The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. However, these advances have increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed.
In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. Such scaling-down also produces a relatively high power dissipation value, which may be addressed by using low power dissipation devices such as complementary metal-oxide-semiconductor (CMOS) devices. CMOS devices have typically a transistor established by forming a gate electrode on a silicon substrate, and then forming a source region and a drain region side by side in the substrate beneath the gate electrode by implanting appropriate dopant materials into the areas of the substrate that are to become the source and drain regions. The gate is insulated from the source and drain regions by a thin gate oxide layer. This generally-described structure cooperates to function as a transistor.
To facilitate cooperation between the gate and the source and drain regions, most of the source and drain regions do not lie directly under the gate. However, a small part of the source region does overlap the gate, and likewise a small part of the drain region extends directly under the gate. These small parts of the source and drain regions that overlap the gate are respectively referred to as the lightly doped source/drain (LDD) regions.
While the LDD regions enhance the coupling between the gate and the channel that is established by the source and drain regions, the so-called “fringe” capacitive coupling is also induced between the gate and the LDD regions. Such fringe coupling degrades the performance of the transistor in alternating current (AC) applications. The importance of this consideration grows as the size of the transistors is reduced by ULSI technology, because while the overall dimensions of the transistors are smaller, the amount by which the LDD regions overlap the gate have heretofore remained unchanged. Accordingly, the undesirable effects of fringe capacitive coupling between the gate and the LDD regions are magnified in very small transistors.
One approach to the above-noted problem would be to reduce the dielectric constant of gate spacers, hence, reduce the capacitive coupling between the LDD regions and the gate.
Aspects of the present disclosure are best understood from the following detailed description when read in association with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features in the drawings are not drawn to scale. In fact, the dimensions of illustrated features may be arbitrarily increased or decreased for clarity of discussion.
It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Referring to
The gate stack 12, comprising a gate dielectric 14 including an interfacial layer/high-k dielectric layer (not shown) formed over the substrate 2. The interfacial layer may include a silicon oxide layer having a thickness ranging from about 5 to about 10 angstrom (A) formed on the substrate 2. The high-k dielectric layer may be formed on the interfacial layer by atomic layer deposition (ALD) or other suitable technique. The high-k dielectric layer may include a thickness ranging from about 10 to about 40 angstrom (A). The high-k dielectric layer may include hafnium oxide (HfO2). Alternatively, the high-k dielectric layer may optionally include other high-k dielectrics such as hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), and combinations thereof.
The gate stack 12 also comprises a gate electrode 16 formed over the gate dielectric 14. The gate electrode 16 may include doped polysilicon, metal, metal silicide, metal nitride, and combinations thereof. The metal gate electrode may include a thickness ranging from about 10 to about 200 angstrom (A). The gate electrode 16 may be formed with metal by various deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD or sputtering), plating, or other suitable technique. The metal gate electrode may include TiN, TaN, ZrSi2, MoSi2, TaSi2, NiSi2, WN, or other suitable material.
As is known in the art, the gate dielectric 14 and the gate electrode 16 may be patterned to form the gate stack 12. The formation process may further include a hard mask (not shown) formed over the gate electrode 16. The hard mask may be formed by a deposition process or other suitable processes. The hard mask may include silicon nitride, silicon oxynitride, silicon carbide, or other suitable material. A patterned photoresist layer (not shown) may be formed by a photolithography process for gate patterning. The photolithography process may include spin coating, soft-baking, exposure, post-baking, developing, rinsing, drying, and other suitable processes. Alternatively, the patterning may be performed by immersion lithography, electron beam lithography, or other suitable processes. A first etch process may be performed to pattern the hard mask, and the patterned hard mask may be used as a mask for etching (a second etch process) the gate dielectric 14 and the gate electrode 16 to form the gate stack 12. The second etch process may include a dry or wet etch process. Also, the second etch process may have a high selectivity such that the etch process may stop at the substrate 2. The patterned photoresist layer and hard mask may be removed by stripping or other suitable processes.
Still referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments disclosed herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
The present application claims priority of U.S. Provisional Patent Application Ser. No. 61/232,216, filed on Aug. 7, 2009, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6720213 | Gambino et al. | Apr 2004 | B1 |
7439124 | Fukai et al. | Oct 2008 | B2 |
7868386 | Thei et al. | Jan 2011 | B2 |
20070090462 | Wu et al. | Apr 2007 | A1 |
20080001191 | Pruefer et al. | Jan 2008 | A1 |
20080093666 | Okayama | Apr 2008 | A1 |
20110175148 | Yan et al. | Jul 2011 | A1 |
20110316089 | Pacheco Rotondaro et al. | Dec 2011 | A1 |
20120025329 | Wu et al. | Feb 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20110031538 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61232216 | Aug 2009 | US |