A circuit array for reading out electronic signals from high-resolution thermal sensors with small signals and small signal dynamics is indicated which permits an interference-free reading out of individual elements of a larger sensor array.
The invention also relates to a circuit array for the interference-free reading out of electronic signals of individual elements of high-resolution arrays of thermal sensors such as thermocouples, thermopiles, pyrometers and bolometers, and also to one or several corresponding processes.
High-resolution sensors with a large number of individual elements are used in many fields. The number of the individual elements can greatly vary and, nowadays, ranges typically from a few dozens to a few millions (megapixel sensors). As a rule, a parallel reading out of such an amount of data channels is not feasible, since the number of the connections should then be equal to the number of the individual elements. Instead, the sensor signals are serially read out by means of a multiplexer via one or a few data lines. Here, the multiplexer is integrated in the array of individual sensors. In the case of interference-prone sensors one amplifier per data line is still connected downstream of the multiplexer in some cases. The prior art is e.g. represented by 256-Pixel CMOS-INTEGRATED THERMOELECTRIC INFRARED SENSOR ARRAY by A. Schaufelbuehl et al., Proc. MEMS (2001), Interlaken, Switzerland, Jan. 21-25, (2001), pp. 200-203. In the case of very small signals and in particular those with relative small signal dynamics there may be considerable interferences during the reading out, in particular also caused by the multiplexer itself. A typical example of this are integrated arrays of thermopile arrays, in which, due to the high internal resistance, only very small currents flow which are very interference-prone.
It is the object of the invention to reduce the interference proneness of thermal sensors with a large number of individual elements, i.e. to increase the resolution while reducing the size of the individual element; in particular, the quality of high-resolution thermal sensors is to be improved.
According to the invention the object is attained by means of a circuit array consisting of a plurality of thermal sensor elements, at least one multiplexer and amplifiers, the signals of a plurality of individual thermal sensors being serially read out by means of a multiplexer via one or a few data lines, an amplifier being in each case connected between each individual thermal sensor element and the multiplexer (claim 1, claim 10).
The amplifiers are preferably designed as semiconductor devices so that they can be produced in an integrated fashion with the same manufacturing steps as the sensors. The amplifiers may be designed as operational amplifiers, differential amplifiers or also as impedance converters. These amplifiers may optionally be cyclically switched on and switched off to reduce the thermal load (claim 2).
The process of the working method of the pixel sensor array is covered by claim 9.
The invention is explained and supplemented by means of examples, it being pointed out that the following representation is a description of a preferred example of the invention.
The circuit array according to
Thermal sensor elements are denoted with the reference numeral 1, a plurality of which are provided. In the example of
Each channel is described in accordance with
The data output 4′ of the multiplexer emits, nested in terms of time, the several input signals which are applied to the several inputs of the multiplexer, in this case four.
In order to illustrate the signal path, the thermal signals t1 to t4 are indicated at the input. They can be read in a multiplexed fashion at the output 4′ in a time-resolved manner and are further transmitted.
The thermal sensors are high-resolution thermal sensors with small signals and small signal dynamics. An interference-free reading out of these individual elements from a larger sensor array is permitted.
The circuit array permits the interference-free reading out of the signals of the individual elements which jointly form a high-resolution array of thermal sensors. Thermocouples, thermopiles, pyrometers and bolometers come into consideration as thermal sensors. The reference numerals 1′ to 1* are representative of the one or the other of said high-resolution thermal sensors.
Means are provided by means of which the amplifiers 3′ to 3* are cyclically switched on and off to reduce the thermal load.
Operational amplifiers, differential amplifiers or impedance converters come into consideration as amplifiers.
Preferably, the circuit as an array is produced in CMOS technology, namely as an integrated circuit. The number of the individual elements varies greatly and typically ranges from a few dozen to a few million sensors (megapixel sensors). A parallel reading out of such an amount of data channels takes place via the multiplexer 2. A plurallity of the one circuit array shown may be disposed in an integrated fashion in the IC so that there is not only one output signal 4′, but a few more, which, however—as compared with the number of the input channels—are still only “a few” data lines. The multiplexer 2 is integrated in the array of the individual sensors.
The amplifiers are preferably designed as semiconductor devices and they are produced with the same manufacturing steps with which the thermal sensors 1′ to 1* are manufactured. The switching off of the amplifiers 3′ to 3* is graphically not shown, but readily understandable for a person skilled in the art from the context and the circuit array even without a graphic representation. The cyclic switching on and switching off of the amplifiers is e.g. effected by means of separate inputs. Thus, the thermal load is reduced.
In
1: thermal sensor elements
2: multiplexer
3: amplifier
4: data output
Number | Date | Country | Kind |
---|---|---|---|
103 22 860.8 | May 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE04/01063 | 5/21/2004 | WO | 1/18/2007 |