The present invention relates to a bipolar transistor device and to a method for fabricating the same. More particularly, it relates to a heterobipolar transistor device using a semiconductor containing silicon (Si) and a semiconductor containing a gallium nitride (GaN) and to a method for fabricating the same.
The base layer 103 is formed to have a mesa configuration on the collector layer 102. A collector electrode 105 is disposed on the collector layer 102 to surround the base layer 103. The emitter layer 104 is also formed to have a mesa configuration on the base layer 103. A base electrode 106 is disposed on the base layer 103 to surround the emitter layer 104, while an emitter electrode 107 is disposed on the upper surface of the emitter layer 104.
As shown in the electron energy band diagram of
Since the SiGe HBT according to the conventional embodiment is a double heterobipolar transistor (DHBT) using Si also for the collector layer 102, the energy difference between respective valence bands in the collector and base layers 102 and 103 is increased. This increases the breakdown voltage of the transistor so that a transistor device with an excellent RF characteristic is provided.
However, since the conventional SiGe HBT uses silicon (Si) for each of the emitter and collector layers 104 and 102 and the silicon germanium (SiGe) for the base layer, the difference between the respective band gaps of Si and SiGe is about 0.5 eV, which is relatively small. Accordingly, the energy difference ΔEV between respective valence bands in an emitter/base junction portion and a collector/base junction portion is not sufficiently large. This causes the problem that the breakdown voltage and the current gain cannot be increased any more.
It is therefore an object of the present invention to solve the foregoing conventional problem and thereby provide a heterobipolar transistor device with sufficiently increased breakdown voltage and current gain.
To attain the object, a bipolar transistor device according to the present invention uses a semiconductor material having a band gap larger than that of silicon (Si) for each of the emitter and collector layers thereof.
Specifically, a bipolar transistor device according to the present invention comprises: first and second semiconductor layers each formed on a substrate and composed of a Group III–V compound semiconductor of a first conductivity type; and a third semiconductor layer formed between the first and second semiconductor layers and composed of a Group IV semiconductor of a second conductivity type.
In the bipolar transistor device according to the present invention, the third semiconductor layer of the second conductivity type is disposed between the first and second semiconductor layers each of the first conductivity type so that one of the first and second semiconductor layers serves as an emitter layer and the other thereof serves as a collector layer, while the third semiconductor layer serves as a base layer. Each of the first and second semiconductor layers according to the present invention is composed of a Group III–V semiconductor having a band gap larger than that of a Group IV semiconductor composing the third semiconductor layer so that the energy differences between respective valence bands in the junctions portions between the first and third semiconductor layers and between the second and third semiconductor layers are larger than in the case where each of the first and second semiconductor layers is composed of silicon. This increases the breakdown voltage and current gain of the transistor device.
In addition, the energy difference between respective valence bands in the third and first semiconductor layers or in the third and second semiconductor layers is also increased. This allows an increase in the impurity concentration of the third semiconductor layer and reduces the sheet resistance of the third semiconductor layer, thereby allowing a reduction in the impurity concentration of the one of the first and second semiconductor layers serving as the emitter layer. The impurity concentration of the emitter layer can also be reduced so that a junction capacitance in the emitter layer is reduced. This increases a current-gain cutoff frequency and a maximum oscillating frequency.
In the bipolar transistor device according to the present invention, the Group III–V compound semiconductor preferably contains nitrogen and gallium and the Group IV semiconductor is preferably composed of silicon.
In the bipolar transistor device according to the present invention, the Group III–V compound semiconductor preferably contains nitrogen and gallium and the Group IV semiconductor is preferably a compound semiconductor containing silicon and germanium. If the compound semiconductor containing silicon and germanium is used for the third semiconductor layer serving as the base layer, the energy differences between the respective valence bands in the third and first semiconductor layers and in the third and second semiconductor layers become larger than in the case where the third semiconductor layer is composed only of silicon so that the breakdown voltage is further increased.
A method for fabricating a bipolar transistor device according to the present invention comprises: a first step of forming, on a substrate, a first mask pattern composed of an insulating film and selectively growing, on the substrate, a first semiconductor layer composed of a Group III–V compound semiconductor of a first conductivity type by using the first mask pattern formed; a second step of forming, on the first semiconductor layer, a second mask pattern composed of an insulating film and selectively growing, on the first semiconductor layer, a second semiconductor layer composed of a Group IV semiconductor of a second conductivity type by using the second mask pattern formed; and a third step of forming, on the second semiconductor layer, a third mask pattern composed of an insulating film and selectively growing, on the second semiconductor layer, a third semiconductor layer composed of a Group III–V compound semiconductor of the first conductivity type by using the third mask pattern formed.
In the method for fabricating a bipolar transistor according to the present invention, the Group III–V compound semiconductor preferably contains nitrogen and gallium and the Group IV semiconductor is preferably composed of silicon.
In the method for fabricating a bipolar transistor according to the present invention, the Group III–V compound semiconductor preferably contains nitrogen and gallium and the Group IV semiconductor is preferably a compound semiconductor containing silicon and germanium.
In the method for fabricating a bipolar transistor according to the present invention, the substrate is preferably composed of silicon of the second conductivity type and the first step preferably includes, prior to the growth of the first semiconductor layer: the step of growing, on the substrate, a first buffer layer composed of a compound semiconductor containing nitrogen and gallium.
In the method for fabricating a bipolar transistor according to the present invention, the second step preferably includes, prior to the growth of the first semiconductor layer: the step of growing, on the first semiconductor layer, a second buffer layer composed of a compound semiconductor containing nitrogen and gallium.
In the method for fabricating a bipolar transistor according to the present invention, the insulating film is preferably composed of a silicon nitride. This ensures selective growth of the first to third semiconductor layers.
Referring now to the drawings, an embodiment of the present invention will be described.
As shown in
As the ions of an n-type impurity, impurity ions of a Group VI element other than silicon (Si) and oxygen (O), such as selenium (Se) or tellurium (Te), are used, while the ions of boron (B) are used as the ions of a p-type impurity.
The base layer 13 is formed to have a mesa configuration on the collector layer 12. A collector electrode 15 composed of titanium (Ti) and aluminum (Al) is disposed on the collector layer 12 to surround the base layer 13.
The emitter layer 14 is also formed to have a mesa configuration on the base layer 13. A base electrode 16 composed of titanium (Ti) is disposed on the base layer 13 to surround the emitter layer 14, while an emitter electrode 17 composed of titanium (Ti) and aluminum (Al) is disposed on the upper surface of the emitter layer 14.
Each of the collector and base electrodes 15 and 16 may have an annular plan configuration or may be composed of a plurality of discrete electrodes.
According to the present embodiment, the band gap EG of the silicon germanium (SiGe) composing the base layer 13 is about 0.8 eV and the band gap EG of the gallium nitride (GaN) composing the emitter layer 14 and the collector layer 12 is about 3.25 eV, as shown in the band diagram of
A buffer layer composed of GaN in about one molecular layer may also be formed between the semiconductor substrate 11 and the collector layer 12. Alternatively, a buffer layer composed of GaN may also be grown at a relative low temperature between the collector and base layers 12 and 13 or between the base and emitter layers 13 and 14.
A description will be given herein below to a method for forming a heterojunction composed of silicon (Si) and a gallium nitride (GaN). In the embodiment, GaN/Si represents the case where a GaN layer is grown on a Si layer and Si/GaN represents the case where a Si layer is grown on a GaN layer.
Since Si and GaN have different lattice constants and different thermal expansion coefficients, misfit dislocation resulting from crystal lattice mismatch occurs at the GaN/Si interface or at the Si/GaN interface.
In the GaN/Si junction, the lattice constant of Si is 5.43 Å and the lattice constant of GaN of zinc blende type is 4.53 Å so that the difference therebetween is about 16%. However, “Technical Report of IEICE, OPE94-103(1994), M. Kondow” has reported that, since GaN is 17% shorter in bond length than Si, lattice matching occurs between GaN and Si and a multilayer structure can be formed from GaN and Si without the occurrence of the misfit location. In addition, a crack resulting from the different thermal expansion coefficients of Si and GaN can be circumvented by selective crystal growth which narrows a crystal growing region by using a mask film. Thus, the collector layer 12 composed of GaN can be grown on the substrate 11 composed of Si.
On the other hand, Si/GaN growth is also possible as reported by Supratic Guha (Appl. Phys. Lett., Vol. 76, No. 10, pp. 1264–1266 (2000)).
As a result of making various examinations, the present inventors have reached the following finding concerning the growth of a SiGe layer on a GaN layer (SiGe/GaN) and the growth of a GaN layer on a SiGe layer (GaN/SiGe).
If SiGe is used for the base layer 13, Si has a lattice constant of 5.43 Å and Ge has a lattice constant of 5.66 Å so that the difference therebetween is as small as about 4%. Even in SiGe in which a Ge composition ratio is high, the difference in lattice constant between SiGe and GaN is about 20%, which is lower than the difference in lattice constant between GaN and sapphire. This proves that each of the SiGe/GaN and GaN/SiGe combinations allows the growth a semiconductor crystal which is sufficiently excellent to form a transistor device.
Since the base layer 13 according to the present embodiment is composed of SiGe having a band gap smaller than that of Si, the use of SiGe for the base layer 13 provides a higher breakdown voltage than the use of Si.
The current gain β of the bipolar transistor device according to the present embodiment is given by the expressions (1) and (2):
where Ic represents a collector current, IBh represents a reverse-hole-injection base current, Ne represents an n-type impurity concentration in the emitter layer, Pb represents a p-type impurity concentration in the base layer, vbe represents an electron speed in the base layer, veh represents a hole speed in the emitter layer, Δ E represents the band gap difference between the emitter and the base, k represents the Boltzmann constant, and T represents an absolute temperature.
From the expression (1), it will be understood that the current gain β is larger as the reverse-hole-injection base current IBh is smaller. From the expression (2), it will be understood that the current gain β is larger as the band gap difference Δ E is larger.
The current-gain cutoff frequency fT is given by the expressions (3) and (4) and the maximum oscillating frequency fmax is given by the expression (5).:
fT=gm/{2π(Cbc+Ceb)} (3)
gm=(q/kT)Ic (4)
fmax=√{square root over ( )}fT/√{square root over ( )}(8πCbcRB) (5)
where gm represents a transconductance, Cbc represents a base-to-collector capacitance, Ceb represents an emitter-to-base capacitance, and RB represents a base resistance.
From the expression (3), it will be understood that the current-gain cutoff frequency fT is higher as the collector current Ic shown in the expression (4) is larger. From the expressions (3) and (5), it will be understood that the maximum oscillating frequency fmax is also higher as the collector current Ic is larger.
From the foregoing, it can be concluded that the collector current Ic is larger as the collector-to-base or base-to-emitter band gap difference Δ E is increased. This allows an increase in the impurity concentration of the base layer 13 and reduces the resistance of the base layer 13.
Although the present embodiment has used silicon germanium (SiGe) for the base layer 13, a material composing the base layer 13 is not limited to a Group IV–IV compound semiconductor composed of SiGe. It is also possible to use a single-element Group IV semiconductor such as Si or Ge to compose the base layer 13. The collector and emitter layers 12 and 14 may also be composed of a Group III element doped with aluminum (Al) or of a Group III–V compound semiconductor using phosphorus (P) as the Group V element, such as GaP.
A material composing the semiconductor substrate 11 is not limited to Si. A sapphire substrate or an SOI substrate may also be used as the semiconductor substrate 11.
Although the n-type collector layer 12, the p-type base layer 13, and the n-type emitter layer 14 are provided in this order on the semiconductor substrate 11 in the present embodiment, an n-type emitter layer, a p-type base layer, and an n-type collector layer may also be provided in this order on the substrate.
It is also possible to provide a pnp bipolar transistor device obtained by switching the respective conductivity types of the collector layer 12, the base layer 13, and the emitter layer 14.
A description will be given herein below to a method for fabricating the bipolar transistor device thus constructed.
First, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2001-204216 | Jul 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4119994 | Jain et al. | Oct 1978 | A |
4985742 | Pankove | Jan 1991 | A |
5604357 | Hori | Feb 1997 | A |
5641975 | Agarwal et al. | Jun 1997 | A |
5670798 | Schetzina | Sep 1997 | A |
5679965 | Schetzina | Oct 1997 | A |
5981986 | Tsuchiya | Nov 1999 | A |
6046464 | Schetzina | Apr 2000 | A |
6106613 | Sato et al. | Aug 2000 | A |
6432786 | Chen et al. | Aug 2002 | B1 |
6432788 | Maruska et al. | Aug 2002 | B1 |
6462360 | Higgins, Jr. et al. | Oct 2002 | B1 |
6472694 | Wilson et al. | Oct 2002 | B1 |
6498360 | Jain et al. | Dec 2002 | B1 |
20040129200 | Kouvetakis et al. | Jul 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20030011000 A1 | Jan 2003 | US |