Catalyst production method and system

Information

  • Patent Grant
  • 9149797
  • Patent Number
    9,149,797
  • Date Filed
    Friday, December 10, 2010
    14 years ago
  • Date Issued
    Tuesday, October 6, 2015
    9 years ago
Abstract
A method of producing a catalyst comprising: mixing catalytic particles and a solvent, thereby forming a mixture; performing a size distribution analysis on the mixture to determine a size distribution profile; repeating the mixing of the catalytic particles and the solvent in the mixture if the size distribution profile is below a threshold; centrifuging the mixture if the size distribution profile is at or above the threshold, thereby forming a supernate and a precipitate, wherein the supernate comprises a dispersion including the catalytic particles and the solvent; decanting the mixture, separating the supernate from the precipitate; determining the particle content of the separated supernate; determining a volume of the dispersion to be applied to a catalyst support based on one or more properties of the catalyst support; and impregnating the catalyst support with the catalytic particles in the dispersion by applying the volume of the dispersion to the catalyst support.
Description
FIELD OF THE INVENTION

The present invention relates to the field of catalysts. More specifically, the present invention relates to a method of producing a catalyst.


SUMMARY OF THE INVENTION

In one aspect of the present invention, a method of producing a catalyst is provided. The method comprises mixing a plurality of catalytic particles and a solvent, thereby forming a particle-solvent mixture. A size distribution analysis is performed on a sample of the particle-solvent mixture, thereby determining a size distribution profile for the particle-solvent mixture. The mixing of the catalytic particles and the solvent in the particle-solvent mixture is repeated if the size distribution profile is below a predetermined threshold. The entire particle-solvent mixture is centrifuged if the size distribution profile is at or above the predetermined threshold, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container, wherein the supernate comprises a dispersion including the catalytic particles and the solvent. The particle-solvent mixture is decanted, thereby separating the supernate from the precipitate. The particle content of a sample of the separated supernate is determined. A target volume of the dispersion to be applied to a catalyst support is determined based on one or more properties of the catalyst support. The catalyst support is impregnated with the catalytic particles in the dispersion by applying the target volume of the dispersion to the catalyst support.


In some embodiments, the method further comprises the step of calcining the impregnated catalyst support. In some embodiments, the method further comprises the step of performing a drying process on the impregnated catalyst support before the step of calcining the impregnated catalyst support. In some embodiments, the drying process is a freeze drying process.


In some embodiments, the method further comprises the step of analyzing the impregnated catalyst support to determine if it has been sufficiently impregnated according to one or more predetermined thresholds. In some embodiments, the step of analyzing the impregnated catalyst support comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the impregnated catalyst support. In some embodiments, the method further comprises the step of performing an additional impregnation of the impregnated catalyst support with a dispersion of catalytic particles in response to a determination by the analyzing step that the impregnated catalyst support has not been sufficiently impregnated according to the one or more thresholds.


In some embodiments, the catalyst support is a porous extrudate. In some embodiments, the catalyst support is a monolith. In some embodiments, the catalyst support is a powder.


In some embodiments, the step of mixing the plurality of catalytic particles and the solvent comprises using a shear mixer to mix the plurality of catalytic particles and the solvent. In some embodiments, the step of mixing the plurality of catalytic particles and the solvent comprises using sonication to mix the plurality of catalytic particles and the solvent.


In some embodiments, the step of performing a size distribution analysis on the sample of the particle-solvent mixture comprises: centrifuging the sample of the particle-solvent mixture; and performing a Dynamic Light Scattering (DLS) process on the centrifuged sample.


In some embodiments, the step of determining the particle content of the sample of the separated supernate comprises calculating the weight percentage of the catalytic particles in the sample. In some embodiments, the step of determining the particle content of the sample of the separated supernate comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the sample.


In some embodiments, the plurality of catalytic particles that is mixed with the solvent is a nano-powder.


In another aspect of the present invention, a method of producing a catalyst is provided. The method comprises mixing a plurality of catalytic particles and a solvent, thereby forming a particle-solvent mixture. A sample of the particle-solvent mixture is centrifuged. A Dynamic Light Scattering (DLS) process is performed on the centrifuged sample, thereby determining a size distribution profile for the particle-solvent mixture. The mixing of the catalytic particles and the solvent in the particle-solvent mixture is repeated if the size distribution profile is below a predetermined threshold. The entire particle-solvent mixture is centrifuged if the size distribution profile is at or above the predetermined threshold, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container, wherein the supernate comprises a dispersion including the catalytic particles and the solvent. The particle-solvent mixture is decanted, thereby separating the supernate from the precipitate. The catalyst support is impregnated with the catalytic particles in the dispersion by applying a volume of the dispersion to the catalyst support.


In some embodiments, the method further comprises performing a dry-down process on a sample of the separated dispersion, and performing a weight percentage calculation of the catalytic particles using the dried-down sample of the separated dispersion, thereby determining a weight percentage for the catalytic particles. In some embodiments, the step of impregnating the catalyst support is performed only if the determined weight percentage for the catalytic particles is at or above a predetermined threshold. In some embodiments, an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process is performed on the dried-down sample of the separated dispersion.


In yet another aspect of the present invention, a method of producing a catalyst is provided. The method comprises providing a dispersion, wherein the dispersion comprises catalytic particles dispersed in a solvent. A target volume of the dispersion to be applied to a catalyst support is determined based on one or more properties of the catalyst support. The catalyst support is impregnated with the catalytic particles in the dispersion by applying the target volume of the dispersion to the catalyst support. A drying process is performed on the impregnated catalyst support. The dried impregnated catalyst support is calcined. An Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process is performed on the calcined impregnated catalyst support to determine if it has been sufficiently impregnated according to one or more predetermined thresholds. An additional impregnation of the impregnated catalyst support with a dispersion of catalytic particles is performed if it is determined by the ICP-MS process that the impregnated catalyst support has not been sufficiently impregnated according to the one or more thresholds.


In some embodiments, the catalyst support is a porous extrudate. In some embodiments, the catalyst support is a monolith. In some embodiments, the catalyst support is a powder.


In some embodiments, the drying process is a freeze drying process. In some embodiments, the drying process is either a hot drying process or a flash drying process.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one embodiment of a method of producing a catalyst in accordance with the principles of the present invention.



FIG. 2A illustrates one embodiment of a method of producing a dispersion in accordance with the principles of the present invention.



FIG. 2B illustrates one embodiment of a method of impregnating a catalyst support with particles from a dispersion in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.


This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders (nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.


Various aspects of the disclosure may be described through the use of flowcharts. Often, a single instance of an aspect of the present disclosure may be shown. As is appreciated by those of ordinary skill in the art, however, the protocols, processes, and procedures described herein may be repeated continuously or as often as necessary to satisfy the needs described herein. Additionally, it is contemplated that certain method steps of the invention can be performed in alternative sequences to those disclosed in the flowcharts. Accordingly, the scope of the claims should not be limited to any specific order of method steps unless the order is explicitly required by the language of the claims.



FIG. 1 illustrates one embodiment of a method 100 of producing a catalyst in accordance with the principles of the present invention.


At step 110, a plurality of catalytic particles and a solvent are mixed together, thereby forming a particle-solvent mixture. It is contemplated that the catalytic particles can be made up of any particles having catalytic properties such that they modify, either by increasing or decreasing, the rate of a chemical reaction. In some embodiments, the catalytic particles comprise or consist of one or more precious metals. In some embodiments, the catalytic particles comprise one of the platinum group metals, such as ruthenium, rhodium, palladium, osmium, iridium, and platinum. However, other catalytic particles can be used as well. A variety of different solvents can be used as well, including, but not limited to, water, cyclohexane, and toluene. In a preferred embodiment, the particles and the solvent are mixed via some form of agitation. In some embodiments, shear mixing is used to mix the particles and the solvent. In some embodiments, sonication is used to mix the particles and the solvent.


At step 120, a size distribution analysis is performed on a sample of the particle-solvent mixture. This analysis results in the determination of a size distribution profile for the particle-solvent mixture. In some embodiments, this size distribution analysis comprises centrifuging the sample of the particle-solvent mixture, and performing a Dynamic Light Scattering (DLS) process on the centrifuged sample. If the size distribution profile of the sample is below a predetermined threshold, then the catalytic particles and the solvent in the particle-solvent mixture are mixed again at step 110, as shown by the dotted arrow.


Once the size distribution profile is at or above the predetermined threshold (whether it is after the original mixing step or after subsequent repeated mixing steps) the entire particle-solvent mixture is centrifuged at step 130, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container. The supernate comprises a dispersion that includes the catalytic particles and the solvent.


At step 140, the particle-solvent mixture is decanted. This decanting step separates the supernate from the precipitate.


At step 150, the particle content of a sample of the separated supernate is determined. In some embodiments, this particle content determination comprises performing a weight percentage calculation of the catalytic particles in the separated dispersion. In some embodiments, this particle content determination comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the separated dispersion. In some embodiments, this particle content determination comprises performing both the weight percentage calculation and the ICP-MS process. In some embodiments, the process goes back to the beginning if the particle content does not meet a predetermined threshold, as shown by the dotted arrow. In some embodiments, additional catalytic particles are added to and mixed with the dispersion at step 110 if the particle content does not meet a predetermined threshold. In some embodiments, completely new particles and solvent are used to form a completely new dispersion.


At step 160, a target volume of the dispersion to be applied to a catalyst support is determined based on one or more properties of the catalyst support. Such properties include, but are not limited to, the size of the support, the shape of the support, and the type of support (e.g., whether it is an extrudate, a powder, or a monolith).


At step 170, the catalyst support is impregnated with the catalytic particles in the dispersion. This impregnation is accomplished by applying the target volume of the dispersion to the catalyst support. In some embodiments, the application of the dispersion to the catalyst support is repeated in order to sufficiently impregnate the support. In some embodiments, this repetition is predetermined by the previously determined particle content of the supernate and/or properties of the catalyst support.


In some embodiments, the process continues to step 180, where the impregnated catalyst support is calcined. It has been found to be advantageous for calcination to be performed between 350 degrees Celsius and 550 degrees Celsius for one to three hours. However, other temperatures and times can be employed as well, with variance of the temperature and time depending on the properties of the catalytic particles and/or the catalyst support.


At step 190, the impregnated catalyst support is analyzed to determine if it has been sufficiently impregnated according to one or more predetermined thresholds. In some embodiments, this analysis comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the impregnated catalyst support. In some embodiments, the process repeats the impregnation of the catalyst support at step 170 if the threshold is not met. In some embodiments, such repetition of the impregnation step requires determining the appropriate volume of the dispersion to be applied to the catalyst support at step 160. If the threshold is met, then the catalyst has been properly produced and the process comes to an end.



FIG. 2A illustrates one embodiment of a method 200a of producing a dispersion in accordance with the principles of the present invention. FIG. 2A provides a more detailed embodiment of steps 110 to 150 of FIG. 1. Accordingly, method 200a comprises all of the features discussed above with respect to FIG. 1.


At step 202, an incoming powder is provided. In a preferred embodiment, the powder comprises catalytic particles. In some embodiments, the powder consists only of catalytic particles. The powder can either be stored and handled in an ambient environment or in an inert environment.


At step 204a, the powder goes through ambient storage. For example, the powder may be placed in a bottle on a shelf. The powder is then weighed at a weight station at step 206a. A solvent bench is then used to add solvent to the powder at step 208a. Steps 206a and 208a occur in open air.


Alternatively, the powder goes through inert storage at step 204b. A desired quantity of the powder is weighed at a weigh station at step 206b. A solvent bench is then used to add solvent to the powder at step 208b. Steps 206b and 208b occur in an inert environment in a dry box or glove box. In some embodiments, a noble gas, such as argon, is introduced into the box to create and maintain a very high purity inert atmosphere within the box. This inert atmosphere is particularly helpful in handling titanium carbide or pure metal powder.


At step 210, the powder and the solvent that were introduced to each other at step 208 are mixed together using a shear mixer, thereby producing a particle-solvent mixture. As previously mentioned, the powder and the solvent can be mixed together using other forms of agitation as well. In some embodiments, the powder and the solvent are mixed together using sonication.


At step 212, the particle-solvent mixture is put through DLS staging in order to determine the dispersion quality of the particle-solvent mixture. At step 212-1 of the DLS staging, a sample is pulled from the mixture. At step 212-2 of the DLS staging, the sample is centrifuged. At step 212-3 of the DLS staging, a DLS test is performed on the centrifuged sample in order to determine the size distribution of the small particles in the mixture. At step 212-4, the data from the DLS test is recorded. At step 212-5, it is determined whether or not the dispersion quality of the sample is sufficient. If the dispersion quality is not sufficient, then the process repeats the mixing step at 210 in order to improve the size distribution of the small particles.


If the dispersion quality is sufficient, then the process continues to step 214, where the entire vat of the dispersion mixture is put into a large centrifuge, which rapidly ages the dispersion. In a preferred embodiment, the mixture is spun at about 2500 rpms. All of the large particles settle to the bottom in pellet form, thereby resulting in a supernate that is a good dispersion and that is going to remain stable for numerous days to weeks.


At step 216, the supernate is decanted off, thereby removing the good dispersion from the large precipitate. At step 218, the precipitate is treated as solid waste. In some embodiments, the precipitate is trashed at step 220 if it is a non-precious metal and reclaimed at step 222 if it is a precious metal.


At step 224, the decanted supernate is used as the dispersion for the rest of the process. At step 226, a sample of the dispersion is pulled. The sample is then dried down at step 228, which allows for the calculation of the weight percentage of the catalytic particles in the sample at step 230. In the middle of getting the dry down, an ICP-MS process is performed on the sample at step 240. The ICP-MS process determines the total metal content in the dispersion.


At step 232, it is determined whether or not the calculated weight percentage is sufficient. If the weight percentage is not sufficient, then the process starts over at one of the powder weighing steps at 206a or 206b. If the weight percentage is sufficient, then the process continues on to formation of the catalyst shown in FIG. 2B. In some embodiments, if the weight percentage is sufficient, then the powder goes to the shipping department at step 238. In some embodiments, the pulled sample is disposed of at step 236 no matter what the determination is at step 232, i.e., whether or not the weight percentage is sufficient.



FIG. 2B illustrates one embodiment of a method 200b of impregnating a catalyst support with particles from a dispersion in accordance with the principles of the present invention. FIG. 2B provides a more detailed embodiment of steps 160 to 190 of FIG. 1. Accordingly, method 200b comprises all of the features discussed above with respect to FIG. 1. Additionally, it is contemplated that, in some embodiments, the steps of method 200b are performed in an inert environment where possible with the dispersion being inertly stored.


At step 242, a catalyst support is selected to receive the catalytic particles from the dispersion produced in FIG. 2A. In some embodiments, the catalytic particles will either be impregnated onto a porous extrudate, coated onto a micron powder or macro powder of sorts, or coated onto a monolith.


At step 244, an extrudate is selected to act ast the catalyst support. Different extrudates have different internal volumes and different pore sizes. Therefore, it is important to know the internal volume in order to calculate how much dispersion to add into the extrudate at step 246. For example, if it is determined that an extrudate has an internal volume of 0.52 ml per gram and that there is 100 grams of extrudate material, then it can be determined exactly how much dispersion to add to the extrudate in order take up the entire pore space. If you add any more than the determined amount, then you are past the incipient wetness. If you add any less, then you are not accessing all of the possible pores. Therefore, it is important to add just the right amount of the dispersion.


At step 248, the extrudate is impregnated with the catalytic particles of the dispersion. It is contemplated that the impregnation of the extrudate can be performed in a variety of ways. In some embodiments, one or more extrudates are placed in a laboratory flask that has a first neck with an opening and a second neck with an opening. A rubber stopper is used to seal the opening of the first neck, while a vacuum pump is hooked up to the opening of the second neck. A vacuum is pulled on the extrudates in the flask down to approximately less than 500 microns. In some embodiments, the vacuum is pulled for a time between approximately 10 minutes and approximately 20 minutes, depending on how many extrudates are in the flask and their total mass. Pulling the vacuum on the extrudates gets the interior volume of the flask down to a certain pressure that enables a rapid impregnation. Pulling a vacuum removes all of the air from the internal pores of the extrudates, which allows a liquid to penetrate the pores more rapidly. As a result of pulling the vacuum, we are left with one or more dry extrudates sitting at the bottom of the flask. The vacuum is closed off, such as through the use of one or more valves. A syringe is used to inject the previously determined volume of dispersion into the flask. In some embodiments, the syringe is used to puncture the rubber stopper and then to inject the dispersion. Preferably, no action is performed on the extrudates for 10 to 15 minutes in order to make sure that the entire extrudate has the opportunity to be impregnated.


Different techniques can be used depending on what you want the end product to be. For example, if you want an eggshell extrudate where it is mostly coating on the outside, you can break the vacuum quickly or you can avoid pulling the vacuum at all. If you want to make sure that there is uniform coating all the way to the interior of the extrudate, you can let it sit a little bit longer to make sure that the entire extrudate has a chance to be impregnated.


At step 250, a freeze-drying process is performed on the impregnated catalyst support. If the flask discussed above is used, then the vacuum is broken by pulling the rubber septum off. Liquid nitrogen is poured into the flask, which is different from what is traditionally done.


Traditionally, if you want to freeze dry something, you start off with a liquid in a flask and put it into a dewar of liquid nitrogen. You try to create as much surface area as you freeze the material on the inside of the flask. Once it is frozen, you hook it up to a freeze dryer. However, since you have a lot of liquid that is on the interior of these extrudates, you cannot freeze them very quickly by just setting the flask into a liquid nitrogen dewar. It takes too long.


Instead, in the present invention, liquid nitrogen is poured into the flask, letting everything freeze. Then, all of the liquid nitrogen is allowed to boil off into nitrogen. When there is no more liquid in the flask, the flask is hooked up to a freeze dryer. In some embodiments, the freeze dryer is just a strong pump that pulls strong enough to keep the material inside the flask frozen. It pulls all of the solvent, such as water in most cases, directly past the cold finger (at −50 to −80 degrees Celsius) so that all of the vapor condenses off of the cold finger in order to avoid any damage to the pump.


It is important to pull a strong enough vacuum to keep the material inside the flask frozen. The sublimation rate has to be that at which the material stays frozen throughout the entire process. In order to make sure that happens, when you first start off with the freeze drying, usually you insulate the flask a little bit and let a strong vacuum be pulled on it. As you notice the flask not being as cold as it used to be, you start removing a little bit of insulation. It is all finished when you still have that strong of a vacuum and your flask is at room temperature so you know that nothing else can be sublimed.


At step 252, it is determined whether or not the impregnation should be repeated. For example, if you need a highly loaded catalyst (e.g., 10% platinum) on the extrudate, you might have to repeat the impregnation process a couple of times because the dispersion might not be as concentrated as it needs to be to require only one exposure. In some embodiments, this determination is based on the ICP-MS process performed at step 240. If it is determined that another impregnation is required, then the process repeats the impregnation at step 248. In some embodiments, a volume of dispersion is calculated once again at step 246 before proceeding to the impregnation step 248.


If it is determined that another impregnation is not required, then the impregnated extrudates are calcined at step 254. At this stage, the extrudates are already dry. The calcination step is a hardening step, performed to adhere the catalytic particles to the support. Calcination preferably occurs between 350 and 550 degrees Celsius for 1 to 3 hours. Depending on the type of metal, the temperature and the heating time can be varied.


At step 256, an ICP-MS process is performed on a sample of the impregnated extrudate in order to get elemental analysis on it and to make sure that there is sufficient loading. At step 258, it is determined whether or not there is sufficient loading on the catalyst support. If there is not sufficient loading, then the process repeats the impregnation of the support at step 248. If there is sufficient loading, then the impregnated supports go to the shipping department at step 260.


In some embodiments, instead of an extrudate, a powder or a monolith is used as the catalyst support at step 262. At step 264, after massing out a certain amount of powder or the monolith that you want coated with the catalytic particles, you calculate the volume that you need to sufficiently impregnate the support, similar to step 246.


At step 266, you mix the support with a second component, which is the dispersion. In some embodiments, this dispersion comprises catalytic nano-particles dispersed in a liquid. That dispersion is mixed with the support, whether it be a macro support, a micron powder, or a monolith. This mixing step serves to impregnate the support with the catalytic particles.


At step 268, a freeze-drying process is performed on the impregnated support, such as in step 250. However, it is contemplated that other drying processes can be used instead of freeze-drying, such as hot drying or flash drying. A hot drying process comprises any way to remove the solvent at a temperature greater than room temperature, but not hotter than the calcining temperature. For example, if you want to remove water, you can use a hot drying step at 110 degrees Celsius at ambient pressure and just let it bake for 1 to 2 hours until the material is dry. A flash drying process comprises anything that removes the solvent at a temperature that is as hot or hotter than the calcining temperature. For example, a furnace can be set at 550 degrees Celsius. The impregnated mixture is then placed into the furnace. The solvent evaporates quick enough so that you limit the capillary forces of the solvent evaporating, allowing you to freeze material in that spot or secure material in that location more readily than you can if you use a slow hot drying process. In some embodiments, the hot drying process or the flash drying process is used in place of the freeze-drying process at step 250 and/or at step 268.


At step 270, the support is calcined, as in step 254. An ICP-MS process is then performed on a sample of the support at step 272 in order to get elemental analysis on it and to make sure that there is sufficient loading. At step 274, it is determined whether or not there is sufficient loading on the catalyst support. If there is not sufficient loading, then the process repeats the impregnation of the support. In some embodiments, this repeated impregnation begins with a recalculation of the volume needed to sufficiently impregnate the support at step 264. In some embodiments, the repeated impregnation step goes directly to the mixing of the support with a volume of the dispersion at step 266. If there is sufficient loading, then the impregnated supports go to the shipping department at step 260.


In the present invention, one or more properties of the catalyst support are used in order to determine the proper amount of dispersion to use in impregnating the support. Determining the internal volume of the extrudate is particularly useful, as you do not want to use any more or any less dispersion than that internal volume. If you use any more than that internal volume, then you risk capillary forces drawing material out of the extrudate. If you use any less than that internal volume, then you are not accessing all of the pores, and therefore, not giving yourself the best chance of impregnation. The present invention also uses the ICP-MS process before the impregnation steps in order to determine the appropriate number of impregnations to be performed.


In some embodiments where a ceramic monolith is used for the catalyst support, the monolith is dipped into the dispersion, but a freeze-drying process is not used. Instead, a hot drying process or a flash drying process is used.


In some embodiments, impregnated extrudates can be used to impregnate a monolith. For example, if it is determined at step 258 that there is sufficient loading on the extrudates, then these impregnated extrudates can be used to impregnate a monolith, since the extrudates are coated with catalytic particles on the inside. The extrudates are crushed up into powder (e.g., 10 micron powder or 40 micron powder). This crushed up powder contains the catalytic particles. The powder is then put into a slurry, which is used to coat the monolith.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method of producing a catalyst, wherein the method comprises: mixing a plurality of catalytic particles in nano-powder form and a solvent, thereby forming a particle-solvent mixture;performing a size distribution analysis on a supernatant sample of the particle-solvent mixture, thereby determining a size distribution profile for the particle-solvent mixture;repeating the mixing of the catalytic particles and the solvent in the particle-solvent mixture if the size distribution profile is below a predetermined threshold;centrifuging the particle-solvent mixture if the size distribution profile is at or above the predetermined threshold, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container, wherein the supernate comprises a dispersion including the catalytic particles and the solvent;decanting the particle-solvent mixture, thereby separating the supernate from the precipitate;determining the particle content of a sample of the separated supernate;determining a target volume of the dispersion to be applied to a catalyst support based on one or more properties of the catalyst support; andimpregnating the catalyst support with the catalytic particles in the dispersion by applying the target volume of the dispersion to the catalyst support.
  • 2. The method of claim 1, further comprising the step of calcining the impregnated catalyst support.
  • 3. The method of claim 2, further comprising the step of performing a drying process on the impregnated catalyst support before the step of calcining the impregnated catalyst support.
  • 4. The method of claim 3, wherein the drying process is a freeze drying process.
  • 5. The method of claim 1, further comprising the step of analyzing the impregnated catalyst support to determine if it has been impregnated according to one or more predetermined thresholds.
  • 6. The method of claim 5, wherein the step of analyzing the impregnated catalyst support comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the impregnated catalyst support.
  • 7. The method of claim 5, further comprising the step of performing an additional impregnation of the impregnated catalyst support with a dispersion of catalytic particles in response to a determination by the analyzing step that the impregnated catalyst support has not been impregnated according to the one or more thresholds.
  • 8. The method of claim 1, wherein the catalyst support is a porous extrudate.
  • 9. The method of claim 1, wherein the catalyst support is a monolith.
  • 10. The method of claim 1, wherein the catalyst support is a powder.
  • 11. The method of claim 1, wherein the step of mixing the plurality of catalytic particles and the solvent comprises using a shear mixer to mix the plurality of catalytic particles and the solvent.
  • 12. The method of claim 1, wherein the step of mixing the plurality of catalytic particles and the solvent comprises using sonication to mix the plurality of catalytic particles and the solvent.
  • 13. The method of claim 1, wherein the step of performing a size distribution analysis on the supernatant sample of the particle-solvent mixture comprises: centrifuging the sample of the particle-solvent mixture; andperforming a Dynamic Light Scattering (DLS) process on the centrifuged sample supernate.
  • 14. The method of claim 1, wherein the step of determining the particle content of the sample of the separated supernate comprises calculating the weight percentage of the catalytic particles in the sample.
  • 15. The method of claim 1, wherein the step of determining the particle content of the sample of the separated supernate comprises performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the sample.
  • 16. A method of producing a catalyst, wherein the method comprises: mixing a plurality of catalytic particles in nano-powder form and a solvent, thereby forming a particle-solvent mixture;centrifuging a sample of the particle-solvent mixture;performing a Dynamic Light Scattering (DLS) process on the centrifuged sample supernate, thereby determining a size distribution profile for the particle-solvent mixture;repeating the mixing of the catalytic particles and the solvent in the particle-solvent mixture if the size distribution profile is below a predetermined threshold;centrifuging the particle-solvent mixture if the size distribution profile is at or above the predetermined threshold, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container, wherein the supernate comprises a dispersion including the catalytic particles and the solvent;decanting the particle-solvent mixture, thereby separating the supernate from the precipitate; andimpregnating the catalyst support with the catalytic particles in the dispersion by applying a volume of the dispersion to the catalyst support.
  • 17. The method of claim 16, further comprising: drying down a sample of the separated dispersion; andperforming a weight percentage calculation of the catalytic particles using the dried-down sample of the separated dispersion, thereby determining a weight percentage for the catalytic particles.
  • 18. The method of claim 17, wherein the step of impregnating the catalyst support is performed only if the determined weight percentage for the catalytic particles is at or above a predetermined threshold.
  • 19. The method of claim 17, further comprising the step of performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the dried-down sample of the separated dispersion.
  • 20. A method of producing a catalyst, wherein the method comprises: mixing a plurality of catalytic particles in nano-powder form and a solvent, thereby forming a particle-solvent mixtureperforming a size distribution analysis on a supernatant sample of the particle-solvent mixture, thereby determining a size distribution profile for the particle-solvent mixture;centrifuging the particle-solvent mixture if the size distribution profile is at or above a predetermined threshold, thereby forming a supernate of the particle-solvent mixture and a precipitate of the particle-solvent mixture within the same container, wherein the supernate comprises a dispersion including the catalytic particles and the solvent;determining a target volume of the dispersion to be applied to a catalyst support based on one or more properties of the catalyst support;impregnating the catalyst support with the catalytic particles in the dispersion by applying the target volume of the dispersion to the catalyst support;performing a drying process on the impregnated catalyst support;calcining the dried impregnated catalyst support;performing an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) process on the calcined impregnated catalyst support to determine if it has been impregnated according to one or more predetermined thresholds; andperforming an additional impregnation of the impregnated catalyst support with a dispersion of catalytic particles if it is determined by the ICP-MS process that the impregnated catalyst support has not been impregnated according to the one or more thresholds.
  • 21. The method of claim 20, wherein the catalyst support is a porous extrudate.
  • 22. The method of claim 20, wherein the catalyst support is a monolith.
  • 23. The method of claim 20, wherein the catalyst support is a powder.
  • 24. The method of claim 20, wherein the drying process is a freeze drying process.
  • 25. The method of claim 20, wherein the drying process is either a hot drying process or a flash drying process.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.

US Referenced Citations (549)
Number Name Date Kind
2021936 Johnstone Nov 1935 A
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3235700 Mondain-Monval et al. Feb 1966 A
3313908 Unger et al. Apr 1967 A
3387110 Wendler et al. Jun 1968 A
3401465 Larwill Sep 1968 A
3450916 Kiernan Jun 1969 A
3457788 Miyajima Jul 1969 A
3520656 Yates et al. Jul 1970 A
3537513 Austin Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3857744 Moss Dec 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4146654 Guyonnet Mar 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4326492 Leibrand, Sr. et al. Apr 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4506136 Smyth et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4610857 Ogawa et al. Sep 1986 A
4616779 Serrano et al. Oct 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4751021 Mollon et al. Jun 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4877937 Müller Oct 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4970364 Müller Nov 1990 A
4982050 Gammie et al. Jan 1991 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5187140 Thorsteinson et al. Feb 1993 A
5192130 Endo et al. Mar 1993 A
5217746 Lenling et al. Jun 1993 A
5225656 Frind Jul 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5294242 Zurecki et al. Mar 1994 A
5330945 Beckmeyer et al. Jul 1994 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5452854 Keller Sep 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5486675 Taylor et al. Jan 1996 A
5489449 Umeya et al. Feb 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5558771 Hagen et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5596973 Grice Jan 1997 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723027 Serole Mar 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5733662 Bogachek Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5804155 Farrauto et al. Sep 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5884473 Noda et al. Mar 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6066587 Kurokawa et al. May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6093378 Deeba et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6140539 Sander et al. Oct 2000 A
6168694 Huang et al. Jan 2001 B1
6190627 Hoke et al. Feb 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6399030 Nolan Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6488904 Cox et al. Dec 2002 B1
6491423 Skibo et al. Dec 2002 B1
6506995 Fusaro, Jr. et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569393 Hoke et al. May 2003 B1
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6891319 Dean et al. May 2005 B2
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7074364 Jähn et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7282167 Carpenter Oct 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7507495 Wang et al. Mar 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7576031 Beutel et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko Jul 2010 B2
7759279 Shiratori et al. Jul 2010 B2
7759281 Kezuka et al. Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7842515 Zou et al. Nov 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck et al. Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8003020 Jankowiak et al. Aug 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8129654 Lee et al. Mar 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8211392 Grubert et al. Jul 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
8404611 Nakamura et al. Mar 2013 B2
8524631 Biberger Sep 2013 B2
8557727 Yin et al. Oct 2013 B2
8574408 Layman Nov 2013 B2
8574520 Koplin et al. Nov 2013 B2
8652992 Yin et al. Feb 2014 B2
8669202 van den Hoek et al. Mar 2014 B2
8679433 Yin et al. Mar 2014 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20010055554 Hoke et al. Dec 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020071800 Hoke et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020168466 Tapphorn et al. Nov 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030085663 Horsky May 2003 A1
20030102099 Yadav et al. Jun 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030129098 Endo et al. Jul 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040129222 Nylen et al. Jul 2004 A1
20040166036 Chen et al. Aug 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040235657 Xiao et al. Nov 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050058797 Sen et al. Mar 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050153069 Tapphorn et al. Jul 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050211018 Jurewicz et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Persiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050274646 Lawson et al. Dec 2005 A1
20050275143 Toth Dec 2005 A1
20060043651 Yamamoto et al. Mar 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060211569 Dang et al. Sep 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070020167 Han et al. Jan 2007 A1
20070044513 Kear et al. Mar 2007 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070092768 Lee et al. Apr 2007 A1
20070153390 Nakamura et al. Jul 2007 A1
20070161506 Saito et al. Jul 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070172721 Pak et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070266825 Ripley et al. Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080045405 Beutel et al. Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080104735 Howland May 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277264 Sprague Nov 2008 A1
20080277266 Layman et al. Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20080307960 Hendrickson et al. Dec 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090018008 Jankowiak et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090081092 Yang et al. Mar 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090209408 Kitamura et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274897 Kaner et al. Nov 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20090320449 Beutel et al. Dec 2009 A1
20090324468 Golden et al. Dec 2009 A1
20100050868 Kuznicki et al. Mar 2010 A1
20100089002 Merkel Apr 2010 A1
20100092358 Koegel et al. Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100166629 Deeba Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100180582 Mueller-Stach et al. Jul 2010 A1
20100186375 Kazi et al. Jul 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100275781 Tsangaris et al. Nov 2010 A1
20100323118 Mohanty et al. Dec 2010 A1
20110006463 Layman Jan 2011 A1
20110030346 Neubauer et al. Feb 2011 A1
20110049045 Hurt et al. Mar 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Yin et al. Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20110305612 Müller-Stach et al. Dec 2011 A1
20120023909 Lambert et al. Feb 2012 A1
20120045373 Biberger Feb 2012 A1
20120063963 Watanabe et al. Mar 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120124974 Li et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120214666 van den Hoek et al. Aug 2012 A1
20120263633 Koplin et al. Oct 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20120313269 Kear et al. Dec 2012 A1
20130034472 Cantrell et al. Feb 2013 A1
20130079216 Biberger et al. Mar 2013 A1
20130125970 Ko et al. May 2013 A1
20130213018 Yin et al. Aug 2013 A1
20130280528 Biberger Oct 2013 A1
20130281288 Biberger et al. Oct 2013 A1
20130294989 Koch et al. Nov 2013 A1
20130316896 Biberger Nov 2013 A1
20130331257 Barcikowski et al. Dec 2013 A1
20130345047 Biberger et al. Dec 2013 A1
20140018230 Yin et al. Jan 2014 A1
20140120355 Biberger May 2014 A1
20140128245 Yin et al. May 2014 A1
20140140909 Qi et al. May 2014 A1
20140148331 Biberger et al. May 2014 A1
20140161693 Brown et al. Jun 2014 A1
20140209451 Biberger et al. Jul 2014 A1
20140228201 Mendoza et al. Aug 2014 A1
20140243187 Yin et al. Aug 2014 A1
20140249021 van den Hoek et al. Sep 2014 A1
20140252270 Lehman, Jr. Sep 2014 A1
20140263190 Biberger et al. Sep 2014 A1
20140318318 Layman et al. Oct 2014 A1
20140338519 Biberger Nov 2014 A1
Foreign Referenced Citations (81)
Number Date Country
101301610 Nov 2008 CN
34 45 273 Jun 1986 DE
0 347 386 Dec 1989 EP
0 385 742 Sep 1990 EP
1 134 302 Sep 2001 EP
1 256 378 Nov 2002 EP
1 619 168 Jan 2006 EP
1 790 612 May 2007 EP
1 955 765 Aug 2008 EP
1 307 941 Feb 1973 GB
49-31571 Mar 1974 JP
56-146804 Nov 1981 JP
61-086815 May 1986 JP
62-102827 May 1987 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
2-6339 Jan 1990 JP
3-226509 Oct 1991 JP
5-193909 Aug 1993 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
6-172820 Jun 1994 JP
6-272012 Sep 1994 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
7-138020 May 1995 JP
7-207381 Aug 1995 JP
07-256116 Oct 1995 JP
8-158033 Jun 1996 JP
8-215576 Aug 1996 JP
8-217420 Aug 1996 JP
9-141087 Jun 1997 JP
10-130810 May 1998 JP
10-249198 Sep 1998 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-88486 Mar 2002 JP
2002-241812 Aug 2002 JP
2002-336688 Nov 2002 JP
2003-126694 May 2003 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-87965 Apr 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2006-326554 Dec 2006 JP
2007-29859 Feb 2007 JP
2007-44585 Feb 2007 JP
2007-46162 Feb 2007 JP
2007-138287 Jun 2007 JP
2007-203129 Aug 2007 JP
493241 Mar 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO-0072965 Dec 2000 WO
WO 02092503 Nov 2002 WO
WO-03094195 Nov 2003 WO
WO 2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-2006096205 Sep 2006 WO
WO-2007144447 Dec 2007 WO
WO-2008092478 Aug 2008 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2009017479 Feb 2009 WO
WO-2011081833 Jul 2011 WO
WO-2012028695 Mar 2012 WO
WO-2013028575 Feb 2013 WO
WO-2013093597 Jun 2013 WO
WO-2013151557 Oct 2013 WO
Non-Patent Literature Citations (97)
Entry
V. Martinez-Hansen et al. “Development of aligned carbon nanotubes layers over stainless steel mesh monoliths” 3rd International Conference on Structured Catalysts and Reactors, ICOSCAR-3, Ischia, Italy, Sep. 27-30, 2009.
Emmanuel Lamouroux et. al “Identification of key parameters for the selective growth of single or double wall carbon nanotubes on FeMo/Al2O3 CVD catalysts” vol. 323, Apr. 30, 2007, pp. 162-173.
Bateman, James E. et al., “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed., Dec. 17, 1998, 37, No. 19, pp. 2683-2685.
Langner, Alexander et al., “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc., Aug. 25, 2005, 127, pp. 12798-12799.
Liu, Shu-Man et al., “Enhanced Photoluminescence from Si Nano-organosols by Functionalization with Alkenes and Their Size Evolution,” Chem. Mater., Jan. 13, 2006, 18,pp. 637-642.
Fojtik, Anton, “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B., Jan. 13, 2006, pp. 1994-1998.
Li, Dejin et al., “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J.Am. Chem. Soc., Apr. 9, 2005, 127,pp. 6248-6256.
Neiner, Doinita, “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc., Aug. 5, 2006, 128, pp. 11016-11017.
Fojtik, Anton et al., “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
Netzer, Lucy et al., “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc., 1983, 105, pp. 674-676.
Chen, H.-S. et al., “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4, Jul. 3, 2001, pp. 62-66.
Kwon, Young-Soon et al., “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211. Apr. 30, 2003, pp. 57-67.
Liao, Ying-Chih et al., “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc., Jun. 27, 2006, 128, pp. 9061-9065.
Zou, Jing et al., “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters, Jun. 4, 2004, vol. 4, No. 7, pp. 1181-1186.
Tao, Yu-Tai, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc., May 1993, 115, pp. 4350-4358.
Sailor, Michael et al., “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater, 1997, 9, No. 10, pp. 783-793.
Li, Xuegeng et al., “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir, May 25, 2004, pp. 4720-4727.
Carrot, Geraldine et al., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules, Sep. 17, 2002, 35, pp. 8400-8404.
Jouet, R. Jason et al., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater., Jan. 25, 2005, 17, pp. 2987-2996.
Yoshida, Toyonobu, “The Future of Thermal Plasma Processing for Coating,” Pure & Appl. Chem., vol. 66, No. 6, 1994, pp. 1223-1230.
Kim, Namyong Y. et al., “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc., Mar. 5, 1997, 119, pp. 2297-2298.
Hua, Fengjun et al., “Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir, Mar. 2006, pp. 4363-4370.
Stiles, A.B., Catalyst Supports and Supported Catalysts, Manufacture of Carbon-Supported Metal Catalysts, pp. 125-132, published Jan. 1, 1987, Butterworth Publishers, 80 Montvale Ave., Stoneham, MA 02180.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled “Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I li, P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt—oxide-support Interaction,”Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum—Iridium Catalysts,” Applied Catalysts 74: 65-81.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Communications of the American Ceramic Society 71(9): C-399-C401.
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3-5 vol.% Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn—O Type Shell on SnO2 and TiO2 Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., 2 pages.
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77.
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Chaim, R. et al. (2009). “Densification of Nanocrystalline Y2O3 Ceramic Powder by Spark Plasma Sintering,” Journal of European Ceramic Society 29: 91-98.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2 and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Viswanathan, V. et al. (2006). “Challenges and Advances in Nanocomposite Processing Techniques,” Materials Science and Engineering R 54: 121-285.
Ihlein, G. et al.(1998). “Ordered Porous Materials as Media for the Organization of Matter on the Nanoscale,” Applied Organometallic Chemistry 12: 305-314.
Extended European Search Report dated Sep. 3, 2014, directed to EP Application No. 10838185.6; 7 pages.
Ahmad, K. et al. (2008). “Hybrid Nanocomposites: A New Route Towards Tougher Alumina Ceramics,” Composites Science and Technology 68: 1321-1327.
Chau, J. K. H. et al. (2005). “Microwave Plasma Synthesis of Silver Nanopowders,” Materials Letters 59: 905-908.
Das, N. et al. (2001). “Influence of the Metal Function in the “One-Pot” Synthesis of 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) from Acetone Over Palladium Supported on Mg(Al)O Mixed Oxides Catalysts,” Catalysis Letters 71(3-4): 181-185.
Date, a. R. et al. (1987). “The Potential of Fire Assay and Inductively Coupled Plasama Source Mass Spectrometry for the Determination of Platinum Group Elements in Geological Materials,” Analyst 112: 1217-1222.
Lakis, R. E. et al. (1995). “Alumina-Supported Pt-Rh Catalysts: I. Microstructural Characterization,” Journal of Catalysis 154: 261-275.
Panchula, M. L. et al. (2003). “Nanocrystalline Aluminum Nitride: I, Vapor-Phase Synthesis in a Forced-Flow Reactor,” Journal of the American Ceramic Society 86(7): 1114-1120.
Schimpf, S. et al. (2002). “Supported Gold Nanoparticles: In-Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions,” Catalysis Today2592: 1-16.
Wan, J. et al. (2005). “Spark Plasma Sintering of Silicon Nitride/Silicon Carbide Nanocomposites with Reduced Additive Amounts,” Scripta Materialia 53: 663-667.
Related Publications (1)
Number Date Country
20110143916 A1 Jun 2011 US
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US