The present invention relates to semiconductor power devices, and more particularly to structures and methods for forming insulated gate bipolar transistors (IGBT) with charge balance structures.
IGBT is one of a number of commercially available semiconductor power devices.
Optimization of the various competing performance parameters of conventional IGBTs such as that in
In accordance with an embodiment of the invention, an insulated gate bipolar transistor (IGBT) includes a collector region of a first conductivity type, and a first silicon region of a second conductivity type extending over the collector region. A plurality of pillars of first and second conductivity types are arranged in an alternating manner over the first silicon region. A bottom surface of each pillar of first conductivity type is vertically spaced from a top surface of the collector region. The IGBT further includes a plurality of well regions of the first conductivity type each extending over and being in electrical contact with one of the pillars of the first conductivity type, and a plurality of gate electrodes each extending over a portion of a corresponding well region. Each gate electrode is insulated from its underlying regions by a gate dielectric layer. The physical dimensions of each of the first and second conductivity type pillars and the doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first conductivity and a net charge in its adjacent pillar of the second conductivity type.
In accordance with another embodiment of the invention, an IGBT includes a collector region of a first conductivity type and a first silicon region of a second conductivity type extending over the collector region. A plurality of pillars of first and second conductivity types are arranged in an alternating manner over the first silicon region. A bottom surface of each pillar of first conductivity type is vertically spaced from a top surface of the collector region. A well region of the first conductivity type extends over and is in electrical contact with the plurality of pillars of first and second conductivity types. The IGBT further includes a plurality of gate trenches each extending through the well region and terminating within one of the pillars of second conductivity type, with each gate trench including a gate electrode therein. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first conductivity and a net charge in its adjacent pillar of the second conductivity type.
In accordance with yet another embodiment of the invention, an IGBT is formed as follows. An epitaxial layer is formed over a collector region of a first conductivity type, with the epitaxial layer being of a second conductivity type. A first plurality of pillars of the first conductivity type are formed in the epitaxial layer such that those portions of the epitaxial layer separating the first plurality of pillars from one another form second plurality of pillars thus forming pillars of alternating conductivity type, and a bottom surface of each of the first plurality of pillars is spaced from a top surface of the collector region. A plurality of well regions of the first conductivity type are formed in the epitaxial layer such that each well region extends over and is in electrical contact with one of the first plurality of pillars. A plurality of gate electrodes is formed, each extending over a portion of a corresponding well region and being insulated from its underlying regions by a gate dielectric layer. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first plurality of pillars and a net charge in its adjacent pillar of the second plurality of pillars.
In accordance with another embodiment of the invention, an IGBT is formed as follows. An epitaxial layer is formed over a collector region of a first conductivity type, wherein the first silicon region is of a second conductivity type. A first plurality of pillars of the first conductivity type are formed in the epitaxial layer such that those portions of the epitaxial layer separating the first plurality of pillars from one another form second plurality of pillars thus forming pillars of alternating conductivity type, and a bottom surface of each of the first plurality of pillars is spaced from a top surface of the collector region. A well region of the first conductivity type is formed in the epitaxial layer such that the well region extends over and is in electrical contact with the first and second plurality of pillars. A plurality of gate trenches is formed, each extending through the well region and terminating within one of the second plurality of pillars. A gate electrode is then formed in each gate trench. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first plurality of pillars and a net charge in its adjacent pillar of the second plurality of pillars.
In accordance with another embodiment of the invention, an IGBT is formed as follows. Dopants of a first conductivity type are implanted along a back side of a substrate of a first conductivity type to form a collector region of the first conductivity type in the substrate. A first plurality of pillars of the first conductivity type are formed in the substrate such that those portions of the substrate separating the first plurality of pillars from one another form second plurality of pillars thus forming pillars of alternating conductivity type, and a bottom surface of each of the first plurality of pillars is spaced from a top surface of the collector region. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first plurality of pillars and a net charge in its adjacent pillar of the second plurality of pillars.
In accordance with another embodiment of the invention, an IGBT is formed as follows. An epitaxial layer is formed over a substrate. The substrate is completely removed to expose a backside of the epitaxial layer. Dopants of a first conductivity type are implanted along the exposed back side of the epitaxial layer to form a collector region of the first conductivity type in the epitaxial layer. A first plurality of pillars of the first conductivity type are formed in the epitaxial layer such that those portions of the epitaxial layer separating the first plurality of pillars from one another form second plurality of pillars thus forming pillars of alternating conductivity type, and a bottom surface of each of the first plurality of pillars being spaced from a top surface of the collector region. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first plurality of pillars and a net charge in its adjacent pillar of the second plurality of pillars.
In accordance with another embodiment of the invention, an IGBT is formed as follows. An epitaxial layer is formed over a substrate. The substrate is thinned down through its backside, and dopants of a first conductivity type are implanted along a back side of the thinned down substrate to form a collector region of the first conductivity type contained within the thinned down substrate. The substrate and the epitaxial layer are of a second conductivity type. A first plurality of pillars of the first conductivity type are formed in the epitaxial layer such that those portions of the epitaxial layer separating the first plurality of pillars from one another form second plurality of pillars thus forming pillars of alternating conductivity type, a bottom surface of each of the first plurality of pillars being spaced from a top surface of the collector region. The physical dimensions of each of the first and second conductivity type pillars and doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first plurality of pillars and a net charge in its adjacent pillar of the second plurality of pillars
A better understanding of the nature and advantages of the present invention can be gained from the following detailed description and the accompanying drawings.
A highly doped P-type well region 208 extends over P-pillars 207, and a highly doped N-type source region 210 is formed in well region 208. Both well region 208 and source region 210 are electrically connected to an emitter electrode 212. A planar gate 214 extends over an upper surface of N-type region 206c and a channel region 213 in well region 208, and overlaps source region 210. Gate 214 is insulated from the underlying silicon regions by a gate dielectric layer 216.
In the conventional IGBT structure of
Furthermore, P-type pillars 207 advantageously serve as a collector for the stored hole carriers thus improving the transistor switching speed. Moreover, the charge-balance structure distributes the hole and electron current components of the IGBT between the P-pillars and N-pillars, respectively. This improves the latch-up immunity of the transistor, and also helps distribute heat more uniformly in the silicon.
Additionally, field stop layer 205 serves to prevent the depletion layer from spreading to collector region 204. In an alternate embodiment, N-type field stop layer 205 is eliminated such that N-type region 206a is in direct contact with P-type collector region 204. In this alternate embodiment, N-type region 206a serves as a buffer layer, and the doping concentration and/or the thickness of this buffer layer is adjusted so as to prevent the depletion layer from spreading to collector region 204.
The superjunction IGBT in
To obtain the breakdown voltage improvements associated with the alternating pillar structure, both the N-pillars and P-pillar need to be fully depleted. In the depletion region, space charge neutrality condition needs to be maintained, hence requiring charge balance between negative charges in P-type pillars and positive charges in the N-type pillars (drift region). This requires careful engineering of the doping and physical characteristics of the N-type and P-type pillars. However, as is described more fully below, the superjunction IGBT in accordance with the present invention is designed so as to improve a number of trade-off performances by introducing a predetermined amount of charge imbalance between adjacent N and P Pillars rather than perfect charge balance.
As will be seen, a charge imbalance in the range of 5-20% in favor of higher charge in the P-pillars leads to improvements in various trade-off performances. In one embodiment, a thinner epitaxial layer 206 with doping concentration which results in a net charge in the N-pillars in the range of 5×1010a/cm3 to 1×1012a/cm3 is used, while the doping concentration of the P-pillars is set such that the net charge in the P-pillars is greater by about 5-20% than that of the N-pillars. In a stripe design, the net charge in each of the N and P pillars can roughly be approximated by the product of the doping concentration in the pillar and the width of the pillar (assuming the stripes of N and P pillars have the same depth and length).
By optimizing the net charge in the alternate pillars and the superjunction structure, various trade-off performances can be controlled and improved as illustrated by the simulation results shown in
The SCWT performance improves because P-pillars 207 act as sinks for the hole current. Therefore, the hole current tends to flow up P-pillars 207 rather than under the source region 110 as is in the conventional IGBT in
Another important feature of the superjunction IGBT in
Most of the turn-off losses in the conventional IGBT result from the slow sweep out of the injected carriers during the voltage rise and the minority carrier recombination of the carriers in the remaining un-depleted drift and/or buffer region after the voltage reaches the bus voltage. Because the current fall di/dt is controlled by the gate discharge and is much slower than a conventional IGBT, Eoff is almost completely due to the current fall. In essence, most of the turn-off losses of the superjunction IGBT are in the current fall which can be controlled by adjusting the di/dt with Rg.
In
In
In another embodiment of the invention, the doping concentration in the P-pillars is graded from a higher doping concentration along the top of the P-pillars to a lower doping concentration along their bottom, and the doping concentration in the N-pillars is substantially uniform. In yet another embodiment, the doping concentration in the N-pillars is graded from a higher doping concentration along the bottom of the N-pillars to a lower doping concentration along their top, and the doping concentration in the P-pillars is substantially uniform.
A highly doped P-type well region 2308 extends over the charge balance structure, and a gate trench extends through the well region 2308 and terminates in N-pillar 2306b. Highly doped N-type source regions 2310 flank each side of the gate trench in well region 2308. Well region 2308 and source regions 2310 are electrically connected to emitter electrode 2312. A gate dielectric 2316 lines the trench sidewalls, and a gate 2314 (e.g., comprising polysilicon) fills the trench. Gate 2314 may be recessed in the trench with a dielectric cap filling the trench over the recessed gate. An emitter conductor (e.g., comprising metal) may then extend over source regions, body regions and the trench gate. Many of the same considerations discussed above in reference to the planar gate IGBT in
The planar gate IGBT in
Gate rings 2414 are shown as not extending over P-pillar rings 2407, however, in an alternate embodiment the gate rings overlap the P-pillar rings. Also, the concentric P-pillar rings 2407 and gate rings 2414 are shown to be square shaped, however they may be rectangular, polygonal, hexagonal, circular, or other geometrical shapes. In one embodiment, stripe-shaped gates extending vertically or horizontally over the concentric P-pillar rings are used instead of concentric gate rings. Such embodiment is advantageous in that the gates are not required to be properly aligned to the P-pillars as in the concentric gate ring design. This embodiment also increases the peak SCWT.
Gate stripes 2514 are shown as not extending over P-pillar stripes 2507 however, in an alternate embodiment the gate stripes overlap the P-pillar stripes. Also, gate stripes 2514 are shown extending in parallel to P-pillars 2507, however, in an alternate embodiment the gate stripes extend perpendicular to the P-pillar strips. Such embodiment is advantageous in that the gates are not required to be properly aligned to the P-pillars as required in the embodiment with the gate and P-pillar stripes extending in parallel. This embodiment also increases the peak SCWT.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention. All material types provided herein to describe various dimensions, doping concentrations, and different semiconducting or insulating layers are for illustrative purposes only and not intended to be limiting. For example, the doping polarity of various silicon regions in the embodiments described herein may be reversed to obtain the opposite polarity type device of the particular embodiment. For these and other reasons, therefore, the above description should not be taken as limiting the scope of the invention, which is defined by the appended claims.
This application claims the benefit of US Provisional Application No. 60/765,261, filed Feb. 3, 2006, which disclosure is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
60765261 | Feb 2006 | US |