Camera modules patterned with pi filter groups

Information

  • Patent Grant
  • 9210392
  • Patent Number
    9,210,392
  • Date Filed
    Wednesday, May 1, 2013
    11 years ago
  • Date Issued
    Tuesday, December 8, 2015
    9 years ago
Abstract
Systems and methods in accordance with embodiments of the invention pattern array camera modules with π filter groups. In one embodiment, an array camera module includes: an M×N imager array including a plurality of focal planes, where each focal plane includes an array of pixels; an M×N optic array of lens stacks, where each lens stack corresponds to a focal plane, and where each lens stack forms an image of a scene on its corresponding focal plane; where each pairing of a lens stack and focal plane thereby defines a camera; where at least one row in the M×N array of cameras includes at least one red camera, one green camera, and one blue camera; and where at least one column in the M×N array of cameras includes at least one red camera, one green camera, and one blue camera.
Description
FIELD OF THE INVENTION

The present invention relates generally to digital cameras and more specifically to filter patterns utilized in camera modules of array cameras.


BACKGROUND OF THE INVENTION

Conventional digital cameras typically include a single focal plane with a lens stack. The focal plane includes an array of light sensitive pixels and is part of a sensor. The lens stack creates an optical channel that forms an image of a scene upon the array of light sensitive pixels in the focal plane. Each light sensitive pixel can generate image data based upon the light incident upon the pixel.


In a conventional color digital camera, an array of color filters is typically applied to the pixels in the focal plane of the camera's sensor. Typical color filters can include red, green and blue color filters. A demosaicing algorithm can be used to interpolate a set of complete red, green and blue values for each pixel of image data captured by the focal plane given a specific color filter pattern. One example of a camera color filter pattern is the Bayer filter pattern. The Bayer filter pattern describes a specific pattern of red, green and blue color filters that results in 50% of the pixels in a focal plane capturing green light, 25% capturing red light and 25% capturing blue light.


SUMMARY OF THE INVENTION

Systems and methods in accordance with embodiments of the invention pattern array camera modules with π filter groups. In one embodiment, an array camera module includes: an M×N imager array including a plurality of focal planes, each focal plane including an array of light sensitive pixels; an M×N optic array of lens stacks, where each lens stack corresponds to a focal plane, and where each lens stack forms an image of a scene on its corresponding focal plane; where each pairing of a lens stack and its corresponding focal plane thereby defines a camera; where at least one row in the M×N array of cameras includes at least one red color camera, at least one green color camera, and at least one blue color camera; and where at least one column in the M×N array of cameras includes at least one red color camera, at least one green color camera, and at least one blue color camera.


In another embodiment, M and N are each greater than two and at least one of M and N is even; color filters are implemented within the cameras in the array camera module such that the array camera module is patterned with at least one π filter group including: a 3×3 array of cameras including: a reference camera at the center of the 3×3 array of cameras; two red color cameras located on opposite sides of the 3×3 array of cameras; two blue color cameras located on opposite sides of the 3×3 array of cameras; and four green color cameras surrounding the reference camera.


In yet another embodiment, each of the four green color cameras surrounding the reference camera is disposed at a corner location of the 3×3 array of cameras.


In still another embodiment, M is four; N is four; the first row of cameras of the 4×4array camera module includes, in the following order, a green color camera, a blue color camera, a green color camera, and a red color camera; the second row of cameras of the 4×4 array camera module includes, in the following order, a red color camera, a green color camera, a red color camera, and a green color camera; the third row of cameras of the 4×4 array camera module includes, in the following order, a green color camera, a blue color camera, a green color camera, and a blue color camera; and the fourth row of cameras of the 4×4 array camera module includes, in the following order, a blue color camera, a green color camera, a red color camera, and a green color camera.


In an even further embodiment, M is four; N is four; the first row of cameras of the 4×4 array camera module includes, in the following order, a red color camera, a green color camera, a blue color camera, and a green color camera; the second row of cameras of the 4×4 array camera module includes, in the following order a green color camera, a red color camera, a green color camera, and a red color camera; the third row of cameras of the 4×4 array camera module includes, in the following order, a blue color camera, a green color camera, a blue color camera, and a green color camera; and the fourth row of cameras of the 4×4 array camera module includes, in the following order, a green color camera, a red color camera, a green color camera, and a blue color camera.


In still another embodiment, the reference camera is a green color camera.


In still yet another embodiment, the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.


In a still yet further embodiment, each of the two red color cameras is located at a corner location of the 3×3 array of cameras, and each of the two blue color cameras is located at a corner location of the 3×3 array of cameras.


In another embodiment, at least one color filter is implemented on the imager array.


In a further embodiment, at least one color filter is implemented on a lens stack.


In another embodiment, a 3×3 array camera module includes: a 3×3 imager array including a 3×3 arrangement of focal planes, each focal plane including an array of light sensitive pixels; a 3×3 optic array of lens stacks, where each lens stack corresponds to a focal plane, and where each lens stack forms an image of a scene on its corresponding focal plane; where each pairing of a lens stack and its corresponding focal plane thereby defines a camera; where the 3×3 array of cameras includes: a reference camera at the center of the 3×3 array of cameras; two red color cameras located on opposite sides of the 3×3 array of cameras; two blue color cameras located on opposite sides of the 3×3 array of cameras; and four green color cameras, each located at a corner location of the 3×3 array of cameras; where each of the color cameras is achieved using a color filter.


In a further embodiment, at least one color filter is implemented on the imager array to achieve a color camera.


In a still yet further embodiment, at least one color filter is implemented within a lens stack to achieve a color camera.


In yet another embodiment, the reference camera is a green color camera.


In an even further embodiment, the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.


In another embodiment, a method of patterning an array camera module with at least one π filter group includes: evaluating whether an imager array of M×N focal planes, where each focal plane comprises an array of light sensitive pixels, includes any defective focal planes; assembling an M×N array camera module using: the imager array of M×N focal planes; an M×N optic array of lens stacks, where each lens stack corresponds with a focal plane, where the M×N array camera module is assembled so that: each lens stack and its corresponding focal plane define a camera; color filters are implemented within the array camera module such that the array camera module is patterned with at least one π filter group including: a 3×3 array of cameras including: a reference camera at the center of the 3×3 array of cameras; two red color cameras located on opposite sides of the 3×3 array of cameras; two blue color cameras located on opposite sides of the 3×3 array of cameras; and four green color cameras surrounding the reference camera; and where the array camera module is patterned with the at least one π filter group such that a camera that includes a defective focal plane is a green color camera.


In a further embodiment, at least one color filter is implemented on the imager array.


In a still further embodiment, at least one color filter is implemented within a lens stack.


In an even further embodiment, the reference camera is a green color camera.


In still yet another embodiment, the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an array camera with a camera module and processor in accordance with an embodiment of the invention.



FIG. 2 illustrates a camera module with an optic array and imager array in accordance with an embodiment of the invention.



FIG. 3A conceptually illustrates a 3×3 camera module patterned with a π filter group where red cameras are arranged horizontally and blue cameras are arranged vertically in accordance with an embodiment of the invention.



FIG. 3B conceptually illustrates a 3×3 camera module patterned with a π filter group where red cameras are arranged vertically and blue cameras are arranged horizontally in accordance with an embodiment of the invention.



FIG. 4 conceptually illustrates a 4×4 camera module patterned with two π filter groups in accordance with an embodiment of the invention.



FIG. 5 conceptually illustrates a 4×4 camera module patterned with two π filter groups with two cameras that could each act as a reference camera in accordance with an embodiment of the invention.



FIG. 6A illustrates a process for testing an imager array for defective focal planes to create a camera module that reduces the effect of any defective focal plane in accordance with an embodiment of the invention.



FIG. 6B conceptually illustrates a 4×4 camera module patterned with two π filter groups where a faulty focal plane causes a loss of red coverage around possible reference cameras.



FIG. 6C conceptually illustrates the 4×4 camera module patterned with a different arrangement of π filter groups relative to FIG. 6B where the faulty focal plane does not result in a loss of red coverage around possible reference cameras in accordance with an embodiment of the invention.



FIG. 7A conceptually illustrates use of a subset of cameras to produce a left virtual viewpoint for an array camera operating in 3D mode on a 4×4 camera module patterned with π filter groups in accordance with an embodiment of the invention.



FIG. 7B conceptually illustrates use of a subset of cameras to produce a right virtual viewpoint for an array camera operating in 3D mode on a 4×4 camera module patterned with π filter groups in accordance with an embodiment of the invention.



FIG. 8 conceptually illustrates a 4×4 camera module patterned with π filter groups where nine cameras are utilized to capture image data used to synthesize frames of video in accordance with an embodiment of the invention.



FIG. 9 is a flow chart illustrating a process for generating color filter patterns including π filter groups in accordance with embodiments of the invention.



FIGS. 10A-10D illustrate a process for generating a color filter pattern including π filter groups for a 5×5 array of cameras in accordance with embodiments of the invention.



FIGS. 11A-11D illustrate a process for generating a color filter pattern including π filter groups for a 4×5 array of cameras in accordance with embodiments of the invention.





DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for patterning array cameras with π filter groups in accordance with embodiments of the invention are illustrated. In many embodiments, camera modules of an array camera are patterned with one or more π filter groups. The term patterned here refers to the use of specific color filters in individual cameras within the camera module so that the cameras form a pattern of color channels within the array camera. The term color channel or color camera can be used to refer to a camera that captures image data within a specific portion of the spectrum and is not necessarily limited to image data with respect to a specific color. The term Bayer camera can be used to refer to a camera that captures image data using the Bayer filter pattern on the image plane. In many embodiments, a color channel can include a camera that captures infrared light, ultraviolet light, extended color and any other portion of the visible spectrum appropriate to a specific application. The term π filter group refers to a 3×3 group of cameras including a central camera and color cameras distributed around the central camera to minimize occlusion zones. The central camera of a π filter group can be used as a reference camera when synthesizing an image using image data captured by an imager array. A camera is a reference camera when its viewpoint is used as the viewpoint of the synthesized image. The central camera of a π filter group is surrounded by color cameras in a way that minimizes occlusion zones for each color camera when the central camera is used as a reference camera. Occlusion zones are areas surrounding foreground objects not visible to cameras that are spatially offset from the reference camera due to the effects of parallax. In several embodiments, the central camera is a green camera while in other embodiments the central camera captures image data from any appropriate portion of the spectrum. In a number of embodiments, the central camera is a Bayer camera (i.e. a camera that utilizes a Bayer filter pattern to capture a color image). In many embodiments, a π filter group is a 3×3 array of cameras with a green color camera at each corner and a green color camera at the center which can serve as the reference camera with a symmetrical distribution of red and blue cameras around the central green camera. The symmetrical distribution can include arrangements where either red color cameras are directly above and below the center green reference camera with blue color cameras directly to the left and right, or blue color cameras directly above and below the green center reference camera with red color cameras directly to the left and right.


Camera modules of dimensions greater than a 3×3 array of cameras can be patterned with π filter groups in accordance with many embodiments of the invention. In many embodiments, patterning a camera module with π filter groups enables an efficient distribution of cameras around a reference camera that reduces occlusion zones. In several embodiments, patterns of π filter groups can overlap with each other such that two overlapping π filter groups on a camera module share common cameras. When overlapping π filter groups do not span all of the cameras in the camera module, cameras that are not part of a π filter group can be assigned a color to minimize occlusion zones in the resulting camera array.


In several embodiments, patterning a camera module with π filter groups can result in reference cameras that are not in the center of the camera module. Additionally, color cameras surrounding the reference camera need not be uniformly distributed but need only be distributed in a way to minimize occlusion zones of each color from the perspective of the reference camera. Utilization of a reference camera in a π filter group to synthesize an image from captured image data can be significantly less computationally intensive than synthesizing an image using the same image data from a virtual viewpoint.


High quality images or video can be captured by an array camera including a camera module patterned with π filter groups utilizing a subset of cameras within the camera module (i.e. not requiring that all cameras on a camera module be utilized). Similar techniques can also be used for efficient generation of stereoscopic 3D images utilizing image data captured by subsets of the cameras within the camera module.


Patterning camera modules with π filter groups also enables robust fault tolerance in camera modules with multiple π filter groups as multiple possible reference cameras can be utilized if a reference camera begins to perform sub optimally. Patterning camera modules with π filter groups also allows for yield improvement in manufacturing camera modules as the impact of a defective focal plane on a focal plane array can be minimized by simply changing the pattern of the color lens stacks in an optic array. Various π filter groups and the patterning of camera modules with π filter groups in accordance with embodiments of the invention are discussed further below.


Array Cameras

In many embodiments, an array camera includes a camera module and a processor. An array camera with a camera module patterned with π filter groups in accordance with an embodiment of the invention is illustrated in FIG. 1. The array camera 100 includes a camera module 102 as an array of individual cameras 104 where each camera 104 includes a focal plane with a corresponding lens stack. An array of individual cameras refers to a plurality of cameras in a particular arrangement, such as (but not limited to) the square arrangement utilized in the illustrated embodiment. The camera module 102 is connected 106 to a processor 108. In the illustrated embodiment, a camera 104 labeled as “R” refers to a red camera with a red filtered color channel, “G” refers to a green camera with a green filtered color channel and “B” refers to a blue camera with a blue filtered color channel. Although a specific array camera is illustrated in FIG. 1, any of a variety of different array camera configurations can be utilized in accordance with many different embodiments of the invention.


Camera Modules

Camera modules in accordance with embodiments of the invention can be constructed from an imager array and an optic array. A camera module in accordance with an embodiment of the invention is illustrated in FIG. 2. The camera module 200 includes an imager array 230 including an array of focal planes 240 along with a corresponding optic array 210 including an array of lens stacks 220. Within the array of lens stacks, each lens stack 220 creates an optical channel that forms an image of a scene on an array of light sensitive pixels within a corresponding focal plane 240. Each pairing of a lens stack 220 and focal plane 240 forms a single camera 104 within the camera module. Each pixel within a focal plane 240 of a camera 104 generates image data that can be sent from the camera 104 to the processor 108.


In several embodiments, color filters in individual cameras can be used to pattern the camera module with π filter groups. These cameras can be used to capture data with respect to different colors, or a specific portion of the spectrum. In contrast to applying color filters to the pixels of the camera, color filters in many embodiments of the invention are included in the lens stack. For example, a green color camera can include a lens stack with a green light filter that allows green light to pass through the optical channel. In many embodiments, the pixels in each focal plane are the same and the light information captured by the pixels is differentiated by the color filters in the corresponding lens stack for each filter plane. Although a specific construction of a camera module with an optic array including color filters in the lens stacks is described above, camera modules including π filter groups can be implemented in a variety of ways including (but not limited to) by applying color filters to the pixels of the focal planes of the camera module similar to the manner in which color filters are applied to the pixels of a conventional color camera. In several embodiments, at least one of the cameras in the camera module can include uniform color filters applied to the pixels in its focal plane. In many embodiments, a Bayer filter pattern is applied to the pixels of one of the cameras in a camera module. In a number of embodiments, camera modules are constructed in which color filters are utilized in both the lens stacks and on the pixels of the imager array.


In several embodiments, an array camera generates image data from the multiple focal planes and uses a processor to synthesize one or more images of a scene. In certain embodiments, the image data captured by a single focal plane in the sensor array can constitute a low resolution image (the term low resolution here is used only to contrast with higher resolution images), which the processor can use in combination with other low resolution image data captured by the camera module to construct a higher resolution image through Super Resolution processing. Super Resolution processes that can be used to synthesize high resolution images using low resolution images captured by an array camera are discussed in U.S. patent application Ser. No. 12/967,807 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes”, filed Dec. 14, 2010, the disclosure of which is hereby incorporated by reference in its entirety.


Although specific array cameras are discussed above, many different array cameras are capable of utilizing π filter groups in accordance with embodiments of the invention. Camera modules utilizing π filter groups in accordance with embodiments of the invention are described in further detail below.


Patterning with π Filter Groups

Camera modules can be patterned with π filter groups in accordance with embodiments of the invention. In several embodiments, π filter groups utilized as part of a camera module can each include a central camera that can function as a reference camera surrounded by color cameras in a way that reduces occlusion zones for each color. In certain embodiments, the camera module is arranged in a rectangular format utilizing the RGB color model where a reference camera is a green camera surrounded by red, green and blue cameras. In several embodiments, a number of green cameras that is twice the number of red cameras and twice the number of blue cameras surround the reference camera. However, any set of colors from any color model can be utilized to detect a useful range of colors in addition to the RGB color model, such as the cyan, magenta, yellow and key (CMYK) color model or red, yellow and blue (RYB) color model.


In several embodiments, two π filter groups can be utilized in the patterning of a camera module when the RGB color model is used. One π filter group is illustrated in FIG. 3A and the other π filter group is illustrated FIG. 3B. Either of these π filter groups can be used to pattern any camera module with dimensions greater than a 3×3 array of cameras.


In embodiments with a 3×3 camera module, patterning of the camera module with π filter group includes only a single π filter group. A π filter group on a 3×3 camera module in accordance with an embodiment of the invention is illustrated in FIG. 3A. The π filter group 300 includes a green camera at each corner, a green reference camera in the center notated within a box 304, blue cameras above and below the reference camera, and red cameras to the left and right sides of the reference camera. In this configuration, the number of green cameras surrounding the central reference camera is twice the number of red cameras and twice the number of blue cameras. An alternative to the π filter group described in FIG. 3A is illustrated in FIG. 3B in accordance with an embodiment of the invention. This π filter group also includes green cameras at the corners with a green reference camera 352 at the center, as denoted with a box. However, unlike FIG. 3A, the red cameras shown in FIG. 3B are above and below, and the blue cameras are to the left and right side of the reference camera. As with the π filter group shown in FIG. 3A, the π filter group in FIG. 3B includes a central reference camera surrounded by a number of green cameras that is twice the number of red cameras and twice the number of blue cameras. As discussed above, the reference camera need not be a green camera. In several embodiments, the configurations in FIGS. 3A and 3B can be modified to include a central camera that employs a Bayer color filter. In other embodiments, the central camera is an infrared camera, an extended color camera and/or any other type of camera appropriate to a specific application. In further embodiments, any of a variety of color cameras can be distributed around the reference camera in a manner that reduces occlusion zones with respect to each color channel.


Any camera module with dimensions at and above 3×3 cameras can be patterned with one or more π filter groups, where cameras not within a π filter group are assigned a color that reduces or minimizes the likelihood of occlusion zones within the camera module given color filter assignments of the π filter groups. A 4×4 camera module patterned with two π filter groups in accordance with an embodiment of the invention is illustrated in FIG. 4. The camera module 400 includes a first π filter group 402 of nine cameras centered on a reference green camera 404. A second π filter group 410 is diagonally located one camera shift to the lower right of the first π filter group. The second π filter group shares the four center cameras 412 of the camera module 400 with the first π filter group. However, the cameras serve different roles (i.e. different cameras act as reference cameras in the two π filter groups). As illustrated in FIG. 4, the two cameras at the corners 406 and 408 of the camera module are not included in the two π filter groups, 402 and 410. The color filters utilized within these cameras are determined based upon minimization of occlusion zones given the color filter assignments of the cameras that are part of the two π filter groups, 402 and 410. Due to the patterning of the π filter groups, there is an even distribution of blue color cameras around the reference camera, but there is no red color camera above the reference camera. Therefore, selecting the upper right corner camera 406 to be red provides red image data from a viewpoint above the reference camera and the likelihood of occlusion zones above and to the right of the foreground images in a scene for the reference camera 404 and the center camera of the second π filter group is minimized. Similarly, selecting the lower left corner camera 408 to be blue provides blue image data from a viewpoint to the left of the reference camera and the likelihood of occlusion zones below and to the left of the foreground images in a scene for the reference camera 404 and the center camera of the second π filter group is minimized. Thereby, a camera module with dimensions greater than 3×3 can be patterned with π filter groups with colors assigned to cameras not included in any π filter group to reduce and/or minimize occlusion zones as discussed above. Although specific π filter groups are discussed above, any of a variety of π filter groups can pattern a camera module in accordance with many different embodiments of the invention.


Multiple Reference Camera Options with Equivalent Performance

The use of multiple π filter groups to pattern a camera module in accordance with embodiments of the invention enables multiple cameras to be used as the reference camera with equivalent performance. A 4×4 camera module with two π filter groups in accordance with an embodiment of the invention is illustrated in FIG. 5. The camera module 500 includes two π filter groups 502, 506 where the central camera of each π filter group 504, 508 can act as a reference camera. Irrespective of the reference camera that is selected, the distribution of cameras around the reference camera is equivalent due to the use of π filter groups. Thereby, if a camera module 500 detects a defect with the a reference camera 504, the camera module 500 can switch to using the camera at the center of another π filter group as a reference camera 508 to avoid the defects of the first reference camera 504. Furthermore, patterning with π filter groups does not require that the reference camera or a virtual viewpoint be at the center of a camera module but rather that the reference camera is surrounded by color cameras in a way that reduces occlusion zones for each color. Although a specific camera module is discussed above, camera modules of any number of different dimensions can be utilized to create multiple reference camera options in accordance with embodiments of the invention.


Manufacturing Yield Improvement

Manufacturing processes inherently involve variations that can result in defects. In some instances the manufacturing defects may be severe enough to render an entire focal plane within an imager array inoperable. If the failure of the focal plane results in the discarding of the imager array, then the cost to manufacture array cameras is increased. Patterning camera modules with π filter groups can provide high manufacturing yield because the allocation of color filters in the optical channels of the optic array can be used to reduce the impact that a faulty focal plane has with respect to the creation of occlusion zones in the images synthesized using the image data captured by the array camera.


In many embodiments, the light sensed by the pixels in a focal plane of an imager array is determined by a color filter included in the optical channel that focuses light onto the focal plane. During manufacture, defects in a focal plane can be detected. When a defect is detected, the color filter pattern of the optical channels in the optic array can be determined so that the defective focal plane does not result in an increase in the size of occlusion zones. Typically, this means patterning camera modules with π filter groups in such a way that the presence of the defective focal plane does not reduce the number of red or blue cameras in the camera array (i.e. a filter pattern is used that results in a green channel being assigned to the defective focal plane, which reduces the number of green cameras in the camera array by one camera).


A process for detecting faulty focal planes before combining an optic array and imager array to create a camera module in accordance with embodiments of the invention is illustrated in FIG. 6A. In the illustrated process, the color filter patterns are patterned on the optics array and not on the pixels of the imager array. By manufacturing different types of optics arrays (with different filter patterns, a process can systematically choose a specific optics array to force the faulty focal plane to pair with a color of a certain filter to ensure that the size of the occlusion zones in a given color channel are reduced and/or minimized. The process 600 includes testing (602) an imager array for faulty focal planes. After testing (602) the imager array, a decision (604) is made as to whether a faulty focal plane is detected on the imager array. If a faulty focal plane is detected, then an optic array is selected based upon the location of the faulty focal plane (606). In many embodiments, an optic array is selected that reduces the effect of the faulty focal plane by assigning color filters to the operational focal planes in a way that minimizes the impact of the faulty focal plane on the creation of occlusion zones within images synthesized using image data captured by the imager array. Further discussion of selecting different optic arrays that reduce occlusion zones when there is a faulty focal plane is provided below with reference to FIGS. 6B and 6C. After selecting (606) an optic array based upon the location of the faulty focal plane, the selected optic array is combined (608) with the imager array to create a camera module. If a faulty focal plane is not detected, then any of a variety of optic arrays including filter patterns based on π filter groups can be combined (608) with the tested imager array to create a camera module. As is discussed further below, a typical process can include a default optic array including a first filter pattern based on π filter groups and a second filter pattern based on π filter groups can be utilized when specific defects are detected that would result in the faulty focal plane reducing the number of color cameras (or even specific color cameras such as color cameras around the outside of the camera module) in the camera module when the first filter pattern is used.


The manner in which modifying color filter assignments can reduce the impact of a faulty focal plane is illustrated in FIGS. 6B and 6C. A camera module with a faulty red camera is illustrated in FIG. 6B. The camera module 620 includes a first π filter group 628 with a possible reference camera 622 at the center, a second π filter group 632 with a possible reference camera 630 at the center and a faulty red camera 624 below both π filter groups 628 and 632. There is a lack of red image data below both the possible reference cameras 622 and 630 due to the faulty red camera. Therefore, irrespective of which of the two cameras at the center of a π filter group is chosen as the reference camera. Accordingly, combining an optic array including the filter pattern illustrated in FIG. 6B to an imager with the indicated faulty focal plane results in a defective red camera that prevents the capture of red color information below any reference camera, increasing the likelihood of occlusion zones below foreground objects. However, an optic array patterned using π filter groups in different locations can result in all of the blue and red color filters being assigned to cameras that are active. In this way, the faulty focal plane only impacts the number of green cameras and does so in a way that reduces the likelihood of occlusion zones in an image synthesized using the image data captured by the resulting camera module. Stated another way, yield can be improved under certain circumstances by combining the imager array that includes the faulty focal plane with an optic array that assigns the color filters of the active cameras based on π filter groups in a way that results in color information being captured around the reference camera in a way that minimizes the likelihood of occlusion zones given the location of the faulty focal plane.


A camera module with the faulty focal plane of FIG. 6B but with an optic array patterned with π filter groups in such a way that the faulty focal plane does not reduce the capture of red or blue image data around the reference camera module is illustrated in FIG. 6C. Relative to the pattern of the optic array of FIG. 6B, the optic array of FIG. 6C is flipped along the center vertical bisecting axis 626 of the optic array and includes two π filter groups 628′ and 632′. The lens stack associated with the faulty focal plane is green 654, as opposed to red 624 in FIG. 6B. As there are multiple green cameras below all possible reference cameras 652, 656 in FIG. 6C, the loss of a green camera 654 is less impactful as opposed to the impact from the loss of the red camera 624 in FIG. 6B. Therefore, the impact of faulty focal planes on an imager array can be reduced by combining the faulty imager array with an optic array specifically selected to assign color filters to the focal planes in the imager array in a manner that reduces the likelihood that the faulty focal plane will create an occlusion zone in any of the color channels captured by the resulting camera module. Although the example above discusses reducing red occlusion zones, the impact of a defective focal plane in any of the locations in an imager array can be similarly minimized by appropriate selection of a filter pattern based on π filter groups. Although specific examples of camera modules patterned with π filter groups to minimize yield loss due to faulty focal planes are described above, any of a variety of alternative color filter patterns including π filter groups can be utilized to increase manufacturing yield in accordance with embodiments of the invention.


Capturing Stereoscopic 3D Images

In many embodiments, Super Resolution processes can be used to synthesize high resolution images using low resolution images captured by an array camera including pairs of stereoscopic 3D images as disclosed in U.S. patent application Ser. No. 12/967,807 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes”, filed Dec. 14, 2010, the disclosure of which is incorporated by reference above. Stereoscopic 3D image pairs are two images of a scene from spatially offset viewpoints that can be combined to create a 3D representation of the scene. The use of a filter pattern including π filter groups can enable the synthesis of stereoscopic 3D images in a computationally efficient manner. Image data captured by less than all of the cameras in the array camera can be used to synthesize each of the images that form the stereoscopic 3D image pair.


Patterning with π filter groups enables an efficient distribution of cameras around a reference camera that reduces occlusion zones and reduces the amount of image data captured by the camera module that is utilized to synthesize each of the images in a stereoscopic 3D image pair. In many embodiments, different subsets of the cameras are used to capture each of the images that form the stereoscopic 3D image pair and each of the subsets includes a π filter group. In many embodiments, the images that form the stereoscopic 3D image pair are captured from a virtual viewpoint that is slightly offset from the camera at the center of the π filter group. The central camera of a π filter group is surrounded by color cameras in a way that minimizes occlusion zones for each color camera when the central camera is used as a reference camera. When the virtual viewpoint is proximate the center of a π filter group, the benefits of the distribution of color cameras around the virtual viewpoint are similar.


A left virtual viewpoint for a stereoscopic 3D image pair captured using a camera module patterned using π filter groups is illustrated in FIG. 7A. The left virtual viewpoint 704 is taken from image data from the 12 circled cameras G1-G3, G5-G7, B1-B2, B4, and R2-R3 that form a 3×4 array. The virtual viewpoint is offset relative to the green camera G3, which is the center of a π filter group 706. A right virtual viewpoint used to capture the second image in the stereoscopic pair using the camera module shown in FIG. 5A is illustrated in FIG. 7B. The right virtual viewpoint 754 is taken from image data from the 12 circled cameras B1-B3, G2-G4, G6-G8, R1, R3-R4 that form a 3×4 array. The virtual viewpoint is offset relative to the green camera G6, which is the center of a π filter group 756. Therefore, a single array camera can capture 3D images of a scene using image data from a subset of the cameras to synthesize each of the images that form the stereoscopic pair. By utilizing the image data captured by less than all of the cameras in the camera module, the computational complexity of generating the stereoscopic 3D image pair is reduced. In addition, the location of the view points of each of the images proximate a camera that is the center of a π filter group reduces the likelihood of occlusion zones in the synthesized images.


Although specific viewpoints and subsets of cameras for synthesizing stereoscopic 3D image pairs are illustrated in FIGS. 7A and 7B, stereoscopic image pairs can be generated using subsets of cameras in any of a variety of camera modules in accordance with embodiments of the invention.


Capturing Images Using a Subset of Cameras

Array cameras with camera modules patterned with π filter groups can utilize less than all of the available cameras in operation in accordance with many embodiments of the invention. In several embodiments, using fewer cameras can minimize the computational complexity of generating an image using an array camera and can reduce the power consumption of the array camera. Reducing the number of cameras used to capture image data can be useful for applications such as video, where frames of video can be synthesized using less than all of the image data that can be captured by a camera module. In a number of embodiments, a single π filter group can be utilized to capture an image. In many embodiments, image data captured by a single π filter group is utilized to capture a preview image prior to capturing image data with a larger number of cameras. In several embodiments, the cameras in a single π filter group capture video image data. Depending upon the requirements of a specific application, image data can be captured using additional cameras to increase resolution and/or provide additional color information and reduce occlusions.


A π filter group within a camera module that is utilized to capture image data that can be utilized to synthesize an image is illustrated in FIG. 8. In the illustrated embodiments, the reference camera is boxed and utilized cameras are encompassed in a dotted line. The camera module 800 includes a π filter group of cameras generating image data G1-G2, G5-G6, B1-B2 and R2-R3 with reference camera G3. FIG. 8 illustrates how the cameras in a π filter group can be utilized to capture images. Image data can be acquired using additional cameras for increased resolution and to provide additional color information in occlusion zones. Accordingly, any number and arrangement of cameras can be utilized to capture image data using a camera module in accordance with many different embodiments of the invention.


Building Color Filter Patterns Including π Filter Groups

Color filter patterns for any array of cameras having dimensions greater than 3×3 can be constructed in accordance with embodiments of the invention. In many embodiments, processes for constructing color filter patterns typically involve assigning color filters to the cameras in a camera module to maximize the number of overlapping π filter groups. In the event that there are cameras that cannot be included in a π filter group, then color filters can be assigned to the cameras based upon minimizing occlusions around the camera that is to be used as the reference camera for the purposes of synthesizing high-resolution images.


A process for assigning color filters to cameras in a camera module in accordance with an embodiment of the invention is illustrated in FIG. 9. The process 900 includes selecting (902) a corner of the array, assigning (904) a π filter group to the selected corner. The π filter group occupies a 3×3 grid. Color filters can be assigned (906) to the remaining cameras in such a way to maximize the number of overlapping π filter groups within the array. In the event that there are cameras to which color filters are not assigned, the cameras are assigned (908) color filters that reduce the likelihood of occlusion zones in images synthesized from the viewpoint of a camera selected as the reference camera for the array. At which point, all of the cameras in the array are assigned color filters. As noted above, the presence of multiple π filter groups provides benefits including (but not limited to) robustness to failures in specific cameras within the array and the ability to synthesize images with fewer than all of the cameras in the camera module utilizing image data captured by at least one π filter group.


The process of generating a simple filter pattern for a 5×5 array using π filter groups is illustrated in FIGS. 10A-10D. The process starts with the selection of the top left corner of the array. A π filter group is assigned to the 3×3 group of cameras in the top left corner (cameras G1-G5, B1-B2, and R1-R2). A second overlapping π filter group is created by adding three green cameras and a blue camera and a red camera (G6-G8 and B3 and R3). A third overlapping π filter group is created by adding another three green cameras and a blue camera and a red camera (G9-G11 and B4 and R4). A fifth and sixth π filter groups are created by adding a single green camera, blue camera and red camera (G12, B5, R5 and G13, B6, R6). In the event that central camera (G6) fails, a camera at the center of another π filter group can be utilized as the reference camera (e.g. G3).


A similar process for generating a simple filter pattern for a 4×5 array using π filter groups is illustrated in FIGS. 11A-11D. The process is very similar with the exception that two cameras are not included in π filter groups. Due to the fact that there are no blue cameras below the camera G6 (which is the center of a π filter group), the cameras that do not form part of a π filter group are assigned as blue cameras (B5 and B6). As can readily be appreciated similar processes can be applied to any array larger than a 3×3 array to generate a color filter pattern incorporating π filter groups in accordance with embodiments of the invention.


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. An array camera module, comprising: an M×N imager array comprising a plurality of focal planes, each focal plane comprising an array of light sensitive pixels;an M×N optic array of lens stacks, where each lens stack corresponds to a focal plane, and where each lens stack forms an image of a scene on its corresponding focal plane;wherein each pairing of a lens stack and its corresponding focal plane thereby defines a camera;wherein at least one row in the M×N array of cameras comprises at least one red color camera, at least one green color camera, and at least one blue color camera; andwherein at least one column in the M×N array of cameras comprises at least one red color camera, at least one green color camera, and at least one blue color camera; wherein a red color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with red light;wherein a green color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with green light; andwherein a blue color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with blue light.
  • 2. The array camera module of claim 1: wherein M and N are each greater than two and at least one of M and N is even;wherein color filters are implemented within the cameras in the array camera module such that the array camera module is patterned with at least one π filter group comprising: a 3×3 array of cameras comprising: a reference camera at the center of the 3×3 array of cameras;two red color cameras located on opposite sides of the 3×3 array of cameras;two blue color cameras located on opposite sides of the 3×3 array of cameras; andfour green color cameras surrounding the reference camera.
  • 3. The array camera module of claim 2 wherein each of the four green color cameras surrounding the reference camera is disposed at a corner location of the 3×3 array of cameras.
  • 4. The array camera module of claim 3, wherein: M is four;N is four;the first row of cameras of the 4×4 array camera module includes, in the following order, a green color camera, a blue color camera, a green color camera, and a red color camera;the second row of cameras of the 4×4 array camera module includes, in the following order, a red color camera, a green color camera, a red color camera, and a green color camera;the third row of cameras of the 4×4 array camera module includes, in the following order, a green color camera, a blue color camera, a green color camera, and a blue color camera; andthe fourth row of cameras of the 4×4 array camera module includes, in the following order, a blue color camera, a green color camera, a red color camera, and a green color camera.
  • 5. The array camera module of claim 3, wherein: M is four;N is four;the first row of cameras of the 4×4 array camera module includes, in the following order, a red color camera, a green color camera, a blue color camera, and a green color camera;the second row of cameras of the 4×4 array camera module includes, in the following order a green color camera, a red color camera, a green color camera, and a red color camera;the third row of cameras of the 4×4 array camera module includes, in the following order, a blue color camera, a green color camera, a blue color camera, and a green color camera; andthe fourth row of cameras of the 4×4 array camera module includes, in the following order, a green color camera, a red color camera, a green color camera, and a blue color camera.
  • 6. The array camera module of claim 2, wherein the reference camera is a green color camera.
  • 7. The array camera module of claim 2, wherein the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.
  • 8. The array camera module of claim 2 wherein each of the two red color cameras is located at a corner location of the 3×3 array of cameras, and wherein each of the two blue color cameras is located at a corner location of the 3×3 array of cameras.
  • 9. The array camera module of claim 2, wherein at least one color filter is implemented on the imager array.
  • 10. The array camera module of claim 2, wherein at least one color filter is implemented on a lens stack.
  • 11. A 3×3 array camera module comprising: a 3×3 imager array comprising a 3×3 arrangement of focal planes, each focal plane comprising an array of light sensitive pixels;a 3×3 optic array of lens stacks, where each lens stack corresponds to a focal plane, and where each lens stack forms an image of a scene on its corresponding focal plane;wherein each pairing of a lens stack and its corresponding focal plane thereby defines a camera;wherein the 3×3 array of cameras comprises: a reference camera at the center of the 3×3 array of cameras;two red color cameras located on opposite sides of the 3×3 array of cameras;two blue color cameras located on opposite sides of the 3×3 array of cameras; andfour green color cameras, each located at a corner location of the 3×3 array of cameras; wherein a red color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with red light;wherein a green color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with green light; andwherein a blue color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with blue light;wherein each of the color cameras is achieved using a color filter.
  • 12. The 3×3 array camera module of claim 11, wherein at least one color filter is implemented on the imager array to achieve a color camera.
  • 13. The 3×3 array camera module of claim 11, wherein at least one color filter is implemented within a lens stack to achieve a color camera.
  • 14. The 3×3 array camera module of claim 11, wherein the reference camera is a green color camera.
  • 15. The 3×3 array camera module of claim 11, wherein the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.
  • 16. A method of patterning an array camera module with at least one π filter group comprising: evaluating whether an imager array of M×N focal planes, where each focal plane comprises an array of light sensitive pixels, includes any defective focal planes;assembling an M×N array camera module using: the imager array of M×N focal planes;an M×N optic array of lens stacks, where each lens stack corresponds with a focal plane,wherein the M×N array camera module is assembled so that: each lens stack and its corresponding focal plane define a camera;color filters are implemented within the array camera module such that the array camera module is patterned with at least one π filter group comprising: a 3×3 array of cameras comprising: a reference camera at the center of the 3×3 array of cameras; two red color cameras located on opposite sides of the 3×3 array of cameras; two blue color cameras located on opposite sides of the 3×3 array of cameras; and four green color cameras, surrounding the reference camera; wherein a red color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with red light; wherein a green color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with green light; and wherein a blue color camera is a camera that is configured to image only that portion of the electromagnetic spectrum corresponding with blue light; andwherein the array camera module is patterned with the at least one π filter group such that a camera that includes a defective focal plane is a green color camera.
  • 17. The method of patterning an array camera module with at least one π filter group of claim 16, wherein at least one color filter is implemented on the imager array.
  • 18. The method of patterning an array camera module with at least one π filter group of claim 16, wherein at least one color filter is implemented within a lens stack.
  • 19. The method of patterning an array camera module with at least one π filter group of claim 16, wherein the reference camera is a green color camera.
  • 20. The method of patterning an array camera module with at least one π filter group of claim 16, wherein the reference camera is one of: a camera that incorporates a Bayer filter, a camera that is configured to capture infrared light, and a camera that is configured to capture ultraviolet light.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application claims priority to U.S. Provisional Application No. 61/641,165, filed on May 1, 2012, the disclosure of which is incorporated herein by reference.

US Referenced Citations (583)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
5005083 Grage Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker et al. Sep 1992 A
5327125 Iwase et al. Jul 1994 A
5629524 Stettner et al. May 1997 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5933190 Dierickx et al. Aug 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu et al. Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6358862 Ireland et al. Mar 2002 B1
6443579 Myers Sep 2002 B1
6476805 Shum et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6795253 Shinohara Sep 2004 B2
6819358 Kagle et al. Nov 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7235785 Hornback et al. Jun 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen Sep 2008 B2
7606484 Richards et al. Oct 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang et al. Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8077245 Adamo et al. Dec 2011 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev May 2012 B1
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Mor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 Mcmahon Jan 2015 B2
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman et al. May 2015 B2
9025895 Venkataraman et al. May 2015 B2
9030528 Shpunt et al. May 2015 B2
9031335 Venkataraman et al. May 2015 B2
9031342 Venkataraman et al. May 2015 B2
9031343 Venkataraman et al. May 2015 B2
9036928 Venkataraman et al. May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino Jan 2002 A1
20020027608 Johnson Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum May 2002 A1
20020063807 Margulis May 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Suda Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020163054 Suda et al. Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20030025227 Daniell Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040100570 Shizukuishi May 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179834 Szajewski Sep 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219363 Kohler Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen Sep 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070024614 Tam Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070126898 Feldman Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070228256 Mentzer et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen et al. Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20080006859 Mionetto Jan 2008 A1
20080019611 Larkin Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080118241 Tekolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090128833 Yahav May 2009 A1
20090140131 Utagawa et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan et al. Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone Oct 2009 A1
20090274387 Jin Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang et al. Feb 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam et al. May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang et al. Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100220212 Perlman et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100321595 Chiu Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110176020 Chang Jul 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim, II et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côtéet al. Feb 2012 A1
20120069235 Imai Mar 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120287291 McMahon Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307099 Yahata et al. Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do Jan 2013 A1
20130016885 Tsujimoto Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 Mcmahon Mar 2013 A1
20130070060 Chatterjee Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130223759 Nishiyama et al. Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274923 By et al. Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
Foreign Referenced Citations (80)
Number Date Country
1839394 Sep 2006 CN
840502 May 1998 EP
1201407 May 2002 EP
1734766 Dec 2006 EP
2104334 Sep 2009 EP
2336816 Jun 2011 EP
59025483 Sep 1984 JP
64037177 Jul 1989 JP
02285772 Nov 1990 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
2000209503 Jul 2000 JP
2002205310 Jul 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003163938 Jun 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008258885 Oct 2008 JP
2009132010 Jun 2009 JP
2011109484 Jun 2011 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
1020110097647 Aug 2011 KR
2007083579 Jul 2007 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009151903 Dec 2009 WO
2011008443 Jan 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011116203 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014150856 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
Non-Patent Literature Citations (186)
Entry
US 9,014,491, 04/2015, Venkataraman et al. (withdrawn)
Fischer et al., Optical System Design, 2nd Edition, SPIE Press, 191-198.
Fischer et al., Optical System Design, 2nd Edition, SPIE Press, 49-58.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, 2007, 12 pgs.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer 77, (Sep. 9), 93-100.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), pp. 1-10.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, 2004, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, date unknown, 21 pgs.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim. Syst. Sign Process, 2007, vol. 18, pp. 83-101.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 3005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposistion Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, 2006, vol. 6069, 8 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, vol. 16, No. 12, pp. 2953-2964.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, 2011, vol. 4, pp. 112501-1-112501-3.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Lensvector, “How LensVector Autofocus Works”, http://www.lensvector.com/overview.html.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Aug. 2006, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, 2008, pp. 1-19.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, http://www.polight.no/tunable-polymer-autofocus-lens-html—11.html.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Jan. 2009, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, Source and date unknown, 8 pgs.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, Proceeding, CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Wang, Yuhao “Calculation of Image Position, Size and Orientation Using First Order Properties”.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wikipedia, “Polarizing Filter (Photography)”.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 765-776.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceeding, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Source and date unknown, 8 pgs.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
International Search Report and Written Opinion for International Application No. PCT/US13/46002, Search Completed Nov. 13, 2013, Mailed Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/48772, Search Completed Oct. 21, 2013, Mailed Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Search Completed Nov. 25, 2013, Mailed Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Search Completed Feb. 6, 2014, Mailed Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Search Completed Mar. 27, 2013, Mailed Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Search Completed Feb. 18, 2014, Mailed Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, International Filing Date Nov. 13, 2013, Search Completed Mar. 14, 2014, Mailed Apr. 14, 2014, 12 pgs.
IPRP for International Application No. PCT/US2012/059813, International Filing Date Oct. 11, 2012, Search Completed Apr. 15, 2014, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US11/36349, mailed Aug. 22, 2011, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/64921, Report Completed Feb. 25, 2011, mailed Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US12/37670, Mailed Jul. 18, 2012, Search Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/58093, completed Nov. 15, 2012, 12 pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Bertero et al., “Super-resolution in computational imaging”, Micron, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV 2010, Part II, LNCS 6493, pp. 186-200, 2011.
Bishop et al., “Light Field Superresolution”, Retrieved from http://home.eps.hw.ac.uk/˜sz73/ICCP09/LightFieldSuperresolution.pdf, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, pp. 972-986.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Source unknown, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 1998, 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, Jun. 2003, 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, 1998. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE-IS&T Electronic Imaging, vol. 7246, pp. 72460X-1-72460X-9.
Capel, “Image Mosaicing and Super-resolution”, [online], Retrieved on Nov. 10, 2012. Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, Title pg., abstract, table of contents, pp. 1-263 (269 total pages), 2001.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, 8 pgs.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 8 pgs.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 2009, vol. 83, Issue 3, 8 pgs.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012. Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala—thesis.pdf>, 163 pgs., Aug. 2009.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, pp. 141-159.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Kang et al., “Handling Occlusions inn Dense Multi-View Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-103-I-110.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Proc., CVPR 94, 8 pgs.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution,” Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab—research/08/deblur-feng.pdf on Feb. 5, 2014.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2007, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995, pp. 93-96.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System,” Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField—TOG.pdf on Feb. 5.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, 2005, 5674, 12 pgs.
Fischer, et al., Optical System Design, 2nd Edition, SPIE Press, pp. 191-198.
Fischer, et al., “Optical System Design, 2nd Edition, SPIE Press, pp. 49-58”.
Rander, et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Taylor, Dayton , “Virtual camera movement: The way of the future?”, American Cinematographer 77, (Sep. 9), 93-100.
Yang, Jason C. et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), pp. 1-10.
Zhang, Cha et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, 2004, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146,Report Completed Apr. 2, 2013, Mailed Sep. 4, 2014, 10 Pages.
International Search Report and Written Opinion for International Application PCT/US13/62720, report completed Mar. 25, 2014, Mailed Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, Mailed Jun. 18, 2014, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, Mailed Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, Mailed Aug. 7, 2014 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, report completed Jun. 9, 2014, Mailed Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, report completed Jun. 30, 2014, Mailed Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, report completed Jul. 28, 2014, Mailed Aug. 27, 2014, 7 Pages.
International Search Report and Written Opinion for International Application PCT/US2014/23762, Report Completed May 30, 2014, Mailed Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, Mailed Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18116, report completed May 13, 2014, Mailed Jun. 2, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/22118, report completed Jun. 9, 2014, Mailed, Jun. 25, 2014, 5 pgs.
Chen et al., “Interactive deformation of light fields”, In Proceedings of SIGGRAPH I3D 2005, pp. 139-146.
Goldman et al.,“Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, pp. 3-12.
Gortler et al., The Lumigraph, In Proceedings of SIGGRAPH 1996, pp. 43-54.
Hacohen et al., Non-Rigid Dense Correspondence with Applications for Image Enhancement, ACM Transactions on Graphics, 30, 4, 2011, pp. 70:1-70:10.
Hasinoff et al., Search-and-Replace Editing for Personal Photo Collections, Computational Photography (ICCP) 2010, pp. 1-8.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL:http:l/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, 2, pp. 115-129.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL:http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd—theory.pdf, 5 pgs.
US 8,964,053, 02/2015, Venkataraman et al. (withdrawn).
US 8,965,058, 02/2015, Venkataraman et al. (withdrawn).
International Search Report and Written Opinion for International Application PCT/US14/17766, report completed May 28, 2014, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, report completed Oct. 21, 2013, Mailed Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/039155, report completed Nov. 4, 2014, Mailed Nov. 13, 2014, 10 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, Mailed Feb. 3, 2015, 6 Pgs.
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, Mailed Feb. 4, 2015, 6 Pgs.
Zhang, Qiang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171, Apr. 23, 2010.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Report Completed Mar. 7, 2015, Mailed Apr. 2, 2015, 15 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Report Issued Mar. 17, 2015, Mailed Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/062720, Report Issued Mar. 31, 2015, Mailed Apr. 9, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/023762, Report issued Mar. 2, 2015, Mailed Mar. 9, 2015, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/066229, Search Completed Mar. 6, 2015, Mailed Mar. 19, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/056065, Report Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/056502, Report Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 7 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, Search completed Jul. 1, 2013, Mailed Jul. 11, 2013, 11 Pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Extended European Search Report for European Application EP12782935.6, report completed Aug. 28, 2014 Mailed Sep. 4, 2014, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/024987, Mailed Aug 21, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/046002, Report issued Dec. 31, 2014, Mailed Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/069932, Report issued May 19, 2015, Mailed May 28, 2015, 12 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/024903 report completed Jun. 12, 2014, Mailed, Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/022774 report completed Jun. 9, 2014, Mailed Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/025904, report completed Jun. 10, 2014, Mailed Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/024947, Report Completed Jul. 8, 2014, Mailed Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/067740, Report Completed Jan. 29, 2015, Mailed Mar. 3 2015, 10 pgs.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, source and date unknown, 8 pgs.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Feb. 2008, vol. 30, 8 pgs.
Moreno-Noguer, Francese et al., “Active Refocusing of Images and Videos”, ACM SIGGRAPH, 2007, vol. 26, pp. 1-10, [retrieved on Jul. 8, 2015], Retrieved from the Internet <URL:http://doi.acm.org/10.1145/1276377.1276461>.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, 15 pgs.
Pouydebasquea et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Related Publications (1)
Number Date Country
20130293760 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61641165 May 2012 US