The invention herein relates to a capacitor with multiple capacitor sections selectively connectable to match the capacitance or capacitances of one or more capacitors being replaced.
One common use for capacitors is in connection with the motors of air-conditioning systems. The systems often employ two capacitors, one used in association with a compressor motor and another smaller value capacitor for use in association with a fan motor. Air-conditioning systems of different BTU capacity, made by different manufacturers or being a different model all may use capacitors having different values. These capacitors have a finite life and sometimes fail, causing the system to become inoperative.
A serviceman making a service call usually will not know in advance whether a replacement capacitor is necessary to repair an air-conditioning system, or what value capacitor or capacitors might be needed to make the repair. One option is for the serviceman to carry a large number of capacitors of different values in the service truck, but it is difficult and expensive to maintain such an inventory, especially because there can be a random need for several capacitors of the same value on the same day. The other option is for the serviceman to return to the shop or visit a supplier to pick up a replacement capacitor of the required value. This is inefficient as the travel time to pick up parts greatly extends the overall time necessary to complete a repair. This is extremely detrimental if there is a backlog of inoperative air-conditioning systems on a hot day. This problem presents itself in connection with air-conditioning systems, but is also found in any situation where capacitors are used in association with motors and are replaced on service calls. Other typical examples are refrigeration and heating systems, pumps, and manufacturing systems utilizing compressors.
A desirable replacement capacitor would have the electrical and physical characteristics of the failed capacitor, i.e. it should provide the same capacitance value or values at the same or higher voltage rating, be connectable using the same leads and be mountable on the same brackets or other mounting provision. It should also have the same safety protection, as confirmed by independent tests performed by Underwriter Laboratories or others. Efforts have been made to provide such a capacitor in the past, but they have not resulted in a commercially acceptable capacitor adapted for replacing capacitors having a wide range of capacitance values.
My U.S. Pat. No. 3,921,041 and U.S. Pat. No. 4,028,595 disclose dual capacitor elements in the form of two concentric wound capacitor sections. My U.S. Pat. No. 4,263,638 also shows dual capacitors sections formed in a wound capacitive element, and my U.S. Pat. No. 4,352,145 shows a wound capacitor with dual elements, but suggests that multiple concentric capacitive elements may be provided, as does my U.S. Pat. No. 4,312,027 and U.S. Pat. No. 5,313,360. None of these patents show a capacitor having electrical and physical characteristics necessary to replace any one of the variety of failed capacitors that might be encountered on a service call.
An effort to provide a capacitor with multiple, selectable capacitance values is described in my U.S. Pat. No. 4,558,394. Three capacitance sections are provided in a wound capacitor element that is encapsulated in a plastic insulating material. An external terminal lug is connected with one of capacitor's sections and a second external terminal lug is provided with a common connection to all three capacitor sections. Pre-wired fixed jumper leads each connect the three capacitive sections in parallel, and the pre-wired fixed jumper leads have a portion exposed above the plastic encapsulation. This permits one or two jumper leads to be severed to remove one or two of the capacitor sections from the parallel configuration, and thereby to adjust the effective capacitance value across the terminal lugs. The '394 patent suggests that further combinations could be made with different connections, but does not provide any suitable means for doing so.
Another attempt to provide a capacitor wherein the capacitance may be selected on a service call is described in my U.S. Pat. No. 5,138,519. This capacitor has two capacitor sections connected in parallel, and has two external terminals for connecting the capacitor into a circuit. One of the terminals is rotatable, and one of the capacitor sections is connected to the rotatable terminal by a wire which may be broken by rotation of the terminal. This provides for selectively removing that capacitor section and thereby reducing the capacitance of the unit to the value of the remaining capacitor. This capacitor provides a choice of only two capacitance values in a fluid-filled case with a cover incorporating a pressure interrupter system.
In another effort to provide a universal adjustable capacitor for AC applications, American Radionic Co., Inc. produced a capacitor having five concentric capacitor sections in a cylindrical wound capacitor element. A common lead was provided from one end of the capacitor sections, and individual wire leads were provided from the other ends of the respective capacitor sections. The wound capacitor element was encapsulated in a plastic insulating material with the wire leads extending outwardly from the encapsulating material. Blade connectors were mounted at the ends of the wire leads, and sliding rubber boots were provided to expose the terminals for making connections and for shielding the terminals after connections were made. Various capacitance values could be selected by connecting various ones of the capacitor sections in parallel relationship, in series relationship, or in combinations of parallel and series relationships. In a later version, blade terminals were mounted on the encapsulating material. These capacitors did not meet the needs of servicemen. The connections were difficult to accomplish and the encapsulated structure did not provide pressure interrupter protection in case of capacitor failure, wherein the capacitors did not meet industry safety standards and did not achieve commercial acceptance or success.
Thus, although the desirability of providing a serviceman with a capacitor that is adapted to replace failed capacitors of a variety of values has been recognized for a considerable period of time, a capacitor that meets the serviceman's needs in this regard has not heretofore been achieved. This is a continuing need and a solution would be a considerable advance in the art.
It is a principal object of the invention herein to provide a capacitor that is connectable with selectable capacitance values.
It is another object of the invention herein to provide a capacitor incorporating multiple capacitance values that may be connected in the field to replace the capacitance value or values of a failed capacitor.
It is a further object of the invention herein to provide a capacitor having the objectives set forth above and which operates to disconnect itself from an electrical circuit upon a pressure-event failure.
It is also an object of the invention herein to incorporate multiple capacitance values in a single replacement capacitor that is adapted for connecting selected ones of the multiple capacitance values into a circuit.
Yet another object of the invention herein to provide a capacitor having one or more of the foregoing objectives and which provides for safely making and maintaining connections thereto.
It is a further object of the invention herein to increase the flexibility of replacing failed capacitors with capacitors incorporating multiple capacitance values by utilizing a range of tolerances in selecting the multiple capacitance values provided.
It is another principal object of the invention herein to provide a capacitor for replacing any one of a plurality of failed capacitors having different capacitance values and to meet or exceed the ratings and safety features of the failed capacitor.
In carrying out the invention herein, a replacement capacitor is provided having a plurality of selectable capacitance values. A capacitive element has a plurality of capacitor sections, each having a capacitance value. Each capacitor section has a section terminal and the capacitor sections have a capacitive element common terminal. The capacitive element is received in a case together with an insulating fluid at least partially and preferably substantially surrounding the capacitive element. The case is provided with a pressure interrupter cover assembly, including a cover having a common cover terminal and a plurality of section cover terminals thereon. The section terminals of the capacitive element are respectively connected to the section cover terminals and the common terminal of the capacitive element is connected to the common cover terminal, with the pressure interrupter cover assembly adapted to break one or more connections as required to disconnect the capacitive element from an electrical circuit in the event that the capacitive element has a catastrophic pressure-event failure. The replacement capacitor is connected into an electrical circuit to replace a failed capacitor by connections to selected ones of the common cover terminal and section cover terminals, the capacitor sections and connections being selected to provide one or more capacitance values corresponding to the capacitor being replaced. Such connections may include connecting capacitor sections in parallel, connecting capacitor sections in series, connecting capacitor sections in combinations of parallel and series, and connecting one or more capacitor sections separately to provide two or more independent capacitance values.
In one preferred aspect of the invention, the capacitive element is a wound cylindrical capacitive element having a plurality of concentric wound capacitor sections, each having a capacitance value. The number of capacitor sections is preferably six, but may be four or five, or may be greater than six. The capacitor section with the largest capacitance value is one of the outer three sections of the capacitive element. The capacitor sections are separated by insulation barriers and a metallic spray is applied to the ends of the capacitor sections. The insulation barriers withstand heat associated with connecting wire conductors to the capacitor sections.
The case is preferably cylindrical, having a cylindrical side wall, a bottom wall and an open top, to accommodate the wound cylindrical capacitive element.
Also, according to preferred aspects of the invention, the pressure interrupter cover assembly includes a deformable circular cover having a peripheral edge sealingly secured to the upper end of the case. The common cover terminal and section cover terminals are mounted to the cover at spaced apart locations thereon, and have terminal posts extending downwardly from the cover to a distal end. A rigid disconnect plate is supported under the cover and defines openings therethrough accommodating the terminal posts and exposing the distal ends thereof. Conductors connect the capacitor section terminals and the common element terminal to the distal ends of the respective terminal posts of the section cover terminals and common cover terminal. The conductor connections at the distal ends of the terminal posts are broken upon outward deformation of the cover. In more specific aspects, the conductors connecting the capacitor sections to the distal ends of the section cover terminal posts are insulated wires, with the ends soldered to foil tabs that are welded or soldered to the distal ends of the terminal posts adjacent the disconnect plate.
Also, according to aspects of the invention herein, the common cover terminal is positioned generally centrally on the cover, and the section cover terminals are positioned at spaced apart locations surrounding the common cover terminal. The section cover terminals include at least one blade connector, and preferably two or more blade connectors extending outwardly from the cover for receiving mating connectors for connecting selected ones of the capacitor sections into an electrical circuit. The common cover terminal preferably has four blade connectors.
Additional aspects of the invention include providing means insulating the section and common cover terminals, the insulating means including cylindrical cups upstanding from the cover, with the cylindrical cup of at least the common cover terminal extending to or above the blades thereof. According to a preferred aspect of the invention, the insulation means includes a cover insulation barrier having a barrier cup upstanding from the cover and substantially surrounding a central common cover terminal and further having barrier fins radially extending from the barrier cup and deployed between adjacent section cover terminals.
The invention herein is carried out by connecting one or more capacitor sections into an electrical circuit, by attaching leads to the cover terminals. This includes connecting capacitor sections in parallel, connecting capacitor sections in series, connecting individual capacitor sections, or connecting capacitor sections in combinations of parallel and series, as required to match the capacitance value or values of the failed capacitor being replaced. The capacitor sections can be connected to replace multiple capacitor values, as required, to substitute the capacitor for the capacitor that has failed.
In another aspect of the invention, the capacitance values of the capacitor sections are varied within a tolerance range from a stated value, such that one capacitor section may be utilized effectively to replace one of two values, either individually or in combinations of capacitor sections.
Other and more specific objects and features of the invention herein will, in part, be understood by those skilled in the art and will, in part, appear in the following description of the preferred embodiments, and claims, taken together with the drawings.
The same reference numerals refer to the same elements throughout the various Figures.
A capacitor 10 is shown in
The capacitor 10 has a capacitive element 12 having a plurality of capacitor sections, each having a capacitance value. The capacitive element 12 is also shown in
The element insulation barriers are insulating polymer sheet material, which in the capacitive element 12 is polypropylene having a thickness of 0.005 inches, wound into the capacitive element 12. Thickness of 0.0025 to 0.007 may be used. Other materials may also be used. The barriers each have about 2%—4 wraps of the polypropylene sheet material, wherein the element insulation barriers have a thickness of about 0.013 to 0.020 inches. The barriers 30-34 are thicker than used before in capacitors with fewer capacitor sections. The important characteristic of the barriers 30-34 is that they are able to withstand heat from adjacent soldering without losing integrity of electrical insulation, such that adjacent sections can become bridged.
As is known in the art, the metalized films each have one unmetalized marginal edge, such that the metalized marginal edge of one film is exposed at one end of the wound capacitive element 12 and the metalized marginal edge of the other film is exposed at the other end of the capacitive element 12. With reference to
At the top end of the capacitive element 12 as depicted in
Conductors preferably in the form of six insulated wires 50-55 each have one of their ends respectively soldered to the element section terminals 40-45, as best seen in
The insulation of the wires 50-55 is color coded to facilitate identifying which wire is connected to which capacitor section. Wire 50 connected to element section terminal 40 of capacitor section 20 has blue insulation, wire 51 connected to element section terminal 41 of capacitor section 21 has yellow insulation, wire 52 connected to element section terminal 42 of capacitor section 22 has red insulation, wire 53 connected to element section terminal 43 of capacitor section 23 has white insulation, wire 54 connection to element section terminal 44 of capacitor section 24 has white insulation, and wire 55 connected to element section terminal 45 of capacitor section 25 has green insulation. These colors are indicated on
The capacitive element 12 is further provided with foil strip conductor 38, having one end attached to the element common terminal 36 at 37. The foil strip conductor 38 is coated with insulation, except for the point of attachment 37 and the distal end 39 thereof. The conductor 50 connected to the outer capacitor element section 20 and its terminal 30 may also be a foil strip conductor. If desired, foil or wire conductors may be utilized for all connections.
In the capacitive element 12 used in the capacitor 10, the capacitor section 20 has a value of 25.0 microfarads and the capacitor section 21 has a capacitance of 20.0 microfarads. The capacitor section 22 has a capacitance of 10.0 microfarads. The capacitor section 23 has a capacitance of 5.5 microfarads, but is identified as having a capacitance of 5.0 microfarads for purposes further discussed below. The capacitor section 24 has a capacitance of 4.5 microfarads but is labeled as having a capacitance of 5 microfarads, again for purposes described below. The capacitor section 25 has a capacitance of 2.8 microfarads. The capacitor section 20 with the largest capacitance value also has the most metallic film, and is therefore advantageously located at the outer section or at least one of the three outer sections of the capacitive element 12.
The capacitor 10 also has a case 60, best seen in
The capacitive element 12 with the wires 50-55 and the foil strip 38 are received in the case 60 with the element common terminal 36 adjacent the bottom wall 64 of the case. An insulating bottom cup 70 is preferably provided for insulating the capacitive element from the bottom wall 64, the bottom cup 70 having a center post 72 that is received in the center opening 29 of the mandrel 28, and an up-turned skirt 74 that embraces the lower side wall of the cylindrical capacitive element 12 and spaces it from the side wall 62 of the case 60.
An insulating fluid 76 is provided within the case 60, at least partly and preferably substantially surrounding the capacitive element 12. The fluid 76 may be the fluid described in my U.S. Pat. No. 6,014,308, incorporated herein by reference, or one of the other insulating fluids used in the trade, such as polybutene.
The capacitor 10 also has a pressure interrupter cover assembly 80 best seen in
The pressure interrupter cover assembly 80 includes seven cover terminals mounted on the deformable cover 82. A common cover terminal 88 is mounted generally centrally on the cover 82, and section cover terminals 90-95, each respectively corresponding to one of the capacitor sections 20-25, are mounted at spaced apart locations surrounding the common cover terminal 88. With particular reference to
The common cover terminal 88 has four blades 120, and a terminal post 122 that passes through a silicone insulator 112. The common cover terminal 88 mounts cover insulator barrier 114 that includes an elongated cylindrical center barrier cup 116 surrounding and extending above the blades 120 of the cover common terminal 88, and six barrier fins 118 that extend respectively radially outwardly from the elongated center barrier cup 116 such that they are deployed between adjacent section cover terminals 90-95. This provides additional protection against any arcing or bridging contact between adjacent section cover terminals or with the common cover terminal 88. Alternatively, the common cover terminal 88 may be provided with an insulator cup 116, preferably extending above blades 120 but with no separating barrier fins, although the barrier fins 118 are preferred. The terminal post 122 extends through an opening in the bottom of the base 117 of the insulating barrier cup 116, and through the silicone insulator 112, to a distal end 124.
The pressure interrupter cover assembly 80 has a fiberboard disc 126 through which the terminal posts 122, terminal post 104 and the terminal posts of the other section cover terminals extend. The disc 126 may be also fabricated of other suitable material, such as polymers. The terminal posts 104, 122, etc. are configured as rivets with rivet flanges 128 for assembly purposes. The terminal posts 104, 122, etc. are inserted through the disc 126, insulators 108, 112, insulator cups 110 and barrier cup 116, and the cover terminals 88, 90-95 are spot welded to the ends of the rivets opposite the rivet flanges 128. Thus, the rivet flanges 128 secure the cover terminals 88, 90-95 in the cover 82, together with the insulator barrier 114, insulator cups 110 and silicone insulators 108, 112. The fiberboard disc 126 facilitates this assembly, but may be omitted, if desired. The distal ends of the terminal posts are preferably exposed below the rivet flanges 128.
The cover assembly 80 has a disconnect plate 130, perhaps best seen in
In prior capacitors having three or fewer capacitor sections, the conductors between the capacitor sections and the terminal posts were generally foil strips, such as the one used for the common terminal 36 of the capacitive element 12 herein. The foil strips were positioned on a breaker plate over the distal ends of terminal posts, and were welded to the distal ends of the terminal posts. In capacitor 10, the distal end 39 of the foil strip 38 is connected to the distal end 124 of terminal post 122 by welding, as in prior capacitors.
The wires 50-55 are not well-configured for welding to the distal ends of the terminal posts of the cover section terminals. However, the wires 50-55 are desirable in place of foil strips because they are better accommodated in the case 60 and have good insulating properties, resist nicking and are readily available with colored insulations. In order to make the necessary connection of the wires 50-55 to their respective terminal posts, foil tabs 56 are welded to each of the distal ends of the terminal posts of the section cover terminals 90-95, and the guides 140, 142 are helpful in positioning the foil tabs 56 for the welding procedure. The attachment may be accomplished by welding the distal end of a foil strip to the terminal post, and then cutting the foil strip to leave the foil tab 56. Thereafter, and as best seen in
Accordingly, each of the capacitor sections 20-25 is connected to a corresponding section cover terminal 90-95 by a respective one of color coded wires 50-55. The insulator cups 110 associated with each of the section cover terminals 90-95 are also color coded, using the same color scheme as used in the wires 50-55. This facilitates assembly, in that each capacitor section and its wire conductor are readily associated with the correct corresponding section cover terminal, so that the correct capacitor sections can be identified on the cover to make the desired connections for establishing a selected capacitance value.
The connections of the wires 50-55 and the foil 38 to the terminal posts is made prior to placing the capacitive element 12 in the case 60, adding the insulating fluid 76, and sealing the cover 82 of cover assembly 80 to the case 60. The case 60 may be labeled with the capacitance values of the capacitance sections 20-25 adjacent the cover terminals, such as on the side of case 60 near the cover 82 or on the cover 82.
The capacitor 10 may be used to replace a failed capacitor of any one of over two hundred different capacitance values, including both single and dual applications. Therefore, a serviceman is able to replace virtually any failed capacitor he may encounter as he makes service calls on equipment of various manufacturers, models, ages and the like.
As noted above, the capacitor 10 is expected to be used most widely in servicing air conditioning units. Air conditioning units typically have two capacitors; a capacitor for the compressor motor which may or may not be of relatively high capacitance value and a capacitor of relatively low capacitance value for a fan motor. The compressor motor capacitors typically have capacitances of from 20 to about 60 microfarads. The fan motor capacitors typically have capacitance values from about 2.5 to 12.5 microfarads, and sometimes as high as 15 microfarads, although values at the lower end of the range are most common.
With reference to
Similarly, a 7.5 microfarad capacitance is provided to the fan motor by connecting section cover terminal 94 of the 5.0 microfarad capacitor section 24 and the section cover terminal 95 of the nominal 2.5 microfarad capacitor section 25 in parallel via jumper 169. Leads 170 and 171 connect the fan motor to the common cover terminal 88 and the section cover terminal 95 of the capacitor section 25.
It will be appreciated that various other jumper connections between section cover terminals can be utilized to connect selected capacitor sections in parallel, in order to provide a wide variety of capacitance replacement values.
The capacitor sections can also be connected in series to utilize capacitor 10 as a single value replacement capacitor. This has the added advantage of increasing the voltage rating of the capacitor 10 in a series application, i.e. the capacitor 10 can safely operate at higher voltages when its sections are connected in series. As a practical matter, the operating voltage will not be increased as it is established by the existing equipment and circuit, and the increased voltage rating derived from a series connection will increase the life of the capacitor 10 because it will be operating well below its maximum rating.
With reference to
The formula for capacitance of capacitors connected in series is:
Therefore,
and the total capacitance of the capacitor sections 22 and 25 connected as shown in
The capacitance of each of the capacitor sections 20-25 is rated at 440 volts. However, when two or more capacitor sections 20-25 are connected in series, the applied voltage section is divided between the capacitor sections in inverse proportion to their value. Thus, in the series connection of
With reference to
where C1 is a parallel connection having the value C+C, in this case 5.0+5.0 for a C1 of 10.0 microfarads. With that substitution, the total value is
The connection of capacitor 10 illustrated in
The chart of
The chart of
Chart 22 illustrates yet additional dual value capacitances that can be provided by capacitor 10. Capacitor section 25 (nominal 2.5 microfarads) is connected in parallel with one of capacitor section 23 (5.5 microfarads) or capacitor section 24 (4.5 microfarads) to provide a 7.5 microfarad capacitance value as one of the dual value capacitances. The remaining capacitor sections are used individually or in parallel to provide the second of the dual value capacitances.
Chart 23 illustrates yet additional dual value capacitances that can be provided by capacitor 10, where capacitor section 22 (10 microfarads) is dedicated to provide one of the dual values. The remaining capacitor sections are used individually or in parallel for the other of the dual values.
It will be appreciated that any one or group of capacitor sections may be used for one of a dual value, with a selected one or group of the remaining capacitor sections connected to provide another capacitance value. Although there are no known applications, it will also be appreciated that the capacitor 10 could provide six individual capacitance values corresponding to the capacitor sections, or three, four or five capacitance values in selected individual and parallel connections. Additional single values can be derived from series connections.
The six capacitor sections 20-25 can provide hundreds of replacement values, including single and dual values. It will further be appreciated that if fewer replacement values are required, the capacitor 10 can be made with five or even four capacitor sections, and that if more replacement values were desired, the capacitor 10 could be made with more than six capacitor sections. It is believed that, at least in the intended field of use for replacement of air conditioner capacitors, there should be a minimum of five capacitor sections and preferably six capacitor sections to provide an adequate number of replacement values.
As is known in the art, there are occasional failures of capacitive elements made of wound metalized polymer film. If the capacitive element fails, it may do so in a sudden and violent manner, producing heat and outgassing such that high internal pressures are developed within the housing. Pressure responsive interrupter systems have been designed to break the connection between the capacitive element and the cover terminals in response to the high internal pressure, thereby removing the capacitive element from a circuit and stopping the high heat and overpressure condition within the housing before the housing ruptures. Such pressure interrupter systems have been provided for capacitors having two and three cover terminals, including the common terminal, but it has not been known to provide a capacitor with five or more capacitor sections and a pressure interrupter cover assembly.
The pressure interrupter cover assembly 80 provides such protection for the capacitor 10 and its capacitive element 12. With reference to
Although the preferred pressure interrupter cover assembly includes the foil lead 38 and foil tabs 56, frangibly connected to the distal ends of the terminal posts, the frangible connections both known in the art and to be developed may be used. As an example, the terminal posts themselves may be frangible.
It should be noted that although it is desirable that the connections of the capacitive element and all cover terminals break, it is not necessary that they all do so in order to disconnect the capacitive element 12 from a circuit. For all instances in which the capacitor 10 is used with its capacitor sections connected individually or in parallel, only the terminal post 122 of common cover terminal 88 must be disconnected in order to remove the capacitive element 12 from the circuit. Locating the cover common terminal 88 in the center of the cover 82, where the deformation of the cover 82 is the greatest, ensures that the common cover terminal connection is broken both first and with certainty in the event of a failure of the capacitive element 12.
If the capacitor sections of the capacitor 10 are utilized in a series connection, it is necessary that only one of the terminal posts used in the series connection be disconnected from its foil tab at the disconnect plate 130 to remove the capacitive element from an electrical circuit. In this regard, it should be noted that the outgassing condition will persist until the pressure interrupter cover assembly 80 deforms sufficiently to cause disconnection from the circuit, and it is believed that an incremental amount of outgassing may occur as required to cause sufficient deformation and breakage of the circuit connection at the terminal post of one of the section cover terminal. However, in the most common applications of the capacitor 10, the common cover terminal 88 will be used and the central location of the common cover terminal 88 will cause fast and certain disconnect upon any failure of the capacitive element.
Two other aspects of the design are pertinent to the performance of the pressure interrupter system. First, with respect to series connections only, the common cover terminal 88 may be twisted to pre-break the connection of the terminal post 122 with the foil strip 38, thus eliminating the requirement of any force to break that connection in the event of a failure of the capacitive element 12. The force that would otherwise be required to break the connection of common terminal post 122 is then applied to the terminal posts of the section cover terminals, whereby the section cover terminals are more readily disconnected. This makes the pressure interrupter cover assembly 80 highly responsive in a series connection configuration.
Second, the structural aspects of welding foil tabs to the distal ends of the terminal posts corresponding to the various capacitor sections and thereafter soldering the connecting wires onto the foil tabs 56 is also believed to make the pressure interrupter cover assembly 80 more responsive to failure of the capacitive element 12. In particular, the solder and wire greatly enhance the rigidity of the foil tabs 56 wherein upon deformation of the cover 82, the terminal posts break cleanly from the foil tabs 56 instead of pulling the foil tabs partially through the disconnect plate before separating. Thus, the capacitor 10, despite having a common cover terminal and section cover terminals for six capacitor sections, is able to satisfy safety requirements for fluid-filled metalized film capacitors, which is considered a substantial advance in the art.
The capacitor 10 and the features thereof described above are believed to admirably achieve the objects of the invention and to provide a practical and valuable advance in the art by facilitating efficient replacement of failed capacitors. Those skilled in the art will appreciate that the foregoing description is illustrative and that various modifications may be made without departing from the spirit and scope of the invention, which is defined in the following claims.
This application is a continuation application and claims priority under 35 USC § 120 to U.S. application Ser. No. 15/097,383, filed Apr. 13, 2016, which is a continuation of U.S. application Ser. No. 13/601,205, filed Aug. 31, 2012, now U.S. Pat. No. 9,343,238 issued on May 17, 2016, which is a continuation of U.S. application Ser. No. 12/945,979, filed Nov. 15, 2010, now U.S. Pat. No. 8,270,143 issued on Sep. 18, 2012, which is a continuation of U.S. application Ser. No. 12/246,676, filed Oct. 7, 2008, now U.S. Pat. No. 7,835,133 issued on Nov. 16, 2010, which is a continuation application of U.S. application Ser. No. 11/733,624, filed Apr. 10, 2007, now U.S. Pat. No. 7,474,519 issued on Jan. 6, 2009, which is a continuation application of U.S. application Ser. No. 11/317,700, filed on Dec. 23, 2005, now U.S. Pat. No. 7,203,053 issued on Apr. 10, 2007, which claims benefit to U.S. Provisional Application Ser. No. 60/669,712, filed Apr. 7, 2005.
Number | Name | Date | Kind |
---|---|---|---|
1665499 | Hoch | Apr 1928 | A |
1707959 | Fried | Apr 1929 | A |
1943714 | Bailey | Jan 1934 | A |
2202166 | Peck | Nov 1937 | A |
D122825 | Peck | Oct 1940 | S |
D124726 | Shimer | Jan 1941 | S |
2569925 | Deeley | Dec 1948 | A |
2896008 | Putz | Dec 1953 | A |
3015687 | Ruscito | Nov 1959 | A |
3302081 | Grahame | Jan 1967 | A |
3304473 | Netherwood et al. | Feb 1967 | A |
D210210 | Braiman et al. | Feb 1968 | S |
3377510 | Rayno | Apr 1968 | A |
3921041 | Stockman | Nov 1975 | A |
3988650 | Fritze | Oct 1976 | A |
4028595 | Stockman | Jun 1977 | A |
4095902 | Florer et al. | Jun 1978 | A |
4106068 | Flanagan | Aug 1978 | A |
4107758 | Shirn et al. | Aug 1978 | A |
4112424 | Lapeyre | Sep 1978 | A |
4209815 | Rollins et al. | Jun 1980 | A |
4240126 | Sanvito | Dec 1980 | A |
4263638 | Stockman et al. | Apr 1981 | A |
4312027 | Stockman | Jan 1982 | A |
4326237 | Markarian et al. | Apr 1982 | A |
4352145 | Stockman | Sep 1982 | A |
4363078 | Dwyer | Dec 1982 | A |
4398782 | Markarian | Aug 1983 | A |
4408818 | Markarian | Oct 1983 | A |
4420791 | Shedigian | Dec 1983 | A |
4447854 | Markarian | May 1984 | A |
4459637 | Shedigian | Jul 1984 | A |
4486809 | Deak et al. | Dec 1984 | A |
4558394 | Stockman | Dec 1985 | A |
4586107 | Price | Apr 1986 | A |
4609967 | Shedigian | Sep 1986 | A |
4621301 | Shedigian | Nov 1986 | A |
4631631 | Hodges et al. | Dec 1986 | A |
4633365 | Stockman | Dec 1986 | A |
4633367 | Strange et al. | Dec 1986 | A |
4633369 | Lapp et al. | Dec 1986 | A |
4639828 | Strange et al. | Jan 1987 | A |
4642731 | Shedigian | Feb 1987 | A |
4698725 | MacDougall et al. | Oct 1987 | A |
4754361 | Venturini | Jun 1988 | A |
4812941 | Rice et al. | Mar 1989 | A |
4897760 | Bourbeau | Jan 1990 | A |
5006726 | Okumura | Apr 1991 | A |
5019934 | Bentley et al. | May 1991 | A |
5138519 | Stockman | Aug 1992 | A |
5148347 | Cox et al. | Sep 1992 | A |
5313360 | Stockman | May 1994 | A |
5381301 | Hudis | Jan 1995 | A |
5673168 | Efford et al. | Sep 1997 | A |
5921820 | Dijkstra | Jul 1999 | A |
5940263 | Jakoubovitch | Aug 1999 | A |
6009348 | Rorvick et al. | Dec 1999 | A |
6014308 | Stockman | Jan 2000 | A |
6031713 | Takeisha et al. | Feb 2000 | A |
6084764 | Anderson | Jul 2000 | A |
6141205 | Nutzman | Oct 2000 | A |
6147856 | Karidis | Nov 2000 | A |
6157531 | Breyen et al. | Dec 2000 | A |
6212058 | Huber | Apr 2001 | B1 |
6222270 | Lee | Apr 2001 | B1 |
6282078 | Tsai | Aug 2001 | B1 |
6282081 | Takabayashi et al. | Aug 2001 | B1 |
6310756 | Miura et al. | Oct 2001 | B1 |
6313978 | Stockman et al. | Nov 2001 | B1 |
6373720 | Fechtig et al. | Apr 2002 | B1 |
6385490 | O'Phelan | May 2002 | B1 |
6404618 | Beard et al. | Jun 2002 | B1 |
6490158 | Ellyson et al. | Dec 2002 | B1 |
6697249 | Maletin et al. | Feb 2004 | B2 |
6798677 | Jakob et al. | Sep 2004 | B2 |
6807048 | Nielsen | Oct 2004 | B1 |
6819545 | Lobo et al. | Nov 2004 | B1 |
6842328 | Schott | Jan 2005 | B2 |
6847517 | Iwaida et al. | Jan 2005 | B2 |
6888266 | Burke et al. | May 2005 | B2 |
6922330 | Nielson et al. | Jul 2005 | B2 |
6930874 | Lobo | Aug 2005 | B2 |
6982539 | Ward | Jan 2006 | B1 |
6995971 | Norton | Feb 2006 | B2 |
7031139 | Fayram | Apr 2006 | B1 |
7046498 | Huang | May 2006 | B1 |
D522456 | Matsumoto | Jun 2006 | S |
7110240 | Breyen | Sep 2006 | B2 |
7203053 | Stockman | Apr 2007 | B2 |
7251123 | O'Phelan | Jul 2007 | B2 |
7365959 | Ward | Apr 2008 | B1 |
7423861 | Stockman | Sep 2008 | B2 |
7474519 | Stockman | Jan 2009 | B2 |
7474520 | Kashihara | Jan 2009 | B2 |
7492574 | Fresard et al. | Feb 2009 | B2 |
7511941 | Gallay | Mar 2009 | B1 |
7547233 | Inoue et al. | Jun 2009 | B2 |
7667954 | Lessner | Feb 2010 | B2 |
7710713 | Restorff | May 2010 | B2 |
D621789 | Wang et al. | Aug 2010 | S |
7835133 | Stockman | Nov 2010 | B2 |
7848079 | Gordin | Dec 2010 | B1 |
7867290 | Nielsen | Jan 2011 | B2 |
7881043 | Hirose et al. | Feb 2011 | B2 |
7911762 | Stockman | Mar 2011 | B2 |
7911766 | Caumont | Mar 2011 | B2 |
7952854 | Stockman | May 2011 | B2 |
7987593 | Gorst | Aug 2011 | B1 |
8029290 | Johnson | Oct 2011 | B2 |
8170662 | Bocek | May 2012 | B2 |
8174817 | Georgopoulos | May 2012 | B2 |
8270143 | Stockman | Sep 2012 | B2 |
8274778 | Yoshinaga et al. | Sep 2012 | B2 |
8310802 | Fujii et al. | Nov 2012 | B2 |
8331076 | Tuncer | Dec 2012 | B2 |
8456795 | Stockman | Jun 2013 | B2 |
8465555 | Sherwood | Jun 2013 | B2 |
8514547 | Galvagni | Aug 2013 | B2 |
8514548 | Miller et al. | Aug 2013 | B2 |
8531815 | Stockman | Sep 2013 | B2 |
8537522 | Stockman | Sep 2013 | B2 |
8559161 | Takeoka et al. | Oct 2013 | B2 |
8761875 | Sherwood | Jun 2014 | B2 |
8842411 | Zhang | Sep 2014 | B2 |
8853318 | Tielemans | Oct 2014 | B2 |
8861178 | Terashima et al. | Oct 2014 | B2 |
8861184 | Schmidt | Oct 2014 | B2 |
8871850 | Koh et al. | Oct 2014 | B2 |
8885318 | Stockman | Nov 2014 | B2 |
8891224 | Stockman | Nov 2014 | B2 |
D729164 | Chen | May 2015 | S |
9105401 | Dreissig | Aug 2015 | B2 |
9318261 | Stockman | Apr 2016 | B2 |
9324501 | Stockman | Apr 2016 | B2 |
9343238 | Stockman | May 2016 | B2 |
9378893 | Stockman | Jun 2016 | B2 |
9412521 | Stockman | Aug 2016 | B2 |
9424995 | Stockman | Aug 2016 | B2 |
9466429 | Casanova | Oct 2016 | B1 |
D771567 | Flohe et al. | Nov 2016 | S |
9496086 | Stockman | Nov 2016 | B2 |
9536670 | Stockman | Jan 2017 | B2 |
9916934 | Casanova et al. | Mar 2018 | B1 |
D818437 | Stockman | May 2018 | S |
D818959 | Stockman | May 2018 | S |
10056194 | Stockman | Aug 2018 | B2 |
10056195 | Stockman | Aug 2018 | B2 |
20010025618 | Kelling | Oct 2001 | A1 |
20060201971 | Wegman | Sep 2006 | A1 |
20060227495 | Stockman | Oct 2006 | A1 |
20070002505 | Stockman | Feb 2007 | A1 |
20070236860 | Stockman | Oct 2007 | A1 |
20080158780 | Stockman | Jul 2008 | A1 |
20090052109 | Stockman et al. | Feb 2009 | A1 |
20090219665 | Stockman | Sep 2009 | A1 |
20110063775 | Stockman | Mar 2011 | A1 |
20110134584 | Stockman | Jun 2011 | A1 |
20110157764 | Stockman | Jun 2011 | A1 |
20110228446 | Stockman | Sep 2011 | A1 |
20110317333 | Chun | Dec 2011 | A1 |
20130003252 | Stockman | Jan 2013 | A1 |
20130214720 | Stockman | Aug 2013 | A1 |
20130329342 | Stockman | Dec 2013 | A1 |
20130343029 | Stockman | Dec 2013 | A1 |
20140049205 | Curiel | Feb 2014 | A1 |
20140126107 | Yoda et al. | May 2014 | A1 |
20140201018 | Chassin | Jul 2014 | A1 |
20140285949 | Stockman | Sep 2014 | A1 |
20140347784 | Stockman et al. | Nov 2014 | A1 |
20150016012 | Stockman | Jan 2015 | A1 |
20150022991 | Stockman et al. | Jan 2015 | A1 |
20150138690 | Stockman | May 2015 | A1 |
20150255218 | Stockman et al. | Sep 2015 | A1 |
20160203916 | Stockman | Jul 2016 | A1 |
20160233030 | Stockman | Aug 2016 | A1 |
20170011855 | Stockman et al. | Jan 2017 | A1 |
20170032898 | Stockman | Feb 2017 | A1 |
20170110252 | Stockman | Apr 2017 | A1 |
20170186554 | Stockman | Jun 2017 | A1 |
20170372838 | Casanova et al. | Dec 2017 | A1 |
20180090278 | Stockman et al. | Mar 2018 | A1 |
20180254150 | Stockman et al. | Sep 2018 | A1 |
20180261391 | Stockman | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2285721 | Apr 2000 | CA |
1115128 | Jul 2001 | EP |
2587503 | May 2013 | EP |
2343221 | Sep 1977 | FR |
517718 | Feb 1940 | GB |
2070861 | Sep 1981 | GB |
2169747 | Jul 1986 | GB |
Entry |
---|
Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions American Radionic, Inc., v. Packard, Inc., and Cornell-Dubilier Electronics, Inc., No. 6:14-cv-01881-RBD-KRS. |
Photograph 1 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 2 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 3 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 4 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 5 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 6 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 7 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page). |
Photograph 8, undated (1 page). |
Photograph 9, undated (1 page). |
Photograph 10, undated (1 page). |
Photograph 11, undated (1 page). |
Photograph 12, undated (1 page). |
Photograph 13, undated (1 page). |
Photograph 14, undated (1 page). |
Photograph 15, undated (1 page). |
Photograph 16, undated (1 page). |
Photograph 17, undated (1 page). |
Photograph 18, undated (1 page). |
Photograph 19, undated (1 page). |
Photograph 20, undated (1 page). |
Document from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions that purported to be Standard for Safety UL 810 Capacitors, Underwriters Laboratories Inc. having multiple dates ranging from 1976 to 1988 (22 pages). |
“Industrial Power Factor Correction Capacitors,” Cornell Dubilier, Undated (1 page). |
“American Radionic Co., Inc. Introduces a New Circuit Component The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., (poster undated, 1980 year date appears below one image), (one page). |
“AC Capacitors,” brochure by AmRad Engineering, Inc., undated (4 pages). |
“American Radionic Co., Inc. Introduces a New Circuit Component, The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., which is reprint from Electronic News dated Feb. 11, 1980, (one page). |
“American Radionic Co., Inc. Introduces . . . The World's First Multiple Metallized Film Dielectric Capacitor Produced from a Single Winding! The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc. (undated) (one page). |
“American Radionic Company's Chronology of Patents, New Products and Technology Transfer Programs—From the Present, to the Past, a Thirty-Five Year Review,” online website having URL: http:/www.americanradionic.com/content/blogcategory/13/29/8/16 , accessed May 19, 2014 (undated) (3 pages). |
“American Radionic Introduces Capacitors Without Compromise”, color brochure, 1989, (1 page). |
“American Radionics—Home of the Turbo200 MultiUse Capacitor,” online archive of website captured at http://web.archive.org/web/20050309191805fw_/http://www.americanradionic.com/home , Mar. 9, 2005, (16 pages) (accessed May 29, 2014). |
“AmRad Engineering: Universal Capacitor,” The Air Conditioning|Heating|Refrigeration News, Jan. 29, 2005, Printout of website having URL: http://www.archrnews.com/articles/print/amrad-engineering-universal-capacitor (accessed Jun. 2, 2014) (1 page). |
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Online archive of website captured at http:/webarchive.org/web/20011126195819/http://www.americanradionic.com, Nov. 26, 2001, (13 pages) (accessed May 29, 2014). |
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Printout of website having URL: http://amradcapacitors.com/index.htm, Jan. 3, 2003(20 pages). |
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Online archive of website captured at http://webarchive.org/web/20041214091042/http://americanradionic.com, Dec. 14, 2004, (13 pages) (accessed May 29, 2014). |
Hudis, Martin et al., “Motor-Run Capacitors,” Motors & Motor Control, undated (reprinted from Appliance Manufacturer, Oct. 1994) (3 pages). |
Hudis, Martin, “Plastic Case Self-Protected Liquid Filled AC Capacitors for 70° Applications,” Presented at CAPTECH '97, Mar. 1997, 7 pages. |
Hudis, Martin, “Technology Evolution in Metallized Polymeric Film Capacitors over the Past 10 Years,” Presented at CARTS Symposium in Nice, France, Oct. 1996, 9 pages. |
International Search Report and Written Opinion, PCT/US2014/39003, dated Oct. 2, 2014, 12 pages. |
Macomber, Laird L.et al., “New Solid Polymer Aluminum Capacitors Improve Reliability,” Electro Power Electronics, Oct. 1, 2001, 5 pages. |
Macomber, Laird L.et al., “Solid Polymer Aluminum Capacitor Chips in DC-DC Converter Modules Reduce Cost and Size and Improve High-Frequency Performance,”PCIM Power Electronics 2001 Proceeding for the PowerSystems World Conference, Sep. 2001, 8 pages. |
Mallory Distributor Products Co., 1967 Precision Electronic Components Catalog, 52 pages. |
Parente, Audrey, “Can-sized device the right fit,” The Daytona Beach News—Journal, Jan. 3, 2005 (2 pages). |
“Product of the Year Awards,” Electronic Products Magazine, Jan. 1981, pp. 39-45. |
“Super-Sized Show,” ASHRae Journal Show Daily, 2005 International Air-Conditioning, Heating, Refrigerating Exposition, Tuesday, Feb. 8, 2005 (24 pages). |
“The Patented Ultramet™ Capacitor. A product of years of American Radionic research & development,” poster by American Radionic Co., Inc. (undated) (one page). |
“The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., (undated) (three pages). |
Complaint for Patent Infringement against Cornell-Dubliner Electronics, Inc., Packard Inc. with Jury Demand (Filing fee $400 receipt No. ORL-38930) filed by American Radionic Company, Inc. (Attachments: #1 Civil Cover sheet, #2 Exhibit A)(LMM) Modified on Nov. 19, 2014 (LMM). (Entered: Nov. 19, 2014). |
Answer and affirmative defenses to Complaint by Cornell-Dubliner Electronics, Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015). |
Answer and affirmative defenses to Complaint by Packard Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015). |
First Amended Answer and affirmative defenses to 1 Complaint by Packard Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015). |
First Amended Answer and affirmative defenses to 1 Complaint by Cornell-Dubliner Electronics, Inc. (Allaman, Melissa) (Entered: Feb. 4, 2015). |
Case Management and Scheduling Order: Amended Pleadings and Joinder of Parties due by Apr. 9, 2015. Discovery due by Feb. 16, 2016. Dispositive motions due by Apr. 7, 2016. Pretrial statement due by Aug. 11, 2016. All other motions due by Jul. 28, 2016. Plaintiff disclosure of expert report due by Dec. 10, 2015. Defendant disclosure of expert report due by Jan. 14, 2016. Final Pretrial Conference set for Aug. 18, 2016 at 01:15 PM in Orlando Courtroom 4 A before Judge Roy B. Dalton, Jr., Jury Trial Set for the trial team commencing Sep. 6, 2016 at 09:00 AM in Orlando Courtroom 4 A before Judge Roy B. Dalton Jr., Conduct mediation hearing by Mar. 29, 2016. Lead counsel to coordinate dates. Signed by Judge Roy B. Dalton, Jr. on Feb. 10, 2015. (VMF). (Entered: Feb. 10, 2015). |
Status report Joint Claim Construction Statement by American Radionic Company, Inc., Packard Inc., and Cornell-Dubliner Electronics, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2) (Graubart, Noah) Modified on May 29, 2015 (SWT). (Entered: May 28, 2015). |
Declaration of Noah C. Graubart in Support of Plaintiff's Claim Construction Brief by American Radionic Company, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2, #3 Exhibit 3, #4 Exhibit 4, #5 Exhibit 5, #6 Exhibit 6) (Graubart, Noah) (Entered: Jun. 18, 2015). |
Plaintiff's Brief re 59 Declaration Plaintiff's Claim Construction Brief filed by American Radionic Company, Inc. (Graubart, Noah) (Entered May 18, 2015). |
Response to Plaintiff's Claim Construction Brief re 60 Brief—Plaintiff filed by Cornell-Dubliner Electronics, Inc., Packard Inc. (Killen, Craig) Modified on Jul. 17, 2015 (EJS). (Entered Jul. 16, 2015). |
Joint Pre-Hearing Statement re: Claim Construction by American Radionic Company, Inc., Packard Inc., Cornell-Dubliner Electronics, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2) (Graubart, Noah) Modified on Jul. 24, 2015. |
Minute Entry, Proceedings of Claim Construction Hearing held before Judge Roy B. Dalton, Jr. on Aug. 24, 2015. Court Report: Arnie First (VMF) (FMV). (Entered: Aug. 24, 2015). |
Notice of Filing of Claim Construction Evidence by American Radionic Company, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2, #3 Exhibit 3) (Graubart, Noah) Modified on Aug. 25, 2015 (EJS). (Entered: Aug. 25, 2015). |
Transcript of Markman Hearing held on Aug. 24, 2015 before Judge Roy B. Dalton, Jr., Court Reporter Arnie R. First, DRD, CRR< ArnieFirst.CourtReporter@gmail.com. Transcript may be viewed at the court public terminal or purchased through the Court Reporter before the deadline for Release of Transcript Restriction. After that date it may be obtained through PACER or purchased through the court Reporter, Redaction Request due Oct. 22, 2015. Redacted Transcript Deadline set for Nov. 2, 2015. Release of Transcript Restriction set for Dec. 30, 2015. (ARF) (Entered: Oct. 1, 2015). |
Order granting 69 Motion for Consent Judgment and Injunction, Signed by Judge Roy B. Dalton, Jr. on Nov. 5, 2015. (CAC) (Entered Nov. 5, 2015). |
Grainger, “Round Motor Dual Run Capacitor, 40/5 Microfarad Rating, 370VAC Voltage,” Retrieved from the Internet: URL<https://www.grainger.com/product/5CMW3&AL!2966!3!166587674359!!!g!82128730437!?cm_mmc=PPC:+Google+PLA?campaignid=719691765&s_kwcid=AL!2966!3!166587674359!!!!82128730437!&ef_id=WRSnxQAAAILWhRIb:20170824174108:s>. Visited Aug. 24, 2017, Capacitor. |
Amazon. <URL: https://www.amazon.com/Amrad-Turbo-Universal-Motor-Capacitor/dp/B00B610TOM/ref=pd_rhf_dp_s_cp_0_7?_encoding=UTF8&pd_rd_i=BOOB610TOM&pd_rd_r=N5WYCAD5Y36C86DFWDEG&pd_rd_w=6tW71&pd_rd_wg=DWEJcApsc=1&refRID=N5WYCAD5Y36C86DFWDEG.> Jan. 27, 2013. Amrad Turbo 200X Universal Motor Run Capacitor. |
YouTube. <URL: https://www.youtube.com/watch?v=R5B189BWrz0.> Jul. 29, 2011. HVAC Service: Install New Turbo 200 Capacitor. |
YouTube. <URL: https://www.youtube.com/watch?v=U7h7pg12t6M.> Jul. 15, 2011. How to Install the Turbo 200 Capacitor. |
Amazon. <URL: https://www.amazon.com/CPT00656-Trane-Round-Capacitor-Upgrade/dp/BOOEVTIOMC/ref=cm_cr_arp_d_product_top?ie=UTF8.> May 11, 2016. Replacement Trane Round Dual Run Capacitor, 6 pages. |
Amazon. <URL: https://www.amazon.com/MARS-Motors-Armatures-12788-Capacitor/dp/BOOCOYS2CM/ref=pd_sim_328_6?_encoding=UTF8&pd_rd_i=BOOCOYS2CM&pd_rd_r=KEFT1DXGOAWQ1KCZDJFJ&pd_rd_w=LNF6S&pd_rd_wg=5eFTh&psc=1&refRID=KEFT1DXGOAWQ1KCZDJFJ.> Jan. 25, 2012. MARS Dual Run Capacitor, 7 pages. |
Amazon. <URL: https://www.amazon.com/AmRad-Turbo-200-Mini-Oval/dp/BOOKQSKDOY/ref=pd_sbs_60_4?_encoding=UTF8&pd_rd_i=BOOKQSKDOY&pd_rd_r=A6′)/0E2′)/080′)/0A6.> May 5, 2015. AmRad Turbo 200 Mini Oval Capacitor with label and color trim, 5 pages. |
Amazon. <URL: https://www.amazon.com/AmRad-U5A2227-MFD-370-Volt/dp/BOOGSU3YV8/ref=pd_day0_328_6?_encoding=UTF8&pd_rd_i=BOOGSU3YV8&pd_rd_r%E2′)/080′)/0A6.> Jun. 29, 2014. AmRad Dual Run Capacitor, 6 pages. |
Amazon. <URL: https://www.amazon.com/gp/product/B01HPK5ANO/ref=s9_dcacsd_dcoop_bw_c_x_6_w.> Aug. 21, 2016. Titan TRCFD405 Dual Rated Motor Run Capacitor, 6 pages. |
Amazon. <URL: https://www.amazon.com/Labels-Protective-Backed-Clean-Remove-Adhesive/dp/BOOVIDW1C1/ref=sr_1_18?ie=UTF8&clid=1522957818&sr=8-18&keycY0E2′)/080′)/0A6.> Apr. 1, 2015. Labels, 7 pages. |
Amazon. <URL: https://www.amazon.com/Packard-TRCFD405-5MFD-370VACCapacitor/dp/B009558E9U/ref=pd_sim_328_4?_encoding=UTF8&pd_rd_i=B009558E9U &pd_rd_r=SX1DRWZQZ8SH12JWHYH2&pd_rd_w=y1jQe&pd_rd_wg=mHOn1&psc=1&refRID= SX1DRWZQZ8SH12JWHYH2&dp1D=31IxzeyCr/0252B7L&preST=_QL70_&dpSrc=detail.> May 1, 2015. Packard Capacitor, 5 pages. |
Amazon. <URL: https://www.amazon.com/Universal-Capacitor-Trane-Replacement-USA2031/dp/BOOGSU4OKW/ref=pd_sim_328_3?_encoding=UTF8&pd_rd_i=BOOGSU4OKW&pd_rd_r=YX6P84XR7NY113X4DWJG&pd_rd_w=gejaD&pd_rd_wg=NLVIY&psc=1&refRID=YX6P84XR7NY113X4DWJG.> Nov. 26, 2014. Am Rad Oval Universal Capacitor with label and color trim, 6 pages. |
Amazon. <URL:https://www.amazon.com/dp/B01F7P8GJO/ref=sspa_dk_detail_4?psc=1.> Aug. 1, 2016. TradePro PowerWell Dual Run Round Capacitor, 6 pages. |
YouTube. <URL: https://www.youtube.com/watch?v=19A9IvQ611A&t=3s.> Oct. 1, 2015. GE Dual Run Capacitor, 5 pages. |
YouTube. <URL: https://www.youtube.com/watch?v=Xiw_xHXJHUg.> Sep. 4, 2011. AmRad Dual Run Capacitor, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20170236646 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
60669712 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15097383 | Apr 2016 | US |
Child | 15585782 | US | |
Parent | 13601205 | Aug 2012 | US |
Child | 15097383 | US | |
Parent | 12945979 | Nov 2010 | US |
Child | 13601205 | US | |
Parent | 12246676 | Oct 2008 | US |
Child | 12945979 | US | |
Parent | 11733624 | Apr 2007 | US |
Child | 12246676 | US | |
Parent | 11317700 | Dec 2005 | US |
Child | 11733624 | US |