The present invention relates generally to surgical robot systems and, more particularly, to an improved system, apparatus, and method for cleaning a surgical instrument.
In robotically-assisted surgery, the surgeon typically operates a master controller to control the motion of surgical instruments at the surgical site from a location that may be remote from the patient (e.g., across the operating room, in a different room or a completely different building from the patient). The master controller usually includes one or more hand input devices, such as handheld wrist gimbals, joysticks, exoskeletal gloves, handpieces, or the like, which are operatively coupled to the surgical instruments through a controller with servo motors for articulating the instruments' position and orientation at the surgical site. The servo motors are typically part of an electromechanical device or surgical manipulator arm (“the slave”) that includes a plurality of joints, linkages, etc., that are connected together to support and control the surgical instruments that have been introduced directly into an open surgical site or through trocar sleeves (cannulas) inserted through incisions into a body cavity, such as the patient's abdomen. There are available a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, etc., to perform various functions for the surgeon, e.g., retracting tissue, holding or driving a needle, suturing, grasping a blood vessel, dissecting, cauterizing, coagulating tissue, etc. A surgeon may employ a large number of different surgical instruments/tools during a procedure.
This new surgical method through remote manipulation has created many new challenges. One such challenge is providing the surgeon with the ability to accurately “feel” the tissue that is being manipulated by the surgical instrument via the robotic manipulator. The surgeon must rely on visual indications of the forces applied by the instruments or sutures. It is desirable to sense the forces and torques applied to the tip of the instrument, such as an end effector (e.g., jaws, grasper, blades, etc.) of robotic minimally invasive surgical instruments, in order to feed the forces and torques back to the surgeon user through the system hand controls or by other means, such as visual display, vibrations, or audible tone. One device for this purpose from the laboratory of G. Hirzinger at DLR Institute of Robotics and Mechatronics is described in “Review of Fixtures for Low-Invasiveness Surgery” by F. Cepolina and R. C. Michelini, Int'l Journal of Medical Robotics and Computer Assisted Surgery, Vol. 1, Issue 1, page 58, the contents of which are incorporated by reference herein for all purposes. However, that design disadvantageously places a force sensor distal to (or outboard of) the wrist joints, thus requiring wires or optic fibers to be routed through the flexing wrist joint and also requiring the yaw and grip axes to be on separate pivot axes.
Another problem has been fitting and positioning the necessary wires, rods, or tubes for mechanical actuation of end effectors in as small a space as possible because relatively small instruments are typically desirable for performing surgery.
Yet another problem has been cleaning and/or sterilizing the surgical instrument after use or prior to reuse, especially in light of constraints on how a liquid may flow to reach the distal tip of an instrument force sensor and ensure adequate flushing and cleaning of the instrument.
Improved telerobotic systems and methods for remotely controlling surgical instruments at a surgical site on a patient are therefore desirable. In particular, systems, instruments, and methods should be configured to provide accurate feedback of forces and torques to the surgeon to improve user awareness and control of the instruments, while also providing for the cleaning of a reusable force sensing instrument after use or prior to reuse.
The present invention provides an apparatus, system, and method for improving force and torque feedback to and sensing by a surgeon performing a robotic surgery while also providing for the cleaning of a reusable force sensing instrument.
In one embodiment, a force sensing robotic surgical instrument includes a proximal housing linkable with a surgical robot arm, a shaft having a proximal portion and a distal portion, the proximal portion operably coupled to the housing, and a force transducer operably coupled to the distal portion of the shaft, the force transducer having a proximal portion, a distal portion, a plurality of radial ribs, and a strain gauge positioned over each of the plurality of radial ribs, the radial ribs forming a plurality of through passages. The instrument further includes a wrist mechanism coupled to the distal portion of the force transducer, an end effector coupled to the wrist mechanism, and a flush manifold that receives a liquid from the proximal portion of the shaft and directs the liquid along a first subset of through passages of the force transducer toward the distal portion of the force transducer. A plenum at the distal portion of the force transducer collects the liquid from the first subset of through passages and redirects the liquid back toward the proximal portion of the shaft along a second subset of through passages different from the first subset of through passages.
In another embodiment, a surgical instrument is similar to that described above but the force transducer has a proximal portion, a distal portion, a centerline through passage running along a centered lengthwise axis of the force transducer, a plurality of radial ribs extended from the centerline through passage, and a strain gauge positioned over each of the plurality of radial ribs, the radial ribs forming a plurality of through passages. The instrument further includes a flush manifold that receives a liquid from the proximal portion of the shaft and directs the liquid along the centerline through passage of the force transducer, and a plenum at the distal portion of the force transducer that collects the liquid from the centerline through passage and redirects the liquid back toward the proximal portion of the shaft along the plurality of through passages.
In yet another embodiment, a method of cleaning a force sensing surgical instrument includes flowing a cleaning liquid through a flush manifold at a distal portion of an instrument shaft, directing the liquid along passages coupled to the flush manifold toward a distal portion of a force transducer, collecting the liquid from the passages at a plenum, and redirecting the liquid back toward the proximal portion of the shaft along a plurality of linkages to clean the plurality of linkages.
The scope of the invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the present invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures. It should also be appreciated that the figures may not be necessarily drawn to scale.
The present invention provides a multi-component system, apparatus, and method for sensing forces applied to tissue while performing robotically-assisted surgical procedures on a patient, particularly including open surgical procedures, neurosurgical procedures, and minimally invasive procedures, such as laparoscopy, arthroscopy, thorascopy, and the like. The apparatus and method of the present invention are particularly useful as part of a telerobotic surgical system that allows the surgeon to manipulate the surgical instruments through a servomechanism from a location remote from the patient. To that end, the combined manipulator apparatus or slave and surgical instrument of the present invention will usually be driven by a master having the same degrees of freedom (e.g., 3 degrees of freedom for position and 3 degrees of freedom for orientation plus grip) to form a telepresence system with force reflection or other scalar force magnitude display. A description of a suitable slave-master system can be found in U.S. Pat. No. 6,574,355, the complete disclosure of which is incorporated herein by reference for all purposes.
Referring to the drawings in detail, wherein like numerals indicate like elements, a robotic surgical system 10 is illustrated according to an embodiment of the present invention. As shown in
The control assembly may be located at a surgeon's console 90 (
The monitor 94 (
A servo control is provided for transferring the mechanical motion of masters to manipulator assemblies 51. The servo control may be separate from, or integral with, manipulator assemblies 51. The servo control will usually provide force and torque feedback from the surgical instruments 54 to the hand-operated masters. In addition, the servo control may include a safety monitoring controller (not shown) to safely halt system operation, or at least inhibit all robot motion, in response to recognized undesirable conditions (e.g., exertion of excessive force on the patient, mismatched encoder readings, etc.). The servo control preferably has a servo bandwidth with a 3 dB cut off frequency of at least 10 Hz so that the system can quickly and accurately respond to the rapid hand motions used by the surgeon and yet filter out undesirable surgeon hand tremors. To operate effectively with this system, manipulator assemblies 51 have a relatively low inertia, and the drive motors have relatively low ratio gear or pulley couplings. Any suitable conventional or specialized servo control may be used in the practice of the present invention, with those incorporating force and torque feedback being particularly preferred for telepresence operation of the system.
Referring to
Housing 150 operably interfaces with a robotic manipulator arm 51, in one embodiment via a sterile adaptor interface. Applicable housings, sterile adaptor interfaces, and manipulator arms are disclosed in U.S. patent application Ser. No. 11/314,040 filed on Dec. 20, 2005, and U.S. application Ser. No. 11/613,800 filed on Dec. 20, 2006, the full disclosures of which are incorporated by reference herein for all purposes. Examples of applicable shafts, end portions, housings, sterile adaptors, and manipulator arms are manufactured by Intuitive Surgical, Inc. of Sunnyvale, Calif.
In a preferred configuration, end portion 120 has a range of motion that includes pitch and yaw motion about the x- and y-axes and rotation about the z-axis. These motions as well as actuation of an end effector are provided via cables in housing 150 and cables and/or rod linkages running through shaft 110 and into housing 150 that transfer motion from the manipulator arm 51. Embodiments of drive assemblies, arms, forearm assemblies, adaptors, and other applicable parts are described for example in U.S. Pat. Nos. 6,331,181, 6,491,701, and 6,770,081, the full disclosures of which are incorporated herein by reference for all purposes.
Referring now to
Similar to the embodiments disclosed above, a number of strain gauges 104 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 102a (
Referring now in particular to
Force sensor apparatus 100 is a separately manufacturable module or part adapted for incorporation as part of the shaft 110 of surgical instrument 54 at a prescribed distance from the tip where there may be an articulated wrist with specialized jaws, cutting devices, or other end portion 120. Proximal tube portion 106a operably couples to the shaft 110 of surgical instrument 54 and distal tube portion 106b operably couples to a wrist joint 121. In one example, the diameter of the completed force sensor apparatus matches the diameter of the instrument shaft, thus allowing the entire assembly of the instrument (including the coupled force sensor apparatus) to pass through a cannula or a seal without added friction or snagging.
As disclosed in U.S. patent application Ser. No. 11/537,241, filed Sep. 29, 2006, the contents of which have been previously incorporated by reference, strain gauges 104 may be spaced in a ring at intervals around the circumference of the tube 106 (e.g., 3 gauges at 120 degrees, 4 gauges at 90 degrees, or 4 gauges at 70 degrees and 110 degrees or other pairs of supplementary angles). The signals from the sensors are combined arithmetically in various sums and differences to obtain measures of transverse forces Fx and Fy (
In one example, various strain gauge types may be used, including but not limited to conventional foil type resistance gauges, semiconductor gauges, optic fiber type gauges using Bragg grating or Fabry-Perot technology, or others, such as strain sensing surface acoustic wave (SAW) devices. Optic fiber Bragg grating (FBG) gauges may be advantageous in that two sensing elements may be located along one fiber at a known separation, thereby only requiring the provision of four fibers along the instrument shaft for eight gauges.
Both fiber technologies require an interrogator unit that decodes the optically encoded strain information into electrical signals compatible with the computer control hardware or display means of the robotic surgical system. A processor may then be used to calculate forces according to the signals from the strain gauges/sensors.
Additionally, for resistive foil or semiconductor strain gauges there may be co-mounted unstrained gauges or Poisson strained gauges oriented in the circumferential direction adjacent to each axial gauge and incorporated in local bridge completion circuits to eliminate temperature effects. The strain gauge bridge circuits are completed in a manner to give the best signal for bending loads due to the lateral forces (Fx and Fy) exerted on the instrument tip jaws.
Also for resistive foil or semiconductor strain gauges, active components such as bare die op-amps and passive components such as secondary resistors or capacitors may be attached adjacent to the strain gauges connected by bond wires or thick film circuit traces in the manner of hybrid circuits to amplify, filter, and/or modulate the gauge output signals to reject noise sources. Such components are not needed for fiber optic gauges.
For the methods and apparatus mentioned above, it may be advantageous to use a calibration process in which combinations of forces and torques are applied to the instrument tip serially or in simultaneous combinations while correction factors and offsets are determined. The correction factors and offsets may then be applied to the theoretical equations for combining the gauge outputs to obtain Fx, Fy, and reject Fz, Tx, and Ty. Such a calibration process may be done either by directly calculating the correction factors and offsets or by a learning system such as a neural network embedded in the calibration fixture or in the instrument itself. In any calibration method, the calibration data may be programmed into an integrated circuit embedded in the instrument so that the surgical system using the individual instrument can correctly identify and apply its correction factors and offsets while the instrument is in use.
Advantageously, force sensor apparatus 100 is adaptable to the size and shape constraints of various robotic surgical instruments and is suitable for a variety of instruments. Furthermore, force sensor apparatus 100 may be manufactured, tested, and calibrated as a separate modular component and brought together with other components in the conventional instrument assembly process. Also, the sensor may be a slip-on module with suitable electrical or optical contacts that mate with contacts on the instrument shaft permitting a higher value sensor to be used with lower cost instruments of limited cycle life. In addition, the sensor structural member 106 may be comprised of an advantageous material, which may be the same or a different material than the instrument shaft 110 whose design considerations may compromise the properties required for the sensor.
Referring now to
Force sensor apparatus 200 includes four ribs 202 paired at skewed angles (e.g., 70 degrees and 110 degrees or other pairs of supplementary angles) about a z-axis centerline of a tube 206. Ribs 202 extend radially within tube 206 from the z-axis centerline passage of the tube providing through passages 208a and 208b. In this embodiment, force sensor apparatus 200 also includes a central through passage 208c along a lengthwise axis z of tube 206 in accordance with another embodiment. The through passages may be used for passage of actuation linkages (e.g., cables, wires, tubes, and/or rods) and/or cleaning liquids. In this embodiment, the combined stiffness of tube 206 and ribs 202 allow for a strong strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a thermal path between opposing strain gauges while also providing passage for actuation linkages and/or liquids.
Similar to the embodiments disclosed above, a number of strain gauges 204 are oriented parallel to the lengthwise z-axis of the tube and mounted to an outer rib surface 202a. The strain gauges may be inlaid into grooves or a depressed area 217 on the outer rib surface 202a in one example. Wire leads or optic fibers 216 (e.g., shielded twisted pairs, coax, or fiber) coupled to the strain gauges 204 may be inlaid into grooves 217 on the outer rib surface 202a of tube 206. The wire leads or optic fibers 216 may then be embedded in an adhesive potting compound such as epoxy.
Referring now to
In one example, tube 106 and ribs 102 may be made of similar materials as described above with respect to other embodiments. Advantageously, the present invention allows for a low bending moment of inertia to increase a strain signal to noise signal ratio consistent with a materials choice and rib design meeting the need for high thermal diffusivity and a direct thermal path between opposing strain gauges while also providing passage for actuation cables, wires, tubes, rods, and/or cleaning liquids.
Force sensor apparatus 100 has been described above with respect to
Flush manifold 300 is positioned between instrument shaft 110 and force sensor apparatus 100 or inside of shaft 110 and is operably coupled to a central flush supply tube 310 running through the center of shaft 110, which creates an annulus 330 (
Flush manifold 300 directs cleaning liquid from flush supply tube 310 into the through passages of the force sensor apparatus 100, as shown by arrows 302 (
A plenum zone 320 (
Referring now to
First manifold 300a includes a tapered opening 301 for receiving a mating tapered protrusion 303 of second manifold 300b. First manifold 300a further includes an inlet 305 for receiving flush supply tube 310 and two outlets 307a that split the incoming cleaning liquid from flush supply tube 310. In one embodiment, inlet 305 may include a female conical guide surface that allows for operable coupling to flush supply tube 310 in a blind manner with minimal flow loss. Outlets 307a are operably coupled to outlets 307b of second manifold 300b when the first and second manifolds are operably mated. Outlets 307b are operably coupled to through passages 108b of the sensor apparatus 100, thus allowing cleaning liquid to pass from flush supply tube 310 to through passages 108b in a balanced manner.
In one embodiment, optic fibers 116 run through flush supply tube 310 and then between first manifold 300a and second manifold 300b to respective grooves 317 on the outer surface of second manifold 300b. Grooves 317 align with grooves 117 on tube 106 of sensor apparatus 100. The layout of two optic fibers 116 are illustrated in
Referring now to
In one embodiment, as shown in
It is noted that various cleaning liquids may be used within the scope of the present invention, such as recommended dilutions of Alconox Tergazyme or Ruhof Endozime.
Similar to the embodiments described above, the housing operably interfaces with a robotic manipulator arm, in one embodiment via a sterile adaptor interface. Applicable housings, sterile adaptor interfaces, and manipulator arms are disclosed in U.S. patent application Ser. No. 11/314,040 filed on Dec. 20, 2005, and U.S. patent application Ser. No. 11/613,800 filed on Dec. 20, 2006, the full disclosures of which are incorporated by reference herein for all purposes. Examples of applicable shafts, end portions, housings, sterile adaptors, and manipulator arms are manufactured by Intuitive Surgical, Inc. of Sunnyvale, Calif.
As previously noted above, sensor apparatus 100 can be exchanged with sensor apparatus 200 but in this case the manifold is replaced by a similar adapter that separates the optic fibers from the liquid flow so that the fibers may pass outward to grooves 217 of force sensor 200. Cleaning liquid from flush supply tube 310 may then flow through central through passage 208c (
Advantageously, the combination of the flush tube, flow directing manifold, and sensor through passages insures that cleaning liquid reaches the distal end of the force sensor apparatus and the proximal face of wrist 121 and returns by a different path providing for removal of liquids and debris that may have entered the sensor or instrument tube during surgery and which would otherwise compromise the cleanliness and sterilization of the instrument needed prior to use. In particular, the present invention allows for cleaning of contaminant entry and accumulation areas and the linkages of the instrument.
It is noted that various surgical instruments may be improved in accordance with the present invention, including but not limited to tools with and without end effectors, such as jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, clip appliers, cutting blades, hooks, sealers, lasers, irrigators, catheters, and suction orifices. Alternatively, the surgical instrument may comprise an electrosurgical probe for ablating, resecting, cutting or coagulating tissue. Such surgical instruments are manufactured by Intuitive Surgical, Inc. of Sunnyvale, Calif.
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present invention. For example, the number of strain gauges and their configuration may vary but must allow for applicable transverse force determinations and wrist joint friction and actuator cable tension noise rejection. Similarly, the present invention is not limited to rib orientation or a certain number of ribs, sets of ribs, or strain gauges, and the number of ribs and angle between ribs may vary from those described above. Furthermore, the embodiments of force sensor apparatus described above may be integrated with a surgical instrument upon manufacture as a non-separable part of the shaft. Accordingly, the scope of the invention is defined by the following claims.
This application is continuation of U.S. patent application Ser. No. 15/859,923 (filed Jan. 2, 2018), which is continuation of U.S. patent application Ser. No. 14/848,566 (filed Sep. 9, 2015), now U.S. Pat. No. 9,883,920, which is a continuation of U.S. patent application Ser. No. 13/897,700 (filed May 20, 2013), now U.S. Pat. No. 9,192,448 B2, which is a divisional of U.S. patent application Ser. No. 12/468,618 (filed May 19, 2009), now U.S. Pat. No. 8,465,474 B2, each of which is incorporated herein by reference. This application is related to U.S. Provisional Application No. 60/755,108 filed Dec. 30, 2005, U.S. Provisional Application 60/755,157 filed Dec. 30, 2005, U.S. patent application Ser. No. 11/958,772 filed Dec. 18, 2007, U.S. application Ser. No. 11/553,303 filed Oct. 26, 2006, U.S. patent application Ser. No. 11/537,241 filed Sep. 29, 2006, U.S. patent application Ser. No. 11/093,372 filed Mar. 30, 2005, and U.S. Pat. Nos. 6,936,042, 6,902,560, 6,879,880, 6,866,671, 6,817,974, 6,783,524, 6,676,684, 6,371,952, 6,331,181, and 5,807,377, the full disclosures of which are incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4525220 | Sasa et al. | Jun 1985 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5795404 | Murphy | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
6197017 | Brock et al. | Mar 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6574355 | Green | Jun 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6676684 | Morley et al. | Jan 2004 | B1 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6994708 | Manzo et al. | Feb 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7935130 | Williams | May 2011 | B2 |
8444631 | Yeung et al. | May 2013 | B2 |
8465474 | Blumenkranz | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8551115 | Steger et al. | Oct 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9192448 | Blumenkranz | Nov 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9707684 | Ruiz Morales et al. | Jul 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9883920 | Blumenkranz et al. | Feb 2018 | B2 |
9952107 | Blumenkranz et al. | Apr 2018 | B2 |
10085809 | Blumenkranz et al. | Oct 2018 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10383700 | Blumenkranz | Aug 2019 | B2 |
20050065403 | Takase | Mar 2005 | A1 |
20050191208 | Lin | Sep 2005 | A1 |
20050200324 | Guthart et al. | Sep 2005 | A1 |
20060161138 | Orban, III | Jul 2006 | A1 |
20070100206 | Lin | May 2007 | A1 |
20070137371 | Devengenzo et al. | Jun 2007 | A1 |
20070151390 | Blumenkranz et al. | Jul 2007 | A1 |
20070151391 | Larkin et al. | Jul 2007 | A1 |
20080221391 | Weitzner et al. | Sep 2008 | A1 |
20080271270 | Sawada | Nov 2008 | A1 |
20090031842 | Kawai et al. | Feb 2009 | A1 |
20090113644 | Heck | May 2009 | A1 |
20090157092 | Blumenkranz et al. | Jun 2009 | A1 |
20100250000 | Blumenkranz et al. | Sep 2010 | A1 |
20110071543 | Prisco et al. | Mar 2011 | A1 |
20110282356 | Solomon et al. | Nov 2011 | A1 |
20130291654 | Blumenkranz et al. | Nov 2013 | A1 |
20140257333 | Blumenkranz | Sep 2014 | A1 |
20180116760 | Blumenkranz | May 2018 | A1 |
20190069966 | Petersen et al. | Mar 2019 | A1 |
20190175188 | PV R | Jun 2019 | A1 |
20200278265 | Suresh | Sep 2020 | A1 |
20210401524 | Suresh et al. | Dec 2021 | A1 |
20220003615 | Kadokura | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
1147411 | Apr 1963 | DE |
0590713 | Apr 1994 | EP |
WO-2007120329 | Oct 2007 | WO |
WO-2020102776 | May 2020 | WO |
WO-2020102778 | May 2020 | WO |
WO-2021055276 | Mar 2021 | WO |
WO-2021076765 | Apr 2021 | WO |
WO-2022056213 | Mar 2022 | WO |
Entry |
---|
U.S. Appl. No. 60/755,108, filed Dec. 30, 2005, Blumenkranz, Stephen J. et al. |
U.S. Appl. No. 60/755,157, filed Dec. 30, 2005, Larkin, David Q. |
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. |
Number | Date | Country | |
---|---|---|---|
20190343595 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12468618 | May 2009 | US |
Child | 13897700 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15859923 | Jan 2018 | US |
Child | 16522628 | US | |
Parent | 14848566 | Sep 2015 | US |
Child | 15859923 | US | |
Parent | 13897700 | May 2013 | US |
Child | 14848566 | US |