The present invention generally relates to new chloride, bromide and iodide scintillator crystals with divalent Europium doping, and, more particularly, to halide scintillators represented by one of the following formulae: ACa1-yEuyX3 (where A K, Rb or Cs, or a combination thereof; and 0≦y≦1) and CsAl1-yEuyX3 (where A=Ca, Sr, Ba, or a combination thereof, and 0≦y≦1) and X=Cl, Br or I or a combination thereof in either formulae.
A halide scintillator for radiation detection is described in U.S. Published Patent Application No. 2011/0272585 and a chloride scintillator for radiation detection is described in U.S. Published Application No. 2011/0272586 published Nov. 10, 2011, both published applications of Zhuravleva et al. of the University of Tennessee. The halide scintillator is single-crystalline crystalline and has a composition of the formula A3MBr6(1-x)Cl6x or AM2Br7(1-x)Cl7x wherein A consists of one of Li, Na, K, Rb, Cs or any combination thereof, and M consists of Ce, Sc, Y, La, Lu, Gd, Pr, Tb, Yb, Nd or any combination thereof and 0≦x≦1. The chloride scintillator is also single crystalline and has a composition of the formula AM2Cl7 and A and M consist of the elements indicated above. A modified Bridgman technique was used to form the crystals. A Bridgman method is described in Robertson J. M., 1986, Crystal Growth of Ceramics: Bridgman-Stockbarger method in Bever: 1986 “Encyclopedia of Materials Science and Engineering,” Pergamon, Oxford pp. 963-964” among other known tutorials incorporated by reference herein as to any material deemed essential to an understanding of the Bridgman method.
An iodide scintillator for radiation detection is described in EP 2387040 published Nov. 16, 2011 and claims priority to U.S. patent application Ser. No. 13/098,654 filed May 2, 2011 and to U.S. provisional patent application Ser. No. 61/332,945 filed May 10, 2010, also of Zhuravleva et al. of the University of Tennessee. The disclosed iodide scintillators have a composition of the formula AM1-xEuI3, A3M1-xEuxI5 and AM2(1-x)Eu2xI5, wherein A consists essentially of an alkali element (such as Li, Na, K, Rb, Cs) or any combination thereof, M consists essentially of Sr, Ca, Ba or any combination thereof, and 0≦x≦1. These iodide scintillator crystals were made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound, for example, by the Vertical Gradient Freeze method. In particular, high-purity starting iodides (such as CsI, SrI2, EuI2 and rare-earth iodide(s)) are handled in a glove box with, for example, pure nitrogen atmosphere and then mixed and melted to synthesize a compound of the, desired composition of the scintillator material. A single crystal of the scintillator material is then grown from the synthesized compound by the Bridgman method or Vertical Gradient Freeze (VGF) method, in which a sealed ampoule containing the synthesized compound is transported from a hot zone to a cold zone through a controlled temperature gradient at high speed to form the single-crystalline scintillator from molten synthesized compound. The ampoule may be sealed with a hydrogen torch after creating a vacuum on the order of 1×10−6 millibars. The scintillator crystal may be cut and polished using sand papers and mineral oil and then optically coupled to a photon detector such as a photomultiplier tube (PMT), arranged to receive the photons generated by the scintillator and adapted to generate a signal indicative of the photon generation. Typically, plates about 1-3 mm in thickness may be cut from the bottles and small samples selected for the optical characterization. This scintillator crystal work has been continuing at the University of Tennessee, Scintillation Materials Research Center, Knoxville, Tenn.
Also, pursuant to U.S. Published Patent Application No. 2011/0165422, published Jul. 7, 2011. complimentary development of a lanthanide doped strontium barium mixed halide scintillator crystal, for example. Sr0.2Ba0.75Eu0.05BrI has been developed with 5% Eu doping, also using a Bridgman growth technique, at the University of California.
Pursuant to U.S. Published Patent Application No. 2011/0024635 published Feb. 3, 2011, of Shah et al., a lithium containing halide scintillator composition is disclosed. This CsLiLn composition appears to have been produced at Radiation Monitoring Devices, Inc. of Watertown, Mass.
The need for radiation detecting materials has been at the forefront of materials research in recent years due to applications in national security, medical imaging, X-ray detection, gamma-ray detection, oil well logging (geological applications) and high energy physics among other applications. Typically, a crystal of the types described above desirably exhibit high light yields, fast luminescence decay (for example, below 1000 ns), good stopping power, high density, good energy resolution, ease of growth, proportionality and stability under ambient conditions. LaxBr3:Ce1-x (E. V. D. van Loef et al., Applied Physics Letters, 2007, 79, 1573) and SrxI2:Eu1-x (N. Cherepy et al, Applied Physics Letters, 2007, 92, 083508) are present day benchmark materials that satisfy some of the desired criteria, but their application is limited due to the extreme hygroscopic nature. Other known benchmarks that are commercially available include bismuth germanate (BGO) and NaI:Tl available from a number of sources.
There remains a need in the an for further research and development of scintillator crystal materials for the applications described above.
This summary is provided to introduce a selection of concepts. These concepts are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is this summary intended as an aid in determining the scope of the claimed subject matter.
The present invention meets the above-identified needs by providing inorganic scintillator crystals such as halide scintillators with divalent Europium doping represented by one of the following formulae: ACa1-yEuyX3 (where A=K, Rb or Cs, or a combination thereof and X=Cl, Br or I or a combination thereof and 0≦y≦1) and CsAl1-yEuyX3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof and 0≦y≦1). Generally, an embodiment comprises ABX3 where A is an alkali, B is an alkali earth and X is a halide.
In one embodiment, an inorganic single crystal scintillator comprises the formula: ACa1-yEuyX3 (where A=K, Rh or Cs, or a combination thereof and X=Cl, Br or I or a combination thereof and 0≦y'1). In particular, crystals were formed for KCaI3:Eu from studying a known KI—CaI2 phase diagram system whereby a Potassium Iodide (KI) and Calcium Iodide (CaI2) graph plotted from a mole concentration of 0% KI to 100% CaI2 versus temperature between, for example, 200 and 800° C.; (phase diagrams are available from the National Institute of Standards and Technology (NIST) phase diagrams database). Also, crystals were formed for RbCaI3, for CsCaI3 and for CsCaCl3 following known phase diagrams and by utilizing as pure and anhydrous raw materials as possible. Anhydrous RbI not being generally available, techniques were employed to purify the RbI raw material using known techniques. These crystals were grown using one of a vertical gradient freeze or a modified Bridgman method. A Czochralski technique or combination Bridgman/Czochralski method may be used as an alternative process for growing scintillator crystals.
In another embodiment, an inorganic single crystal scintillator comprises the formula: ACa1-yEuyX3 (where A=Ca, Sr, Ba or a combination thereof, and 0≦y≦1) and X=Cl, Br or I or a combination thereof. Similar growth techniques were employed and their characteristics studied as scintillators.
Further features and advantages of the present invention, as well as the structure and operation of various aspects of the present invention, are described in detail below with reference to the accompanying drawings.
The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numbers indicate identical or functionally similar elements.
The present invention is generally directed to new inorganic scintillator crystals from the concept ABX3 where A is an alkali, B is an alkali earth and X is a halide comprising one of chlorine, bromine and iodine. Also, levels of divalent Europium doping were investigated between 1% and 10% with exemplary scintillator crystals grown and their characteristics recorded. It is also directed to combination inorganic crystal scintillators where Cesium, Strontium, Calcium and Barium are used in combination, for example, to form scintillator crystals of the formula CsSrX3:Eu 1 to 10% or CsCaX3:Eu 1 to 10% or CsSrBaX3:Eu 1 to 10% with divalent Europium doping for substitution with one of the other divalent elements (Sr, Ca and SrBa combination). First, the formation of ACaI3 crystals with divalent Europium doping will be discussed as one example followed by a discussion of the combination crystals.
Referring to
The PRIOR ART table 1 below provides the details for each crystal formed for each of potassium, rubidium and cesium and Zr calculated using a known formula:
From the table 1 summary above, all three crystals exhibit an orthorhombic crystal structure. Accurate black and white line drawings of the respective crystals with Eu 3% are depicted in
The vertical gradient freeze and a modified Bridgman technique depicted in
In addition to growth in single crystalline form, the scintillator compounds discussed herein may be prepared as polycrystalline powders by mixing fine grain powder components in stoichiometric ratios and sintering at a temperature somewhat below the melting point. Furthermore, these compositions may be synthesized in polycrystalline ceramic form by hot isostatic pressing of lute grained powders.
Referring now to
Referring to
Referring now to
The photo peaks in
As can be seen from the table 2, the RbCaI3:Eu 3% sample did not provide a resolved gamma-ray photo peak. On the other hand, the KCaI3:Eu 3% crystal greatly exceeded the benchmark NaI:Tl crystal at a light yield of 60,000 photons per Me V compared with 38,000 for NaI:Tl while the CsCaI3:Eu 3% crystal matched, if not, exceeded the NaI:Tl light yield. As for energy resolution, both the KCaI3:Eu 3% and CsCaI3:Eu 3% crystals exhibited a very acceptable range between 5% (for potassium) and 7% for cesium at 662 keV.
Scintillation decay is shown in
Referring now to
The following table 3 provides a summary of results for CsCaI3:Eu 3% and KCaI3:Eu 3% crystals compared with those of a benchmark NaI:Tl crystal:
In summary for this example, it is demonstrated that practical crystal growth comparable to NaI:Tl may be obtained at reasonable cost (involving congruent melting and acceptable melting point). Since the crystals are hygroscopic, hermetic packaging may be used with conventional photodetectors such as photo-multiplier tubes such as a Photonis XP2020Q PMT and fast timing electronics. X-ray, gamma-ray, and optical excitation have been demonstrated. With improved crystal quality (removal of raw material impurity and improved processing), both light output and energy resolution are expected to improve beyond their current levels.
Now, single crystal inorganic crystal scintillators will be described of the formula CsAX3 will be described with divalent Europium doping investigated as above between 1 and 10 mol % where A is calcium (Ca), strontium (Sr) or barium (Ba) or a combination thereof and X is a halide selected from chlorine, bromine or iodine. In particular, it will be shown that a crystal of CsSrCl3:Eu 10% exhibits a light yield on the order of 46,000 photons per MeV and a scintillation decay at 2.6 μseconds and provides excellent gamma-ray and X-ray detection characteristics. The A2′ lattice site provides a substitutional site for the Eu2+doping.
Referring to
Table 4. in part PRIOR ART, below provides a summary of the crystal growth for each scintillator crystal:
A method of crystal growth has already been described above with respect to a discussion of
As can be seen by the results, CsSrCl3:Eu 10% demonstrates improved light yield over known NaI:Tl.
Table 7 provides a summary table for these crystals as follows compared with benchmark NaI:Tl:
The table demonstrates that promising results have been obtained for new, inorganic, single crystals as indicated above when compared with NaI:Tl including good transparency, low to no hygroscopicity, good light output and excellent proportionality. It is expected that with greater effort at purification of raw material and optimizing growth parameters that even better results will be achieved.
A combination crystal is now described comprising CsSr1-xBaxI3:Eu 1% and 3%. Crystals were grown at x=0.00, 0.03, 0.06, 0.09, 0.14 and 0.24. The purpose of graduated substitution of barium for strontium in, for example, an Eu mol 1% doped crystal was to see if the substitution has an impact on the hygroscopocity of CsSrI3 The latter appears to be an absorber of moisture which adversely impacts its ability as a scintillator. As reported in Phys. Status Solidi RRL 5, No. 1, pp. 43-45 (2011), “Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators,” of the present inventors, incorporated herein by reference as to its entire contents, single crystals were grown and x-ray and gamma ray scintillation was noted; when x=0.08. then, the light yield was 65000 ph/MeV. Moreover, we have found that some Eu III (versus Eu2+) may appear at the surface and be oxidized while CsBaI3 was studied at Eu mol 1, 3 and 7% doping levels in U.S. Ser. No. 61/491,074 (“the '074 provisional”) filed May 27, 2011 of the same inventors and incorporated by reference herein as to its entire contents; see Optical Materials 36 (2014) pp. 670-674, “The Europium oxidation state in CsSrI3:Eu scintiallators measured by X-ray absorption spectroscopy” of Zhuravleva el al., incorporated by reference as to its entire contents. Pictures of three sample single crystals are shown in
The increased density and effective atomic number resu ts in an enhanced X-ray and gamma ray detection efficiency. Results of the improved scintillation properties are shown below in Table 9;
X-ray radioluminescence exhibited a peak at 445-450 nm wavelength. The emission bands are characteristic of Eu2+ 5d-4f luminescence. The emission is at a wavelength that is suitable for use with conventional photo detectors such as photo multiplier tubes (PMT's). Ultraviolet/visual excitation and emission were measured with an emission peak at 446 nm. The maximum light output was measured when x was at 3% and Eu mol 1% and measured at 28,000 photons per MeV with 1.9 μsecond decay time, the light output decreased with increasing x such that when x was 24%, the light output was 21,000 photons per MeV when Eu mol was 3% and the scinitillation decay time 1.5 μseconds.
While various aspects of the present invention have been described above, it should be understood that they have been presented by way of example and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. Thus, the present invention should not be limited by any of the above described exemplary aspects, but should be defined only in accordance with the following claims and their equivalents.
In addition, it should be understood that the figures in the attachments, which highlight the structure, methodology, functionality and advantages of the present invention, are presented for example purposes only. The present invention is sufficiently flexible and configurable, such that it may be implemented in ways other than that shown in the accompanying figures.
Further, the purpose of the foregoing Abstract is to enable the U.S. Patent and Trademark Office and the public generally and especially the scientists, engineers and practitioners in the relevant art(s) who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of this technical disclosure. The Abstract is not intended to be limiting as to the scope of the present invention in any way.
Number | Date | Country | Kind |
---|---|---|---|
11165485.1 | May 2011 | EM | regional |
102012101199 | Feb 2012 | DE | national |
The present application is a continuation-in-part of U.S. patent application Ser. No. 13/351,748 filed Jan. 17, 2012, now allowed, which application claims the benefit of U.S. Provisional Application Ser. No. 61/443,076 filed Feb. 15, 2011 and of U.S. Provisional Application Ser. No. 61/491,074 filed May 27, 2011, and is a continuation-in-part of U.S. Patent Application Ser. No. 13/098,654, filed May 2, 2011 (now U.S. Pat. No. 8,692,203 issued Apr. 8, 2014) which claims the benefit of U.S. provisional patent application Ser. No. 61/332,945, filed May 10, 2010, all of Zburavleva et al., all priority applications being incorporated by reference herein in their entirety.
The invention was made with government support under Contract No. DHS-DNDO 2009-DN-077-AR1031-03 awarded by the Department of Homeland Security and under DOE-NA22: DE-NA0000473 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61443076 | Feb 2011 | US | |
61491074 | May 2011 | US | |
61332945 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13351748 | Jan 2012 | US |
Child | 14314393 | US | |
Parent | 13098654 | May 2011 | US |
Child | 13351748 | US |