The characteristics and the technical content of the present invention will be further understood in view of the detailed description and accompanying drawings, in which:
Referring to
The anti-static die 70 is mounted on the other electrode 51′. In this example, the anti-static die 70 can be soldered on the negative electrode 51′ and electrically connected with the positive electrode 51 via one second wire 71. A transparent encapsulation layer 80, such as epoxy resin, is filled into the casting 50 to cover the LED die 60 and anti-static die 70 to prevent the LED die 60 and anti-static die 70 from being damaged by the moisture entering the casting 50. Once a proper voltage is applied to the electrodes 51, 51′, the LED die 60 emits light, and meanwhile it is free from the static charges under the protection of the anti-static die 70.
According to the present invention, a wall 52 is provided between the electrodes 51, 51′, i.e. between the LED die and the anti-static die, and protrudes therefrom. The wall 52 can separate the polarities of both electrodes 51, 51′ and it is also higher than the LED die 60 and the anti-static die 70. The wall 52 and the casting 50 are made of an insulated high polymer material having a high reflection ratio, such as polyphthalamide (PPA), epoxy resin or ceramics. Alternatively, they can be made of material having a reflection ratio higher than that of the anti-static die 70, such as ceramics.
As shown in
In view of the above, the wall 52 formed between the electrodes 51, 51′ replaces the anti-static die 70 to serves a better mechanism for reflecting the light emitted from the LED die 60, reducing the possibility that the light travels to the anti-static die 70 directly. Additionally, the wall 52 can be made of the same material as that the casting 50 is made of or a material having a reflection ratio higher than that of the anti-static die 70. Thus, the wall 52 can reflect the light emitted from the LED die 60 to enhance the intensity of the whole LED module effectively.
Another aspect of the embodiment is shown in
Consequently, since the tops of both the wall 52 and the casting 50 locate at the same level, the light emitted from the LED die 60 can evenly distribute and an even intensity of the whole LED module can be obtained. The floors 511, 511′ allow the first wire 61 and the second wire 71 to be connected with the electrodes 51, 51′ respectively without the influence of the height of the wall 52.
Although the present invention has been described with reference to the aforementioned preferred embodiment, it will be understood that the invention is not limited to the details thereof. Various equivalent variations and modifications can still occur by those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also included within the scope of the invention as defined in the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 95210311 | Jun 2006 | TW | national |