The invention relates to a clamping assembly having an arrangement of mechanically clamped components that lie one on top of the other so as to form a stack, said clamping assembly comprising a spring system and a clamping device for generating a mechanical compressive force on the arrangement of the components.
Such a clamping assembly is used by way of example in high voltage technology. In the case of high voltage technology, semi-conductor components in particular are clamped one to the other in order to achieve the best possible electrical contact between said components.
The known clamping assemblies are mostly clamped by way of mechanical elements, by way of example suitable threaded systems. The compressive force is transmitted to the arrangement of the components mostly in a spot-by-spot manner by way of one or multiple screw elements and said force is subsequently distributed over a large area by way of pressure pieces so that the components are compressed in the clamping assembly.
The article “4.5 kV Press Pack I=Designed for Ruggedness and Reliability” by S. Eicher et al., IAS Seattle 2004 discloses an IGBT module (a so-called press pack module) that comprises IGBT chip units that are arranged in parallel and are housed in a common housing. The housing comprises an upper and lower conductive plate that extends over multiple chip units and transmit the mechanical force, which is generated by a common clamping device, on to the chip units. Each chip unit forms an arrangement of components that lie one above the other so as to form a stack. Each of the arrangements that form the chip unit is allocated an individual plate spring so that the force can be transmitted to the IGBT chips in each case by means of the individual plate spring. However, the pressure is distributed on the compressed areas of the individual chip units by means of the respective plate spring in a relatively non-homogenous manner.
However, as the area of the compressed components increases, it becomes more important that the compressive force is distributed in a homogenous manner. In addition, thin and brittle components are used, such as by way of example semi-conductor chips, and it is vitally important that the compressive force is distributed in a homogenous manner. Inhomogeneity can lead in such cases to the components becoming damaged and failing.
The object of the invention is therefore to propose a clamping assembly of the type mentioned above, wherein the compressive force is transmitted as homogenously as possible. The object is achieved in accordance with the invention by means of a clamping assembly, wherein the spring device is a spring plate that is formed by a multiplicity of mutually connected plate spring elements that are arranged adjacent one to the other.
The mutually connected plate spring elements of the arrangement in accordance with the invention transmit the compressive force that is exerted by means of the clamping device on the components of the arrangement in such a manner that the compressive force is distributed in a relatively homogenous manner over the surface of the components that is facing the spring plate. This effect is in particular irrespective of the size of the surface area of the surface of the components because the spring plate can expand in size accordingly, wherein it is also possible to scale the number of spring plate elements to correspond with the size of the surface area.
In an expedient manner, the spring plate elements are formed as conical annular shells that comprise an upper e inner edge and a lower outer edge, wherein the force is introduced along the axis of symmetry of the annular shell. The plate spring elements are connected one to the other at the lower outer edge in an expedient manner.
In accordance with a preferred embodiment of the invention, the clamping assembly comprises a pressure piece for transmitting the mechanical compressive force from the clamping device to the arrangement of components. The spring plate is arranged between the pressure piece and the components. It is of advantage if the spring plate faces the pressure piece with the upper inner edges of the plate spring elements. It is possible by way of the suitably shaped pressure piece, wherein the pressure piece can have by way of example a conical or trapezoidal shape to transmit the compressive force from the clamping device to the components in a particular homogenous manner over the surface area. In an expedient manner, the base surface of the pressure piece is tailored to suit the geometry of the arrangement.
It is preferred that the spring plate elements comprise different spring characteristics. The different spring characteristics of the plate spring elements render it possible to adapt the transmission of the compressive force to the respective requirement in a particular efficient manner.
It is particularly advantageous if at least one of the plate spring elements comprises degressive spring characteristic. In the case of a degressive spring characteristic, the plate spring element is compressed in an over-proportional manner to a force that is acting on e the plate spring element.
In accordance with a preferred embodiment of the invention, the arrangement comprises a further spring plate that is arranged between two components. It is possible by means of using the additional spring plate to further improve the homogeneity of the transmission of the compressive force. Furthermore, it is naturally feasible also to provide spring plates in the clamping assembly.
Some of the components can be by way of example electrical components, wherein an electrical contact between said components is produced by way of the compressed surfaces of the electrical components.
In accordance with an advantageous embodiment of the invention, the arrangement comprises a semi-conductor element, wherein the semi-conductor element comprises press pack semi-conductors that are arranged in parallel. The semi-conductor element is consequently formed from semi-conductor modules that are arranged one adjacent to the other. The semi-conductor modules form a parallel connection of electrical components. By way of example, the components can be IGBT semi-conductors, diodes or thyristor elements. The surface of such semi-conductor modules can comprise by way of example a diameter of 6 to 9 mm. The surface of components that is to be compressed can be between 400 and 1000 cm2.
For the purpose of cooling the semi-conductor elements, the arrangement further comprises in an advantageous manner at least one cooling plate that is embodied from a conductive material, wherein the at least one cooling plate is arranged lying on the semi-conductor element so that an e electrical contact is produced between the semi-conductor element and the cooling plate. The cooling pate is used to dissipate the heat that is produced in the semi-conductor element. This heat is produced in particular as a result of the on-state resistance of the semi-conductor element. In an expedient manner, the cooling plate is embodied from a thermal conductive preferably efficient heat-conductive material, such as by way of example metal or a metal alloy.
The arrangement can also comprise multiple semi-conductor elements, wherein each of the semi-conductor elements is allocated at least one cooling plate and the semi-conductor elements form an electrical series circuit.
It is particularly preferred if each semi-conductor element is allocated two cooling plates that are arranged on both sides of the semi-conductor element. In this manner, the heat can be dissipated on both sides of the semi-conductor element. Since the cooling plates are produced from a conductive material, the electrical contact between the semi-conductor elements can be produced by means of the cooling plates. In order to improve the transmission of the compressive force onto the semi-conductor elements, the arrangement can comprise an additional spring plate that is arranged between two cooling plates.
It is particularly preferred to provide a counter pressure piece that is arranged lying opposite the pressure piece, wherein an additional spring plate is arranged between the counter pressure piece and the components. The additional spring plate can be arranged in such a manner that the plate spring elements of the additional spring plate are orientated in an opposite direction to that of the spring plate.
Moreover, the invention relates to a sub-module of a convertor comprising at least one series circuit of power semi-conductor switching units that comprise in each case a power semi-conductor that can be switched on and off with an identical through-flow direction, and said power semi-conductor switching units are in each case conductive in the opposite direction to the said forward conduction direction and said convertor further comprising an energy storage device that is arranged in a parallel connection thereto. Such a sub-module is known by way of example from DE 101 030 31 A1.
Based on the known sub-module, a further object of the invention is to provide a sub-module of the above mentioned type that is susceptible as little as possible to failure.
The object is achieved in accordance with the invention by means of a generic type sub-module, wherein the series circuit of the power semi-conductor switching units is achieved in a previously described clamping device. By virtue of compressing the power semi-conductor switching units by means of the spring plate, it is possible to reduce the risk of damage occurring and consequently reduce the risk of the semi-conductor failing as a result of inhomogenous pressure distribution.
The invention is further explained hereinunder with reference to exemplary embodiments illustrated
In detail,
The behavior of one of the plate spring elements 31 when loaded by force is further explained in
It is evident in
1 Clamping assembly
2 Arrangement
3 Spring plate
4, 6, 8 Cooling plate
5, 9 Semi-conductor element
10 Arrow
11 Pressure piece
12 Sub-module
13, 14 Terminal
15 Power semi-conductor switching unit
16 Power semi-conductor
17 Diode
18 Energy storage device
31 Plate spring element
32 Upper inner edge
33 Lower outer edge
| Filing Document | Filing Date | Country | Kind |
|---|---|---|---|
| PCT/EP2014/064179 | 7/3/2014 | WO | 00 |