The present invention relates to a coil component and, more particularly, to a chip-type coil component having a structure in which a plurality of conductor layers and a plurality of interlayer insulating layers are alternately laminated.
As a chip-type coil component having a structure in which a plurality of conductor layers and a plurality of interlayer insulating layers are alternately laminated, a coil component described in JP 2017-76735 A is known. Unlike common laminated coil components, the coil component described in JP 2017-76735 A is vertically mounted such that the lamination direction thereof is parallel to a printed circuit board. With this configuration, even when the diameter of a coil conductor pattern incorporated in the coil component is increased, an increase in a mounting area on the printed circuit board is suppressed, which is advantageous for high-density mounting.
However, it is hard to reduce the height of the coil component described in JP 2017-76735 A, which is vertically mounted. Therefore, the coil component described in JP 2017-76735 A is not always suitable for applications in which the height reduction is prioritized over a reduction in a mounting area on the printed circuit board. In such applications, a coil component of a type that is mounted in a laid-down posture such that the lamination direction thereof is perpendicular to the printed circuit board is advantageous.
The mounting area on the printed circuit board includes an area occupied by a solder for connecting the printed circuit board and a coil component in addition to the area of the coil component itself. Therefore, in applications requiring a reduction in both the mounting area and height, it is necessary to consider the shape and structure of an external terminal provided on the surface of the coil component so as to reduce the occupation area of the solder.
As the coil component is reduced in size, inductance thereof is reduced. Thus, in order to ensure necessary inductance, it is preferable not only to sandwich, in the lamination direction, a coil conductor pattern by two magnetic layers but also to form a closed magnetic path by disposing a magnetic member also in an inner diameter part of the coil conductor pattern and a peripheral area thereof as viewed in the lamination direction.
However, when a magnetic member is disposed in the peripheral area of the coil conductor pattern, the chip size correspondingly increases, so that in a coil component of a type that is mounted in a laid-down posture such that the lamination direction thereof is perpendicular to the printed circuit board, the mounting area on the printed circuit board is disadvantageously further increased.
It is therefore an object of the present invention to provide an improved coil component suitable for height reduction and having a reduced mounting area on the printed circuit board.
A coil component according to the present invention includes: an element body having first and second magnetic layers and a coil part positioned between the first and second magnetic layers and having a plurality of conductor layers and a plurality of interlayer insulating layers which are alternately laminated in the lamination direction of the coil component; and first and second external terminals formed on the surface of the element body. The element body has a mounting surface perpendicular to the lamination direction and first and second side surfaces which are parallel to the lamination direction and are opposed to each other. The first external terminal is formed on the mounting surface and the first side surface, and the second external terminal is formed on the mounting surface and the second side surface. The plurality of conductor layers each have a coil conductor pattern, a first electrode pattern exposed to the first side surface, and a second electrode pattern exposed to the second side surface. The first electrode patterns included in the plurality of respective conductor layers are connected to each other through a plurality of first via conductors which are formed so as to penetrate the plurality of interlayer insulating layers, and the second electrode patterns included in the plurality of respective conductor layers are connected to each other through a plurality of second via conductors which are formed so as to penetrate the plurality of interlayer insulating layers. At least one of the plurality of interlayer insulating layers is exposed to the first side surface at a part thereof positioned between the adjacent first electrode patterns, and at least one of the plurality of interlayer insulating layers is exposed to the second side surface at a part thereof positioned between the adjacent second electrode patterns. A part of the first external terminal that is formed on the first side surface is formed on the surfaces of the plurality of respective first electrode patterns exposed to the first side surface so as to avoid exposed portions of the interlayer insulating layers, and a part of the second external terminal that is formed on the second side surface is formed on the surfaces of the plurality of respective second electrode patterns exposed to the second side surface so as to avoid exposed portions of the interlayer insulating layers.
According to the present invention, in a coil component of a type that is mounted in a laid-down posture such that the lamination direction thereof is perpendicular to a printed circuit board, parts of the first and second external terminals that are formed respectively on the first and second side surfaces each do not have a so-called solid pattern but a shape avoiding the exposed portions of the interlayer insulating layers, so that when the coil component is mounted on a printed circuit board using a solder, spread of a fillet is restricted by the exposed portions of the interlayer insulating layers. This allows a reduction in the size of the fillet, which in turn can reduce a mounting area on the printed circuit board. In addition, even when a stress is applied to the first and second external terminals due to temperature change or the like, the stress is alleviated by the exposed portions of the interlayer insulating layers as compared to the case where the first and second external terminals each have a solid pattern, making it possible to prevent the occurrence of cracks due to the stress.
In the present invention, at least one of the plurality of first via conductors may be exposed to the first side surface, at least one of the plurality of second via conductors may be exposed to the second side surface, a part of the first external terminal that is formed on the first side surface may further be formed on the surface of the first via conductor exposed to the first side surface, and a part of the second external terminal that is formed on the second side surface may further be formed on the surface of the second via conductor exposed to the second side surface. With this configuration, the first and second external electrodes are formed also on the surfaces of the first and second via conductors, respectively, DC resistance can be reduced.
In the present invention, the plurality of conductor layers may include first, second, and third conductor layers which are laminated in this order in the lamination direction, the plurality of first via conductors may include a first connection part connecting the first electrode pattern included in the first conductor layer and the first electrode pattern included in the second conductor layer and a second connection part connecting the first electrode pattern included in the second conductor layer and the first electrode pattern included in the third conductor layer, the plurality of second via conductors may include a third connection part connecting the second electrode pattern included in the first conductor layer and the second electrode pattern included in the second conductor layer and a fourth connection part connecting the second electrode pattern included in the second conductor layer and the second electrode pattern included in the third conductor layer, a part of the first connection part that is exposed to the first side surface and a part of the second connection part that is exposed to the first side surface may not overlap each other as viewed in the lamination direction, and a part of the third connection part that is exposed to the second side surface and a part of the fourth connection part that is exposed to the second side surface may not overlap each other as viewed in the lamination direction. With this configuration, the first and second external terminals formed respectively on the first and second side surfaces each have a meander shape, making it possible to efficiently prevent the fillet from spreading in the lamination direction.
In the present invention, at least one of the first and second magnetic layers may be made of a composite magnetic material composed of resin containing magnetic powder. This allows an inner diameter part of the coil conductor pattern to be filled with a magnetic material simultaneously with, e.g., formation of first or second magnetic layer.
In the present invention, the element body may have a rectangular shape as viewed in the lamination direction, and first, second, third and fourth corners as viewed in the lamination direction may each be made of a composite magnetic material. This reduces the magnetic resistance of the element body, making it possible to obtain high inductance.
In the present invention, the element body may further have third and fourth side surfaces which are perpendicular to the first and second side surfaces and opposed to each other, and the plurality of interlayer insulating layers may be exposed to the third and fourth side surfaces. This allows a further reduction in planar size of the coil component.
As described above, according to the present invention, there can be provided an improved coil component suitable for height reduction and having a reduced mounting area on the printed circuit board.
The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will be explained below in detail with reference to the accompanying drawings.
As illustrated in
The element body 10 has first to fourth side surfaces 11 to 14, a mounting surface 15, and an upper surface 16. In actual use, the element body 10 is mounted such that the mounting surface 15 faces a printed circuit board. Thus, once mounted, the mounting surface 15 and upper surface 16 are parallel to the printed circuit board, and first to fourth side surfaces 11 to 14 are perpendicular to the printed circuit board. The first and second side surfaces 11 and 12 are opposed to each other, and third and fourth side surfaces 13 and 14 are opposed to each other. The first and second side surfaces 11 and 12 are perpendicular to the third and fourth side surfaces 13 and 14.
The first external terminal E1 is constituted of an electrode part E11 formed on the mounting surface 15 and electrode parts E12 and E13 formed on the first side surface 11. The electrode part E12 is formed on the surface of the second magnetic layer M2, and the electrode part E13 is formed on the surface of the coil part 20. Similarly, the second external terminal E2 is constituted of an electrode part E21 formed on the mounting surface 15 and electrode parts E22 and E23 formed on the second side surface 12. The electrode part E22 is formed on the surface of the second magnetic layer M2, and the electrode part E23 is formed on the surface of the coil part 20.
The first and second magnetic layers M1 and M2 are each made of a composite magnetic material composed of resin containing magnetic powder such as ferrite powder or metal magnetic powder and constitutes a magnetic path of magnetic flux generated by making a current flow in the coil component 1 according to the present embodiment. When the metal magnetic powder is used as the magnetic powder, iron powder is preferably used. As the resin, liquid or powder epoxy resin is preferably used. However, in the present invention, it is not essential to constitute both the first and second magnetic layers M1 and M2 by the composite magnetic material and, for example, a substrate made of a magnetic material such as sintered ferrite may be used as the first magnetic layer M1.
As described later, the coil part 20 has a structure in which a plurality of conductor layers and a plurality of interlayer insulating layers are alternately laminated in the lamination direction. In the coil component 1 according to the present embodiment, an interlayer insulating layer 30 is exposed to the first to fourth side surfaces 11 to 14. Accordingly, no magnetic material exists at a part to which the interlayer insulating layer 30 is exposed.
As illustrated in
The conductor layers 21 to 24 have spirally wound coil conductor patterns C1 to C4, respectively. As described later, the coil conductor patterns C1 to C4 are mutually connected to constitute a single coil. One end of the coil is connected to the first external terminal E1, and the other end thereof is connected to the second external terminal E2. In the present embodiment, the number of turns of each of the coil conductor patterns C1 to C3 is 4, and that of the coil conductor pattern C4 is 3.5. Thus, in total, the coil has 15.5 turns.
The conductor layers 21 to 24 each have first and second electrode patterns. Specifically, the conductor layer 21 has first and second electrode patterns P11 and P12, the conductor layer 22 has first and second electrode patterns P21 and P22, the conductor layer 23 has first and second electrode patterns P31 and P32, and the conductor layer 24 has first and second electrode patterns P41 and P42. The first electrode patterns P11, P21, P31, P41 are mutually connected through a first via conductor V1 (only connection parts V21 and V41 of the first via conductor V1 appear in the cross section of
The first electrode patterns P11, P21, P31, P41 and the first via conductor V1 are exposed to the first side surface 11 of the element body 10. Of these, the electrode pattern P41 positioned in the uppermost layer is connected to a first bump electrode B1 through the connection part V41 of the first via conductor V1. Similarly, the second electrode patterns P12, P22, P32, P42 and the second via conductor V2 are exposed to the second side surface 12 of the element body 10. Of these, the electrode pattern P42 positioned in the uppermost layer is connected to a second bump electrode B2 through the connection part V42 of the second via conductor V2. The first and second bump electrodes B1 and B2 each penetrate the second magnetic layer M2.
As illustrated in
In the cross section illustrated in
As illustrated in
The shape of the electrode part E23 of the second external terminal E2 may be the same as the shape illustrated in
Two land patterns 3 and 4 are provided on the printed circuit board 2 illustrated in
Thus, the fillet size is reduced, so that a short-circuit fault with other neighboring electronic components becomes unlikely to occur, allowing a reduction in the mounting area on the printed circuit board. In
In addition, the area covered with the solder 5 is small, so that even when a stress is applied to the first and second external terminals E1 and E2 due to temperature change or the like, cracks become unlikely to occur in the first and second external terminals E1 and E2. That is, the electrode parts E13 and 23 each have a meander shape, and highly flexible interlayer insulating layers 32 to 35 are exposed at the respective slits SL, so that even when a stress is applied to the first and second external terminals E1 and E2 due to temperature change or the like, the electrode parts E13 and E23 can be deformed larger than the case where they each have a solid pattern. Thus, the stress is released, so that cracks become unlikely to occur in the first and second external terminals E1 and E2.
The following describes a manufacturing method for the coil component 1 according to the present embodiment.
First, the interlayer insulating layer 31 is formed on the surface of the first magnetic layer M1 and then, as illustrated in
The first conductor layer 21 is preferably formed as follows: an underlying metal film is formed using a thin film process such as a sputtering method, patterned using a photolithography method, and plated/grown to a desired film thickness using an electrolytic plating method. The same applies to the conductor layers 22 to 24 to be formed subsequently. The first conductor layer 21 includes the first coil conductor pattern C1 and first and second electrode patterns P11 and P12. The first coil conductor pattern C1 is wound rightward (clockwise) from the outer peripheral end toward the inner peripheral end, and the outer peripheral end thereof is connected to the first electrode pattern P11. The second electrode pattern P12 is not connected to its corresponding first coil conductor pattern C1 in a plane. The first and second electrode patterns P11 and P12 of the respective coil components 1 adjacent in the x-direction are integrated with each other.
Then, as illustrated in
Then, as illustrated in
As a result, the inner peripheral end of the first coil conductor pattern C1 and the inner peripheral end of the second coil conductor pattern C2 are connected to each other through a connection part V10 provided in the opening 32a. Further, the first and second electrode patterns P11 and P12 are connected respectively to the first and second electrode patterns P21 and P22 through the respective connection parts V11 and V12 provided in the opening 32b. At this point of time, the connection parts V11 and V12 are integrated and positioned on the dicing line Dy.
Then, as illustrated in
Then, as illustrated in
As a result, the outer peripheral end of the second coil conductor pattern C2 and the outer peripheral end of the third coil conductor pattern C3 are connected to each other through a connection part V20 provided in the opening 33a. Further, the first and second electrode patterns P21 and P22 are connected respectively to the first and second electrode patterns P31 and P32 through the respective connection parts V21 and V22 provided in the opening 33b. At this point of time, the connection parts V21 and V22 are integrated and positioned on the dicing line Dy.
Then, as illustrated in
Then, as illustrated in
As a result, the inner peripheral end of the third coil conductor pattern C3 and the inner peripheral end of the fourth coil conductor pattern C4 are connected to each other through a connection part V30 provided in the opening 34a. Further, the first and second electrode patterns P31 and P32 are connected respectively to the first and second electrode patterns P41 and P42 through the respective connection parts V31 and V32 provided in the opening 34b. At this point of time, the connection parts V31 and V32 are integrated and positioned on the dicing line Dy.
Then, as illustrated in
Then, as illustrated in
The openings 40 to 44 may be formed by patterning the interlayer insulating layers 31 to 35 or may be formed by providing sacrificial patterns of the respective conductor layers 21 to 24 in planar positions where the openings 40 to 44 are to be formed and then removing the sacrificial patterns using acid or the like. According to these method, the interlayer insulating layer 31 positioned in the lowermost layer remains, whereby the cross-sectional structure illustrated in
In this state, the entire resultant surface is covered with a composite magnetic material and, after that, the composite magnetic material is ground to be removed until the surfaces of the bump electrodes B1 and B2 are exposed. As a result, as illustrated in
Then, as illustrated in
Then, cutting is performed along the dicing lines Dx and Dy for individualization, and plating is formed on the conductor layers 21 to 24 exposed to the cut surfaces, whereby the coil component 1 according to the present embodiment is completed. The electrode part E13 of the first external terminal E1 is formed on a part of each of the conductor layers 21 to 24 that is exposed to the cut surface (first side surface 11). More specifically, the electrode part E13 is formed on the surfaces of the first electrode patterns P11, P21, P31, P41 and the surfaces of the connection parts V11, V21, V31, V41 constituting the first via conductor V1. Similarly, the electrode part E23 of the second external terminal E2 is formed on a part of each of the conductor layers 21 to 24 that is exposed to the cut surface (second side surface 12). More specifically, the electrode part E23 is formed on the surfaces of the second electrode patterns P12, P22, P32, P42 and the surfaces of the connection parts V12, V22, V32, V42 constituting the second via conductor V2.
The electrode parts E13 and E23 of the first and second external terminals E1 and E2 are formed so as to avoid the exposed surfaces of the interlayer insulating layers 32 to 35, and the positions of the openings 32b to 35b alternate in the y-direction, allowing the electrode parts E13 and E23 to have a meander shape.
Further, the magnetic pillar M3 made of the same material as the second magnetic layer M2 is provided in the inner diameter part of each of the coil conductor patterns C1 to C4 and in a part of the peripheral area of each of the coil conductor patterns C1 to C4 that corresponds to the four corners 51 to 54, and a closed magnetic path is constituted by the magnetic layers M1, M2 and magnetic pillar M3. As a result, high inductance can be obtained.
As described above, the magnetic pillar M3 is positioned in a part of the peripheral area of each of the coil conductor patterns C1 to C4 that corresponds to the four corners 51 to 54 of the coil component 1 and does not exist at substantially the center of each of the first to fourth side surfaces 11 to 14. Thus, as compared to a structure in which the entire periphery of each of the coil conductor patterns C1 to C4 is surrounded by the magnetic pillar M3, the planar size of the coil component 1 can be reduced.
It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
For example, in the above embodiment, the first and second via conductors V1 and V2 are exposed to the first and second side surfaces 11 and 12, respectively; however, this is not essential in the present invention. Thus, the first and second via conductors V1 and V2 may exist only inside the element body 10 without being exposed to the first and second side surfaces 11 and 12. In this case, the electrode part E13 of the first external terminal E1 is segmented on the first side surface 11, and the electrode part E23 of the second external terminal E2 is segmented on the second side surface 12, so that the fillet of the solder 5 can be further reduced in size.
Number | Date | Country | Kind |
---|---|---|---|
2019-048009 | Mar 2019 | JP | national |