In one aspect, the inventions relate to a semiconductor memory cell, array, and device, and techniques for improving, enhancing and/or controlling variations of operating and/or response parameter(s) or characteristic(s) of the memory cell, array and/or device; and more particularly, in one aspect, to improving, enhancing and/or controlling variations of such parameter(s) or characteristic(s) of the semiconductor dynamic random access memory (“DRAM”) cell, array and/or device wherein the memory cell(s) includes an electrically floating body in which an electrical charge is stored.
Briefly, there is a continuing trend to employ and/or fabricate advanced integrated circuits using techniques, materials and devices that improve performance, reduce leakage current and enhance overall scaling. However, scaling down of transistor sizes often leads to increase of variations of the operating and/or response characteristics. These variations or mismatch tend to have a significant impact on precision integrated circuit (“IC”) design. Indeed, due to variations or mismatch, IC designers, such as DRAM designers, typically include substantial design margin or risk yield loss, both of which adversely affect speed, efficiency and production costs.
One type of dynamic random access memory cell is based on, among other things, a floating body effect of Silicon-on-Insulator (“SOI”) transistors. (See, for example, U.S. patent application Ser. No. 10/450,238, Fazan et al., filed Jun. 10, 2003 and entitled “Semiconductor Device”, hereinafter “Semiconductor Memory Device Patent Application”). In this regard, the memory cell may consist of a PD or a FD SOI transistor (or transistor formed in bulk material/substrate) on having a channel, which is disposed adjacent to the body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region (for example, in bulk-type material/substrate) disposed beneath the body region. The state of memory cell is determined by the concentration of charge within the body region of the SOI transistor.
Such an electrically floating body memory cell has at least two current states corresponding to different logic states, for example, a logic high or State “1” and a logic low or State “0”. With reference to
Notably, the entire contents of the Semiconductor Memory Device Patent Application, including, for example, the features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are incorporated by reference herein. SOI is a material in which such devices may be fabricated on or in (hereinafter collectively “on”). Such devices are known as SOI devices and include, for example, partially depleted (PD), fully depleted (FD) devices, multiple gate devices (for example, double or triple gate), and Fin-FET. SOI devices have demonstrated improved performance (for example, speed), reduced leakage current characteristics and considerable enhancement in scaling.
Data is written into or read from a selected memory cell by applying suitable control signals to a selected word line(s) 28, a selected source line(s) 30 and/or a selected bit line(s) 32. In response, charge carriers are accumulated in or emitted and/or ejected from electrically floating body region 18 wherein the data states are defined by the amount of carriers within electrically floating body region 18. As mentioned above, memory cell 12 of DRAM array 10 operates by accumulating majority carriers (electrons or holes) 34 in, or emitting/ejecting majority carriers 34 from body region 18 of, for example, N-channel transistors. (See,
Reading is performed by comparison of a cell current with the current from a reference cell that is usually placed between the State “1” and State “0”. Several techniques may be implemented to read the data stored in (or write the data into) memory cells 12 of DRAM device 10. For example, a current sense amplifier (not illustrated) may be employed to read the data stored in memory cells 12. In this regard, a current sense amplifier may compare the cell current to a reference current, for example, the current of a reference cell (not illustrated). From that comparison, it may be determined whether memory cell 12 contained a logic high (relatively more majority carries 34 contained within body region 18) or logic low data state (relatively less majority carries 28 contained within body region 18).
For at least the purposes of this discussion, logic high or State “1” corresponds to an increased concentration of majority carries in the body region relative to a non-programmed device and/or a device that is programmed with a logic low or State “0”. In contrast, logic low or State “0” corresponds to a reduced concentration of majority carries in the body region relative to a non-programmed device and/or a device that is programmed with a logic high or State “1 ”.
A sufficiently large statistical variation in the device characteristics (for example, device currents) may cause or lead to an erroneous reading of the data state stored in the device. (See,
While electrically floating body transistors of memory cells (for example, SOI transistors) are highly scalable, variations or mismatch of transistor characteristics result in IC designers incorporating significant design margin to enhance or maximize yield. There is a need for ICs (for example, ICs that include electrically floating body transistors of memory cells) that incorporate circuitry and/or techniques that address variations or mismatch of transistor characteristics. In this way, IC designers may eliminate the need for substantial design margin or risk yield loss, which may adversely affect speed, efficiency and production costs.
There are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
In one aspect, the present inventions are directed to an integrated circuit device comprising a memory array including a plurality of memory cells wherein each memory cell includes at least one electrically floating body transistor having a source region, a drain region, a body region disposed between the source region and the drain region, wherein the body region is electrically floating and a gate disposed over the body region and separated therefrom by a gate dielectric. Each memory cell includes a first data state representative of a first charge in the body region and a second data state representative of a second charge in the body region wherein the second charge is substantially provided by removing charge from the body region through the gate. The integrated circuit device further includes operating characteristics adjustment circuitry, coupled to the memory cell array, to responsively adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the predetermined memory cells of the memory array relative to the plurality of memory cells of the memory array.
In one embodiment, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by applying a bias to one or more of the word line, source line and/or bit line associated with the one or more predetermined memory cells.
In another embodiment, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by applying a threshold voltage shift in the one or more predetermined memory cells.
In yet another embodiment, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by adjusting the reference voltage applied to the sense amplifier which is associated with the one or more predetermined memory cells.
The integrated circuit device of this aspect of the inventions may also include control logic, coupled to the operating characteristics adjustment circuitry, to control the operating characteristics adjustment circuitry to adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the predetermined memory cells of the memory array relative to the plurality of memory cells of the memory array.
In another aspect, the present inventions are directed to a system comprising a first integrated circuit device including memory array including a plurality of memory cells wherein each memory cell includes at least one electrically floating body transistor having a source region, a drain region, a body region disposed between the source region and the drain region, wherein the body region is electrically floating, and a gate disposed over the body region and separated therefrom by a gate dielectric. The memory cells include a first data state representative of a first charge in the body region and a second data state representative of a second charge in the body region, wherein the second charge is substantially provided by removing charge from the body region through the gate. The first integrated circuit device also includes operating characteristics adjustment circuitry, coupled to the memory cell array, to responsively adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the plurality of memory cells of the memory array.
The system further includes a bus and a second integrated circuit device including control logic, coupled to the operating characteristics adjustment circuitry via the bus, to control the operating characteristics adjustment circuitry to adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the predetermined memory cells of the memory array relative to the plurality of memory cells of the memory array.
In one embodiment of this aspect of the inventions, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by applying a bias to one or more of the word line, source line and/or bit line associated with the one or more predetermined memory cells. In another embodiment, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by applying a threshold voltage shift in the one or more predetermined memory cells. In yet another embodiment, the operating characteristics adjustment circuitry adjusts one or more operating or response characteristics of one or more predetermined memory cells by adjusting the reference voltage applied to the sense amplifier which is associated with the one or more predetermined memory cells.
In one embodiment, the control logic of the second integrated circuit enables the operating characteristics adjustment circuitry to adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the plurality of memory cells of the memory array based on at least the amount of time the first integrated circuit device has been in operation or deployed.
In another aspect, the present inventions are directed to a method of operating an integrated circuit device comprising a memory array including a plurality of memory cells having a state, and operating characteristics adjustment circuitry, coupled to the memory cell array, to responsively adjust one or more operating or response characteristics of one or more predetermined memory cells and thereby enhance the uniformity of operation or response of the plurality of memory cells of the memory array. The method comprises applying control signals to the memory cells, via associated word, source and/or bit lines, to read the data state of the memory cells, and applying a bias voltage to the word line, source line and/or bit line associated with the one or more predetermined memory cells to enhance the uniformity of operation or response of the predetermined memory cells relative to the plurality of memory cells of the memory array.
In one embodiment, each memory cell includes at least one electrically floating body transistor having a source region, a drain region, a body region disposed between the source region and the drain region, wherein the body region is electrically floating and a gate disposed over the body region and separated therefrom by a gate dielectric. The memory cell includes a first data state representative of a first charge in the body region, and a second data state representative of a second charge in the body region, wherein the second charge is substantially provided by removing charge from the body region through the gate. The method of this embodiment further includes applying a threshold voltage shift in the one or more predetermined memory cells via applying a bias voltage to the word line, source line and/or bit line associated with the one or more predetermined memory cells.
In another embodiment, each memory cell includes a floating gate and the method further includes adjusting the floating gate charge for the predetermined memory cells to enhance the uniformity of operation or response of the predetermined memory cells relative to the plurality of memory cells of the memory array.
Again, there are many inventions, and aspects of the inventions, described and illustrated herein. This Summary of the Inventions is not exhaustive of the scope of the present inventions. Moreover, this Summary of the Inventions is not intended to be limiting of the inventions and should not be interpreted in that manner. While certain embodiments have been described and/or outlined in this Summary of the Inventions, it should be understood that the present inventions are not limited to such embodiments, description and/or outline, nor are the claims limited in such a manner. Indeed, many others embodiments, which may be different from and/or similar to, the embodiments presented in this Summary, will be apparent from the description, illustrations and claims, which follow. In addition, although various features, attributes and advantages have been described in this Summary of the Inventions and/or are apparent in light thereof, it should be understood that such features, attributes and advantages are not required whether in one, some or all of the embodiments of the present inventions and, indeed, need not be present in any of the embodiments of the present inventions.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present inventions and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically shown, are contemplated and are within the scope of the present inventions.
At the outset, it should be noted that there are many inventions described herein as well as many aspects and embodiments of those inventions.
In a first aspect, the present inventions are directed to circuitry and techniques for improving, enhancing and/or controlling variations of operating and/or response characteristic(s) of integrated circuits or circuit devices, for example, memory cells, arrays and/or devices. In one embodiment, the techniques employ an input (for example, electrical bias, light, heat and control signal) to change the operating and/or response characteristic(s) of the integrated circuit and/or transistors therein, for example, memory cell, array and device. In this way, variations of operating and/or response characteristic(s) may be controlled, enhanced and/or improved; thereby reducing, eliminating and/or minimizing statistical variations in the device characteristics (for examples device currents). As mentioned above, a narrow statistical variation in the device characteristics tends to enhance uniformity of operation and performance of the devices, which leads to greater confidence that the data stored in the memory device is correctly read during, for example, a read operation.
With reference to
For example, where memory cell 12 is comprised of electrically floating body transistors 14, as described above, sufficiently biasing one or more, or predetermined word lines 28, source lines 30, and/or bit lines 32 of memory array 10a may adjust the operating and/or response characteristic(s) of the corresponding memory cells 12 of memory device 10. In this regard, data states “1” and “0” of one or more, all, or predetermined memory cells 12 (for example, those connected to the biased word lines 28, source lines 30, and bit lines 32) may be adjusted, fine tuned or “tweaked” so that the operating and/or response characteristic(s) of those memory cells 12 is more uniform relative to other memory cells 12 of memory array 10a. The application of the bias to word lines 28, source lines 30 and/or bit lines 32 (see, for example,
In another embodiment, operating characteristics adjustment circuitry 36 adjusts the reference voltage which may be employed by a sense amplifier to sense the data state of one, some, all or predetermined memory cells 12 of memory array 10a.In this way, operating characteristics adjustment circuitry 36 improves uniformity of operation and performance of memory cell 12, memory array 10a and/or memory device 10, which leads to greater confidence that the data stored in the memory device is correctly read during, for example, a read operation.
As mentioned above, in one embodiment, a command or control signals may be externally provided to memory device 10 via bus 38. The input/output circuitry 40 may thereafter provide the command or control signals to operating characteristics adjustment circuitry 36 (based on, for example, analysis of the command/control signals by control logic, for example, a state machine (not illustrated)). In response, circuitry 36 may implement one or more adjustment, fine tuning or “tweaking” operations. In one embodiment, the type or form of such operations may be determined by the particular command/control signals (i.e., the control signal selects the type or form of operation). In another embodiment, the control signal initiates one type or form of operation.
Notably, in one embodiment, the adjustment, fine tuning or “tweaking” of the operating and/or response characteristic(s) of one or more, all or predetermined memory cells 12 may be implemented by inducing a specific amount of fixed charge into the gate dielectric of memory cell(s) 12 via application of the bias to word lines 28, source lines 30 and/or bit lines 32. To facilitate this process, initial traps may be induced into the gate dielectric during fabrication.
Floating gate devices, like EEPROM or Flash, provide an additional opportunity for the adjustment. In this case, the device parameters adjustment may be implemented by adjusting, controlling and/or changing the floating gate charge.
Notably, the adjustment, fine tuning or “tweaking” operations in different types of integrated circuit devices may be implemented by electrical modifications as well as, for example, light and radiation.
With reference to
The adjustment of the operating and/or response characteristic(s) of the memory cell 12, array 10a and/or device 10 may be performed during manufacture (immediately prior to or after packaging), during test and/or in the field, for example, by a controller/processor after device 10 has aged or undergone stress. In those instances where the adjustment is performed in the field (i.e., when deployed in, for example, a system), control signals to engage or enable the on-chip operating characteristics adjustment circuitry 36 (and the adjustment, fine tuning or “tweaking” operations performed thereby), may be provided by control logic 42 resident on memory device 10 and/or via an external controller/processor. (See,
In particular, with continued reference to
With reference to
In one embodiment, controller/processor 44 may perform an algorithm to determine the operating margins of memory device 10 in order to determine whether to implement the adjustment, fine tuning or “tweaking” operations for memory device 10. In another embodiment, controller/processor 44 may instruct operating characteristics adjustment circuitry 36 to implement the adjustment, fine tuning or “tweaking” operations based on the amount of time memory device 10 has been in operation or deployed in the field. Indeed, controller/processor 44 may employ any type of algorithm or techniques, whether now known or later developed, to determine whether to implement the adjustment, fine tuning or “tweaking” operations for memory device 10.
There are many inventions described and illustrated herein. While certain embodiments, features, attributes and advantages of the inventions have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present inventions, are apparent from the description and illustrations. As such, the embodiments, features, attributes and advantages of the inventions described and illustrated herein are not exhaustive, and it should be understood that such other, similar, as well as different, embodiments, features, attributes and advantages of the present inventions are within the scope of the present inventions.
For example, while a considerable portion of the inventions was described in the context of a memory device, memory cell and/or memory array, the present inventions may be implemented in any integrated circuit and/or integrated circuit transistor.
As mentioned above, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. For the sake of brevity, those permutations and combinations will not be discussed separately herein. As such, the present inventions are neither limited to any single aspect (nor embodiment thereof), nor to any combinations and/or permutations of such aspects and/or embodiments.
Moreover, the above embodiments of the present inventions are merely exemplary embodiments. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the foregoing description of the exemplary embodiments of the inventions has been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the inventions not be limited solely to the description above.
This application claims priority to U.S. Provisional Application Ser. No. 60/626,745, entitled “Method of Improving Statistical Distribution of IC and IC Implementing Same”, filed Nov. 10, 2004. The contents of this provisional application are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3439214 | Kabell | Apr 1969 | A |
3997799 | Baker | Dec 1976 | A |
4032947 | Kesel et al. | Jun 1977 | A |
4250569 | Sasaki et al. | Feb 1981 | A |
4262340 | Sasaki et al. | Apr 1981 | A |
4298962 | Hamano et al. | Nov 1981 | A |
4371955 | Sasaki | Feb 1983 | A |
4527181 | Sasaki | Jul 1985 | A |
4630089 | Sasaki et al. | Dec 1986 | A |
4791610 | Takemae | Dec 1988 | A |
4979014 | Hieda et al. | Dec 1990 | A |
5144390 | Matloubian | Sep 1992 | A |
5258635 | Nitayama et al. | Nov 1993 | A |
5388068 | Ghoshal et al. | Feb 1995 | A |
5446299 | Acovic et al. | Aug 1995 | A |
5448513 | Hu et al. | Sep 1995 | A |
5466625 | Hsieh et al. | Nov 1995 | A |
5489792 | Hu et al. | Feb 1996 | A |
5528062 | Hsieh et al. | Jun 1996 | A |
5568356 | Schwartz | Oct 1996 | A |
5593912 | Rajeevakumar | Jan 1997 | A |
5606188 | Bronner et al. | Feb 1997 | A |
5627092 | Alsmeier et al. | May 1997 | A |
5631186 | Park et al. | May 1997 | A |
5696718 | Hartmann | Dec 1997 | A |
5740099 | Tanigawa | Apr 1998 | A |
5778243 | Aipperspach et al. | Jul 1998 | A |
5780906 | Wu et al. | Jul 1998 | A |
5784311 | Assaderaghi et al. | Jul 1998 | A |
5811283 | Sun | Sep 1998 | A |
5877978 | Morishita et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886385 | Arisumi et al. | Mar 1999 | A |
5897351 | Forbes | Apr 1999 | A |
5929479 | Oyama | Jul 1999 | A |
5930648 | Yang | Jul 1999 | A |
5936265 | Koga | Aug 1999 | A |
5936888 | Sugawara | Aug 1999 | A |
5939745 | Park et al. | Aug 1999 | A |
5943258 | Houston et al. | Aug 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5960265 | Acovic et al. | Sep 1999 | A |
5968840 | Park et al. | Oct 1999 | A |
5977578 | Tang | Nov 1999 | A |
5982003 | Hu et al. | Nov 1999 | A |
6018172 | Hidada et al. | Jan 2000 | A |
6081443 | Morishita | Jun 2000 | A |
6096598 | Furukawa et al. | Aug 2000 | A |
6097056 | Hsu et al. | Aug 2000 | A |
6111778 | MacDonald et al. | Aug 2000 | A |
6121077 | Hu et al. | Sep 2000 | A |
6157216 | Lattimore et al. | Dec 2000 | A |
6171923 | Chi et al. | Jan 2001 | B1 |
6177300 | Houston et al. | Jan 2001 | B1 |
6177708 | Kuang et al. | Jan 2001 | B1 |
6188606 | Derhacobian et al. | Feb 2001 | B1 |
6214694 | Leobandung et al. | Apr 2001 | B1 |
6225158 | Furukawa et al. | May 2001 | B1 |
6245613 | Hsu et al. | Jun 2001 | B1 |
6252281 | Yamamoto et al. | Jun 2001 | B1 |
6292424 | Ohsawa | Sep 2001 | B1 |
6297090 | Kim | Oct 2001 | B1 |
6300649 | Hu et al. | Oct 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6333532 | Davari et al. | Dec 2001 | B1 |
6350653 | Adkisson et al. | Feb 2002 | B1 |
6351426 | Ohsawa | Feb 2002 | B1 |
6359802 | Lu et al. | Mar 2002 | B1 |
6384445 | Hidaka et al. | May 2002 | B1 |
6391658 | Gates et al. | May 2002 | B1 |
6403435 | Kang et al. | Jun 2002 | B1 |
6421269 | Somasekhar et al. | Jul 2002 | B1 |
6424011 | Assaderaghi et al. | Jul 2002 | B1 |
6424016 | Houston | Jul 2002 | B1 |
6429477 | Mandelman et al. | Aug 2002 | B1 |
6440872 | Mandelman et al. | Aug 2002 | B1 |
6441435 | Chan | Aug 2002 | B1 |
6441436 | Wu et al. | Aug 2002 | B1 |
6466511 | Fujita et al. | Oct 2002 | B2 |
6492211 | Divakaruni et al. | Dec 2002 | B1 |
6518105 | Yang et al. | Feb 2003 | B1 |
6531754 | Nagano et al. | Mar 2003 | B1 |
6538916 | Ohsawa | Mar 2003 | B2 |
6544837 | Divakaruni et al. | Apr 2003 | B1 |
6548848 | Horiguchi et al. | Apr 2003 | B2 |
6549450 | Hsu et al. | Apr 2003 | B1 |
6552398 | Hsu et al. | Apr 2003 | B2 |
6556477 | Hsu et al. | Apr 2003 | B2 |
6563741 | Mihnea et al. | May 2003 | B2 |
6566177 | Radens et al. | May 2003 | B1 |
6567330 | Fujita et al. | May 2003 | B2 |
6590258 | Divakauni et al. | Jul 2003 | B2 |
6590259 | Adkisson et al. | Jul 2003 | B2 |
6617651 | Ohsawa | Sep 2003 | B2 |
6621725 | Ohsawa | Sep 2003 | B2 |
6632723 | Watanabe et al. | Oct 2003 | B2 |
6650565 | Ohsawa | Nov 2003 | B1 |
20010055859 | Yamada et al. | Dec 2001 | A1 |
20020030214 | Horiguchi | Mar 2002 | A1 |
20020034855 | Horiguchi et al. | Mar 2002 | A1 |
20020036322 | Divakauni et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020064913 | Adkisson et al. | May 2002 | A1 |
20020070411 | Vermandel et al. | Jun 2002 | A1 |
20020072155 | Liu et al. | Jun 2002 | A1 |
20020076880 | Yamada et al. | Jun 2002 | A1 |
20020086463 | Houston et al. | Jul 2002 | A1 |
20020089038 | Ning | Jul 2002 | A1 |
20020098643 | Kawanaka et al. | Jul 2002 | A1 |
20020110018 | Ohsawa | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020130341 | Horiguchi et al. | Sep 2002 | A1 |
20020160581 | Watanabe et al. | Oct 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030015757 | Ohsawa | Jan 2003 | A1 |
20030035324 | Fujita et al. | Feb 2003 | A1 |
20030057487 | Yamada et al. | Mar 2003 | A1 |
20030057490 | Nagano et al. | Mar 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030112659 | Ohsawa | Jun 2003 | A1 |
20030123279 | Aipperspach et al. | Jul 2003 | A1 |
20030146488 | Nagano et al. | Aug 2003 | A1 |
20030151112 | Yamada et al. | Aug 2003 | A1 |
20050195680 | Higashi et al. | Sep 2005 | A1 |
20050226070 | Ohsawa | Oct 2005 | A1 |
20050232043 | Ohsawa | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
0 030 856 | Jun 1981 | EP |
0 350 057 | Jan 1990 | EP |
0 354 348 | Feb 1990 | EP |
0 362 961 | Apr 1990 | EP |
0 202 515 | Mar 1991 | EP |
0 207 619 | Aug 1991 | EP |
0 175 378 | Nov 1991 | EP |
0 253 631 | Apr 1992 | EP |
0 513 923 | Nov 1992 | EP |
0 300 157 | May 1993 | EP |
0 564 204 | Oct 1993 | EP |
0 579 566 | Jan 1994 | EP |
0 362 961 | Feb 1994 | EP |
0 599 506 | Jun 1994 | EP |
0 359 551 | Dec 1994 | EP |
0 642 173 | Mar 1995 | EP |
0 366 882 | May 1995 | EP |
0 465 961 | Aug 1995 | EP |
0 694 977 | Jan 1996 | EP |
0 333 426 | Jul 1996 | EP |
0 727 820 | Aug 1996 | EP |
0 739 097 | Oct 1996 | EP |
0 245 515 | Apr 1997 | EP |
0 788 165 | Aug 1997 | EP |
0 801 427 | Oct 1997 | EP |
0 510 607 | Feb 1998 | EP |
0 537 677 | Aug 1998 | EP |
0 858 109 | Aug 1998 | EP |
0 860 878 | Aug 1998 | EP |
0 869 511 | Oct 1998 | EP |
0 878 804 | Nov 1998 | EP |
0 920 059 | Jun 1999 | EP |
0 924 766 | Jun 1999 | EP |
0 642 173 | Jul 1999 | EP |
0 727 822 | Aug 1999 | EP |
0 933 820 | Aug 1999 | EP |
0 951 072 | Oct 1999 | EP |
0 971 360 | Jan 2000 | EP |
0 980 101 | Feb 2000 | EP |
0 601 590 | Apr 2000 | EP |
0 993 037 | Apr 2000 | EP |
0 836 194 | May 2000 | EP |
0 599 388 | Aug 2000 | EP |
0 689 252 | Aug 2000 | EP |
0 606 758 | Sep 2000 | EP |
0 682 370 | Sep 2000 | EP |
1 073 121 | Jan 2001 | EP |
0 726 601 | Aug 2001 | EP |
0 731 972 | Nov 2001 | EP |
1 162 663 | Dec 2001 | EP |
1 162 744 | Dec 2001 | EP |
1 179 850 | Feb 2002 | EP |
1 180 799 | Feb 2002 | EP |
1 191 596 | Mar 2002 | EP |
1 204 146 | May 2002 | EP |
1 204 147 | May 2002 | EP |
1 209 747 | May 2002 | EP |
0 744 772 | Aug 2002 | EP |
1 233 454 | Aug 2002 | EP |
0 725 402 | Sep 2002 | EP |
1 237 193 | Sep 2002 | EP |
1 241 708 | Sep 2002 | EP |
1 253 634 | Oct 2002 | EP |
0 844 671 | Nov 2002 | EP |
1 280 205 | Jan 2003 | EP |
1 288 955 | Mar 2003 | EP |
2 197 494 | Mar 1974 | FR |
1 414 228 | Nov 1975 | GB |
62-272561 | Nov 1987 | JP |
02-294076 | Feb 1991 | JP |
03171768 | Jul 1991 | JP |
08213624 | Aug 1996 | JP |
8-274277 | Oct 1996 | JP |
09046688 | Feb 1997 | JP |
9-82912 | Mar 1997 | JP |
10242470 | Nov 1998 | JP |
11-87649 | Mar 1999 | JP |
247735 | Aug 2000 | JP |
274221 | Sep 2000 | JP |
389106 | Dec 2000 | JP |
180633 | Jun 2001 | JP |
2002-94027 | Mar 2002 | JP |
2002-176154 | Jun 2002 | JP |
2002-246571 | Aug 2002 | JP |
2002-0981 | Nov 2002 | JP |
2002-329795 | Nov 2002 | JP |
2002-343886 | Nov 2002 | JP |
2002-353080 | Dec 2002 | JP |
2003-31693 | Jan 2003 | JP |
2003-86712 | Mar 2003 | JP |
2003-100641 | Apr 2003 | JP |
2003-100900 | Apr 2003 | JP |
2003-132682 | May 2003 | JP |
2003-203967 | Jul 2003 | JP |
2003-243528 | Aug 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20060098481 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60626745 | Nov 2004 | US |