The present invention relates to a CDM (charged device model) simulator used in electrostatic discharge test of semiconductor devices and a test method.
With the continuous scaling down of the physical dimensions of transistors in semiconductor integrated circuits (hereinafter abbreviated “IC”), the breakdown voltage in ICs has become lowered. Problems of breakdown in ICs due to electrostatic discharge (hereinafter referred to as “ESD”) have become more serious. Among reliability tests, an ESD test is carried out to test ESD tolerance of IC.
Conventional test methods may include a capacitor discharge test method which simulates discharge from an electrostatically charged human body to an IC. This discharge may occur when an electrostatically charged object is present in the vicinity of an IC. In the test, a human body model (HBM) which simulates the discharge from a charged human body to an IC or a machine model (MM) which is presumed to simulate direct discharge from a charged metallic capacitor body to an IC is used. Countermeasures against electrostatic discharge from charged human body have been widely taken. The wide spread use of automatic fabrication lines for electronic devices reduces the possibility of direct contact between human body and IC. Under this situation, it has been found that existing models for capacitor discharge test are often incapable of reproducing a defective mode in an automatic assembly process.
Seakman et al. proposed in 1974 a model other than HBM, MM models in which an IC may be broken by rapid discharge from a discharged IC. This model is called as “charged device model” (CDM).
This CDM received attention with the development of a CDM simulator for simulating a device charged model as a momentum, which was made by Bossard, Unger et al. during the 1980s (refer to non-Patent Document 1). Thereafter, various CDM simulators have been developed.
These conventional CDM simulators are electrostatic breakdown test instruments which simulates electrostatic discharge in ICs to measure its immunity from the breakdown. These CDM simulators are used for designing ICs so that they have enough immunity from the breakdown due to electrostatic discharge. They are used to make an assessment of performance of ESD protection device or to determine the references for ESD management standards in an assembly process based upon the immunity of the product from the breakdown, or used for shipment test of products.
Since some specific marks of structural destruction of the device, in which the destructed portion is turned in to an amorphous state, and which is other than melting of the device due to heating, have been found, it is understood that for example, a gate oxide film is broken for example, by over-voltage, which occurs due to an excessive potential difference among respective portions in an IC. Some analyses report that characteristic actual broken portions are similar or identical with those in CDM test, and CDM simulators have been widely used.
It is presumed that major cause of electrostatic charging of device is induced charging (induced polarization). This can be explained by a mode in which uncharged IC (device) 10 is placed on a charged insulator 201 and discharge occurs when a conductor is brought into contact with an IC 10 as shown in
The amount of induced charges is represented as follows:
Q=−Cpk×V
where Cpk is capacitance between the surface of the package 13 of the IC 10 and the internal conductor 12 of the IC 10 (referred to as “package capacitance”) and V is the voltage at the surface of the insulator (201 in
When the IC 10 is moved away from the charged insulator as shown in
There is another discharge mode in which electrostatic charges on the surface of the package will cause induced charging. This mode will be referred to as “package surface charging mode”.
Specifically, various types of simulator have been proposed as follows:
A charged package model (CPM) is configured so that charging is conducted via a electrode made of Bakelite and discharging is conducted by bringing a discharging electrode connected with the ground to a sample to cause in-air discharge (refer to non-Patent Document 2). A case using a small capacitance discharge model (in which a current flows into an IC from an external source) which is similar in apparatus configuration to the charged package model is described in Patent Document 5. The direct charging type apparatus as is described in Patent Document 5 has such problems that variations in the resistance during charging can not be precisely controlled and that a surface leakage current may be generated.
A field induced charged device model (referred to as FI-CDM) is configured so that field induced charging is caused by placing the IC 10 on the field plate insulator 201 within an electric field formed by a field plate 204 connected to a high voltage power supply 301 and a discharging electrode facing thereto to in-air discharge the electrostatic charges (non-Patent Document 3).
In this type of simulator, a contact needle 501 is mounted on a ground plate 504 which forms a uniform electric field between a field plate. The ground plate 504 is lowered simultaneously with lowering of the contact needle 501 to contact with a terminal 11 of IC 10.
Thus, the distance between the field plate 204 which is charged to a predetermined potential and the ground plate 504 is changed. Resultingly, the electric field, electrostatic capacitance and the amount of charges for IC 10 is changed, so that the electric field, electrostatic capacitance and the amount of electrostatic charges is also changed. If there is no ground plate or the area of the ground plate is small, a problem occurs that the distribution of the electric field for IC may become non-uniform and variations in discharge current among test terminals may occur. Hence, a method of forming an electric field between parallel flat plates having a large area has been adopted.
An approach which overcomes disadvantages of existing FI-CDM simulator by eliminating in-air discharge which is one of the disadvantages of FI-CDM is disclosed in Patent Document 1. In this Patent Document 1, an influence of the ground plate 504 is eliminated by using no ground metallic plate which was provided to form an equal electric field between the metallic plate and a field plate which induces electrostatic charges and by preliminarily contacting a contact needle with a terminal 11 of IC 10 placed upon the field plate 204.
A structure which adopts an field plate of a high dielectric constant is disclosed in Patent Document 4. A CDM simulator in which after an IC is placed on a ground face and is directly electrostatically charged with a contact needle, the IC is lifted up to bring the IC into contact with a discharge needle which is above the IC to cause an in-air discharge is described in Patent Document 5.
It is reported in Non patent Document 5 that when the IC is lifted up, the device capacitance (a capacitance for space including a capacitance against the ground plate) decreases, so that the potential correspondingly increases, the peak current becomes higher and the pulse width becomes narrower irrespective of the same total amount of charges. It is explained that this is due to the fact that the current abruptly flows if the potential difference on discharge is large. It is shown in the course of modeling the circuit operation of a CDM tester with an equivalent circuit that the capacitance between the IC and the ground plate gives a large influence upon the waveform of the discharge current, in Non patent Document 8.
Known examples of CDM simulator which is related with device capacitance are described in Patent Document 3 and non-Patent Document 7. In “JEDEC STANDARD JEDS 22-C101, ESDASTANDARD ESD-S 5.3” or Electronic Industries Association of Japan: EIAJ, Temporary Standard E1AJEDX-4702, there is described a method, which comprises measuring the waveforms of the discharge currents for comparing peak values, pulse widths, oscillation periods and dumping time constants of oscillation among test equipments and obtaining correlations among the test equipments, in order to prevent variations in measurement results among test equipments from occurring. In this case, a parallel flat plate capacitor having a predetermined capacitance (4 pF or 30 pF) using a printed circuit board is used as a device under test in lieu of an IC. When a parallel flat plate capacitor of 4 pF is used, discharge current is such that the rise time of the pulse is 200 pF or less and the pulse width is 400 ps or less.
[Patent Document 1]
Japanese Patent Kokai Publication No. JP-P2001-91572A
[Patent Document 2]
Japanese Utility Model Kokai Publication No. JP-U-7-36078
[Patent Document 3]
Japanese Patent Kokai Publication No. JP-P2003-28921A
[Patent Document 4]
Japanese Patent No. 2859044
[Patent Document 5]
Japanese Patent Kokai Publication No. JP-A-7-98355
[Non Patent Document 1]
“ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PIN” P. R. Bossrd, R. G. Chemelli, B. A. Unger; Electrical Overstress/Electrostatic Discharge Symposium Proceedings, EOS—2 Sep. 1980, Pages: 17-22
[Non Patent Document 2]
“ESD PROTECTION NETWORK EVALUATION BY HBM AND CDM (CHARGED PACKAGE METHOD)”, Y. Fukuda, S. Ishiguro, M. Takahara; Electrical Overstress/Electrostatic Discharge Symposium Proceedings, EOS—8 Sep. 1986, pages: 193-199
[Non Patent Document 3]
“Mechanism of Charged-Device Electrostatic Discharges”, Robert G. Renninger; Electrical Overstress/Electrostatic Discharge symposium Proceedings, EOS—13 Sep. 1991, pages: 127-143
[Non Patent Document 4]
“Establishment of device charged model EST test method (part 1) Development of practical precise experiment method”, M. Tanaka, M. Sakimoto, H. Nishimae, K. Ando, RCJ Twelfth EOS/ESD symposium, collection of drafts, pages: 33-40
[Non Patent Document 5]
“Study of electric discharge from micro-device”, H. Hayata, S. Koike, M. Honda, 2004, fourteenth RCJ Reliability Symposium Proceedings 14E-8, pages: 117-122
[Non Patent Document 6]
“Relationship between discharge waveform and discharge resistance in low voltage CDM discharge”, S. Isofuku, 2004, fourteenth RCJ Reliability Symposium Proceedings, 14E-21, pages: 191-196
[Non Patent Document 7]
“INFLUENCE OF TESTER PARASITICS ON “CHARGED DEVICE MODESL”—FAILURE THRESHOLDS”, H. A. Gieser, P. Egger; Electrical Overstress/Electrostatic Discharges Symposium Proceedings, EOS—13 Sep. 1994, pages: 69-84
[Non Patent Document 8]
“Impact of the CDM tester ground plane capacitance on the DUT stress level” Cedric Goeau, Corrine Richier, Pascal Salome, Jean-Piearre Chante, Herve Jaouen: Electrical Overstress/Electrostatic Discharge Symposium Proceedings, EOS—7 Sep. 2005, pages: 170-177
CDM discharge phenomenon has a feature that the rise time of the discharge current is very fast and the peak current value is very high. Some ESD protective elements suppress the voltage applied to an element to be protected to a low voltage while other elements can not suppress fast rise-up current to sufficiently low voltage. In latter case, an excessively high voltage may be applied to the element to be protected. As a result of occurrence of an excessively large current over the entire of inner circuit, an excessively high voltage may occur on a predetermined portion. It is presumed that such a phenomenon specific to CDM destruction usually depends upon the peak value and rise time of the discharge current, rather than integrated value of the current. In other words, the risk of breakdown becomes higher as the peak value of the discharge current becomes higher (the rise-up of the current is faster) if charges having same amount are discharged.
Therefore, it is necessary to make it possible to achieve a simulation of worst case, in which a rise time of current as fast as possible is realized, so that the waveform of discharge current which may be actually generated in manufacturing process can be reproduced and a guide line to design of protective circuit can be obtained. There are following problems relating to discharge which is simulated by existing CDM simulator.
A discharge model based upon which FI-CDM is proposed is originated from a model in which a metallic jig (contact probe) 501 is brought into contact with a pin 11 of an IC 10 on charged insulator 201 or a model in which the package surface is electrostatically charged.
FI-CDM simulator (
D-CDM simulator is described using an equivalent circuit of a tester in Non Patent Document 8. Also in FI-CDM, the equivalent circuit is capacitance-coupled with a ground electrode via a metallic electrode of field plate as shown in
In accordance with one aspect of the present invention, there is provided a simulator apparatus for an electrostatic discharge test may comprise a member for absorbing an electromagnetic wave which is generated when discharge from said device under test occurs. In the present invention, a field plate for electrostatically charging a device under test may comprise a member for absorbing an electromagnetic wave generated at the time of discharge. Alternatively, said reference potential plate may comprise a member for absorbing an electromagnetic wave generated at the time of said discharge.
In the present invention, said field plate may comprise a first substrate as said absorbing member.
In the present invention, said first substrate may have such a resistance value that the substrate absorbs an induced current from said field plate at the time of said discharge.
In the present invention, said field plate may comprise a second substrate having a predetermined dielectric constant, which is disposed on said first substrate on the side thereof on which said device under test is placed and an electrode on the side of said first substrate opposite to the side on which said second substrate is provided.
In the present invention, said second substrate may have a dielectric constant so that the capacitance of the second substrate is more than package capacitance of said device under test.
In the present invention, said first substrate may be made of an insulting substrate and may comprise an electrically conductive area disposed on said insulating substrate, on which said device under test is placed and an electrode which is connected to said electrically conductive area.
In accordance with another aspect of the present invention, there is provided a ground plate on which said device under test is placed and which is connected to the ground may comprise a substrate in the simulator apparatus for electrostatic discharge test of a device under test.
In accordance with another aspect of the present invention, a voltage which does not capacitance-couple with an external environment in a discharge frequency band may be applied when discharge occurs.
In the present invention, a resistor element is in series connected to a switch connected between the ground and a needle connected to a conductor of a device under test as a discharge side path. The resistance value is preset to match the waveform of in-air discharge. The resistance value may be changed as a function of an applied voltage value to match the waveform of the discharge in the voltage range.
In the present invention, the electrode of a relay which forms said switch leads out in three directions in a dimensional structure.
In such a manner, in accordance with the present invention, a field plate is made of a material which is not responsive to the potential oscillation at CDM (device charged model) frequency. The field plate has a high resistance substrate having a sufficient conductivity which absorbs CDM discharge an electromagnetic wave.
The present invention provides a ground plate which is used for discharging charges on a device under test in an electrostatic discharge test. The ground plate may comprise a high resistance member. The ground plate of the present invention may comprise a member for further accumulating the capacitance. Said member for further accumulating the capacitance may comprise an additional ground plate which is disposed on the surface of said ground plate opposite to the surface facing to said sample. Said ground plate may comprise a member for absorbing an electromagnetic wave which are generated at the time of discharge from said device under test. Alternatively, said ground plate may comprise said relatively high resistance member on the surface of said ground plate facing to said device under test.
A simulator apparatus in accordance with yet another aspect of the present invention may include a field plate used in an electrostatic discharge test for electrostaically charging a device under test and a ground plate used for discharging said electrostatically charged device under test. Said ground plate comprises a relatively high resistance member.
A method of conducting an electrostatic discharge test in a further aspect of the present invention may be conducted by using a relatively high resistance member as a field plate for electrostatically charging said device under test and/or a ground plate for discharging said charged device under test.
The meritorious effects of the present invention are summarized as follows.
In accordance with the present invention, a discharge model which has heretofore been difficult can be reproduced by making a field plate of a material which does not respond to the potential oscillation at a CDM (charged device model) frequency.
More specifically, in accordance with the present invention, a phenomenon in which a device under test having a package surface electrostatically charged is made in a contact in such a manner that no capacitance is formed against the contact surface.
In accordance with the present invention, discharge of a device under test which an IC placed on an electrostatically charged object can be reproduced.
In accordance with the present invention, the discharge current waveform can be matched to that in worst case in an environment at which actual breakdown occurs.
Still other features and advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description in conjunction with the accompanying drawings wherein only the preferred embodiments of the invention are shown and described, simply by way of illustration of the best mode contemplated of carrying out this invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawing and description are to be regarded as illustrative in nature, and not as restrictive.
The present invention will now be described in more detail with reference to annexed drawings.
In existing CDM simulators, an electromagnetic wave are generated due to abrupt changes in potentials caused within an IC when electrostatic discharge occurs and are reflected on a lower metallic substrate, so that a capacitance coupling may occur between both electrodes. A device under test is usually spaced apart from the metallic surface in an FI-CDM model (refer to
In FI-CDM model, it is necessary to apply a potential V to the field plate for the device under test for simulating the CDM discharge. In this case, a capacitance between a surface of an IC package facing to the plate for mounting the device under test and an internal conductor of an IC is Cpk (refer to
Q=Cpk×V
where V is a voltage at the surface of the package and Cpk is a package capacitance.
In other words, this condition corresponds to that where an entire single surface is electrostatically charged to a potential V or the device under test is placed on a charged object.
Accordingly, it is preferable that the field plate has a resistance which is higher to some extent, if the field plate is to be made of a material having a higher resistance for absorbing the an electromagnetic wave generated by the discharge. Since discharging is successively conducted at intervals of 0.5 to 1 second across all terminals (pins), it is necessary to quickly supply a current from a voltage source so that the potential on an area of the field plate to which the sample is in contact with will become equal to that of an external power supply within this interval after the discharge. In this respect, the field plate is preferably lower in resistance. The field plate is designed so that its parameters such as structure and resistance will optimally meet these requirements.
The electromagnetic absorbing material may include various materials and composite materials, such as a material having a relatively higher surface resistive layer, which converts the an electromagnetic wave at the higher resistive area into heat for absorbing them, and a material which shifts the resonant frequency of the whole system toward the lower frequency side.
For example, a composite magnetic material in which metallic magnetic powders having a particle diameter in order of micron are dispersed in a resin may be used. It is said that a material having a high electric resistivity of about 104 to 107ο·cm is capable of absorbing an electromagnetic wave in the frequency range of 100 MHz to 5 GHz.
Engineering ceramics comprising electrically conductive ceramics powders therein which are uniformly dispersed in an insulating ceramics are able to have a higher electric resistivity of about 104 to 1012ο·cm.
The CDM simulator may be represented by an equivalent circuit having a package capacitance added to a device capacitance and a capacitance which causes a high loss at frequencies higher than that of CDM discharge current.
If the insulating film 21 for the field plate 20 is necessary, the amount of the induced charges may be lowered since the capacitance of the field plate 20 is in-series connected to the package capacitance Cpk. An FR-4 substrate may be used in off-the-shelf CDM simulators, which may largely lower the amount of the discharged charges.
Although the material of the substrate is not particularly limited, Teflon™ has an advantage in that it has a dielectric loss which is constant at frequencies above GHz range and in that its capacitance value is independent of humidity, thereby making the design of CDM easier.
The material of the insulating film 21 requires to have only characteristics that the dielectric breakdown voltage between the IC and the field plate is kept higher to prevent direct discharge to the field plate and the capacitance is lower than that of the resin used for the IC to cause no reduction in effective applied voltage. For the substrate of Teflon™ having an electric insulation (relative dielectric constant of about 2), a configuration which makes the thickness of the substrate about 0.1 mm may be used.
A high resistance substrate 22 (also refereed to as “semi-conducting substrate” is disposed under the insulating film 21. The high resistance substrate 22 is made of a material which absorbs the an electromagnetic wave generated when the discharge of CDM occurs and has such a resistance that the field plate can be recharged by the field plate voltage supplied thereto and can be stabilized within one second.
Since the an electromagnetic wave which are generated by the discharge generally have frequencies above one GHz, absorption of the an electromagnetic wave occurs in relatively upper surface area of the high resistance substrate 22. Accordingly, the high resistance substrate 22 of the field plate 20 may be laminar-structure so that its resistivity is less at a depth sufficiently lower than the skin depth.
A metallic electrode 23 is disposed under the high resistance substrate 22 of the field plate 20. The electrode 23 can be switched to a connection with a high voltage source 31 or the frame ground for discharge via the high resistance element 33 by means of switch 32. When the resistance element 33 is switched to the high voltage source 31, a voltage is applied to the electrode 23 from the high voltage source 31.
In the present invention, the structure of the field plate is not limited to the structure of the foregoing embodiment. Other various variations may be made.
Referring now to
The configuration of another variation is shown in
The IC 10 is placed on the field plate comprising the high resistance substrate 22 disposed on the metallic electrode 23 so that the face of the IC 10 faces thereto. A high resistance substrate 22′ and a metallic electrode 23′ are placed on the reverse side of the IC 10, so that the high resistance substrate 22′ faces thereto. A potential is applied to the both metallic electrode 23 and 23′.
Referring to
Comparisons of results are shown in
It is found from
In the present embodiment, the dielectric loss between IC 10 and field plate 20 is large in the frequency range of CDM discharge current. This results in an over damping. It can be concluded that there is no current path extending to the field plate 20 as shown in
Another embodiment of the present invention will be described. The foregoing embodiment has been described with reference to FI-CDM. It is of course that the present invention is also applicable to D-CDM.
Now, a further embodiment of the present invention will be described. In the present embodiment, the potential on the field plate can be changed to a desired value.
Alternatively, separate electrodes (not shown) may be added to the upper portion of IC 10 so that they cover the whole of IC.
The present invention is also applicable to D-CDM test which is described non-Patent Document 4 and the like. In this case, a field plate is not used, but a metallic plate is used as a reference potential plate. Since the potential is connected to a reference potential via a resistance element, the present invention is applicable to the reference potential plate.
A further embodiment of the present invention will now be described. It is presumed that CDM simulator can be represented in an equivalent circuit as shown in
The equivalent circuit of the present invention is shown in
It is presumed that the parasitic inductance (Lpin in
Therefore, the present embodiment is configured to suppress these parasiti. A result is shown for comparison in
It is confirmed that inductance is needed to be made large more than necessary for reproducing the discharge current waveform complying with JEDEC standards. Under these circumstances, the large inductance determines the waveform of the discharge current, the peak value of which is almost half of that of the present embodiment. In the present embodiment, for attaining the effect of reproducing the worst case discharge current, the ground plate is so adapted to exclude an inductance element to achieve the minimum value with regard to the rise time of the discharge current. The discharge waveforms shown in the Figures are those obtained using the CDM simulator which has the ground plate according to the present embodiment.
A resonance may occur in the waveform of the discharge current due to a resonance circuit including this capacitance under some conditions. Therefore, an electromagnetic wave absorbing sheet is disposed on a ground plate 61 (metal) in
It is found that the electromagnetic wave absorbing sheet 63 disposed on the ground plate 61 provides substantially same effect as that provided by attaching the absorbing sheet on the side of the field plate 20. However, the rise time of the discharge current in case in which the absorbing sheet is disposed on the ground plate 61 is longer than that in case in which the absorbing sheet is mounted on the field plate 20.
This is due to the fact that the current spreads in a lateral direction (in a planar direction of the ground plate 61) so that the impedance of the current path on the side of the ground plate 61 increases while the potential of the ground plate 61 increases.
In order to prevent this, the present embodiment adopts a structure having a ground plate, the section and top of which are shown in
Referring to
The resistance value of the discharge path depends upon the shape of the contact needle 41, interval among discharges and contact speed, and often depends upon the potential difference. Accordingly, the simulator may be configured so that the resistance is changed depending upon the applied voltage. The simulator may be adjusted with detailed experiments, so that waveform at highest speed which may occur under the assembly environment of ICs can be simulated.
Although the present invention has been described with reference to foregoing embodiments, it is to be understood that various modifications, alternations and changes may be made by those skilled in the art without departure from the spirit and scope of the invention.
It should be noted that other objects, features and aspects of the present invention will become apparent in the entire disclosure and that modifications may be done without departing the gist and scope of the present invention as disclosed herein and claimed as appended herewith.
Also it should be noted that any combination of the disclosed and/or claimed elements, matters and/or items may fall under the modifications aforementioned.
Number | Date | Country | Kind |
---|---|---|---|
2005-114590 | Apr 2005 | JP | national |
2006-052412 | Feb 2006 | JP | national |