1. Field of the Invention
The present invention relates to the characterization of transient behavior of digital circuits.
2. Discussion of the Background Art
Characterizing the transient behavior of digital circuits, i.e. the transition from a logical zero to a logical one and vice versa, has become increasing important for designing as well as manufacturing such digital circuits.
A standard process is to visualize the digital transient behavior by means of oscilloscopes. Actual transient signals are sampled and displayed.
A further characterization of digital circuits requires determining the so-called Bit Error Rate (BER), i.e. the ratio of erroneous digital signals (Bits) to the total number of regarded digital signals. Typical Bit Error Rates that should not be exceeded are in the range of 10−9 to 10−12, or in other words, one error in 109 to 1012 transmitted bits can be accepted depending on application. That, on the other hand, means that at least three times (109 to 1012) Bits have to be tested error free in order to receive meaningful test results (e.g. >95% confidence level). This, however, leads to long measuring times, so that the characterization of BER generally is a very time-consuming task.
While the eye diagram of
The actual transient behavior of digital circuits becomes increasingly worse with increasing data transmission rates. Circuits showing sharp (HIGH-to-LOW or LOW-to-HIGH) transitions at low frequencies exhibit ‘long slopes’ for higher frequencies, whereby the actual course of the slope is also subject to jitter or other influences. It goes without saying that with such ‘long and fuzzy slopes’ also the likelihood of (bit) errors increases.
In particular for testing applications in manufacturing environments, it has been shown that the oscilloscope approach (of
It is therefore an object of the present invention to provide an improved transient testing for digital circuits which in particular fosters manufacturing floor applications. The object is solved by the independent claims. Preferred embodiments are shown by the dependent claims.
According to the invention, a digital circuit (as a Device under Test—DUT) is tested in that a testing device applies a pass/fail test for a pre-determined number of sample points for characterizing the transient behavior of logical signals within the digital circuit. For each sample point, the testing device determines a Bit Error Rate (BER) value representing the ratio of erroneous digital signals to the total number of regarded digital signals. The determined BER value is then compared with a threshold BER value for that sample point, whereby the test for this sample point is failed when the determined BER value exceeds the threshold BER value. It is clear that all sample points can have the same threshold BER value.
Dependent on the specific application, the test for the entire digital circuit can be regarded as passed, if all sample points have passed. However, additional analysis criteria may be applied, so that the test only fails if more than one sample points fail, or e.g. if a value of summed up BER values of some or all the samples points exceeds a pre-defined total BER value. Further, weighing criteria might be applied so that the determined BER values for one or more sampled points are weighed with pre-defined weighing factors, e.g. in order to emphasize or prioritize the importance or relevance of some key sample points. It is clear that the aforementioned criteria and analysis methods are only preferred examples but not exhausting. The actual analysis and defined criteria depend on the specific context of application and specification for the digital circuit.
The sample points are preferably selected in order to efficiently characterize the digital circuit. Preferably, the sample points are selected in critical transition areas. By minimizing the number of sample points, the required testing time will also be minimized. Useful information for defining the sample point can be previous measurements on other such digital circuits, and in particular ‘full-blown’ measurements over the entire range of sample points as shown e.g. in
The sample points can be ‘manually’ selected by a user or automatically set or proposed by the testing device. In the latter case, the testing device requires at least one reference measurement or other reference information. Further in a semi-automated mode, the testing device can ‘propose’ sample points, which can still be modified by the user, and further sample points might be added.
The sample points are preferably defined by its absolute or relative position with respect to transitions of a reference clock signal either applied to the DUT or taken from a clock output of the DUT, if applicable. This can be accomplished by defining sampling points having an absolute or relative threshold value and an absolute or relative sample point delay value with respect to either the signal transitions itself or other transitions such as a reference clock signal.
In a preferred embodiment for selecting preferred sample points, a so-called bathtub measurement is employed having a sample point delay sweep while the threshold is kept constant. This represents one single row of a full-blown BER eye diagram as shown e.g. in
By selecting only a few but meaningful sample points from the full range of applicable sample points, the invention allows to significantly reduce testing time, thus rendering possible automated and fast testing applications in particular applicable as passed/fail tests for production floor applications. In an example, wherein only 6 selected sample points are tested with a threshold BER value of <10−8 at a clock rate of 2.488 GHz (OC48), the pure measuring time will only be 723 ms. Considering one second for synchronization and 150 ns for reprogramming, this totals to roughly 2.5 s total testing time. In contrast, an oscilloscope would first have taken in that 2.5 s about 100-200 samples per sample point. That mans that the invention provides an improved testing liability in a shorter time.
It is clear that the invention can be partly or entirely embodied or supported by one or more suitable software programs, which can be stored on or otherwise provided by any kind of data carrier, and which might be executed in or by any suitable data processing unit.
Other objects and many of the attendant advantages of the present invention will be readily appreciated and become better understood by reference to the following detailed description when considering in connection with the accompanied drawings. Features that are substantially or functionally equal or similar will be referred to with the same reference sign(s).
In
In operation, the generator 100 provides the stimulus signal to the DUT 110, and the analyzer 120 receives from the DUT 110 the response signals on the stimulus signals. The analyzer 120 compares the received response signals from the DUT 110 with the expected data signals. A processing unit 130 (which can also be part of the Agilent ParBERT® 81250) determines for each of a pre-given number of sample points a value of the BER. Each sample point is preferably defined by a delay time with respect to master clock transitions, and by a threshold value for the output signal of the DUT 110.
The processing unit 130 further compares the determined BER value with a pre-given threshold BER value for each sample point. In case the determined BER value exceeds the threshold BER value, the test for this sample point will be regarded as ‘FAILED’. Otherwise, in case the determined BER value equals or is below the threshold BER value, the test for this sample point will be regarded as ‘PASSED’.
In a preferably embodiment, the processing unit 130 will regard the entire test (for all the sample points) as ‘FAILED’ when the test for at least one sample point has ‘FAILED’.
For selecting preferred sample points, a so-called bathtub measurement is executed in
In the example of
In order to cover potential tolerances of the DUT 110, the selected sample points 400A-450A might be shifted slightly towards the ‘inside of the eye’, thus leading to ‘corrected’ sample points 400B-450B.
In a specific embodiment example (based on
The processing unit 130 will regard the entire test (for all 6 sample points) as ‘FAILED’, when the test for at least one sample point has ‘FAILED’ or, in other words, when the actual BER value of at least one of the sample points exceeds the threshold BER value of 10−9.
Number | Date | Country | Kind |
---|---|---|---|
01106632 | Mar 2001 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4207523 | Acker | Jun 1980 | A |
4234954 | Lange et al. | Nov 1980 | A |
4367550 | Douverne | Jan 1983 | A |
4862071 | Sato et al. | Aug 1989 | A |
4920537 | Darling et al. | Apr 1990 | A |
5228042 | Gauthier et al. | Jul 1993 | A |
5325397 | Scholz et al. | Jun 1994 | A |
5333147 | Nohara et al. | Jul 1994 | A |
5623497 | Shimawaki et al. | Apr 1997 | A |
5761216 | Sotome et al. | Jun 1998 | A |
5831988 | Fagerness | Nov 1998 | A |
6169907 | Chang et al. | Jan 2001 | B1 |
6178213 | McCormack et al. | Jan 2001 | B1 |
6249518 | Cui | Jun 2001 | B1 |
6292911 | Swanson | Sep 2001 | B1 |
6430715 | Myers et al. | Aug 2002 | B1 |
6438717 | Butler et al. | Aug 2002 | B1 |
6583903 | Way et al. | Jun 2003 | B1 |
6968480 | Yuan et al. | Nov 2005 | B1 |
20030097622 | Liu et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
0 020 827 | Jan 1981 | EP |
Number | Date | Country | |
---|---|---|---|
20020133763 A1 | Sep 2002 | US |