1. Field of the Invention
This invention relates to chemical mechanical polishing (CMP) used in semiconductor manufacturing. More particularly, it relates to a chemical mechanical polishing tool and to its use.
2. Discussion of the Related Art
Modern semiconductor manufacturing is a highly competitive industry that requires the ability to fabricate complex semiconductor devices at high speed, with high yields, and at low cost.
Semiconductor devices are fabricated on semiconductor wafers. Such wafers are made by carefully growing a large, high purity semiconductor crystal, which is then sliced into individual semiconductor wafers. For storage and protection the sliced semiconductor wafers are usually loaded into wafer cassettes. A wafer cassette individually stacks the sliced semiconductor wafers in slots. Wafer cassettes are beneficial in that the large numbers of semiconductor wafers can be stored and transported in a protected environment.
Unfortunately, immediately after slicing a semiconductor wafer is unsuitable for semiconductor device fabrication because the slicing leaves rough surfaces on the semiconductor wafers. Surface roughness is a serious problem because modern fabrication processes require accurate focusing of photolithographic circuit patterns onto the semiconductor wafer. As the density of the circuit patterns increases, focus tolerances better than 0.1 μmeters can be required. Focusing with such small tolerances is not practical if the surface of a semiconductor wafer not highly smooth and planar.
A number of techniques for reducing semiconductor wafer surface roughness exist. A semiconductor wafer can be mechanically worked by an abrasive pad to produce a fairly smooth surface. However, as indicated above, modern semiconductor wafer surfaces must be exceptionally smooth and planar.
One technique that can suitably finish the surface of a semiconductor is Chemical-Mechanical Polishing (“CMP”). In CMP, a semiconductor wafer is mechanically and chemically worked under carefully controlled conditions. Such work is performed using a special abrasive substance that is rubbed over the surface of the semiconductor wafer. The special abrasive substance is typically a slurry that contains minute particles that abrade, and chemicals that etch, dissolve, and/or oxidize, the surface of the semiconductor wafer.
CMP is a well-known and commonly used process. As shown in
The semiconductor substrate 4 is polished by the applied polishing slurry, by rotating the mount 3 in the direction B, by moving the mount 3 in directions C while pressing the substrate 4 against the polishing pad 2, and by rotating the polishing pad 2 in the direction A.
While the chemical mechanical polishing apparatus illustrated in
Another approach to chemical mechanical polishing is provided in U.S. patent application Ser. No. 6,179,695 B1. Referring now to
Also included in the chemical mechanical polishing apparatus of
Still referring to
The three polishing-tools 110 are interchangeable. Turning now to
Referring now to
Referring now to
To polish a semiconductor substrate W, the ring-shaped polishing pads 111a and 111b are moved into contact at a predetermined pressure with the surface of the semiconductor substrate W. Then, the slider 104 is moved such that the semiconductor substrate W is at a polishing position. Then, the driving mechanisms 114a and 114b rotate the ring-shaped polishing pads 111a and 111b while a polishing slurry is applied to the surface of the semiconductor substrate W. At the same time, the rotating table 105 is rotated and is moved radially (with short strokes).
Since the surface being polished is polished using multiple, small diameter ring-shaped polishing pads it is possible to rotate the polishing pads at high speeds while very precisely polishing the surface irrespective of local defects. Additionally, the ring-shapes reduce vibration over that of a continuous polishing pad. It should also be noted that it is possible to use only one of the ring-shaped polishing pads when polishing.
Beneficially, the inner and outer ring-shaped polishing pads 111a and 111b can move axially with respect to each other. This makes it possible to adjust the relative heights of the polishing pads 111a and 111b, and to independently set the polishing pad pressures against the surface of the semiconductor substrate W. In turn, this enables pressure control such that the optimum processing pressures can be used.
While the apparatus illustrated in
Therefore, a new semiconductor wafer polishing apparatus, and a method of using such an apparatus, that can reduce the detrimental effects of vibration, that can polish both broad and localized areas, and that can rapidly remove material from a semiconductor wafer would be beneficial.
The principles of the present invention provide for a new polishing tool that can polish a semiconductor wafer at high speed, while reducing the detrimental effects of vibration, and while enabling both broad area and localized polishing of a semiconductor wafer.
A polishing tool that is in accord with the principles of the present invention includes a central polishing assembly comprised of a central pad mount on a central shaft. That central pad mount is capable of retaining a center polishing pad having a continuous polishing surface. The polishing tool further includes a ring polishing assembly comprised of a ring pad mount with a central aperture on a ring shaft with a central aperture. The ring pad mount is capable of retaining a ring polishing pad having a central aperture. The central polishing assembly and the ring polishing assembly are fabricated such that the central polishing assembly can move in an axial direction relative to said ring polishing assembly, and such that the central shaft is disposed within the apertures of the ring assembly.
Beneficially, the polishing assembly and the central polishing assembly are both rotatable and axially movable independent of one another. Furthermore, both pad mounts beneficially retain polishing pads.
The principles of the present invention further provide for a new semiconductor wafer polishing apparatus that can polish a semiconductor wafer at high speed, while reducing the detrimental effects of vibration, and while enabling both broad area and localized polishing of a semiconductor wafer. A semiconductor wafer polishing apparatus that is in accord with the principles of the present invention includes a rotating polishing table for retaining a semiconductor wafer having a surface to be polished, and at least one polishing tool having a central polishing assembly comprised of a central pad mount on a central shaft. That central pad mount is capable of retaining a center polishing pad having a continuous polishing surface. The polishing tool further includes a ring polishing assembly comprised of a ring pad mount with a central aperture on a ring shaft with a central aperture. The ring pad mount is capable of retaining a ring polishing pad having a central aperture. The central polishing assembly and the ring polishing assembly are fabricated such that the central polishing assembly can move in an axial direction relative to said ring polishing assembly, and such that the central shaft is axially disposed within the apertures of the ring assembly.
Beneficially, the central pad mount holds a center pad, and the ring pad mount retains a ring pad. Also beneficially, the center pad and the ring pad are independently rotatable and axially movable. Furthermore, the center pad and the ring pad are beneficially mounted such that they can move across a surface of semiconductor wafer retained on the rotating polishing table. Also beneficially, a nozzle is provided for supplying a polishing slurry onto a surface of semiconductor wafer retained on the rotating polishing table. Preferably, a ring-shaped rim surrounds the polishing table. The rim provides a reference plane when polishing a semiconductor wafer.
The principles of the present invention further for a new method of polishing a semiconductor wafer. That method includes rotating a semiconductor wafer on a rotating polishing table such that a surface to be polished is exposed. Then, selectively and independently moving a solid center polishing pad having an axis of rotation and/or an axially aligned ring-shaped polishing pad into contact with the surface of the semiconductor wafer. Furthermore, the center polishing pad and/or the ring-shaped polishing pad are beneficially swept across a semiconductor wafer being polished.
Additional features and advantages of the invention will be set forth in the description and figures that follow, and in part will be apparent from that description and figures, or may be learned by practice of the invention.
The accompanying drawings, which are included to provide a further understanding of the invention and which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to an illustrated embodiment of the present invention, the example of which is shown in the accompanying drawings. The principles of the present invention provide for both rapid, broad area polishing, and for localized area polishing of a semiconductor wafer. Consequently, the polishing rate can be increased, the polishing finish can be improved, and the detrimental effects of vibration can be avoided.
Surrounding and adjacent the polishing table 302 is a ring-shaped rim 310. The relative positions of the ring-shaped rim 310 and the polishing table 302 beneficially can be adjusted along directions 311 such that the surface 350 of the semiconductor substrate 304 is level with the top 312 of the rim 310.
The chemical mechanical polishing apparatus 300 further includes a polishing tool 320. That polishing tool is distinct from the polishing tools of the chemical mechanical polishing apparatus illustrated in
As shown in
As provided for above, the chemical mechanical polishing apparatus 300 is capable of multiple degrees of motion. First, the polishing table 302 rotates in the direction 308. For simplicity, this can be performed at a constant rotational velocity. Furthermore, the center polishing pad 324 and the rim polishing pad 330 can be rotated independently and with different rotational velocities in the direction 308. Those pads can also be moved independently in the directions 338. This enables each polishing pad to be brought into contact with the surface 350. Additionally, the center polishing pad 324 and the rim polishing pad 330 can be moved in the directions 342 relative to the semiconductor wafer 304. Finally, the relative position of the semiconductor wafer 304 and the top 312 of the rim 310 can be controlled. Thus, the center polishing pad 324 and the rim polishing pad 330 can be independently brought into contact with, and swept across the surface 350 of the semiconductor wafer 304. Furthermore, the rim 310 can control and even out the pressure applied to the outer perimeter of the semiconductor wafer 304.
Turn now to FIG. 7(c), a cut-away illustration, and to FIG. 7(d), a top down illustration, for views that depict only the ring polishing pad 330 being brought into contact with the surface 350 of a semiconductor wafer 304. Such can occur when only localized polishing away from the rim of the semiconductor wafer 304 is desired. Other reasons to use only the ring polishing pad 330 include reducing vibration when polishing at high speed, and when the center polishing pad 324 is defective. As shown in FIGS. 7(c) and 7(d), the ring polishing pad 330 moves across the surface 350 in the directions 342, while the rim 310 provides a reference plane for the surface 350.
Turn now to FIG. 7(e), a cut-away illustration, and to FIG. 7(e), a top down illustration, for views that depict only the center polishing pad 324 being brought into contact with the surface 350 of a semiconductor wafer 304. Such is beneficial when localized polishing near the rim of the semiconductor wafer 304 is desired. Another reason to use only the center polishing pad 324 is when the ring polishing pad 330 is defective. As shown in FIGS. 7(e) and 7(f), the center polishing pad 324 moves across the surface 350 of the semiconductor wafer 304 in the directions 342. The rim 310 provides a leveling reference for the surface 350 when localized polishing near the rim of the semiconductor wafer 304 is being performed.
The chemical mechanical polishing apparatus 300 illustrated in FIGS. 6 and 7(a)-7(f) is a simplified depiction of a practical apparatus. In practice, various mechanisms that provide the required motion, and various controllers to control such motion, will be included. Furthermore, a mechanism to supply a polishing slurry and a mechanism to retain the semiconductor wafer on the polishing table 302 should be understood as being included. In fact, the CMP apparatus illustrated in
While the present invention has been described with respect to illustrated embodiments, it is to be understood that the present invention is not limited to those embodiments. Furthermore, it will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2673425 | Karnell | Mar 1954 | A |
2749684 | Schuhmann | Jun 1956 | A |
3841031 | Walsh | Oct 1974 | A |
4481741 | Bouladon et al. | Nov 1984 | A |
5389032 | Beardsley | Feb 1995 | A |
5503592 | Neumann | Apr 1996 | A |
5804507 | Perlov et al. | Sep 1998 | A |
6135858 | Takahashi | Oct 2000 | A |
6179690 | Talieh | Jan 2001 | B1 |
6179695 | Takahashi et al. | Jan 2001 | B1 |
6336849 | Konnemann | Jan 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030049997 A1 | Mar 2003 | US |