Welser, R.E., et al., “Role of Neutral Base Recombination in High Gain AlGaAs/GaAs HBT's,” IEEE Transactions on Electron Devices, 46(8):1599-1607(1999). |
Chang, P.C., et al., “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., 76(16):2262-2264 (2000). |
Ahmari, D.A., et al., “High-speed InGaP/GaAs HBT's with a Strained InxGa1-xAs Base,” IEEE Electron Device Letters, 17(5):226-228(1996). |
Welser, R.E., et al., “Turn-on Voltage Investigation of GaAs-Based Bipolar Transistors with Ga1-xInxAs1-yNy Base Layers,” IEEE Electron Device Letters, 21(12):1-4(2000). |
Low, T., et al., “InGaP HBT technology for RF and microwave instrumentation,” Solid-State Electronics, 43:1437-1444(1999). |
Liu, W., et al., “Current Transport Mechanism in GaInP/GaAs Heterojunction Bipolar Transistors,” IEEE Transactions on Electron Devices, 40(8):1378-1383(1993). |
Lu, Z.H., et al., “Determination of band gap narrowing and hole density for heavily C-doped GaAs by photoluminescence,” Appl. Phys. Lett., 64 (1): 88-90 (1994). |
Welser, R.E., et al., “High Performance Al0.35Ga0.65As/GaAs HBT's,” IEEE Electron Device Letters, 21(5):196-199(2000). |
Welser, R.E., et al., “Base Current Investigation of the Long-Term Reliability of GaAs-Based HBTs,” GaAs Mantech, (2000). |
Patton, G.L., et al. “Graded-SiGe-Base, Poly-Emitter Heterojunction Bipolar Transistors,” IEEE Electron Device Letters, 10(12):534-536(1989). |
Ida, M., et al., “InP/InGaAs DHBTs with 341-Ghz fT at high current density of over 800 kA/cm2,” IEEE, (2001). |
Kroemer, H., “Heterostructure bipolar transistors: What should we build?” J. Vac. Sci. Technol., B1(2) :126-130(1983). |
Fujihara, A., et al., “High-speed InP/InGaAs DHBTs with Ballistic Collector Launcher Structure,” IEEE, (2001). |
Nakahara, K., et al., “Continuous-wave operation of long-wavelength GaInNAs/GaAs quantum well laser,” Electronic Letters, 32(17): 1585-1586(1996). |
Mochizuki, K., et al., “GaInP/GaAs Collector-Up Tunneling-Collector Heterojunction Bipolar Transistors (C-Up TC-HBTs): Optimization of Fabrication Process and Epitaxial Layer Structure for High-Efficiency High-Power Amplifiers,” Transactions on Electron Devices, 47(12):2277-2283(2000). |
Chang, et al., “InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor,” Applied Physics Letters, 79(19):2788-2790 (2000). |
Welser, et al., “Low Vbe GaInAsN Base Heterojunction Bipolar Transistors,” IEICE Trans. Electron., E84-C(10): 1389-1393 (2001). |
Li, et al., “DC characteristics of MOVPE-grown Npn InGaP/InGaAsN DHBTs,” Electronics Letters, 36(1): 81-83 (2000). |
Kohama, et al., “Using Carbon Tetrachloride for Carbon Doping AlxGa1-x As Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., 34(7A): 3504-3505 (1995). |
Sugiura, et al., Characterization of heavily carbon-doped InGaAsP layers grown by chemical beam epitaxy using tetrabromide, Applied Physics Letters, 73(12):2482-2484 (1998). |
Bhat, et al., Growth of of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition, Journal of Crystal Growth, 195: 427-437 (1998). |
Pan, N., et al., “Pseudomorphic In-Graded Carbon Doped GaAs Base Heterojunction Bipolar Transistors by Metal Organic Chemical Vapor Deposition,” Journal of Electronic Materials, 25(7): 13 (1996). |
Ohkubo, M., et al., “Compositionally Graded C-doped In1-xGaxAs Base InP/InGaAs D-HBTs Grown by MOCVD with Low Base Sheet Resistance and High Current Gain”, IEEE, pp. 641-644, 1997. |
Stockman, S.A., et al., “Carbon Dopin of InxGa1-xAs By MOCVD Using CCI4”, pp. 40-43, no date given. |
Keiper, D., et al., “Metalorganic Vapour Phase Epitaxy Growth of InP-based Herojunction Bipolar Transistors with Carbon Doped InGaAs Base Using Tertiarybutylarsine and Tertiarybutylphosphine in N2Ambient”, XP-001030248, Jpn J. Appl. Phys.vol. 39 Pt. 1, No. 11, pp. 6162-6165, Nov. 2000. |
Stillman, G.E., et al., “Carbon-doped InGaAs grown by MOCVD for InP/InGaAs heterojunction bipolar transistors”, Inst. Phys. Conf. Ser. No. 129: Chapter 8, pp. 687-692, 1992. |