The present invention relates to the cleaning and recovery of metal-containing residues from the surface of processing chamber components.
In the processing of substrates, such as semiconductor wafers and displays, a substrate is placed in a process chamber and exposed to an energized gas to deposit or etch material on the substrate. During such processing, process residues are generated and deposited on internal surfaces in the chamber. For example, in sputter deposition processes, material sputtered from a target for deposition on a substrate also deposits on other component surfaces in the chamber, such as on deposition rings, cover ring, shadow rings, inner shield, upper shield, wall liners, and focus rings. In subsequent process cycles, the deposited process residues can “flake off” from the chamber component surfaces to fall upon and contaminate the substrate. Consequently, the deposited process residues are periodically cleaned from the chamber surfaces.
However, it is difficult to clean process deposits that contain metals such as tantalum from chamber components, especially when the components are made of metal-containing materials. When tantalum is sputter deposited onto the substrate, some of the sputtered tantalum deposits upon the adjacent chamber component surfaces. These tantalum process deposits are difficult to remove because cleaning solutions suitable for their removal are also frequently reactive with other metals, such as titanium, that are used to form chamber components. Cleaning of tantalum-containing materials from such surfaces can erode the components and require their frequent replacement. The erosion of metal surfaces can be especially problematic when cleaning textured metal surfaces, such as surfaces formed by a “Lavacoat™” process. These surfaces have crevices and pores in which tantalum-containing process residues get lodged, making it difficult to remove these residues with conventional cleaning process.
When conventional cleaning methods are used to clean tantalum, an amount of the tantalum-containing material generated in these process is not recovered. It is estimated that in many tantalum deposition processes, only about one-half of the sputtered tantalum material is deposited on the substrate, the rest being deposited on component surfaces within the chamber. Conventional cleaning methods frequently dispose of the used cleaning solutions along with the dissolved tantalum material. Thus, a large amount of tantalum material is wasted after it is cleaned off the chamber surfaces, resulting in an estimated loss of about 30,000 pounds of tantalum per year. The disposal of tantalum is environmentally undesirable and costly because high purity tantalum is expensive and fresh cleaning solution has to be acquired.
In one version, it is desirable to be able to use process chamber components having copper surfaces during the processing of substrates. Copper surfaces exhibit fewer thermal gradients, and can thus minimize stresses between the copper surfaces and any residues deposited on the surfaces. However, it can be difficult to implement the use of components having copper surfaces because it can be very difficult to clean process residues from such surfaces. This is in part because the copper surfaces are typically very easily etched and eroded by the same cleaning solutions that are capable of etching and removing tantalum-containing deposits from the component surfaces. Also, copper surfaces can be undesirably eroded even by cleaning solutions that do not otherwise excessively erode other metal surfaces, such as aluminum or stainless steel surfaces.
Thus, it is desirable to have a method of cleaning metal-containing residues and deposits such as tantalum-containing deposits from surfaces of components without excessively eroding the surfaces. It is further desirable to have a method of cleaning tantalum-containing deposits from surfaces of components comprising copper. It is also desirable to reduce the waste of the tantalum materials cleaned off the chamber surfaces. It is further desirable to have a method of recovering cleaning solutions which are used to clean the tantalum-containing residues.
In one version, a method of cleaning tantalum-containing deposits from a copper surface of a process chamber component involves immersing the surface of the component in a cleaning solution having a molar ratio of HF and an oxidizing agent of at least about 6:1. The cleaning solution removes the tantalum-containing deposits from the surface substantially without eroding the surface.
In another version, a method of cleaning tantalum-containing deposits from a copper surface of a process chamber component involves immersing the surface of the component in a cleaning solution having HF and an oxidizing agent to remove the tantalum-containing deposits substantially without eroding the surface. The oxidizing agent includes at least one of H2O2, H2SO3 and O3.
These features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, which illustrate examples of the invention. However, it is to be understood that each of the features can be used in the invention in general, not merely in the context of the particular drawings, and the invention includes any combination of these features, where:
a is a flow chart showing an embodiment of a method for recovering tantalum-containing compounds;
b is a flow chart showing another embodiment of a method for recovering tantalum-containing compounds;
a is a graph of the percent weight loss of copper for increasing cleaning time resulting from the cleaning of copper surface with a cleaning solution comprising HF alone, and also with an improved cleaning solution having a pre-selected ratio of HF to HNO3; and
b is a graph of the percent weight loss of tantalum for increasing cleaning time resulting from the cleaning of tantalum surfaces with the cleaning solutions in
A process chamber component 22 having a surface 20 is cleaned to remove metal-containing process deposits 24, such as tantalum-containing deposits 24, that are generated during processing of a substrate 104, as shown for example in
Referring to
A cleaning step to remove process deposits 24 can comprise exposing the surface 20 of the component 22 to an acidic cleaning solution that is capable of at least partially removing the process deposits 24 from the surface 20 of the component 22. The acidic solution comprises dissolved acidic species that are capable of reacting with and removing process deposits 24 from the surface 20 of the component 22, for example, by reacting with the process deposits 24 to form species that readily dissolve in the acidic solution. However, the acidic solution does not excessively corrode or otherwise damage the exposed portions of the surface 20 of the component 22 after the process deposits 24 are removed from that portion of the component 22. The surface 20 can be exposed to the acidic solution by dipping, immersing or otherwise contacting portions of the surface 20 with the acidic solution. The surface 20 of the coated component 22 may be immersed in the acidic solution for a duration of from about 3 to about 15 minutes, such as about 8 minutes, but may also be immersed for other times depending on the composition and thickness of the process deposit materials.
The composition of the acidic cleaning solution is selected according to the composition of the surface 20, and the composition of the process deposits 24. In one version, the acidic solution comprises hydrofluoric acid (HF). Hydrofluoric acid can react with and dissolve impurities that may have accumulated on the surface 20. The acidic solution may additionally or alternatively comprise a non-fluorinated acid, such as nitric acid (HNO3.) The non-fluorinated agent may provide less aggressive chemical species, which allows for the cleaning and preparation of the surface 20 with reduced formation of erosion cracks through the underlying component structure. Additionally, in one version, the acidic solution provided to clean the surface 20 can comprise a suitably small concentration of the acidic species to reduce corrosion of the component 22. A suitable concentration of acidic species may be, for example, less than about 15 M acidic species, such as from about 2 to about 15 M acidic species. For a component 22 comprising a surface 20 comprising aluminum oxide or stainless steel, a suitable acidic solution may comprise from about 2 M to about 8 M HF, such as about 5 M HF, and from about 2 M HNO3 to about 15 M HNO3, such as about 12 M HNO3. For a component 22 comprising a surface 20 comprising titanium, a suitable acidic solution may comprise from about 2 M to about 10 M HNO3. In one version, a suitable acidic solution may comprise 5 M HF and 12 M HNO3.
It has further been discovered that the cleaning method can be improved to clean tantalum-containing residues by immersing the surface 20 in a solution having a ratio of HF to HNO3 that is selected to remove the tantalum-containing deposits substantially without eroding the surface 20, and especially without eroding metal surfaces 20. In particular, it has been discovered that selecting a ratio of HF to HNO3 that is sufficiently low can reduce erosion of the surface 20, and can especially reduce the erosion of metal surfaces 20. A suitable ratio of HF to HNO3 may be a ratio that is less than about 1:8 by weight. For example, the cleaning solution can comprise a ratio of HF to HNO3 of from about 1:8 to about 1:30 by weight, and even from about 1:12 to about 1:20 by weight, such as about 1:15 by weight. A concentration of HF in solution is desirably maintained at less than about 10% by weight, such as from about 2% to about 10% by weight, and even about 5% by weight. A concentration of HNO3 in solution is desirably at least about 60% by weight, such as from about 60% to about 67% by weight, and even about 65% by weight.
The improved cleaning results are believed to be at least in part because the HNO3 reacts with the surfaces 20, such as metal surfaces, to form an oxidized and etch-resistant protective layer on the surface that inhibits etching of the surface 20. At a sufficiently low ratio, the HNO3 and HF work in concert to remove the tantalum-containing deposits substantially without eroding the surface 20. The HF etches away and dissolves the tantalum-containing deposits, and thus exposes portions of the surface 20. The HNO3 also etches tantalum-containing deposits, although at a lower etching rate, and as a strong oxidizer further reacts with and oxidizes the exposed portions of the surface 20 to form the protective etch-resistant layer. Thus, by maintaining a concentration of HNO3 that is sufficiently high with respect to the concentration of HF in the solution, an excess of HNO3 can be used to protect the surface 20 from erosion. Cleaning solutions having the improved ratio of HF to HNO3 that provides a sufficiently high concentration of HNO3 with respect to HF may be especially suitable for cleaning metal surfaces 20 comprising, for example, at least one of titanium, stainless steel, aluminum, and tantalum.
In the cleaning process, fresh HF can be added to the cleaning solution to replenish depleted HF. The HF in solution becomes depleted by, for example, reacting with tantalum-containing deposits 24 to form tantalum fluoride compounds. The HF depletion gradually slows down the removal of the tantalum-containing deposits from the surface 20. Addition of fresh HF allows the tantalum-containing deposits 24 to be removed from the surface 20 at a desired rate.
In one version, the composition of the cleaning solution can be optimized to clean tantalum-containing deposits from metal surfaces 20 comprising copper. In particular, a cleaning solution comprising hydrofluoric acid (HF) and an oxidizing agent in a pre-selected molar ratio has been discovered to provide improved cleaning of the tantalum-containing deposits 24 without excessively etching the copper surface 20, and even substantially without eroding the copper surface 20. In one version, the cleaning solution comprises a molar ratio of HF to an oxidizing agent of at least about 6:1, such as at least about 9:1, and even at least about 20:1. For example, the cleaning solution may comprise a molar ratio of HF to oxidizing agent of from about 6:1 to about 40:1, such as from about 9:1 to about 20:1. A suitable concentration of HF in the cleaning solution may be at least about 3 M, such as from about 3 M to about 20 M. A suitable concentration of oxidizing agent in the cleaning solution may be less than about 3 M, such as from about 0.1 M to about 3 M, and even less than about 1 M, such as from about 0.1 M to about 1 M. The improved cleaning solution comprising HF and the oxidizing agent in the pre-selected ratio can provide a good etching selectivity of the tantalum-containing deposits 24 to the copper surface 20, such as for example a selectivity of at least about 40:1, and even at least about 50:1.
The oxidizing agent comprises a compound that is capable of oxidizing other compounds and materials, such as the tantalum-containing deposits, and typically comprises an oxygen-containing compound. In one version, a suitable oxidizing agent comprises nitric acid (HNO3). It has further been discovered that good cleaning results can be provided with oxidizing agents comprising at least one of hydrogen peroxide (H2O2), sulfurous acid (H2SO3), and ozone (O3), any one or combination of which can be provided in addition to or as an alternative to HNO3. For example, ozone can be provided in the cleaning solution in the desired ratio by bubbling ozone gas into the cleaning solution.
In one exemplary version of a cleaning solution suitable for cleaning tantalum-containing deposits from a component surface 20 comprising copper, the oxidizing agent comprises HNO3. For example, the cleaning solution may be formed by combining (i) about 45% by volume of a stock solution of HF having a concentration of about 49% HF by weight, with (ii) from about 5% to about 10% by volume of a stock solution of HNO3 having a concentration of about 70% HNO3 by weight. The remainder of the solution comprises water, which is preferably de-ionized. Such a solution comprises a molar ratio of HF to HNO3 of from about 9:1, for the 10% by volume HNO3 solution, to about 19:1, for the 5% by volume HNO3 solution.
The discovery that a solution comprising HF and an oxidizing agent in a pre-selected ratio could clean tantalum-containing deposits 24 without excessively etching copper surfaces 20 was unexpected, because copper is typically very susceptible to chemical attack by oxidizing agents such as HNO3, and thus can be easily eroded by such agents. Also, tantalum-containing deposits 24 are not typically etched at a desirably high rate by solutions comprising HF alone. However, it was observed that by combining HF and an oxidizing agent in the pre-selected molar ratio, a synergistic effect could be obtained by which improved cleaning of the tantalum-containing deposits 24 was obtained. Without limiting the discovery to any specific chemical mechanism, it is postulated that the oxidizing agent may act to speed up the rate of cleaning achieved by HF in solution to etch the tantalum-containing deposits from the surface 20 at a high etching rate. However, the concentration of oxidizing agent is desirably maintained low with respect to the HF concentration, as excessive amounts of the oxidizing agent can otherwise result in rapid etching and erosion of copper surfaces 20. The improved copper cleaning ability of the HF and oxidizing agent cleaning solution is further a surprise, as surfaces 20 of components comprising metals other than copper, such as for example aluminum or stainless steel surfaces, can often require cleaning solutions having a substantially lower molar ratio of HF to HNO3. Thus, the cleaning of copper surfaces 20 with the improved cleaning solution having HF and the oxidizing agent in the pre-selected ratio provides unexpectedly good cleaning results, and provides for the efficient use of components 22 having copper surfaces 20 in substrate processing chambers 106.
b show comparative data for the cleaning of surfaces with different cleaning solutions.
a and 6b demonstrate the unexpectedly good cleaning results obtained with a solution comprising HF and HNO3 having the pre-selected ratio. In
a shows the weight percent loss of copper resulting from the cleaning of copper surfaces 20 with the comparative cleaning solution comprising HF and the improved cleaning solution comprising both HF and HNO3 in the molar ratio of about 20:1. The comparative solution yielded little or no erosion of the copper surface. While the improved solution comprising both HF and HNO3 did result in minor erosion of the copper surface, the erosion occurred at a much lower rate and with a much lower copper percent weight loss than the comparative cleaning solutions represented by lines 200 and 202 in
b demonstrates the results from the exposure of tantalum surfaces to cleaning solutions having the same composition as those in
The results shown in
In yet another version, tantalum-containing deposits 24 can be cleaned from a surface 20 by immersing the surface 20 in a cleaning solution comprising KOH and H2O2. The cleaning solution has a ratio of KOH to H2O2 that is selected to remove the tantalum-containing deposits substantially without eroding the surface 20, and in particular substantially without eroding metal surfaces. A suitable ratio of KOH to H2O2 is from about 6:1 to about 10:1 by mole, such as about 7.5:1. A ratio that is lower or higher than the desired ratio range can reduce the selectivity towards the tantalum-containing deposits, and result in etching and erosion of the surface 20, respectively. A suitable concentration of KOH in solution is, for example, from about 5 M to about 12 M, and even from about 5 M to about 10 M, such as about 7 M. A suitable concentration of H2O2 in solution is, for example, from about 0.5 M to about 2.5 M, and even from about 0.5 M to about 2 M, such as about 1 M. Also, it has been discovered that maintaining a proper temperature of the cleaning solution comprising KOH and H2O2 can improve the removal of tantalum-containing deposits 24 by increasing the deposit removal rate. A suitable temperature of the cleaning solution may be at least about 70° C., such as from about 80 to about 95° C., and even at least about 90° C.
In yet another version of the cleaning method, a metal surface 20 is cleaned in an electrochemical etching process. In this process, the surface 20 of the component 22 serves as an anode and is connected to a positive terminal 31 of a voltage source 30, as shown for example in
These cleaning methods may be particularly suitable for surfaces 20 that are textured, as shown for example in
The “Lavacoat™” textured metal surface 20 is formed by generating an electromagnetic energy beam and directing the beam onto the surface 20 of the component 22. The electromagnetic energy beam is preferably an electron beam, but can also comprise protons, neutrons and X-rays and the like. The electron beam is typically focused on a region of the surface 20 for a period of time, during which time the beam interacts with the surface 20 to form features on the surface. It is believed that the beam forms the features by rapidly heating the region of the surface 20, in some cases to a melting temperature of the surface material. The rapid heating causes some of the surface material to be ejected outwards, which forms depressions 23 in the regions the material was ejected from, and protuberances 25 in areas where the ejected material re-deposits. After the desired features in the region are formed, the beam is scanned to a different region of the component surface 20 to form features in the new region. The final surface 20 can comprise a honeycomb-like structure of depressions 23 and protuberances 25 formed in the surface 20. The features formed by this method are typically macroscopically sized, and the depressions can range in diameter from about 0.1 mm to about 3.5 mm, such as from about 0.8 to about 1.0 mm in diameter. The “Lavacoat™” textured surface 20 has an overall surface roughness average of from about 2500 microinches (63.5 micrometers) to about 4000 microinches (101.6 micrometers), the roughness average of the surface 20 being defined as the mean of the absolute values of the displacements from the mean line of the features along the surface 20.
The instant cleaning methods provide surprisingly good results in cleaning such textured surfaces substantially without eroding the surfaces 20. For example, for a textured metal surface 20 formed of titanium, the cleaning methods described above may clean tantalum-containing residues from the surface 20 while eroding less than about 1 mg/cm2 per hour of titanium from the metal surface 20. In contrast, conventional tantalum cleaning processes can erode more than about 5 mg/cm2 of titanium from a titanium surface of a component 22. As another example, a solution of KOH and H2O2 having the selected molar ratio of from about 6:1 to about 10:1 and a temperature of from about 80 to about 95° C., can clean tantalum-containing deposits at a rate that is about 20 times faster than the rate at which a titanium component surface 20 is eroded, allowing the surface 20 to be cleaned substantially without excessive erosion.
Once cleaning of the component surface 20 has been completed, the cleaning solution can be treated to recover metal-containing materials, such as the tantalum-containing materials, which may be at least one of tantalum metal and tantalum oxide. Recovering tantalum-containing materials from the cleaning solution reduces the pollution of the environment by tantalum waste, and can also reduce the costs associated with proper disposal of waste tantalum. The recovered tantalum-containing materials can be re-used in substrate processing, for example the recovered tantalum materials can be used to form a tantalum-containing target for physical vapor deposition processes. In addition to tantalum recovery, the used cleaning solution can be treated to allow for re-use of the cleaning solution. For example, the cleaning solution can be treated to recover a re-useable solution of HF and HNO3.
A flow chart showing one version of a method of cleaning a component and recovering tantalum-containing materials is shown in
To separate the tantalum-containing compounds from the other metal-containing compounds, a metal-selective acid solution is added to the mixed solids. The metal-selective acid solution comprises a metal-selective acid that dissolves metal-containing compounds in the acid solution substantially without dissolving the tantalum-containing compounds. A suitable metal-selective acid can comprise, for example, HCl. The solid tantalum-containing compounds are separated from the acid solution having the dissolved metal-containing compounds by, for example, filtering the tantalum-containing solids, or by decanting the acid solution from the tantalum-containing solids. The tantalum-containing compound can then be converted into tantalum oxide, for example by heating.
Yet another method of cleaning a component and recovering tantalum-containing materials is shown in the flow chart of
After the extraction process, the tantalum-containing compounds in the organic solution can be pyrohydrolytically decomposed. In the pyrohydrolytic decomposition, the tantalum-containing compounds are heated to a temperature at which the compounds react with oxygen to form tantalum oxide compounds, such as a temperature of at least about 120° C., such as from about 120° C. to about 180° C. The organic solution and any decomposition reaction products can be evaporated from the tantalum oxide compounds during the pyrohydrolytic decomposition process. Alternatively, the organic solution can be removed from the tantalum-containing compounds in a separate step. The tantalum oxide compounds can also be further treated to form tantalum metal, for example by heating the tantalum oxide compounds in a furnace.
An example of a suitable process chamber 106 having a component that is cleaned to remove metal-containing deposits 24 such as tantalum-containing deposits 24 is shown in
The chamber 106 comprises a substrate support 114 to support the substrate in the sputter deposition chamber 106. The substrate support 114 may be electrically floating or may comprise an electrode 170 that is biased by a power supply 172, such as an RF power supply. The substrate support 114 can also comprise a moveable shutter disk 133 that can protect the upper surface 134 of the support 114 when the substrate 104 is not present. In operation, the substrate 104 is introduced into the chamber 106 through a substrate loading inlet (not shown) in a sidewall 164 of the chamber 106 and placed on the support 114. The support 114 can be lifted or lowered by support lift bellows and a lift finger assembly (not shown) can be used to lift and lower the substrate onto the support 114 during transport of the substrate 104 into and out of the chamber 106.
The support 114 may also comprise one or more rings, such as a cover ring 126 and a deposition ring 128, that cover at least a portion of the upper surface 134 of the support 114 to inhibit erosion of the support 114. In one version, the deposition ring 128 at least partially surrounds the substrate 104 to protect portions of the support 114 not covered by the substrate 104. The cover ring 126 encircles and covers at least a portion of the deposition ring 128, and reduces the deposition of particles onto both the deposition ring 128 and the underlying support 114.
A process gas, such as a sputtering gas, is introduced into the chamber 106 through a gas delivery system 112 that includes a process gas supply comprising one or more gas sources 174 that each feed a conduit 176 having a gas flow control valve 178, such as a mass flow controller, to pass a set flow rate of the gas therethrough. The conduits 176 can feed the gases to a mixing manifold (not shown) in which the gases are mixed to from a desired process gas composition. The mixing manifold feeds a gas distributor 180 having one or more gas outlets 182 in the chamber 106. The process gas may comprise a non-reactive gas, such as argon or xenon, which is capable of energetically impinging upon and sputtering material from a target. The process gas may also comprise a reactive gas, such as one or more of an oxygen-containing gas and a nitrogen-containing gas, that are capable of reacting with the sputtered material to form a layer on the substrate 104. Spent process gas and byproducts are exhausted from the chamber 106 through an exhaust 122 which includes one or more exhaust ports 184 that receive spent process gas and pass the spent gas to an exhaust conduit 186 in which there is a throttle valve 188 to control the pressure of the gas in the chamber 106. The exhaust conduit 186 feeds one or more exhaust pumps 190. Typically, the pressure of the sputtering gas in the chamber 106 is set to sub-atmospheric levels.
The sputtering chamber 106 further comprises a sputtering target 124 facing a surface 105 of the substrate 104, and comprising material to be sputtered onto the substrate 104, such as for example at least one of tantalum and tantalum nitride. The target 124 is electrically isolated from the chamber 106 by an annular insulator ring 132, and is connected to a power supply 192. The sputtering chamber 106 also has a shield 120 to protect a wall 118 of the chamber 106 from sputtered material. The shield 120 can comprise a wall-like cylindrical shape having upper and lower shield sections 120a, 120b that shield the upper and lower regions of the chamber 106. In the version shown in
The chamber 106 is controlled by a controller 194 that comprises program code having instruction sets to operate components of the chamber 106 to process substrates 104 in the chamber 106. For example, the controller 194 can comprise a substrate positioning instruction set to operate one or more of the substrate support 114 and substrate transport to position a substrate 104 in the chamber 106; a gas flow control instruction set to operate the flow control valves 178 to set a flow of sputtering gas to the chamber 106; a gas pressure control instruction set to operate the exhaust throttle valve 188 to maintain a pressure in the chamber 106; a gas energizer control instruction set to operate the gas energizer 116 to set a gas energizing power level; a temperature control instruction set to control temperatures in the chamber 106; and a process monitoring instruction set to monitor the process in the chamber 106.
Although exemplary embodiments of the present invention are shown and described, those of ordinary skill in the art may devise other embodiments which incorporate the present invention, and which are also within the scope of the present invention. For example, other chamber components than the exemplary components described herein can also be cleaned. Additional cleaning and recovery steps other than those described could also be performed. Furthermore, relative or positional terms shown with respect to the exemplary embodiments are interchangeable. Therefore, the appended claims should not be limited to the descriptions of the preferred versions, materials, or spatial arrangements described herein to illustrate the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/742,604, entitled “Cleaning Chamber Surfaces to Recover Metal-Containing Compounds” to Brueckner et al, assigned to Applied Materials, Inc. and filed on Dec. 19, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/304,535, entitled “Method of Cleaning a Coated Process Chamber Component” to Wang et al, assigned to Applied Materials, Inc. and filed on Nov. 25, 2002, both of which are herein incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 10742604 | Dec 2003 | US |
Child | 10846894 | May 2004 | US |
Parent | 10304535 | Nov 2002 | US |
Child | 10742604 | Dec 2003 | US |