In typical PTCA procedures, a guiding catheter is percutaneously introduced into the cardiovascular system of a patient through a vessel and advanced through therein until the distal end thereof is at a desired location in the vasculature. A guidewire and a dilatation catheter having a balloon on the distal end thereof are introduced through the guiding catheter with the guidewire sliding through the dilatation catheter. The guidewire is first advanced out of the guiding catheter into the patient's coronary vasculature and the dilatation catheter is advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the lesion. Once in position across the lesion, the flexible, expandable, preformed balloon is inflated to a predetermined size with a liquid or gas at relatively high pressures, such as greater than about four atmospheres, to radially compress the arthrosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery. The balloon is then deflated to a small profile so that the dilatation catheter may be withdrawn from the patients vasculature and blood flow resumed through the dilated artery.
In angioplasty procedures of the kind described above, there may be restenosis of the artery, which either necessitates another angioplasty procedure, a surgical by-pass operation, or some method of repairing or strengthening the area. To prevent restenosis and strengthen the area, a physician can implant an intravascular prosthesis, called a stent, for maintaining vascular patency inside the artery at the lesion. The stent is expanded to a larger diameter for placement or implantation in the vasculature, often by the balloon portion of the catheter. Stents delivered to a restricted coronary artery, expanded to a larger diameter as by a balloon catheter, and left in place in the artery at the site of a dilated lesion are shown in U.S. Pat. No. 4,740,207 to Kreamer; U.S. Pat. No. 5,007,926 to Derbyshire; U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat. No. 5,026,377 to Burton et al.; U.S. Pat. No. 5,158,548 to Lau et al.; U.S. Pat. No. 5,242,399 to Lau et al.; U.S. Pat. No. 5,344,426 to Lau et al.; U.S. Pat. No. 5,415,664 to Pinchuk; U.S. Pat. No. 5,453,090 to Martinez et al.; U.S. Pat. No. 4,950,227 to Savin; U.S. Pat. No. 5,403,341 to Solar; U.S. Pat. No. 5,108,416 to Ryan et al., U.S. Pat. No. 5,242,451 to Harada and European Patent Application No. 707 837 A1 to Sheiban, all of which are incorporated herein by reference. A stent particularly preferred for use with this invention is described in PCT Application No. 960 3092 A1, published 8 Feb. 1996, the content of which is also incorporated herein by reference.
The present invention is particularly directed to improved arrangements for catheters of reduced profile for performing angioplasty and for releasably attaching the stent to the catheter to facilitate delivery thereof. The invention is applicable to all the various types of catheters used in such procedures, including rapid exchange types and over-the-wire types.
The various embodiments of the invention disclosed herein are shown in schematic form for clarity and simplicity of illustration. It is anticipated that those familiar with this art will be able to incorporate the invention into actual catheters without difficulty. Similar elements in the Figures are identified by similar or identical numbers.
This invention concerns catheter apparatus suitable for performing angioplasty and for delivery of stents to body cavities. In general, stents are prosthetic devices which can be positioned within a body cavity, for example, a blood vessel or in some other difficulty accessible place of the body of a living human or animal. The stent prosthesis is formed of a generally tubular body, the diameter of which can be decreased or increased. Stents are particularly useful for permanently widening a vessel which is either in a narrowed state, or internally supporting a vessel damaged by an aneurysm. Such stents are typically introduced into the body cavity by use of a catheter. The catheter is usually of the balloon catheter type in which the balloon is utilized to expand the stent, which is positioned over the balloon for delivery, to place it in a selected location in the body cavity. The present invention is particularly directed to improved arrangements for releasably attaching the stent to the catheter to facilitate delivery thereof. The stent is held in place on the catheter by means of an enlarged mounting body carried within the balloon by the catheter shaft to which the stent and balloon are fitted. The stent is fitted over the balloon, as by crimping. However, according to the invention in some embodiments, the enlarged body is axially movable on the inner shaft of the catheter so that it can be retracted from the stent mounting area to provide a small profile for performing angioplasty. The catheter can then be withdrawn; the enlarged body can be moved into the stent mounting area; the stent can be mounted and the catheter can be re-inserted to implant the stent. In other embodiments, the enlarged body can be arranged to be reducible and enlargeable in size rather than being movable. Alternatively, the movable mounting body may be carried outside the balloon.
A catheter of this type makes possible a method in which, before stent loading with the associated mounting body arranged to provide reduced diameter in the balloon region, the catheter may be used to dilate a lesion or the like. The catheter may be withdrawn and the mounting body may then be selectively manipulated to provide an enlarged diameter in the stent mounting region and a stent may be loaded onto the catheter. The catheter may be re-inserted to implant the stent. The catheter may be withdrawn or left in situ and the mounting body may be manipulated to provide reduced diameter again and the catheter may be used for any post-dilation desired. Also, the catheter may be used multiple times in the procedure for dilation and stent implantation.
Referring to
In
After such a procedure, the balloon is deflated, the catheter is withdrawn and the mounting body is advanced by means of wire 31 to the stent mounting position shown in
As is known in the art the balloon is either bonded at its ends by adhesive 20 and 22, respectively to the outer member 24 of the catheter and to the inner member 26 of the catheter in the manner as shown, or is made one-piece with the outer member as is known in the art. The catheter balloon may be inflated by fluid (gas or liquid) from an inflation port extending from a lumen 28 (seen in
Any balloon expandable stent may be used with this invention. Many are known in the art including plastic and metal stents. Some are more well known such as the stainless steel stent shown in U.S. Pat. No. 4,735,665; the wire stent shown in U.S. Pat. No. 4,950,227; another metal stent shown in European Patent Application EP0 707 837 A1 and that shown in U.S. Pat. No. 5,445,646, or U.S. Pat. No. 5,242,451. All of these patents are incorporated herein by reference. Also, shape memory metal stents may be used. As already indicated the stent of PCT Application 960 3092 A1 is particularly preferred.
The stent is typically for example about 16 mm long, while the balloon may be 20 mm long for example. These dimensions, however, are merely representative for illustrative purposes only and are not meant to be limiting. The stent is positioned over the balloon portion of the dilatation catheter and gently crimped onto the balloon either by hand or with a tool such as a pliers or the like to be mounted for delivery as shown in
In accordance with this invention, mounting body 30, best seen in
In the embodiment shown in
Although, the material of the mounting body may be hard, it is preferably of any deformable thermoplastic material, preferably an elastomer material and more preferably of a relatively resilient elastomer material, e.g., lower durometer silicone. A preferred deformable thermoplastic material is high density polyethylene (HDPE). A preferred lower durometer silicone is in the form of tubing. The deformation of the resilient material of the mounting body when the stent/balloon is crimped to it causes a radial outward force on the stent/balloon increasing the friction therebetween despite any recoil of the stent.
During stent delivery, the balloon catheter is advanced through and positioned in a patient's vasculature so that the stent is adjacent to the portion of the vessel where treatment is to take place. The balloon is inflated to expand the stent to an enlarged diameter. When the stent has reached the desired diameter, the balloon is deflated so that the catheter may be removed leaving the stent in place.
Another embodiment of the invention is shown in
Another similar version is shown in
The embodiment shown in
The interlock formation or crimping is readily accomplished by any suitable means such as a two-piece die 40 shown in
Referring now to
As already indicated, an alternate arrangement may be used in which the mounting body, instead of being movable, is designed to be enlargeable and reducible or collapsible, while remaining in a fixed position in the stent mounting area of the catheter.
In
Referring to
Also, by providing different pitch over the length of the coil it can be made to enlarge more in some regions than in others. For example, if the coil windings are closer together in the center portions than in the end portions, when the coil undergoes compressing, the two end portions will enlarge in diameter more than the center portion to provide a mount similar to that of
Referring now to
With respect to
Mounting body 30 is accordion folded with more widely spaced folds at the end portions 106, than at the central portion 108. Thus, as can be seen in
As an alternative to a folded construction, the body may be of braided construction to achieve the same operation.
Also, this form of body 30 may be inserted into a two piece inner 26 similar to the arrangement shown in
The above Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto.
This application is a continuation application of U.S. Ser. No. 10/648,075, filed Aug. 26, 2003, which is a continuation of U.S. Ser. No. 10/004,729, filed Dec. 4, 2001, now U.S. Pat. No. 6,610,069, which is a continuation of U.S. Ser. No. 09/421,076, filed Oct. 19, 1999, now U.S. Pat. No. 6,325,814, which is a continuation application of U.S. Ser. No. 08/807,791, filed Feb. 28, 1997, now U.S. Pat. No. 6,077,273, which is a Continuation-in-Part application based on U.S. Ser. No. 08/702,150, filed Aug. 23, 1996, now U.S. Pat. No. 6,007,543, and a Continuation-in-Part of U.S. Ser. No. 08/697,453, filed Aug. 23, 1996, now abandoned, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2690595 | Raiche | Oct 1954 | A |
4271839 | Fogarty et al. | Jun 1981 | A |
4327736 | Inoue | May 1982 | A |
4328056 | Snooks | May 1982 | A |
4338942 | Fogarty | Jul 1982 | A |
4403612 | Fogarty | Sep 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4576871 | Oestreich | Mar 1986 | A |
4608984 | Fogarty | Sep 1986 | A |
4637396 | Cook | Jan 1987 | A |
4649914 | Kowalewski | Mar 1987 | A |
4702252 | Brooks et al. | Oct 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4735665 | Miyauchi et al. | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4744366 | Jang | May 1988 | A |
4763654 | Jang | Aug 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4848343 | Wallstein et al. | Jul 1989 | A |
4875480 | Imbert | Oct 1989 | A |
4885194 | Tight, Jr. et al. | Dec 1989 | A |
4932958 | Reddy et al. | Jun 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4983167 | Sahota | Jan 1991 | A |
4990139 | Jang | Feb 1991 | A |
4994033 | Shokey et al. | Feb 1991 | A |
5007926 | Derbyshire | Apr 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5049131 | Deuss | Sep 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5057092 | Webster, Jr. | Oct 1991 | A |
5071406 | Jang | Dec 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5090958 | Sahota | Feb 1992 | A |
5096848 | Kawamura | Mar 1992 | A |
5108370 | Walinsky | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5116318 | Hillstead | May 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5192295 | Danforth et al. | Mar 1993 | A |
5195969 | Wang et al. | Mar 1993 | A |
5226880 | Martin | Jul 1993 | A |
5226889 | Sheiban | Jul 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5242451 | Harada et al. | Sep 1993 | A |
5264260 | Saab | Nov 1993 | A |
5270086 | Hamlin | Dec 1993 | A |
5290306 | Trotta et al. | Mar 1994 | A |
5295962 | Crocker et al. | Mar 1994 | A |
5298300 | Hosoi et al. | Mar 1994 | A |
5304132 | Jang | Apr 1994 | A |
5304198 | Samson | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5342305 | Shonk | Aug 1994 | A |
5344401 | Radisch et al. | Sep 1994 | A |
5344402 | Crocker | Sep 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5348538 | Wang et al. | Sep 1994 | A |
5358487 | Miller | Oct 1994 | A |
5378237 | Boussignac et al. | Jan 1995 | A |
5403341 | Solar | Apr 1995 | A |
5405380 | Gianotti et al. | Apr 1995 | A |
5409495 | Osborn | Apr 1995 | A |
5415635 | Bagaoisan et al. | May 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5447497 | Sogard et al. | Sep 1995 | A |
5453090 | Martinez et al. | Sep 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5478320 | Trotta | Dec 1995 | A |
5490839 | Wang et al. | Feb 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5512051 | Wang et al. | Apr 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5536252 | Imran et al. | Jul 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5587125 | Roychowdhury | Dec 1996 | A |
5591228 | Edoga | Jan 1997 | A |
5632760 | Sheiban et al. | May 1997 | A |
5653691 | Rupp et al. | Aug 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5741323 | Pathak et al. | Apr 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5817102 | Johnson et al. | Oct 1998 | A |
5899882 | Waksman et al. | May 1999 | A |
6007543 | Ellis et al. | Dec 1999 | A |
6077273 | Euteneuer et al. | Jun 2000 | A |
6325814 | Euteneuer et al. | Dec 2001 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6371962 | Ellis et al. | Apr 2002 | B1 |
6379365 | Diaz | Apr 2002 | B1 |
6383212 | Durcan et al. | May 2002 | B2 |
6391032 | Blaeser et al. | May 2002 | B2 |
6395008 | Ellis et al. | May 2002 | B1 |
6419685 | Di Caprio et al. | Jul 2002 | B2 |
6447501 | Solar et al. | Sep 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6488688 | Lim et al. | Dec 2002 | B2 |
6488694 | Lau et al. | Dec 2002 | B1 |
6506202 | Dutta et al. | Jan 2003 | B1 |
6517548 | Lorentzen Cornelius et al. | Feb 2003 | B2 |
6527789 | Lau et al. | Mar 2003 | B1 |
6544268 | Lazarus | Apr 2003 | B1 |
6589274 | Stiger et al. | Jul 2003 | B2 |
6592550 | Boatman et al. | Jul 2003 | B1 |
6592568 | Campbell | Jul 2003 | B2 |
6592592 | Cox | Jul 2003 | B1 |
6602226 | Smith et al. | Aug 2003 | B1 |
6605107 | Klein | Aug 2003 | B1 |
6610069 | Euteneuer et al. | Aug 2003 | B2 |
Number | Date | Country |
---|---|---|
0 257 091 | Mar 1988 | EP |
0 274 411 | Jul 1988 | EP |
0 274 846 | Jul 1988 | EP |
0 266 957 | Nov 1988 | EP |
0 420 488 | Apr 1991 | EP |
0 420 488 | Apr 1991 | EP |
0 442 657 | Aug 1991 | EP |
0 442 657 | Aug 1991 | EP |
0 457 456 | Nov 1991 | EP |
0 529 039 | Mar 1993 | EP |
0 553 960 | Aug 1993 | EP |
0 540 858 | Dec 1993 | EP |
0 582 870 | Feb 1994 | EP |
0 627 201 | Dec 1994 | EP |
0 699 451 | Mar 1996 | EP |
0 707 837 | Apr 1996 | EP |
9208512 | May 1992 | WO |
9219440 | Nov 1992 | WO |
9319703 | Oct 1993 | WO |
9509667 | Apr 1995 | WO |
9522367 | Aug 1995 | WO |
9603072 | Feb 1996 | WO |
9603092 | Feb 1996 | WO |
9604951 | Feb 1996 | WO |
03030727 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100274343 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10648075 | Aug 2003 | US |
Child | 12829135 | US | |
Parent | 10004729 | Dec 2001 | US |
Child | 10648075 | US | |
Parent | 09421076 | Oct 1999 | US |
Child | 10004729 | US | |
Parent | 08807791 | Feb 1997 | US |
Child | 09421076 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08702150 | Aug 1996 | US |
Child | 08807791 | US | |
Parent | 08697453 | Aug 1996 | US |
Child | 08702150 | US |