Chemical planar head dampening system

Information

  • Patent Grant
  • 6579159
  • Patent Number
    6,579,159
  • Date Filed
    Tuesday, April 3, 2001
    23 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
An improved polishing apparatus having a dampening system to prevent fluctuations between the planar head polishing device and the circuit panel. The dampening system includes a load actuation arm having a hydraulic-pneumatic cylinder which is controlled by an connected dampening circuit.
Description




BACKGROUND OF THE INVENTION




1. Technical Field




The present invention relates generally to the chemical mechanical polishing of printed circuit boards, and more particularly, to a planar head dampening system for a chemical mechanical polishing system.




2. Related Art




The strict process requirements of a chemical mechanical polishing system, used in the manufacture of printed circuit boards, necessitate the use of a compressible polishing device and the application of a low downward pressure, ranging from approximately 0.25 to 10 psi. These requirements are essential to the polishing process due to the delicate nature of the surface contours of the workpiece. Use of a less compressible polishing device or attempting to increase the down pressure could eliminate these desired surface contours or otherwise damage the workpiece. Unfortunately, gravity alone is insufficient to hold the polishing device in contact with the workpiece while polishing. Rather, in the absence of an applied down pressure, the polishing device floats above the workpiece without polishing its surface. Therefore, a polishing system utilizing a planar head polishing device having a low durometer compressible core in conjunction with the application of a low down pressure are currently used in the industry.




The requisite down pressure is typically supplied by a compressed air source. However, when the surface of the planar head polishing device was upgraded to a more aggressive material, a destructive phenomenon known as “high frequency cycling” was encountered. High frequency cycling results when the planar head is brought into contact with the workpiece, and due to its coarse polishing surface, the planar head begins to grip the surface of the workpiece and “bite-in.” This causes the compressible inner core of the planar head to deform, forcing it in the opposite direction intended. Due to the compressible nature of the air providing the down pressure, the upward force exerted by the deformed planar head produces a rebounding effect. These fluctuations in contact between the polishing device and the workpiece produce proportionate fluctuations in the planar head impression and the process rate of the workpiece. Additionally, premature failure of the planar head lowering device, inconsistent surface conditions of the planar head and non-uniform planarization of the workpiece surface can result.




The high frequency cycling appears to be attributed to the combination of the low durometer inner core of the planar head and the low down pressure. In an attempt to remedy the problem, planar heads composed of different durometer materials were tested. However, these alternative materials created further processing problems and, therefore, offered no solution. In the alternative, various shock absorbers were considered to eliminate the effects of the compressed air. However, none produced a regressive non-compressible system, which would allow the pressure to remain constant throughout polishing. These alternatives were also ineffective since they would be destroyed by the harsh chemical environment of the system.




Therefore, there is clearly a need to develop a chemical mechanical polishing device which eliminates the occurrence of high frequency cycling.




SUMMARY OF THE INVENTION




The present invention provides a device that will overcome the above-identified problems through the use of a hydraulic-pneumatic dampening system.




A first general aspect of the present invention provides a polishing apparatus having at least one polishing device and a support platform comprising, a load actuating arm, mounted at a first end to the support platform and at a second end to the polishing device, and a dampening circuit connected to the load actuating arm to prevent fluctuations. This aspect allows for the application of a constant low down pressure of the polishing device, thereby eliminating the occurrence of fluctuations between the planar head and the circuit panel.




A second general aspect of the present invention includes a polishing apparatus comprising, a conveyor mounted to a platform to transport a workpiece to a polishing area of the apparatus, and a plate pivotally secured above the conveyor carrying an at least one polishing device rotatably mounted therein. This aspect provides for the apparatus to transport a circuit panel to the polishing area of the apparatus and for lowering the polishing device.




A third general aspect of the present invention includes a polishing apparatus having at least one polishing device and a support platform comprising, a conveyor mounted to the platform to transport a circuit panel to the at least one planar head assembly, a plate pivotally secured above the conveyor, a planar head rotatably mounted within the plate, a load actuating arm, mounted at a first end to the support platform and at a second end to the plate, and a dampening circuit connected to the load actuating arm to prevent fluctuations. This aspect provides similar advantages to that of the first and second aspects.




A fourth general aspect of the present invention includes a polishing apparatus having a dampening system to prevent fluctuations. This aspect provides similar advantages to that of the first and third aspects.




The foregoing and other features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




The preferred embodiments of this invention will be described in detail, with reference to the following figures, wherein like designations denote like elements, and wherein:





FIG. 1

depicts a cross-sectional view of the deformation of a planar head upon contact with a workpiece, which necessitated the present invention;





FIG. 2

depicts a cross-sectional view of a chemical mechanical polishing assembly in accordance with the present invention;





FIG. 3

depicts a planar head in accordance with the present invention;





FIG. 4

depicts a cross-sectional view of a planar head in accordance with the present invention;





FIG. 5

depicts a dampening circuit of the chemical mechanical polishing assembly in accordance with the present invention; and





FIG. 6

depicts a cross-sectional view of a hydraulic-pneumatic cylinder in accordance with the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Although certain preferred embodiments of the present invention will be shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of the preferred embodiments.





FIG. 1

shows a cross-sectional view of a deformation


6


of a planar head


3


when brought into contact with a workpiece


2


carried on a delivery system


1


, such as a conveyor, a robotic armature, a turn table, etc. While planar head


4


shows the ideal contact scenario, planar head


5


depicts the deformation, illustrated by dashed line


6


, that causes planar head


5


to rebound away from workpiece


2


, thereby producing non-uniform planarization.





FIG. 2

depicts a cross-sectional view of a chemical mechanical polishing assembly


10


, in accordance with the present invention. A back panel


12


is attached perpendicularly to a platform


11


. A conveyor


13


, or other means of delivery, is mounted to back panel


12


, and carries a workpiece


14


to the various planar head assemblies A, B, etc., to be polished. It should be appreciated that an infinite succession of planar head assemblies may be used in accordance with the invention, and it is not limited to number shown in the figures. A planar head


16


, rotatably mounted about a solid shaft


28


within a plate


15


, is propelled by a pulley


17


via belts


19


and


20


, which are powered by a motor


18


. It should be recognized that chains, ropes, etc., could be used to propel planar head


16


. Further, motor


18


could be placed in alignment with planar head


16


, thereby eliminating the need for pulley


17


. A load actuation arm


21


, designed to raise and lower plate


15


pivotally about a pin P, is attached at one end to platform


11


via a bracket


24


, in this depiction an L-shaped bracket is used, and at the other end to plate


15


via a bracket


25


. Load actuation arm


21


includes a hydraulic-pneumatic cylinder


26


, fittings


22


and


23


located on both ends of cylinder


26


, and an arm


27


slidably mounted within cylinder


26


.





FIG. 5

shows a cross-sectional view of the dampening circuit which controls the movement of load actuation arm


21


. To lower planar head


16


, a two position-four way valve


34


is placed in position


34




b


. This allows compressed air from supply


35


to apply pressure to a fluid reservoir


31


, which supplies a chamber


35


of cylinder


26


(FIG.


6


), with a non-compressible medium having a low viscosity, approximately 0.9 to 1.0 centipoises. This draws arm


27


into cylinder


26


and lowers planar head


16


. A flow control area


33


includes a check valve


32


which permits the transmission medium from fluid reservoir


31


to flow unrestricted in one direction only, thereby preventing back flow and maintaining constant pressure in cylinder


26


during polishing. When polishing is complete, two position-four way valve


34


is switched to position


34




a


, thereby redirecting compressed air from supply


35


into chamber


36


of cylinder


26


(FIG.


6


), and allowing chamber


36


to fill with compressed air and raise planar head


16


. It should be appreciated that supply


35


is not limited to the use of compressed air and may be replaced with other acceptable mediums, i.e., hydraulic fluid.





FIG. 3

depicts the configuration of planar head


16


having solid shaft


28


.

FIG. 4

shows a cross-sectional view of planar head


16


, which includes solid shaft


28


, an inner core


29


and an outer shell


30


. Solid shaft


28


is preferably composed of titanium. Inner core


29


is preferably composed of a low durometer material, i.e., rubber. Outer shell


30


is preferably a polishing paper material. In the alternative, outer shell


30


may be composed of a higher durometer material than inner core


29


in conjunction with a polishing paper. However, these layers are not limited to the use of these specific materials.




While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit ans scope of the invention as defined in the following claims.



Claims
  • 1. A polishing apparatus having at least one polishing device and a support platform comprising:a load actuating arm, mounted at a first end to the support platform and at least a second end to the polishing device; and a dampening circuit connected to the load actuating arm to maintain a substantially constant downward pressure of the polishing device on a workpiece during polishing.
  • 2. The polishing apparatus of claim 1, wherein the at least one polishing device is a planar head assembly.
  • 3. The polishing apparatus of claim 1, wherein the load actuating arm is a hydraulic-pneumatic cylinder.
  • 4. The polishing apparatus of claim 1, wherein the dampening circuit further includes a two position-four way valve, which regulates the flow of air from a compressed air source leading to a fluid reservoir which supplies a transmission medium to the load actuating arm, a check valve and a flow control valve located between the fluid reservoir and the load actuating arm.
  • 5. The polishing apparatus of claim 4, wherein the fluid reservoir contains a non-compressible medium having a viscosity of about 0.9 to 1.0 centipoises.
  • 6. A polishing apparatus having at least one polishing device and a support platform comprising:a load actuating arm, mounted at a first end to the support platform and at least a second end to the polishing device; and a dampening circuit connected to the load actuating arm to prevent fluctuations of the polishing device against a workpiece during polishing.
Parent Case Info

This application is a divisional of Ser. No. 09/169,760, filed on Oct. 9, 1998, now U.S. Pat. No. 6,254,463.

US Referenced Citations (19)
Number Name Date Kind
1905578 Tucker Apr 1933 A
3055151 Salenblatt et al. Sep 1962 A
3208187 Ernst Sep 1965 A
3545138 Houston Dec 1970 A
3717893 Carlson Feb 1973 A
3771267 Fortuniski Nov 1973 A
3942288 Schmidt Mar 1976 A
4189871 Rottler et al. Feb 1980 A
4399637 Steinback Aug 1983 A
4492136 Walker Jan 1985 A
4616447 Haas et al. Oct 1986 A
4782545 Aiassa Nov 1988 A
5197230 Simpfendorfer et al. Mar 1993 A
5212910 Breivogel et al. May 1993 A
5257478 Hyde et al. Nov 1993 A
5569063 Morioka et al. Oct 1996 A
5672093 DuBois Sep 1997 A
5681215 Sherwood et al. Oct 1997 A
6254463 Case et al. Jul 2001 B1