The present exemplary embodiment relates to charging protocols for electric or hybrid vehicles. However, it is to be appreciated that the present exemplary embodiment is also amenable to other similar applications.
Electric vehicles are powered by an electric motor to which electricity is provided by a group of batteries. Operation of the motor depletes energy stored in the batteries. Electric vehicles are typically recharged from an external power source. For example, the electric vehicle can be recharged at a home or office location by being plugged into a standard outlet. Also, commercial fast charging stations are becoming more commonly available where a higher current charge can be delivered.
A hybrid vehicle operates using both hydrocarbon fuel and electric power. A conventional engine is fueled by the hydrocarbon fuel while an electric motor is powered by a battery. The engine may operate a generator which charges the battery at times when the full power of the engine is not needed to propel the vehicle.
A plug-in hybrid is a hybrid vehicle in which the driver has the option of plugging the vehicle into exterior electric power when it is parked so that the battery does not have to be charged by the engine.
Solar vehicles are used herein to refer to electric and hybrid vehicles which have one or more solar panels on the body to provide part of the electricity for the electric motor and/or for charging the batteries and further to any vehicle including one or more solar panels that provide electrical power to a vehicle accessory, such as a radio or the vehicle's heating, ventilating and air conditioning system. A typical car belonging to an individual is parked 90% of the time. Therefore, solar charging can provide a significant portion of the energy used. In the case of an electric vehicle, the solar vehicle would likely also be a plug-in, so if sunlight is unavailable for any reason (weather, parked underground etc.) the battery can be charged from grid power. In the case of a hybrid vehicle, the battery of the solar hybrid can be charged by the solar panels and by the engine and perhaps also as a plug-in.
An exemplary electric vehicle including solar panels is depicted in
Electric and hybrid vehicles require significant automated control to provide efficient and reliable performance. A controller is therefore provided. A controller may be formed by one or more processors associated with the vehicle. In a hybrid vehicle, the controller runs an optimized control algorithm that determines on a moment-to-moment basis when to use either the engine, the motor or both; in what ratio, and also when to charge the battery from the engine. In pure electric and solar hybrids, the controller also makes decisions about how and when to recharge the battery.
Remote communication to and from vehicles has been known for years. For example, GPS and/or satellite technology can be used to guide vehicles and send information regarding location, mapping, guidance, and possible vehicle crashes to a remote location for contacting emergency services and the like. Many vehicles also have internal local area wireless networks, such that cell phones may be used in a hands free mode by the vehicle operator. Many of these systems rely on cellular communication devices and/or satellite devices to communicate between the vehicle and an external service center or from the vehicle to existing cellular networks or hard line telephones.
These forms of communication can provide an interface for an electric vehicle or a plug-in hybrid electric vehicle. Moreover, a communication interface system for a plug in electric vehicle that relies on battery power to propel the vehicle is provided. A communication interface for an electric vehicle or plug-in hybrid vehicle that will be able to control remotely the charging of the battery is similarly provided. There also provided a communication interface for an electric vehicle or plug-in hybrid vehicle that will notify the user of any potential problems during the charging of the vehicle.
One shortcoming of the current systems is a reliance on cellular or satellite communication for operation. Accordingly, if these communication systems are unavailable, the vehicle operator may have no ability to access the state of charge of a vehicle for operation.
Various details of the present disclosure are hereinafter summarized to provide a basic understanding. This summary is not an extensive overview of the disclosure, and is intended neither to identify certain elements of the disclosure, nor to delineate the scope thereof. Rather, the primary purpose of this summary is to present some concepts of the disclosure in a simplified form prior to the more detailed description that is presented hereinafter.
According to a first embodiment, a method for determining the state of charge of an at least partially electrically powered vehicle is provided. The vehicle is rechargeable by at least one solar panel. A computer system including one or more processors and memory storing one or more programs is also provided. The method comprises executing the one or more programs to perform the following operations at the time the vehicle is turned off. The operations include measuring a current state of charge of the battery, and selecting at least one charge predictor selected from the vehicle location, date, time, vehicle tilt angle, weather at vehicle location and solar panel efficiency, and then (i) calculating an estimated charging schedule based on the current state of charge and the at least one charge predictor and transmitting said charging schedule to a remote location, or (ii) transmitting said current state of charge and said at least one charging predictor to a remote location where a charging schedule is calculated.
According to a second embodiment, a method of determining a future state of charge of a vehicle that is operable using a rechargeable stored energy source. The method includes determining a present state of charge of the vehicle and recharging the stored energy source using energy derived from a solar panel. The method further includes using the present state of charge in combination with a tilt angle of the vehicle to predict a future state of charge.
According to a further embodiment, a method for remotely monitoring the state of charge of an at least partially electrically powered vehicle including a rechargeable battery is provided. The method comprises measuring a current state of charge of the battery, and calculating an available range of vehicle operation. The current state of charge and the available range of vehicle operation are transmitted via a wired or internal wireless network to a portable electronic device.
The following description and drawings set forth certain illustrative implementations of the disclosure, which are indicative of several exemplary ways in which the various principles of the disclosure may be carried out. The illustrated examples, however, are not exhaustive of the many possible embodiments of the disclosure. Other objects, advantages and novel features of the disclosure will be set forth in the following detailed description of the disclosure when considered in conjunction with the drawings, in which:
With reference to
The operations center 20 is preferably equipped to communicate over numerous available networks including cellular network 28, satellite network 30 and on a local area network directly with a hand held device 32 which can include a mobile phone, a personal data assistant, a computer, or a key fob, as examples. Furthermore, the cellular network can provide for communication via cellular network servers 34 or via cellular network operators 36. In short, an integrated network of communication is provided which allows a remote computer or hand held device to access vehicle data for storage and analysis of vehicle conditions, including charging status.
There are many forms of active communication for a modern day automobile. Unfortunately, many require medium to long range RF communication. This type of communication (which includes cellular phones) may provide poor reception in many real-world situations. Medium range communication cannot provide 100% coverage assurance. For example, the vehicle may be parked in a garage with limited cell coverage. If the operator is unable to communicate with the electric vehicle, the operator may not know if they are able to complete a desired trip, or if they will need to charge the vehicle or for how long charging is required.
The automobile is a special concern considering that it is mobile and the calculation is needed for each new location. This present disclosure provides a method of vehicle charge estimation when other communication methods are not available to the user.
Referring now to
The operation center 20, at ignition off cycle, can communicate information contained within the vehicle processing means 26 and navigation unit 22 via telematics control unit 24 to a remote location having a computer including programming capable of calculating charge conditions. In addition, the information can be communicated to a hand held device via the wireless local area network or a wired connection. The hand held device similarly contains programming capabilities to calculate charge conditions and/or the ability to communicate relevant data to a remote server having the capability to calculate charge conditions. The communicated information can be state of charge, available range, nearest charging stations and onboard cellular signal strength (meaning whether the vehicle has sufficient cellular strength to communicate). The displayed charging schedule can be a percentage of battery charge at a given time. If the ignition is turned off in an area, for example, an underground parking garage where this is no cellular signal, the last known GPS coordinates are sent to calculate the range available for the next trip.
The steps are depicted in a flow chart (
Referring now to
Referring again to
Referring now to
The connection between the hand held device and the vehicle can be, for example, via Bluetooth wireless or a wired connection (ex. USB). As is apparent the hand held device is equipped with software configured to keep a local cache of information on the device sufficient to calculate the information outlined above. The system can communicate with the vehicle when it is within range (˜100 ft. max for Bluetooth) and allows for data transfer.
Each of the protocols of
Factors that can affect charging are vehicle GPS location; vehicle bearing; weather conditions (cloud cover, rain, fog, snow, haze, smog and pollutant levels; temperature); time of day; date; tilt angle of vehicle (front to back and side to side); shading of the vehicle (structures or vegetation); and panel cleanliness. Many of these factors are known such as available sunshine at a particular time on a particular date or are publically available information such as weather conditions. Other conditions can be determined via appropriate sensors in communication with the operations center 20, such as GPS location, vehicle bearing, shading of the solar panels, panel cleanliness (efficiency), and vehicle tilt (i.e. front to back and side to side orientation).
These factors can be used to fit the current vehicle panel situation to tested, predicted charging curves. Fitting to predetermined charging curves allows the system to calculate the charge for any particular moment. In addition, by monitoring some of these conditions on a neighborhood or city level, the hand held device or remote computer/server an predict what the level of charge will be even when the conditions continue to change. In fact, monitoring at least three and preferably more of these factors can provide a best prediction.
An example of this dynamic prediction is the ability for a program to predict the current charge of a system after hours of solar panel charging. When the operator leaves the vehicle the current information is stored on his hand held device. When requested, the user can see the predicted level of charge. This prediction can be done either on the portable device or by sending the initial vehicle conditions to a computer/server. The program can take the collected vehicle factors and separate them into two categories, static and dynamic. The static category consists of factors that are unlikely to change (vehicle location, bearing, tilt angle etc.). The dynamic category consist of factors such as weather conditions and time of day. The calculation is able to take the initial starting points of the factors and adjust the dynamic factors to determine current or future charging status. The calculation of vehicle tilt is advantageous to consider in view of the change of relative orientation of the solar panels to sunlight throughout the day. Vehicle tilt can be readily determined via an inclinometer, accelerometer or other type of commonly employed tilt sensor. The result of the calculations is the ability to have a good estimate of the vehicle charge at any time. It is envisioned that the protocols are sufficiently dynamic to function both when the vehicle is parked and when it is in operation.
The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.