This application is based on and claims the priority under 35 U.S.C. §119 of German Patent Application 103 00 202.2, filed on Jan. 8, 2003, the entire disclosure of which is incorporated herein by reference.
The invention relates to a mechanism for clamping at least two structural components to each other to hold these components in a proper position relative to each other for performing work on these components, for example drilling holes.
In connection with the production, for example, of aircraft structural components a multitude of riveted connections are required, for example for connecting a cross girder or spar to a rib of an aircraft fuselage component. A respective multitude of holes must be drilled through these components for the riveted connections. Conventionally, one of the components to be connected with another component is provided with predrilled holes and these predrilled holes are used as a template for drilling corresponding holes into one or more further components.
Manually held power tools such as electric drills pose a problem, particularly in connection with the assembly operation of structural components having a large volume such as an aircraft fuselage, because these tools must not only be held in different working locations, the tools must also be held in precise positions so that, for example, drilled holes are accurately aligned with each other for the riveting operation. Nonaligned holes prevent the insertion of a rivet. The problem is magnified when the working locations are hard to access and/or when the power tools or machining tools are of substantial weight and still must be handheld and guided into the proper position. Thus, for example the structural assembly of an aircraft fuselage requires the performance of clamping, drilling and riveting in positions that require the assembly worker to assume different working positions, whereby the assembly worker must exert him or herself in handling these power tools, particularly when the power tools are heavy. Thus, in ergonomic terms, work of this type frequently reaches the limits of human capacity. Furthermore, in connection with such assembly operations a plurality of steps must be performed. These steps are freely conducted and are strength consuming. Such steps involve following the predrilling, the disconnection of the structural components, a deburring of the drilled holes, the application of caulking and then realigning the structural components, temporarily securing the components to each other and finish drilling the components. All these steps are quite time consuming and leave room for improvement, particularly with regard to optimizing these working steps in an ergonomic sense.
German Patent Publication DE 196 39 122, corresponding to U.S. Pat. No. 5,961,258 discloses an apparatus for clamping and drilling. The known apparatus comprises a base body carrying a clamping member and a drill section. The clamping member comprises a clamping bail which is movable together with a clamping element axially and against the feed advance direction from an open starting position into a clamping position. The drill section comprises a power drill and is operatively connected with the clamping member through a clamping piston cylinder device. Following the positioning of a drill bit tip in a predrilled hole, a starting button is pressed, whereby the components are automatically clamped to each other and the drilling operation is started. In many situations the working space is not available for the apparatus that combines the functions of clamping and drilling. As a result, the known clamping drilling machine cannot be properly positioned and hence cannot be used or its use becomes very difficult for the worker.
In view of the foregoing it is the aim of the invention to achieve the following objects singly or in combination:
The above objects have been achieved according to the invention by a clamping mechanism for clamping at least two structural components to each other by a clamping bail that forms a clamping opening and carries a first clamping section and a second clamping section which face each other across the clamping opening. The clamping sections are axially aligned with each other. The first clamping section has a guide element such as a guide channel for guiding a drill bit after a removable centering pin which is axially movable in the guide element for aiding and positioning a first structural component. The centering pin may also be a marker that is axially movable in the guide element. The second clamping section has a pressure member such as a bushing and a clamping drive for pressing the pressure member against the second structural component and thus against the first structural component to establish a clamped position for at least two structural components such as aircraft fuselage components. The clamping bail in cooperation with its components or sections forms a jig.
It is an advantage of the jig according to the invention that it permits to effectively and simply clamp and simultaneously position at least two structural components relative to each other. The exact positioning relative to a predrilled hole or a marked drilling position is achieved with a simple jig construction. The clamping capability is combined with a centering capability and with a support into which a power drill is easily inserted and removed, thereby making the work easier for the assembly worker. By separating the clamping and alignment feature from the supporting feature for the power drill the present jig can be readily used in confined work positions, for example in the assembly within an aircraft fuselage structure. The support for the power drill is constructed so that for different purposes different power drills may be used with the same jig. Thus, the usefulness of the present jig has been increased compared to conventional jigs, particularly in connection with the assembly procedure within a large volume structural component such as an aircraft fuselage or wing. The present jig is easily movable from drilling location to drilling location so that a multitude of holes can be drilled, thereby reducing the assembly costs.
The guide element is preferably a bushing or guide channel that is so constructed that the centering pin is either easily removable from the bushing or guide channel when the clamping is completed and the drilling can begin or it can be at least moved out of the way for the insertion of the drill bit into the guide channel or guide bushing. In this alternative embodiment the centering or locating pin has a longitudinal axis extending at an angle to a drilling axis of the drill bit.
Several different possibilities for supporting the power drill in alignment with the guide bushing can be achieved by a conventional interlocking mechanism or a conventional clamping chuck that forms a support for a power drill.
Various, different clamping drives may be employed for pressing the pressure member against a structural component for the clamping operation. In a preferred embodiment a suction hose or pipe is connected to the guide bushing or guide channel for removing drilling chips.
In order that the invention may be clearly understood, it will now be described in connection with example embodiments thereof, with reference to the accompanying drawings, wherein:
The predrilled holes or marked work locations 2 must be accurately aligned with a drill bit DB so that the holes to be drilled through two or more structural components simultaneously are also properly aligned for the riveting operation which requires a snug fit of the rivet shank through the drilled rivet holes. If the rivet holes are not properly aligned with each other it becomes impossible to properly insert a rivet into the rivet holes. To avoid this problem the rivet holes must initially be drilled with the two or more structural components properly held together during the drilling operation. Preferably, the predrilled holes in one structural component are used as a template for drilling the respective holes in the other structural component.
Further, it is necessary to avoid the entrance of drilling chips between two neighboring structural components and to avoid the formation of burrs along the edges of the drilled holes. The present clamping mechanism 1 achieves these objects with a clamping bail 6 having a first bail leg 7 and a second bail leg 8. The first bail leg 7 carries a first clamping section 9. The second bail leg 6B carries a second clamping section 10. The clamping sections 9 and 10 are axially aligned with each other and leave a clamping space between each other for insertion of at least two structural components 3 and 4 to be clamped for drilling through a predrilled hole 5 or through a premarked location 2. In order to properly align the predrilled hole 5 with a drill bit DB, shown in
The clamping is performed by the elements of the second clamping section 10 having a housing 10A with a bore in which a pressure application member 15 is axially movable in alignment with a central longitudinal axis of the guide channel 11 in the first clamping section 9. This central longitudinal axis is the drilling axis along which the drill bit DB is advanced. Preferably the pressure member 15 has a central coaxial dead end cavity 15A that opens toward the component 3 to permit entry of the drill bit DB tip into the cavity 15A when the drilling of the hole through all components 3, 4 is completed. Drilling chips that may be pushed out of the drilled hole by the drill bit will be collected in the cavity 15A which is preferably connected to a suction hose or pipe, not shown, for removing any drilling chips from the cavity 15A.
The pressure application member 15 is movable back and forth in the bore of the housing 10A as indicated by the double arrow. The member 15 moves to the right in
In
Applying the clamping pressure around the hole to be drilled results in drilled hole edges which are free of burrs in all embodiments.
Although the invention has been described with reference to specific example embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims. It should also be understood that the present disclosure includes all possible combinations of any individual features recited in any of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 00 202 | Jan 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
437047 | Sargent | Sep 1890 | A |
1742224 | Swartz | Jan 1930 | A |
2108131 | Lewis | Feb 1938 | A |
2351243 | Vetter | Jun 1944 | A |
2418956 | Silver | Apr 1947 | A |
2466023 | Griffin | Apr 1949 | A |
2856799 | De Curtis | Oct 1958 | A |
3045727 | Clarke | Jul 1962 | A |
3397600 | Wells | Aug 1968 | A |
3674375 | Reed et al. | Jul 1972 | A |
3764204 | Kammeraad | Oct 1973 | A |
4027992 | Mackey et al. | Jun 1977 | A |
4145160 | Wiggins | Mar 1979 | A |
4601618 | McEldowney | Jul 1986 | A |
4955766 | Sommerfeld | Sep 1990 | A |
5071293 | Wells | Dec 1991 | A |
5161923 | Reccius | Nov 1992 | A |
5466098 | Juang | Nov 1995 | A |
5733077 | MacIntosh, Jr. | Mar 1998 | A |
5800099 | Cooper | Sep 1998 | A |
5853270 | Salley et al. | Dec 1998 | A |
5961258 | Ende et al. | Oct 1999 | A |
6247879 | Costa | Jun 2001 | B1 |
6254320 | Weinstein et al. | Jul 2001 | B1 |
6283684 | Jarvis | Sep 2001 | B1 |
6394712 | Weinstein et al. | May 2002 | B1 |
6398465 | Monge | Jun 2002 | B1 |
6413022 | Sarh | Jul 2002 | B1 |
6637988 | Park | Oct 2003 | B1 |
6729809 | Sarh et al. | May 2004 | B2 |
20020104207 | Smith et al. | Aug 2002 | A1 |
20040175244 | Otten | Sep 2004 | A1 |
20050105979 | Snider et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
19639122 | Apr 1998 | DE |
19945097 | Mar 2001 | DE |
2120584 | Dec 1983 | GB |
2288356 | Oct 1995 | GB |
Number | Date | Country | |
---|---|---|---|
20040141821 A1 | Jul 2004 | US |