Office Action (Allowance) dated Mar. 27, 2024 in U.S. Appl. No. 17/011,849 in 10 pages.
U.S. Office Action dated Jun. 7, 2024 in U.S. Appl. No. 13/885,646 in 15 pages.
Related Publications (1)
Number Date Country
20220356268 A1 Nov 2022 US
Provisional Applications (7)
Number Date Country
61651486 May 2012 US
61651474 May 2012 US
61560183 Nov 2011 US
61560162 Nov 2011 US
61560149 Nov 2011 US
61560144 Nov 2011 US
61560178 Nov 2011 US
Continuations (2)
Number Date Country
Parent 17011849 Sep 2020 US
Child 17336152 US
Parent 14358511 US
Child 17011849 US