Catheter with side sheath and methods

Information

  • Patent Grant
  • 7771462
  • Patent Number
    7,771,462
  • Date Filed
    Friday, September 15, 2000
    24 years ago
  • Date Issued
    Tuesday, August 10, 2010
    14 years ago
Abstract
A catheter system comprises a catheter having a catheter body with a distal end, a proximal end, a main vessel guidewire lumen for receiving a main vessel guidewire and a balloon disposing at the distal end of the catheter body. The catheter further includes a side member that is disposed adjacent to the catheter body. The side member has a distal end, a proximal end, and a branch vessel guidewire lumen for receiving a branch vessel guidewire. A stent having a side hole is disposed over the balloon, and a distal portion of the side member is disposed beneath at least a portion of the stent while being adjacent to and movable with respect to the balloon.
Description
TECHNICAL FIELD

The present invention relates to catheter systems for delivering stents.


BACKGROUND OF THE INVENTION

A type of endoprosthesis device, commonly referred to as a stent, may be placed or implanted within a vein, artery or other tubular body organ for treating occlusions, stenoses, or aneurysms of a vessel by reinforcing the wall of the vessel or by expanding the vessel. Stents have been used to treat dissections in blood vessel walls caused by balloon angioplasty of the coronary arteries as well as peripheral arteries and to improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Two randomized multicenter trials have recently shown a lower restenosis rate in stent treated coronary arteries compared with balloon angioplasty alone (Serruys, P W et al., New England Journal of Medicine 331: 489-495 (1994) and Fischman, D L et al. New England Journal of Medicine 331:496-501 (1994)). Stents have been successfully implanted in the urinary tract, the bile duct, the esophagus and the tracheo-bronchial tree to reinforce those body organs, as well as implanted into the neurovascular, peripheral vascular, coronary, cardiac, and renal systems, among others. The term “stent” as used in this application is a device which is intraluminally implanted within bodily vessels to reinforce collapsing, dissected, partially occluded, weakened, diseased or abnormally dilated or small segments of a vessel wall.


One of the drawbacks of conventional stents is that they are generally produced in a straight tubular configuration. The use of such stents to treat diseased vessels at or near a bifurcation (branch point) of a vessel may create a risk of compromising the degree of patency of the main vessel and/or its branches, or the bifurcation point and also limits the ability to insert a branch stent into the side branch if the result of treatment of the main, or main, vessel is suboptimal. Suboptimal results may occur as a result of several mechanisms, such as displacing diseased tissue, plaque shifting, vessel spasm, dissection with or without intimal flaps, thrombosis, and embolism.


As described in related U.S. patent application Ser. No. 08/744,002 filed Nov. 4, 1996 (now abandoned), Ser. No. 09/007,265 filed Jan. 14, 1998, now issued as U.S. Pat. No. 6,210,429, Ser. No. 08/935,383 filed Sep. 23, 1997 (now abandoned), 60/088,301 filed Jun. 5, 1998 (now expired), and PCT Patent Application No. PCT/US99/00835 filed Jan. 13, 1999, published under Publication Number WO99/36002 on Jul. 22, 1999, systems have been developed for deploying a main stent in a main vessel at the intersection of a main vessel and a branch vessel. Further, a branch stent may be positioned within a branch vessel through a side opening in the main stent. As will be appreciated, such tasks may be challenging.


For example, management of two guidewires used in introducing and/or orienting stents can pose particular challenges, such as the tendency of the guidewires to twist together. As another example, imaging placement of the stents using low-cost and convenient techniques, such as x-ray or ultrasound imaging, can be difficult using existing methods.


SUMMARY OF THE INVENTION

The invention provides systems and methods for deploying a main vessel stent in a main vessel, with a side hole in the main stent being in registry with the ostium of a branch vessel. The invention also provides techniques for positioning a branch stent in the branch vessel by passing the branch stent through the side hole of the main vessel stent. A variety of catheter designs may be employed to deploy and position the main and branch vessel stents. Such catheters may be used in connection with a pair of guidewires that terminate in the main and branch vessels. These guidewires may be used to facilitate introduction of the catheter, any stents, and/or to properly orient the stent within the vessel. For example, the branch vessel guidewire may be used alone or in combination with other elements of the catheter to assist in aligning the side hole of the main stent and/or to deploy a branch vessel stent.


In one particular embodiment, a catheter system utilizes a catheter comprising a catheter body having a distal end, a proximal end, a main vessel guidewire lumen that is adapted to receive a main vessel guidewire and a balloon disposed near the distal end of the catheter body. The catheter further comprises a side member disposed adjacent to the catheter body. The side member has a distal end, a proximal end, and a branch vessel guidewire lumen that is adapted to receive a branch vessel guidewire. A stent having a side hole is disposed over the balloon. Further, a distal portion of the side member is positioned between at least a portion of the stent and the balloon. The distal end may remain disposed beneath the stent during insertion, and then advanced through the side hole once properly positioned at the bifurcation. Alternatively, the distal end of the side member may extend out of the side hole during insertion. In either case, the distal end of the side member may be used to properly position the main vessel stent and/or to deploy a branch vessel stent.


In one aspect, such a catheter system facilitates placement of the stent within the main vessel, with the side hole being in registry with an ostium of a branch vessel. This may be accomplished, for example, by advancing a main vessel guidewire in the main vessel until passing the branch vessel. The catheter is then advanced over the main vessel guidewire until the stent reaches or is proximal to the branch vessel. At this point, a branch vessel guidewire may be introduced through the branch vessel lumen of the side member. The branch vessel guidewire is advanced out of the side member and into the branch vessel to assist in aligning the side hole with the ostium of the branch vessel prior to deployment of the stent in the main vessel. To assist in guiding the branch vessel guidewire into the branch vessel, the side member may taper to a narrow distal end, which may also be curved slightly outwardly. One advantage of such a catheter system is that a single guidewire may be used to introduce the catheter. The catheter then serves as a guide for the branch vessel guidewire.


In an alternative aspect, both of the guidewires may be inserted into the main and branch vessels to permit the catheter to be advanced over the pre-inserted guidewires. As another alternative, the catheter may be loaded onto both guidewires to permit the guidewires and the loaded catheter to be introduced as a combined system. In such a case, the system may be advanced until reaching the end of a guide catheter. The guidewires may then be advanced out of the guide catheter and into the main and branch vessels. With the guidewires in place, the catheter may be further advanced to force the side member into the branch vessel and to align the side hole with the ostium of the branch vessel. In cases where the distal tip of the catheter is sufficiently flexible, the catheter may be advanced to the vessel bifurcation before extending the guidewires.


Alignment of the side hole with the ostium may be accomplished in a variety of ways. For example, introduction of the branch vessel guidewire into the branch vessel may sufficiently align the side hole with the ostium. Other alignment techniques may depend on the configuration of the side member. For example, in some cases the side member may comprise a flexible sheath that is movably coupled to the catheter body, e.g., by passing through a lumen of a truncated connector that is coupled to the catheter body. Once the branch vessel guidewire is advanced into the branch vessel, the sheath may be advanced into the branch vessel to move the side hole into registry with the ostium. Conveniently, the catheter body and the side member may be fabricated from pebax and graphite to facilitate relative movement between the catheter body and the side member.


In other cases, the flexible sheath may be fixedly coupled to the catheter body, except at the distal end. For example, the length over which the distal end of the side member is unattached to the distal end of the main catheter may be approximately 2 to approximately 10 cm to aid with the final rotation of the stent body for alignment with the ostium without compromising the pushability of the delivery system. With this configuration, once the branch vessel guidewire is in place, the catheter may be further advanced over both guidewires, with the distal end of the side member extending further into the branch vessel, thereby aligning the side hole with the ostium in the three dimensional space.


A variety of techniques may be used to ensure that the distal end of the side member is properly advanced into the branch vessel. For example, the side hole in the main vessel stent may be aligned with the ostium of the branch vessel by viewing relative movement of radiopaque markers positioned on the catheter body and the side member. The relative marker movement indicates that the distal portion of the side member is advancing into the ostium of the branch vessel over the branch vessel guidewire while the catheter body proceeds through the main vessel.


Such relative movement of the radiopaque markers may be viewed as a rotation of a marker positioned on the side member with respect to one or more markers positioned on the catheter body, or as a separation between the marker on the side member with respect to one or more markers on the main catheter. In one aspect, markers may be positioned at the distal ends of the side member and the catheter body, such that the separation between these markers will be relatively large, and thus can be easily viewed. Moreover, when the markers are positioned at the distal ends of the main vessel stent and side member, the surgeon will view the separation of these markers earlier than would be the case if these markers were disposed at a more proximal location.


Conveniently, a plurality of markers may be positioned on the catheter body, with markers positioned at locations corresponding to the proximal and distal ends of the main vessel stent. A medial marker may also be included, positioned somewhere halfway between the distal and proximal markers, for indicating the position of the side hole in the main vessel stent, (which may be positioned anywhere between the distal and proximal ends of the stent).


The relative movement of the markers positioned on the catheter body and those positioned on the side member may be observed fluoroscopically. Conveniently, the markers may be constructed of radiopaque materials, such as tungsten, platinum or gold. In one option, the distal end of the side member may be fabricated from a fluoroscopically visible material, such as tungsten.


Once the stent is properly positioned, the balloon may be inflated to deploy the stent. Conveniently, the catheter body may include a balloon inflation lumen to permit the balloon to be inflated.


In another aspect, the catheter system may be used to deploy a branch vessel stent within the branch vessel following deployment of the main vessel stent. A variety of techniques may be used to deploy the branch vessel stent. For example, if the side member is slidably coupled to the catheter body, the side member may be provided with a balloon at the distal end, with the branch stent being coupled over the balloon. In this way, the side member may be advanced into the branch vessel and the balloon inflated to deploy the branch stent. As another example, the side member may be retracted from the main vessel while the branch vessel guidewire is kept in place. A stent deployment device having a balloon and a branch stent disposed over the balloon may then be advanced over the branch guidewire and into the branch stent. The branch stent may then be deployed by inflating the balloon. In another option, the main vessel stent may be only partially expanded to permit the branch stent to be deployed through the main vessel stent. Once the branch vessel stent is in place, the main vessel stent may be fully deployed.


In cases where the side member is fixedly attached to (or integrally formed with) the catheter body, the distal end of the side member may include a balloon, with the branch stent being disposed over the balloon. The catheter may be advanced over the two guidewires until the branch stent is distally positioned within the branch vessel. The main stent may then be deployed, and the entire device pulled back until the branch stent is appropriately positioned. The balloon on the side member may then be inflated to deploy the branch stent. In another option, the entire catheter may be withdrawn from the patient while at least the branch guidewire is left in place. A stent deployment device may then be advanced into the branch vessel in a manner similar to that just described.


In one particular aspect, the catheter system may further include a proximal end hub having a main vessel guidewire channel that is coupled to the main vessel guidewire lumen, a branch vessel guidewire channel that is coupled to the branch vessel guidewire lumen, and a balloon inflation port that is coupled to the balloon inflation lumen. In one aspect, the first and second guidewire channels may be separated by about zero to about 20° to aid wire movement without hindering device preparation for use. For example, such an angle facilitates the attachment of syringes while also ensuring that the guidewires are not too separated.


The main vessel stent may optionally include outwardly expandable portions which can be expanded from an initial position which is flush with the cylindrical body of the stent to protrude outwardly from the side hole. Such a configuration may be used to anchor the stent into the walls of the branch vessel to hold the side opening in registry with the ostium of the branch vessel. In an exemplary aspect, the cylindrical body of the main vessel stent may have an even surface and an expandable portion that is positioned within the side hole of the cylindrical body, such that the expandable portion is flush with the cylindrical body prior to expansion.


In one aspect, the branch stent may optionally comprise a contacting portion at its proximal end to secure the proximal end of the branch stent to the side hole in the main vessel stent. In an exemplary aspect, the contacting portion comprises a flared proximal end.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one embodiment of a catheter having a catheter body and a side member movably coupled to the catheter body according to the invention.



FIG. 2 illustrates the placement of a main vessel guidewire into a main vessel according to the invention.



FIG. 3 illustrates the advancement of the catheter of FIG. 1 over the guidewire of FIG. 2.



FIG. 4 illustrates the catheter of FIG. 1 after a branch vessel guidewire has been introduced through the side member and into a branch vessel.



FIG. 5 illustrates the catheter of FIG. 1 after the branch guidewire has been introduced into the branch vessel, and after the side member has been withdrawn.



FIG. 6 illustrates the introduction of a branch stent deployment device over the branch vessel guidewire after the main stent is deployed.



FIG. 7 illustrates the deployment of a branch stent using the deployment device of FIG. 6.



FIG. 8 illustrates an alternative catheter having a catheter body and a side member with a balloon at a distal end.



FIG. 9 illustrates the catheter body and stent deployment device of FIG. 6.



FIG. 10 illustrates an alternative embodiment of a catheter having a catheter body and a side member that is fixably attached to the catheter body according to the invention.



FIG. 11 is a more detailed view of a distal end of the catheter of FIG. 10.



FIG. 12 is a cross sectional side view of the distal end of the catheter of FIG. 11.



FIG. 13 illustrates the introduction of the catheter of FIG. 10 into a main vessel according to the invention.



FIG. 14 illustrates the advancement of a branch vessel guidewire into a branch vessel using the catheter of FIG. 10.



FIG. 15 illustrates the introduction of a distal end of the side member into the branch vessel to facilitate alignment of a side hole with the ostium of the branch vessel.



FIG. 16 is a cross sectional view of the catheter of FIG. 15.



FIG. 17 illustrates the deployment of a branch vessel stent into a branch vessel using the catheter of FIG. 10 with a modified side member according to the invention.



FIG. 18 illustrates a technique for deploying a branch vessel stent over a branch vessel guidewire following deployment of a main vessel stent according to the invention.



FIG. 19 illustrates inflation of a balloon on a balloon deployment device in order to deploy the branch vessel stent.



FIG. 20 illustrates an alternative embodiment of a main vessel stent having laterally deployable portions that may be deployed using the stent deployment device of FIGS. 7 and 18.



FIG. 21 illustrates another embodiment of a catheter for deploying a main vessel stent according to the invention.



FIG. 22 is a cross sectional side view of the catheter of FIG. 21 taken along lines 22-22.



FIG. 23 is a cross sectional side view of a hub of the catheter of FIG. 21.



FIG. 24 illustrates a kit having the catheter of FIG. 21 and a set of instructions for using the catheter.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS

The present invention provides systems and methods for positioning a pair of guidewires in main and branch vessels at a vessel bifurcation to facilitate positioning and deployment of one or more stents, such as a main vessel stent or a branch vessel stent. The systems and methods may also be used to align a side hole in a main vessel stent in registry with the ostium of a branch vessel.


Applications of the invention include the cardiac, coronary, renal, peripheral vascular, gastrointestinal, pulmonary, urinary and neurovascular systems and the brain. Advantages of the invention include, but are not limited to, the use of an improved stent delivery apparatus, which may deliver main vessel and branch vessel stents to: 1) completely cover the bifurcation point of bifurcation vessels; 2) be used to treat lesions in one branch of a bifurcation while preserving access to the other branch for future treatment; 3) allow for differential sizing of the stents in a bifurcated stent apparatus even after a main stent is implanted; 4) treat bifurcation lesions in a bifurcated vessel where the branch vessel extends from the side of the main vessel; and 5) be marked with, or at least partly constructed of, material which is imageable by commonly used intraluminal catheterization visualization techniques including but not limited to ultrasound or x-ray.


As described herein, a side hole in the main vessel stent refers to a relatively large hole which is intended to be aligned with the ostium of the branch vessel. Such a side hole is separate from any of the multiple passageways extending through the side of the stent between struts in the stent geometry. Accordingly, the side hole in the stent is a hole which is understood to be larger than other passages through the stent. In some aspects, this side hole is defined by a band of continuous material which defines the perimeter of the side hole. This continuous band of material preferably comprises discontinuities over its length so that the area of the side hole expands together with the expansion of the stent. In various aspects, the continuous band comprises protrusions which project inwardly from a peripheral edge of the side opening. Preferably, these protrusions (or expandable portions) are initially aligned within a cylindrical envelope of the tubular body of the stent.


Referring now to FIG. 1, one embodiment of a catheter 10 will be described. Catheter 10 comprises a catheter body 12 and a side member 14 that is adjacent to catheter body 12. Integrally formed with catheter body 12 is a connector 16 having a lumen 18 into which side member 14 is slidably received. In this way, side member 14 is movable with respect to catheter body 12. To facilitate sliding of side member 14 in lumen 18, connector 16 may be constructed of pebax with graphite. Alternatively, the inner surface of lumen 18 may have metal powders, glass beads, Teflon power, imbedded inorganic fibers, or the like.


Catheter body 12 has a proximal end 20 and a distal end 22. Extending between proximal end 20 and distal end 22 is a guidewire lumen 24 to permit a guidewire to be inserted through catheter body 12. Catheter body 12 is constructed of a flexible material to permit catheter body 12 to traverse through vessels in the body. An annular balloon inflation lumen (not shown) is disposed about guidewire lumen 24 to permit a balloon 26 at distal end 22 to be inflated. As illustrated in FIG. 3, a stent 28 (omitted from FIG. 1 for convenience of illustration) is crimped about balloon 26. In this way, balloon 26 may be inflated to deploy stent 28. At proximal end 20 is a guidewire port 30 that leads to guidewire lumen 24, and a balloon inflation port 32 that leads to the balloon inflation lumen.


Side member 14 has a proximal end 34 and a distal end 36. Extending between proximal end 34 and distal end 36 is a guidewire lumen (hidden from view) that is configured to receive a branch vessel guidewire. Side member 14 is constructed as a flexible sheath to permit side member 14 to navigate through a patient's vessels. Conveniently, distal end 36 may be tapered to facilitate introduction of distal end 36 into a branch vessel.


Catheter 10 may be used to introduce a stent into a main vessel, with a side hole of the stent being aligned with an ostium of a branch vessel. Optionally, catheter 10 may also be used to facilitate the introduction of a branch stent into a branch vessel. To accomplish such tasks, catheter 10 utilizes a pair of guidewires, conveniently referred to as main vessel and branch vessel guidewires, that terminate in a main vessel and a branch vessel of a patient. A variety of techniques may be used to introduce the guidewires and catheter 10 into the patient. For example, the main vessel guidewire may first be introduced into the main vessel. Catheter 10 may then be loaded onto the main vessel guidewire and introduced into a patient. Once in place, the branch vessel guidewire may be passed through the guidewire lumen of side member 14. As an alternative, both guidewires may initially be introduced into the patient. Catheter 10 may then be loaded onto both guidewires and introduced into the patient. As a further alternative, catheter 10 may be loaded onto both guidewires such that the distal ends of the guidewires extend slightly past distal ends 22 and 36. Catheter 10 and the guidewires may then be introduced into the patient as a single unit.


Referring now to FIGS. 2-4, one method of introducing stent 36 into a main vessel MV of a patient will be described. Initially, a main vessel guidewire 38 is inserted into main vessel MV using techniques known in the art (see FIG. 2). Guidewire 38 is moved in a direction D until a distal end 40 of guidewire 38 extends beyond the intersection of main vessel MV and a branch vessel BV.


As shown in FIG. 3, catheter 10 is loaded onto guidewire 38 such that guidewire 38 passes through lumen 24 and is advanced in direction D until stent 28 reaches the ostium of branch vessel BV. Stent 28 includes a side hole 42 that is placed in the vicinity of the ostium of branch vessel BV. Stent 28 is crimped to balloon 26 such that distal end 36 of side member 14 is positioned between stent 28 and balloon 26 and terminates at side hole 42. In this way, distal end 36 is stored beneath stent 28 to permit catheter 10 to be routed through main vessel MV without interference from distal end 36 and while using only a single guidewire.


To facilitate alignment of side hole 42 with the ostium of branch vessel BV, distal end 36 may include tungsten or another radiopaque material to permit fluoroscopic visualization. Hence, a surgeon may stop advancement of catheter 10 when distal end 36 (as viewed under fluoroscopy) reaches branch vessel BV.


As shown in FIG. 4, a branch vessel guidewire 44 may be advanced through the lumen of side member 14 until a distal end 46 passes through side hole 42 and into branch vessel BV. In this way, guidewire 44 may be used to align side hole 42 of stent 28 with the ostium of branch vessel BV. Once properly aligned, balloon 26 may be inflated to deploy stent 28.


Optionally, distal end 36 of side member may be advanced over guidewire 44 and into branch vessel BV before stent 28 is fully displayed to further assist in aligning side hole 42 with the ostium. Further, although the method for deploying stent 28 has been described using a single guidewire to introduce catheter 10 into the patient, it will be appreciated that both guidewires may be used as previously described.


With stent 28 partially or fully deployed, catheter 10 may be used to facilitate the deployment of a branch vessel stent 48 as illustrated in FIGS. 5-7. As shown in FIG. 5, side member 14 is withdrawn from main vessel MV, leaving branch vessel guidewire 44 in place. As shown in FIG. 6, a stent deployment device 50 having a branch vessel stent 48 attached thereto is introduced over branch vessel guidewire 44 until branch vessel stent 48 extends out of side hole 42. Stent deployment device 50 comprises an elongate flexible body 52 having a proximal end 54 and a distal end 56. Extending between proximal end 54 and distal end 56 is a guidewire lumen to permit body 52 to be inserted over guidewire 44. Disposed at distal end 56 is a balloon 58 over which stent 48 is positioned. Flexible body 52 further includes a balloon inflation lumen to permit balloon 58 to be inflated from outside of the patient. Once branch vessel stent 48 extends into branch vessel BV, balloon 58 may be inflated to deploy branch vessel stent 48 within branch vessel BV as illustrated in FIG. 7. Optionally, branch vessel stent 48 may include a contact portion 60 that remains disposed within stent 28 to secure a proximal end of branch vessel stent 48 to side hole 42 of stent 28. In this way, a bifurcated stent arrangement is provided which extends both into the main vessel MV and branch vessel BV. After main vessel stent 28 and branch vessel stent 48 have been deployed, catheter body 12 and stent deployment device 50 may be withdrawn from the patient leaving a bifurcated support at the intersection of main vessel MV and branch vessel BV as illustrated in FIG. 8.


As an alternative to using catheter body 12 and side member 14 in combination with stent deployment device 50 to deploy branch vessel stent 48 in combination with main vessel stent 28, catheter body 12 may be used in combination with stent deployment device 50 alone to accomplish such features. A combination of stent deployment device 50 with catheter body 12 is illustrated in FIG. 9. For convenience of illustration, both main vessel stent 28 and branch vessel stent 48 have been omitted from view. With such a configuration (as shown in FIG. 6), catheter body 12 and stent deployment device 50 may be introduced into the patient over guidewires 38 and/or 44 using any of the techniques previously described. After stent 28 has been introduced into the area of bifurcation, guidewire 44 and/or distal end 56 of stent deployment device 50 may be used to align side hole 42 with the ostium of branch vessel BV. Distal end 56 of stent deployment device 50 may be positioned within branch vessel BV in a manner similar to that described in connection with FIG. 7. Branch vessel stent 48 may then be deployed in a manner similar to that previously described by inflating balloon 58 using a balloon inflation port 62. In this way, branch vessel stent 48 may be deployed without having to withdraw side member 14 prior to introduction of stent deployment device 50.


Referring now to FIG. 10, another embodiment of a stent delivery catheter 64 will be described. Catheter 64 comprises a catheter body 66 and a side member 68 that is attached to catheter body 66. Both catheter body 66 and side member 68 are constructed of a flexible material to permit catheter 64 to traverse through the tortious vessels of the human body. Catheter body 66 has a proximal end 70 and a distal end 72. Extending between proximal end 70 and distal end 72 is a guidewire lumen (hidden from view) for receiving a guidewire. At the proximal end 70 is a guidewire port 74 and a balloon inflation port 76. Also extending through catheter body 66 is a balloon inflation lumen that permits a balloon 78 at distal end 72 to be inflated using balloon inflation port 76.


Side member 68 has a proximal end 80 and a distal end 82. Extending between proximal end 80 and distal end 82 is a guidewire lumen (hidden from view) for receiving another guidewire. Side member 68 is fixably attached to catheter body 66 except at distal end 82 where side member 68 is separated from catheter body 66. Conveniently, catheter body 66 and side member 68 may be formed as an integral unit. In one aspect, the portion of distal end 82 that is detached from catheter body 66 is in the length from about 2 cm to about 10 cm. Side member 68 may further include a guidewire port 84 to facilitate introduction of a guidewire into the guidewire lumen.


As best shown in FIG. 11, a main vessel stent 86 is crimped about balloon 78. In this way, main vessel stent 86 may be deployed upon inflation of balloon 78. As further illustrated in FIG. 11, main vessel stent 86 includes a side hole 88 that may be aligned with an ostium of a branch vessel in a manner similar to that previously described with other embodiments. Main vessel stent 86 further includes a proximal end 90 and a distal end 92. Distal end 82 of side member 68 passes between stent 86 and balloon 78 at proximal end 90. Distal end 82 of side member 68 further extends through side hole 88 so that it is outside of stent 86. Such a configuration permits distal end 82 to be advanced into a branch vessel prior to deployment of main vessel stent 86 to facilitate alignment of side hole 88 with the ostium of the branch vessel.


Catheter 64 further includes a proximal marker 94, a medial marker 96 and a distal marker 98 that are disposed on catheter body 66. Conveniently, the location of proximal marker 94 may correspond to the location of proximal end 90 of stent 86. The location of distal marker 98 may correspond to the location of distal end 92 of stent 86. Further, the location of medial marker 96 may correspond to the location of side hole 88. Side member 68 may further include at least one marker that is positioned on distal end 82. As shown, a marker 100 is aligned with side hole 88, and a marker 102 is aligned with distal end 92 of stent 86. Each of the markers may be constructed of a fluoroscopically visible material to permit visualization of the markers during a deployment procedure. As described in greater detail hereinafter, use of markers on both catheter body 66 and side member 68 provides the surgeon with information as to when distal end 82 is entering into a branch vessel while distal end 72 of catheter body 66 is advancing further into the main vessel. Conveniently, each marker may be slightly elongated and rectangular in shape. Examples of materials that may be used to construct the markers include tungsten, gold or the like. A more detailed view of the markers is illustrated in FIG. 12.


Referring now to FIGS. 13-16, one method for introducing stent 86 into a main vessel, with side hole 88 being aligned with an ostium of a branch vessel, will be described. Initially, a main vessel guidewire 104 is introduced into main vessel MV until a distal end 106 extends past a vessel intersection I between branch vessel BV and main vessel MV. Catheter 64 is then loaded onto guidewire 104 and introduced into main vessel MV, with guidewire 104 extending through the guidewire lumen of catheter body 66. A branch vessel guidewire 108 is also introduced into side member 68 such that a distal end 110 of branch vessel guidewire 108 extends beyond distal end 82 of side member 68. In this way, distal end 82 has sufficient rigidity to track through main vessel MV. Alternatively, branch vessel guidewire 108 could be introduced into main vessel MV until distal end 110 extends into branch vessel BV. Catheter 64 may then be loaded onto both guidewires and tracked over both guidewires until in the position shown in FIG. 13. As another alternative, catheter 64 may be loaded onto guidewires 104 and 108 such that distal ends 106 and 110 extend just distally of catheter 64. Catheter 64 and guidewires 104 and 108 may then be simultaneously introduced upon to the distal edge of a guiding catheter where the guidewires may then be advanced.


As shown in FIG. 14, prior to deployment of main vessel stent 86, distal end 110 of branch vessel guidewire 108 is positioned into branch vessel BV. This may be accomplished, for example, by advancing guidewire 108 out of distal end 82 until reaching branch vessel BV. As previously described, branch vessel guidewire 108 may be preinserted into branch vessel BV so that such an advancing step is not needed. As catheter 64 is further advanced into main vessel MV in the direction of arrow D, branch vessel guidewire 108 serves to align side hole 88 with the ostium of branch vessel BV. Further, distal end 82 of side member 68 passes into branch vessel BV to further ensure alignment of side opening 88 with the ostium of branch vessel BV.


As shown in FIGS. 15 and 16, catheter 64 is advanced into main vessel MV, and fluoroscopic viewing equipment may be used to fluoroscopically view markers 94, 96, 98, 100 and 102. Movement of markers 100 and 102 relative to markers 94, 96 and 98 is an indicator that distal end 82 is advancing into branch vessel BV while catheter body 66 is advancing in the main vessel MV. For example, as distal end 82 begins to enter into branch vessel BV, markers 100 and 102 will begin to separate from markers 94, 96 and 98. In many cases, branch vessel BV will not be aligned in the same plane as main vessel MV. As such, distal end 82 will rotate relative to distal end 72 of catheter body 66. Use of multiple markers on both distal end 82 and distal end 72 facilitates fluoroscopic visualization of relative movement of the markers when distal end 82 is rotating as it enters into branch vessel BV. Further, by viewing the position of markers 94, 96, and 98, the operator may determine the position of proximal end 90 and distal end 92 of stent 86, as well as the position of side hole 88 with respect to the ostium of branch vessel BV.


Once proper alignment has been determined, balloon 78 may be inflated to deploy stent 86 within the main vessel. Catheter 64 may then be removed from the patient, with stent 86 remaining in position.


As shown in FIG. 17, catheter 64 may be modified to include a balloon 112 at distal end 82 of side member 68. Disposed over balloon 112 is a branch vessel stent 114. In this way, following partial or full deployment of main vessel stent 86 in a manner similar to that previously described, balloon 112 may be inflated to deploy branch vessel stent 114 into branch vessel BV. Following deployment of both main vessel stent 86 and branch vessel stent 114, catheter 64 may be withdrawn from the patient, leaving the two stents in place. Hence, by modifying catheter 64 as illustrated in FIG. 17, catheter 64 may be used to align and deploy main vessel stent 86 in a manner similar to that previously described as well as to deploy a branch vessel stent.


Another technique for introducing a branch vessel stent 116 into branch vessel BV following deployment of main vessel stent 86 using catheter 64 is illustrated in FIGS. 18 and 19. Following deployment of main vessel stent 86 in a manner similar to that previously described, catheter 64 is removed from the patient while leaving branch vessel guidewire 108 in place. A stent deployment device 118 having a balloon 120 is then advanced over guidewire 108 until branch vessel stent 116 (which is crimped about balloon 120) enters into branch vessel BV as illustrated in FIG. 18. Balloon 120 is then inflated as illustrated in FIG. 19 to deploy branch vessel stent 116. Balloon 120 may then be deflated and stent deployment device 118 withdrawn from the patient leaving in place main vessel stent 86 and branch vessel stent 116. Conveniently, branch vessel stent 116 may include a contacting portion 122 which remains disposed within side hole 88 to secure the proximal end of stent 116 to side hole 88 of main vessel stent 86. Such a contacting portion is described, for example, in PCT Patent Application No. PCT/US99/00835, filed Jan. 13, 1999, published under Publication Number WO99/36002 on Jul. 22, 1999, the complete disclosure of which is herein incorporated by reference.


Shown in FIG. 20 is an alternative embodiment of a main vessel stent 124 that has been deployed in a main vessel MV. Conveniently, main vessel stent 124 may be deployed using any of the catheters described herein. After deployment of main vessel stent 124, the catheter is removed while a branch vessel guidewire 126 is kept in place within a branch vessel BV as shown in FIG. 20. Stent deployment device 118 of FIG. 19 may then be employed to deploy radially expandable portions 128 that extend laterally outward from the edges of a side hole 130. In this way, radially expandable portions 128 are pushed against the walls of branch vessel BV, with side hole 130 being positioned in registry with the ostium of branch vessel BV. Stents having radially expandable portions which extend laterally outward in such a manner are described in PCT Application No. WO 99/00835, previously incorporated herein by reference.


Referring now to FIG. 21, an alternative embodiment of a stent delivery catheter 132 will be described. Catheter 132 comprises a catheter body 134 having a proximal end 136 and a distal end 138. Attached to catheter body 134 is a side member 140 having a proximal end 142 and a distal end 144. As shown in FIG. 21, distal end 144 of side member 140 is detached from distal end 138 of catheter body 134. The length of distal end 144 that is detached from catheter body 134 may be in the range from about 2 cm to about 10 cm. Such a configuration is advantageous in that it permits distal rotation of the device without rotating the main shaft from the proximal end. In this way, the clinician may easily align the side hole of the main stent with the ostium of the branch vessel without having to rotate the proximal end.


Disposed at distal end 138 is a balloon 146 over which a main vessel stent 148 having a side hole 150 is crimped. Distal end 144 of side member 140 passes between main vessel stent 150 and balloon 146 until exiting side hole 150. In this way, distal end 144 may be positioned within a branch vessel stent in a manner similar to that previously described with other embodiments.


As shown in FIG. 22, passing through catheter body 134 is a main vessel guidewire lumen 152 and a balloon inflation lumen 154 that is disposed about main vessel guidewire lumen 152. Passing through side member 140 is a branch vessel guidewire lumen 156. In this way, catheter 132 may be tracked over main and branch vessel guidewires in a manner similar to that previously described with other embodiments. Further, balloon 146 may be inflated using balloon inflation lumen 154.


As best shown in FIGS. 21 and 23, a guidewire hub 158 is coupled to proximal ends 136 and 142. Guidewire hub 158 further includes a main vessel guidewire port 160, a balloon inflation port 162 and a branch vessel guidewire port 164. Balloon inflation port 162 is in fluid communication with balloon inflation lumen 154 (see FIG. 22) to permit balloon 146 to be inflated and deflated using an inflation device, such as a syringe, that is coupled to port 162. Main vessel guidewire port 160 leads to a main vessel guidewire channel 166, and branch vessel guidewire port 164 leads to a branch vessel guidewire channel 168. In this way, a main vessel guidewire 170 may be passed through port 160, through channel 166 and into guidewire lumen 152 (see FIG. 22). In a similar manner, a branch vessel guidewire 172 may be passed through port 164, through channel 168 and into lumen 156 (see FIG. 22).


Channels 166 and 168 are angled relative to each other, preferably at an angle in the range from about 0 to 20 degrees, and more preferably about 10 to about 20 degrees. By configuring channels 166 and 168 in this manner excessive friction may be avoided when positioning or moving the guidewires within catheter 132. In this way, catheter 132 may more easily be advanced over both guidewires 170 and 172 at the same time. Further, the guidewires are held sufficiently close to permit an operator to simultaneously grasp and hold onto both guidewires with one hand while withdrawing catheter 132 over the two guidewires with the other hand. In addition, the guidewires are held sufficiently far apart to permit a syringe to be coupled to ports 160 and 164, or to permit separate luer fittings to cover ports 160 and 164.


As shown in FIG. 24, catheter 132 may conveniently be included as part of a kit 200. Conveniently, kit 200 may also include instructions for use 202 which sets forth various procedures for deploying main vessel stent 148 using any of the techniques previously described. Instructions for use 202 may be in written or machine readable form. Further, it will be appreciated that kit 200 may alternatively include any of the other catheter embodiments described herein, and instructions 202 may describe any of the method set forth herein.


The invention has now been described in detail for purposes of clarity of understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A catheter system for stent delivery to a vessel bifurcation, the vessel bifurcation having a main vessel and a branch vessel, comprising: a catheter extending between a distal end and a proximal end, the catheter including a main vessel guidewire lumen that is adapted to receive a main vessel guidewire;a stent being disposed over the catheter, the stent having a side hole through a wall thereof;a first catheter radiopaque marker arranged on the catheter distal of the stent;a second catheter radiopaque marker arranged on the catheter at a proximal end of the stent;a third catheter radiopaque marker arranged on the catheter aligned with the side hole of the stent;a side member disposed adjacent the catheter, the side member extending between a free distal end and a proximal end, the side member including a branch vessel guidewire lumen that is adapted to receive a branch vessel guidewire, the side member being fixedly attached to the catheter at a location proximal the stent, the free distal end of the side member arranged to extend through the side hole in the stent to a position distal of the side hole in the stent;a first side member radiopaque marker positioned on the side member at the free distal end of the side member;a second side member radiopaque marker positioned on the side member at a location spaced from the first side member radiopaque marker, wherein the second side member radiopaque marker is arranged to be aligned with the side hole of the stent when the free distal end of the side member extends into the branch vessel;wherein the first catheter radiopaque marker and the first side member radiopaque marker are arranged side-by-side in a first configuration and the third catheter radiopaque marker and the second side member radiopaque marker are arranged side-by-side in a first configuration, wherein the first side member radiopaque marker and first catheter radiopaque marker are separated in a second configuration to indicate that the free distal end of the side member is advancing into the branch vessel.
  • 2. The catheter system of claim 1, wherein the side member is flexible.
  • 3. The catheter system of claim 1, further comprising a branch stent deployment device having a balloon, a guidewire lumen, an inflation lumen that is adapted to supply a fluid to inflate the balloon, and a branch vessel stent disposed over the balloon, wherein the branch stent deployment device is adapted to be advanced over the branch vessel guidewire.
  • 4. The catheter system of claim 1, further comprising a balloon disposed at the distal end of the side member.
  • 5. The catheter system of claim 1, wherein the distal end of the side member is tapered.
  • 6. The catheter system of claim 1, wherein the distal end of the side member is fabricated from a fluoroscopically visible material.
  • 7. The catheter system of claim 1, wherein the catheter and the side member are fabricated from pebax and graphite.
  • 8. The catheter system of claim 1, further comprising a branch stent positioned on the side member.
  • 9. The catheter system of claim 1, wherein the catheter further includes a balloon inflation lumen, and further comprising a proximal end hub having a main vessel guidewire channel that is coupled to the main vessel guidewire lumen, a branch vessel guidewire channel that is coupled to the branch vessel guidewire lumen, and a balloon inflation port that is coupled to the balloon inflation lumen.
  • 10. The catheter system of claim 9, wherein the first and second guidewire channels are separated by about zero to 20°.
  • 11. The catheter system of claim 1, wherein the distal end of the side member is unattached to the distal end of the catheter.
  • 12. The catheter system of claim 11, wherein the length over which the distal end of the side member is unattached to the distal end of the catheter is approximately 2 to approximately 10 cm.
  • 13. The catheter system of claim 1, wherein the side member is fixedly attached to the catheter at or near the proximal end of the catheter.
  • 14. The catheter system of claim 13, wherein the side member is fixedly attached to the catheter along a length from the proximal end of the catheter to a location proximal to the stent.
  • 15. The catheter system of claim 1, wherein the side member is fixedly attached to the catheter at a location that is spaced a distance from and is proximal to the stent.
  • 16. The catheter system of claim 1, further comprising an expander disposed near the distal end of the catheter and wherein the stent is disposed over the expander such that upon expansion of the expander, the stent is configured to expand.
  • 17. The catheter system of claim 16, wherein said expander is a balloon.
  • 18. The catheter system of claim 1, wherein an outer diameter of the catheter is different than an outer diameter of the side member.
  • 19. The catheter system claim 1, wherein the side member has a circular cross-section.
  • 20. A catheter system for stent delivery to a vessel bifurcation, the vessel bifurcation having a main vessel and a branch vessel, comprising: a catheter having a distal end, a proximal end, and a main vessel guidewire lumen that is adapted to receive a main vessel guidewire;a stent having a side hole through a wall thereof, the stent being disposed over the catheter, wherein the stent hole is substantially alignable with a branch vessel when the stent hole is disposed substantially in the main vessel prior to expansion;a first catheter radiopaque marker arranged on the catheter distal of the stent;a second catheter radiopaque marker arranged on the catheter at a proximal end of the stent;a third catheter radiopaque marker arranged on the catheter aligned with the side hole of the stent;a side member disposed adjacent the catheter, the side member having a distal end, a proximal end, and a branch vessel guidewire lumen that is adapted to receive a branch vessel guidewire, the side member being integral with the catheter at a location proximal the stent wherein the distal portion of the side member is disposed at least partially within a portion of the stent and at least partially extending through and distal of the side hole of the stent;a first side member radiopaque marker positioned on the side member at the distal end of the side member;a second side member radiopaque marker positioned on the side member at a location spaced from the first side member radiopaque marker, wherein the second side member radiopaque marker is aligned with the side hole of the stent when the distal end of the side member has passed through the side hole and into the branch vessel;wherein said catheter radiopaque markers and said side member radiopaque markers are moveable from a first configuration to a second configuration, wherein in the first configuration the first catheter radiopaque marker and the first side member radiopaque marker are side-by-side, wherein in the second configuration at least one of the side member radiopaque markers is separated from at least one of the catheter radiopaque markers.
  • 21. The catheter system of claim 20, wherein the side member is flexible.
  • 22. The catheter system of claim 20, further comprising a branch stent deployment device having a balloon, a guidewire lumen, an inflation lumen that is adapted to supply a fluid to inflate the balloon, and a branch vessel stent disposed over the balloon, wherein the branch stent deployment device is adapted to be advanced over the branch vessel guidewire.
  • 23. The catheter system of claim 20, further comprising a balloon disposed at the distal end of the side member.
  • 24. The catheter system of claim 20, wherein the distal end of the side member is tapered.
  • 25. The catheter system of claim 20, wherein the distal end of the side member is fabricated from a fluoroscopically visible material.
  • 26. The catheter system of claim 20, wherein the catheter and the side member are fabricated from pebax and graphite.
  • 27. The catheter system of claim 20, further comprising a branch stent positioned on the side member.
  • 28. The catheter system of claim 20, further comprising an expander disposed near the distal end of the catheter and wherein the stent is disposed over the expander such that upon expansion of the expander, the stent is configured to expand.
  • 29. The catheter system of claim 28, wherein said expander is a balloon.
  • 30. The catheter system of claim 29, wherein the catheter further includes a balloon inflation lumen, and further comprising a proximal end hub having a main vessel guidewire channel that is coupled to the main vessel guidewire lumen, a branch vessel guidewire channel that is coupled to the branch vessel guidewire lumen, and a balloon inflation port that is coupled to the balloon inflation lumen.
  • 31. The catheter system of claim 30, wherein the first and second guidewire channels are separated by about zero to 20°.
  • 32. The catheter system of claim 20, wherein the distal end of the side member is unattached to the distal end of the catheter.
  • 33. The catheter system of claim 32, wherein the length over which the distal end of the side member is unattached to the distal end of the catheter is approximately 2 to approximately 10 cm.
  • 34. The catheter system of claim 20, wherein the side member is fixedly attached to at least one location on the catheter.
  • 35. The catheter system of claim 34, wherein the at least one location is at or near the proximal end of the catheter.
  • 36. The catheter system of claim 34, wherein the at least one location is along a length, from the proximal end of the catheter to a location proximal to the stent.
  • 37. The catheter system of claim 34, wherein the at least one location is spaced a distance from and is proximal to the stent.
  • 38. The catheter system of claim 20, further comprising a connector coupled to the catheter, wherein the side member extends through the connector so as to be slidably positionable with respect to the catheter.
  • 39. The catheter system of claim 20, wherein an outer diameter of the catheter is different than an outer diameter of the side member.
  • 40. A catheter system for stent delivery to a vessel bifurcation, the vessel bifurcation having a main vessel and a branch vessel, comprising: a catheter having a distal end, a proximal end, and a main vessel guidewire lumen that is adapted to receive a main vessel guidewire;a first stent having a side hole through a wall thereof, the first stent being disposed over the catheter;a first catheter radiopaque marker arranged on the catheter distal of the stent;a second catheter radiopaque marker arranged on the catheter at a proximal end of the stent;a third catheter radiopaque marker arranged on the catheter aligned with the side hole of the first stent;a side member disposed adjacent and fixedly attached to at least one location on the catheter proximal the stent, the side member having a distal end, a proximal end, a branch vessel guidewire lumen that is adapted to receive a branch vessel guidewire, and at least two side radiopaque markers positioned on the side member, a first of the side radiopaque markers being spaced from a second of the side radiopaque markers, wherein the first catheter radiopaque marker and at least one of the side member radiopaque markers are side-by-side in a first configuration and separated in a second configuration; anda branch stent deployment device having a balloon, a guidewire lumen, an inflation lumen that is adapted to supply a fluid to inflate the balloon, and a branch vessel stent disposed over the balloon, wherein the branch stent deployment device is adapted to be advanced over the branch vessel guidewire;wherein a distal portion of the side member is disposed within at least a portion of the first stent and extends through the side hole of the first stent to a position distal of the side hole.
  • 41. A catheter system for stent delivery to a vessel bifurcation, the vessel bifurcation having a main vessel and a branch vessel, comprising: a catheter having a distal end, a proximal end, a main vessel guidewire lumen that is adapted to receive a main vessel guidewire, and catheter radiopaque markers positioned thereon;a side member disposed adjacent the catheter, the side member having a distal end, a proximal end, a branch vessel guidewire lumen that is adapted to receive a branch vessel guidewire, and first and second side member radiopaque markers positioned thereon, the side member being integral the catheter at a location proximal of the catheter radiopaque markers;a stent having a side hole through a wall thereof being disposed over the catheter, wherein a first of the catheter radiopaque markers is arranged on the catheter distal of the stent, a second of the catheter radiopaque markers is arranged on the catheter at a proximal end of the stent, and a third of the catheter radiopaque markers is arranged on the catheter aligned with the side hole of the stent; anda branch stent deployment device having a balloon, a guidewire lumen, an inflation lumen that is adapted to supply a fluid to inflate the balloon and a branch vessel stent disposed over the balloon, wherein the branch stent deployment device is adapted to be advanced over the branch vessel guidewire;wherein a distal portion of the side member extends through the side hole of the stent to a position distal of the side hole along the catheter, and wherein said first and third catheter radiopaque markers and said first and second side member radiopaque markers are juxtaposed in a first configuration and separated in a second configuration.
  • 42. The catheter system of claim 40, wherein the side member is integral with the catheter at a location proximal of the first stent.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/614,472, filed Jul. 11, 2000, and entitled “CATHETER WITH SIDE SHEATH” (abandoned), which is a continuation-in-part of U.S. patent application Ser. No. 09/325,996, filed Jun. 4, 1999, and entitled “CATHETER WITH SIDE SHEATH” (abandoned), and which is a continuation-in-part of U.S. patent application Ser. No. 09/455,299, filed Dec. 6, 1999, and entitled “CATHETER WITH ATTACHED FLEXIBLE SIDE SHEATH,” (now U.S. Pat. No. 6,692,483), the disclosures of which are herein incorporated by reference. This application also is a continuation-in-part of U.S. patent application Ser. No. 09/455,299, filed Dec. 6, 1999, and entitled “CATHETER WITH ATTACHED FLEXIBLE SIDE SHEATH” (now U.S. Pat. No. 6,692,483). This application claims priority to said Ser. Nos. 09/614,472; 09/325,996; and 09/455,299 to the extent appropriate by law.

US Referenced Citations (407)
Number Name Date Kind
1596754 Mochelle Aug 1926 A
3657744 Ersek Apr 1972 A
3872893 Roberts Mar 1975 A
4140126 Choudhury Feb 1979 A
4309994 Grunwald Jan 1982 A
4385631 Uthmann May 1983 A
4410476 Redding et al. Oct 1983 A
4413989 Schjeldahl Nov 1983 A
4421810 Rasmussen Dec 1983 A
4453545 Inoue Jun 1984 A
4503569 Dotter Mar 1985 A
4552554 Gould et al. Nov 1985 A
4681570 Dalton Jul 1987 A
4689174 Lupke Aug 1987 A
4731055 Melinyshyn et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4759748 Reed Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4769029 Patel Sep 1988 A
4819664 Nazari Apr 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4896670 Crittenden Jan 1990 A
4900314 Quackenbush Feb 1990 A
4906244 Pinchuk et al. Mar 1990 A
4909258 Kuntz et al. Mar 1990 A
4946464 Pevsner Aug 1990 A
4957501 Lahille et al. Sep 1990 A
4957508 Kaneko et al. Sep 1990 A
4964850 Bouton et al. Oct 1990 A
4983167 Sahota Jan 1991 A
4994071 MacGregor Feb 1991 A
5042976 Ishitsu et al. Aug 1991 A
5054501 Chuttani et al. Oct 1991 A
5059170 Cameron Oct 1991 A
5059177 Towne et al. Oct 1991 A
5061240 Cherian Oct 1991 A
5064435 Porter Nov 1991 A
5085664 Bozzo Feb 1992 A
5102403 Alt Apr 1992 A
5102417 Palmaz Apr 1992 A
5104404 Wolff Apr 1992 A
5117831 Jang Jun 1992 A
5122125 Deuss Jun 1992 A
5135536 Hillstead Aug 1992 A
5147317 Shank et al. Sep 1992 A
5159920 Condon et al. Nov 1992 A
5176617 Fischell et al. Jan 1993 A
5192297 Hull Mar 1993 A
5195984 Schatz Mar 1993 A
5211683 Maginot May 1993 A
5217440 Frassica Jun 1993 A
5222971 Willard et al. Jun 1993 A
5226913 Pinchuk Jul 1993 A
5234457 Andersen Aug 1993 A
5236446 Dumon Aug 1993 A
5244619 Burnham Sep 1993 A
5254619 Ando Oct 1993 A
5257974 Cox Nov 1993 A
5263932 Jang Nov 1993 A
5282472 Companion et al. Feb 1994 A
5304220 Maginot Apr 1994 A
5320605 Sahota Jun 1994 A
5324257 Osborne et al. Jun 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5338300 Cox Aug 1994 A
5342295 Imran Aug 1994 A
5342297 Jang Aug 1994 A
5342387 Summers Aug 1994 A
5350395 Yock Sep 1994 A
5383892 Ansel Jan 1995 A
5387235 Chuter Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395334 Keith et al. Mar 1995 A
5404887 Prather Apr 1995 A
5409458 Khairkhahan et al. Apr 1995 A
5413581 Goy May 1995 A
5413586 Dibie et al. May 1995 A
5417208 Winkler May 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5437638 Bowman Aug 1995 A
5443497 Venbrux Aug 1995 A
5445624 Jiminez Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5456694 Marin et al. Oct 1995 A
5456712 Maginot Oct 1995 A
5456714 Owen Oct 1995 A
5458605 Klemm Oct 1995 A
5462530 Jang Oct 1995 A
5476471 Shifrin et al. Dec 1995 A
5489271 Andersen Feb 1996 A
5489295 Piplani et al. Feb 1996 A
5496292 Burnham Mar 1996 A
5505702 Arney Apr 1996 A
5507768 Lau Apr 1996 A
5507769 Marin et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5514178 Torchio May 1996 A
5522801 Wang Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5545132 Fagan et al. Aug 1996 A
5549553 Ressemann et al. Aug 1996 A
5549554 Miraki Aug 1996 A
5562620 Klein et al. Oct 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562725 Schmitt et al. Oct 1996 A
5562726 Chuter Oct 1996 A
5569295 Lam Oct 1996 A
5571087 Ressemann et al. Nov 1996 A
5575771 Walinsky Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591228 Edoga Jan 1997 A
5593442 Klein Jan 1997 A
5607444 Lam Mar 1997 A
5609605 Marshall et al. Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5613949 Miraki Mar 1997 A
5613980 Chauhan Mar 1997 A
5613981 Boyle et al. Mar 1997 A
5617878 Taheri Apr 1997 A
5626600 Horzewski et al. May 1997 A
5628788 Pinchuk May 1997 A
5632762 Myler May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5634902 Johnson et al. Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653743 Martin Aug 1997 A
5662614 Edoga Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5676696 Morcade Oct 1997 A
5676697 McDonald Oct 1997 A
5679400 Tuch Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5690642 Osborne et al. Nov 1997 A
5693084 Chutter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693088 Lazarus Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5707354 Salmon Jan 1998 A
5709713 Evan et al. Jan 1998 A
5716365 Goicoechea et al. Feb 1998 A
5718683 Ressemann et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5724977 Yock et al. Mar 1998 A
5728158 Lau et al. Mar 1998 A
5733303 Israel et al. Mar 1998 A
5735893 Lau et al. Apr 1998 A
5746766 Edoga May 1998 A
5749825 Fischell et al. May 1998 A
5749848 Jang et al. May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755778 Kleshinski May 1998 A
5762631 Klein Jun 1998 A
5776101 Goy Jul 1998 A
5776161 Globerman Jul 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5800450 Lary et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5824036 Lauterjung Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5833650 Imran Nov 1998 A
5836966 St. Germain Nov 1998 A
5837008 Berg et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5846204 Solomon Dec 1998 A
5851210 Torossian Dec 1998 A
5851464 Davila et al. Dec 1998 A
5855600 Alt Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865178 Yock Feb 1999 A
5868777 Lam Feb 1999 A
5871536 Lazarus Feb 1999 A
5871537 Holman et al. Feb 1999 A
5891133 Murphy-Chutorian Apr 1999 A
5897588 Hull et al. Apr 1999 A
5906640 Penn et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5913895 Burpee et al. Jun 1999 A
5913897 Corso, Jr. et al. Jun 1999 A
5921958 Ressemann et al. Jul 1999 A
5922020 Klein et al. Jul 1999 A
5928248 Acker Jul 1999 A
5938682 Hojeibane Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5948016 Jang Sep 1999 A
5951599 McCrory Sep 1999 A
5961548 Shmulewitz Oct 1999 A
5967986 Cimochowski et al. Oct 1999 A
5972018 Israel et al. Oct 1999 A
6007517 Anderson Dec 1999 A
6013054 Jiun Yan Jan 2000 A
6013091 Ley et al. Jan 2000 A
6017324 Tu et al. Jan 2000 A
6017363 Hojeibane Jan 2000 A
6024763 Lenker et al. Feb 2000 A
6030414 Taheri Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6036682 Lange et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6042597 Kveen et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6048361 Von Oepen Apr 2000 A
6056775 Borghi et al. May 2000 A
6059823 Holman et al. May 2000 A
6059824 Taheri May 2000 A
6066168 Lau et al. May 2000 A
6068655 Seguin et al. May 2000 A
6071285 Lashinski et al. Jun 2000 A
6086611 Duffy et al. Jul 2000 A
6090127 Globerman Jul 2000 A
6090128 Douglas Jul 2000 A
6096073 Webster et al. Aug 2000 A
6099497 Adams et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6117117 Mauch Sep 2000 A
6117156 Richter et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129738 Lashinski et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6142973 Carleton et al. Nov 2000 A
6152945 Bachinski et al. Nov 2000 A
6165195 Wilson et al. Dec 2000 A
6165197 Yock Dec 2000 A
6165214 Lazarus Dec 2000 A
6179867 Cox Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183509 Dibie Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190403 Fischell et al. Feb 2001 B1
6193746 Strecker Feb 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6210380 Mauch Apr 2001 B1
6210429 Vardi Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217608 Penn et al. Apr 2001 B1
6221080 Power Apr 2001 B1
6221090 Wilson Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6231563 White et al. May 2001 B1
6231598 Berry et al. May 2001 B1
6231600 Zhong May 2001 B1
6235051 Murphy May 2001 B1
6241762 Shanley Jun 2001 B1
6251133 Richter et al. Jun 2001 B1
6258073 Mauch Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6261273 Ruiz Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6261319 Kveen et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6273911 Cox et al. Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6287314 Lee et al. Sep 2001 B1
6290673 Shanley Sep 2001 B1
6293967 Shanley Sep 2001 B1
6299634 Bergeron Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309412 Lau et al. Oct 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6325821 Gaschino et al. Dec 2001 B1
6325826 Vardi et al. Dec 2001 B1
6334870 Her et al. Jan 2002 B1
6346089 Dibie Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6355060 Lenker et al. Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6383215 Sass May 2002 B1
6387120 Wilson et al. May 2002 B2
6395018 Castaneda May 2002 B1
6398792 O'Connor Jun 2002 B1
6398804 Spielberg Jun 2002 B1
6428570 Globerman Aug 2002 B1
6432133 Lau et al. Aug 2002 B1
6436104 Hojeibane Aug 2002 B2
6436134 Richter et al. Aug 2002 B2
6478816 Kveen et al. Nov 2002 B1
6482211 Choi Nov 2002 B1
6485511 Lau et al. Nov 2002 B2
6494905 Zedler et al. Dec 2002 B1
6511504 Lau et al. Jan 2003 B1
6511505 Cox et al. Jan 2003 B2
6520988 Colombo et al. Feb 2003 B1
6527799 Shanley Mar 2003 B2
6540719 Bigus et al. Apr 2003 B2
6540779 Richter et al. Apr 2003 B2
6572647 Supper et al. Jun 2003 B1
6576009 Ryan et al. Jun 2003 B2
6579309 Loos et al. Jun 2003 B1
6579312 Wilson et al. Jun 2003 B2
6582394 Reiss et al. Jun 2003 B1
6582459 Lau et al. Jun 2003 B1
6596020 Vardi et al. Jul 2003 B2
6596022 Lau et al. Jul 2003 B2
6599316 Vardi et al. Jul 2003 B2
6645241 Strecker Nov 2003 B1
6682536 Vardi et al. Jan 2004 B2
6689156 Davidson et al. Feb 2004 B1
6692483 Vardi et al. Feb 2004 B2
6706062 Vardi et al. Mar 2004 B2
6843803 Ryan et al. Jan 2005 B2
6884258 Vardi et al. Apr 2005 B2
6896699 Wilson et al. May 2005 B2
6955687 Richter et al. Oct 2005 B2
6955688 Wilson et al. Oct 2005 B2
6962602 Vardi et al. Nov 2005 B2
6980174 Flasza et al. Dec 2005 B2
7118593 Davidson et al. Oct 2006 B2
7220275 Davidson et al. May 2007 B2
7244853 Schreiber et al. Jul 2007 B2
7387639 Bourang et al. Jun 2008 B2
7445610 Adams et al. Nov 2008 B2
20010012927 Mauch Aug 2001 A1
20010016767 Wilson et al. Aug 2001 A1
20010016768 Wilson et al. Aug 2001 A1
20010027291 Shanley Oct 2001 A1
20010027338 Greenberg Oct 2001 A1
20010029396 Wilson et al. Oct 2001 A1
20010037116 Wilson et al. Nov 2001 A1
20010037138 Wilson et al. Nov 2001 A1
20010037146 Lau et al. Nov 2001 A1
20010037147 Lau et al. Nov 2001 A1
20010039395 Mareiro et al. Nov 2001 A1
20010039448 Dibie Nov 2001 A1
20010039488 Dibie Nov 2001 A1
20010047201 Cox et al. Nov 2001 A1
20010049552 Richter et al. Dec 2001 A1
20010056297 Hojeibane Dec 2001 A1
20020013618 Marotta et al. Jan 2002 A1
20020013619 Shanley Jan 2002 A1
20020022874 Wilson Feb 2002 A1
20020026232 Marotta et al. Feb 2002 A1
20020032478 Bockstegers et al. Mar 2002 A1
20020035392 Wilson Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052648 McGuckin et al. May 2002 A1
20020058990 Jang May 2002 A1
20020072790 McGuckin et al. Jun 2002 A1
20020107564 Cox et al. Aug 2002 A1
20020111675 Wilson Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020123797 Majercak Sep 2002 A1
20020123798 Burgermeister Sep 2002 A1
20020151959 Von Oepen Oct 2002 A1
20020156516 Vardi et al. Oct 2002 A1
20020156517 Perouse Oct 2002 A1
20020165604 Shanley Nov 2002 A1
20020173835 Bourang et al. Nov 2002 A1
20020173840 Brucker et al. Nov 2002 A1
20020177892 Globerman Nov 2002 A1
20020183763 Callol et al. Dec 2002 A1
20020193872 Trout et al. Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20030004535 Musbach et al. Jan 2003 A1
20030009209 Hojeibane Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030014102 Hong et al. Jan 2003 A1
20030023301 Cox et al. Jan 2003 A1
20030050688 Fischell et al. Mar 2003 A1
20030074047 Richter Apr 2003 A1
20030093109 Mauch May 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114915 Mareiro et al. Jun 2003 A1
20030125791 Sequin et al. Jul 2003 A1
20030125799 Limon et al. Jul 2003 A1
20030125802 Callol et al. Jul 2003 A1
20030125971 Sequin et al. Jul 2003 A1
20030181923 Vardi Sep 2003 A1
20040015227 Vardi et al. Jan 2004 A1
20040049259 Strecker Mar 2004 A1
20040148006 Davidson et al. Jul 2004 A1
20050015135 Shanley Jan 2005 A1
20050075722 Chuter Apr 2005 A1
20050154442 Eidenschink et al. Jul 2005 A1
20050187602 Eidenschink Aug 2005 A1
20050245941 Vardi et al. Nov 2005 A1
20070179591 Baker et al. Aug 2007 A1
20070203562 Malewicz et al. Aug 2007 A1
20080255581 Bourang et al. Oct 2008 A1
Foreign Referenced Citations (83)
Number Date Country
2318314 Jul 1999 CA
2403826 Sep 2001 CA
9014845.2 Feb 1991 DE
29701758 May 1997 DE
29701758 Jul 1997 DE
60036233 May 2008 DE
804907 Nov 1977 EP
551179 Jul 1993 EP
684022 Nov 1995 EP
804907 May 1997 EP
876805 Nov 1998 EP
884028 Dec 1998 EP
891751 Jan 1999 EP
0 897 700 Feb 1999 EP
897698 Feb 1999 EP
897700 Feb 1999 EP
0 904 745 Mar 1999 EP
904745 Mar 1999 EP
1031328 Aug 2000 EP
1031330 Aug 2000 EP
1157674 Nov 2001 EP
646365 Jan 2004 EP
1182989 Dec 2004 EP
1512380 Aug 2007 EP
2675808 Jul 1991 FR
2678508 Jul 1991 FR
2678508 Jan 1993 FR
WO 8806026 Feb 1988 WO
WO 8806026 Aug 1988 WO
WO 9013332 Nov 1990 WO
WO 9112779 Sep 1991 WO
WO 9219308 Nov 1992 WO
WO 9508965 Apr 1995 WO
WO 9521592 Aug 1995 WO
WO 9641592 Jun 1996 WO
9629955 Oct 1996 WO
9634580 Nov 1996 WO
WO 9641592 Dec 1996 WO
WO 9709946 Mar 1997 WO
WO 9733532 Mar 1997 WO
WO 9716217 May 1997 WO
WO 9745073 May 1997 WO
WO 9726936 Jul 1997 WO
WO 9726936 Jul 1997 WO
WO 9732544 Sep 1997 WO
WO 9733532 Sep 1997 WO
WO 9741803 Nov 1997 WO
WO 9745073 Dec 1997 WO
WO 9817204 Apr 1998 WO
WO 9819628 May 1998 WO
WO 9835634 Aug 1998 WO
WO 9836709 Aug 1998 WO
WO 9837633 Sep 1998 WO
WO 9844871 Oct 1998 WO
WO 9848733 Nov 1998 WO
WO 9852497 Nov 1998 WO
9900835 Jan 1999 WO
WO 9915103 Apr 1999 WO
WO 9915103 Apr 1999 WO
WO 9917680 Apr 1999 WO
9935979 Jul 1999 WO
WO 9934749 Jul 1999 WO
WO 9936002 Jul 1999 WO
WO 9936002 Jul 1999 WO
WO 9939661 Aug 1999 WO
9949793 Oct 1999 WO
WO 9958059 Nov 1999 WO
WO 9965419 Dec 1999 WO
WO 0000104 Jan 2000 WO
WO 0012166 Mar 2000 WO
WO 0013613 Mar 2000 WO
WO 0053122 Sep 2000 WO
WO 0074595 Dec 2000 WO
WO 0121095 Mar 2001 WO
WO 0121109 Mar 2001 WO
WO 0121244 Mar 2001 WO
WO 0170299 Sep 2001 WO
WO 02068012 Sep 2002 WO
WO 02076333 Oct 2002 WO
WO 02094336 Nov 2002 WO
WO 03055414 Jul 2003 WO
2004026180 Apr 2004 WO
2006124162 Nov 2006 WO
Continuations (3)
Number Date Country
Parent 09614472 Jul 2000 US
Child 09663111 US
Parent 09325996 Jun 1999 US
Child 09614472 US
Parent 09663111 US
Child 09614472 US
Continuation in Parts (1)
Number Date Country
Parent 09455299 Dec 1999 US
Child 09663111 US