Circulators and isolators are passive electronic devices that are used in high-frequency (e.g., microwave) radio frequency systems to permit a signal to pass in one direction while providing high isolation to reflected energy in the reverse direction. Circulators and isolators commonly include a disc-shaped assembly comprising a disc-shaped ferrite or other ferromagnetic ceramic element, disposed concentrically within an annular dielectric element. One of the most commonly used ferrite materials is yttrium-iron-garnet (YIG), due to its low-loss microwave characteristics. The annular dielectric element is similarly commonly made of ceramic material.
A conventional process for making the above-referenced composite disc assemblies is illustrated by the flow diagram of
At step 26, epoxy adhesive is applied to the one or both of the rod and cylinder. At step 28, the rod is inserted inside the cylinder to form a rod-and-cylinder assembly, and the epoxy is allowed to cure (harden), as indicated by step 30. At step 32, the outside surface of the rod-and-cylinder assembly is again machined to a precise OD. Lastly, at step 34, the rod-and-cylinder assembly is sliced into a number of disc assemblies. Each disc assembly thus comprises a magnetic ceramic disc disposed concentrically within a dielectric ceramic ring. Each disc assembly is typically several millimeters in thickness.
The time involved in machining the inside surface of the cylinder to promote adhesion, applying epoxy to the parts, carefully handling and assembling the epoxy-laden parts, and curing the epoxy, contributes to inefficiency in the process. It would be desirable to provide a more efficient method for making composite magnetic-dielectric disc assemblies.
In accordance with exemplary embodiments of the invention, a method for making a composite magnetic-dielectric disc assembly comprises forming a dielectric ceramic cylinder, forming a magnetic ceramic rod, assembling the magnetic ceramic rod coaxially inside the dielectric ceramic cylinder to form a rod-and-cylinder assembly, firing the rod-and-cylinder assembly, slicing the rod-and-cylinder assembly to form a plurality of composite magnetic-dielectric disc-shaped assemblies. The magnetic-dielectric disc assemblies can be used in manufacturing, for example, circulators, isolators or similar electronic components. Accordingly, the method for making disc assemblies can be included as part of a method for making such electronic components.
Other systems, methods, features, and advantages of the invention will be or become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The invention can be better understood with reference to the following figures. The components within the figures are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
In accordance with an exemplary embodiment of the invention, a process for making composite magnetic-dielectric disc assemblies is illustrated by the flow diagram of
Returning to
At step 46, the outside surface of rod 38 is machined to ensure it is of an outside diameter (OD) that is less than the inside diameter (ID) of cylinder 36. At step 48, (the now pre-fired) rod 38 is received in (the unfired or “green”) cylinder 36 to form the rod-and-cylinder assembly shown in
At step 50, cylinder 36 and rod 38 are co-fired. That is, the rod-and-cylinder assembly (
Lastly, at step 54, the rod-and-cylinder assembly is sliced into composite magnetic-dielectric disc assemblies 56, shown in
Rod 38 is made of yttrium-iron-garnet fired at or above about 1400 degrees C. Suitable material of this type is commercially available from a number of sources, including Trans-Tech, Inc. (a subsidiary of Skyworks Solutions, Inc.) of Adamstown, Md. Cylinder 36 is made of a ceramic material having a composition of MgO—CaO—ZnO—Al2O3-TiO2 co-fired with rod 38 at a temperature of about 1310 degrees C.
Rod 38 is made of calcium and vanadium-doped yttrium-iron-garnet fired at a temperature at or above 1350 degrees C. Suitable material of this type is commercially available from a number of sources, including Trans-Tech, Inc. (a subsidiary of Skyworks Solutions, Inc.) of Adamstown, Md. Cylinder 36 is made of a ceramic material having a composition of MgO—CaO—ZnO—Al2O3-TiO2 co-fired with rod 38 at a temperature of about 1310 degrees C.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. Accordingly, the invention is not to be restricted except in light of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6504444 | Furuya et al. | Jan 2003 | B1 |
6844789 | Lombardi et al. | Jan 2005 | B2 |
6938443 | Fabian | Sep 2005 | B1 |
Number | Date | Country |
---|---|---|
2235339 | Feb 1991 | GB |
06112028 | Apr 1994 | JP |
08078284 | Mar 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20090243163 A1 | Oct 2009 | US |