The present disclosure relates to a coil device and a method of manufacturing a coil device.
An insulating-type coil device is a coil device having a primary coil and a secondary coil provided across an insulating material from the primary coil and that transfers signals. In such a coil device, polyimide with film thickness corresponding to desired insulation breakdown voltage is used as an insulating material. The polyimide film easily deforms when the polyimide film is cured by heat, thus there is a problem that the size of the coil device needs to be large to obtain a region with small deformation on the upper surface of the film where a coil can be placed.
Japanese Patent Application Laid-Open No. 2008-218121 discloses a device for transferring signals having a primary side electrode (lower electrode) and a secondary side electrode (upper electrode) provided with interposition of a film of insulating material such as polyimide, and having a groove formed on a surface of the film of the insulating material around the upper electrode in plan view.
In the technology described in Japanese Patent Application Laid-Open No. 2008-218121, since the device have a primary coil being the primary side electrode and a secondary coil being the secondary side electrode and the groove is formed in the region outside the coil in plan view on the surface of the polyimide film, it may be difficult to suppress shrinkage of the polyimide.
An object of the present disclosure is to provide a coil device with suppressed deformation of an insulating film on which a coil is placed, and a method of manufacturing the coil device.
A coil device according to the present disclosure includes: a substrate having a first main surface and a second main surface opposed to the first main surface; a first insulating film provided in contact with a first direction side of the substrate, with the first direction being a direction from the second main surface to the first main surface; a first coil part provided in contact with a first direction side of the first insulating film and being a spiral-shaped conductiv film in a plan view seen from a direction opposite to the first direction; a second insulating film provided to cover a first direction side of the first coil part and the first direction side of the first insulating film where the first coil part is not provided; a second coil part being a spiral-shaped conductive film in the plan view and provided in contact with a first direction side of the second insulating film; and at least one first groove provided on the second insulating film in a region inside an outer peripheral edge of the second coil part in the plan view and having a width in the first direction on a surface on the first direction side of the second insulating film.
A method of manufacturing a coil device according to the present disclosure includes: forming a first insulating film in contact with a first direction side of a substrate having a first main surface and a second main surface opposed to the first main surface, with the first direction being a direction from the second main surface to the first main surface; forming a first coil part being in contact with a first direction side of the first insulating film and being a spiral-shaped conductiv film in plan view seen from a direction opposite to the first direction after the forming of the first insulating film; forming a second insulating film to cover a first direction side of the first coil part and to be in contact with the first direction side of the first insulating film where the first coil part is not provided after the forming of the first coil part, and then forming an outer shape of the second insulating film; forming a second coil part being in contact with a first direction side of the second insulating film and being a spiral-shaped conductive in the plan view after the forming of the outer shape of the second insulating film; baking in which the second insulating film is heated and cured after the forming of the outer shape of the second insulating film or after the forming of the second coil part; and forming at least one groove having a width in the first direction on a surface on the first direction side of the second insulating film by etching, in a region inside an outer peripheral edge of the second coil part in the plan view, after the forming of the outer shape of the second insulating film and before the baking.
According to the present disclosure, a coil device, with deformation of a second insulating film reduced by arranging a groove in a region of the second insulating film inside an outer peripheral edge of a second coil part in plan view and thus by reducing and dispersing stresses due to shrinkage of the second insulating film, is obtained.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
In the present disclosure, a surface of a substrate that serves as a base of a coil device facing a direction in which a coil is arranged is referred to as a first main surface being an upper surface, and a surface opposite to the first main surface is referred to as a second main surface being a lower surface. Also, a direction from the second main surface to the first main surface is defined as a first direction (Z direction). Further, a direction parallel to the first main surface is defined as a second direction (X direction), and a direction perpendicular to the X direction and parallel to the first main surface is defined as a third direction (Y direction). Accordingly, the X direction, the Y direction, and the Z direction are perpendicular with each other. Also, as for each film that composes the coil device, a surface far from the substrate is referred to as an upper surface and a surface near the substrate is referred to as a lower surface. Also, plan view is, for example, a view in which an object is projected onto a plane viewed from a direction opposite to the first direction, namely a direction from the first main surface to the second main surface.
The substrate 1 have an outer shape of a rectangle having sides parallel to the X direction and the Y direction. The substrate 1 is composed of silicon (Si). The substrate 1 may be, for example, a substrate composed of silicon carbide (SiC) or gallium nitride (GaN) or the like, or an insulating substrate composed of glass or ceramics or the like.
The first insulating film 2 is provided in contact with the upper surface of the substrate 1 to cover the upper surface of the substrate 1. The first insulating film 2 is composed of a silicon oxide film (SiO2) being a semiconductor material. Note that the first insulating film 2 may be, for example, composed of a silicon nitride film (Si3N4).
Although the primary coil 3 is not shown in
The second insulating film 4 is a film having insulating property formed between the primary coil 3 and the secondary coil 5 for maintaining breakdown voltage, and desired performance with respect to the breakdown voltage corresponding to high voltage applied between the two coils is obtained by adjusting the film thickness. The second insulating film 4 is provided in contact with the region inside the outer shape of the upper surface of the first insulating film 2. The second insulating film 4 have rectangle outer shape having sides parallel to the X direction and the Y direction in outer peripheral edge in plan view. The second insulating film 4 is, for example, composed of polyimide being an insulating organic material. The grooves 9 having a width in the first direction is formed on the upper surface of the second insulating film 4. The grooves 9 will be described later.
The secondary coil 5 is provided in contact with the upper surface of the second insulating film 4 and have similar configuration to the primary coil 3. In other words, as shown in
Here, the grooves 9 are described. In the first embodiment, as shown in
Also, as shown in
Next, a manufacturing method of the insulating-type coil device 101 of the first embodiment is described.
First, in Step 1, the first insulating film 2 is formed in contact with the upper surface of the substrate 1.
Next, in Step 2, the primary coil 3 is formed in contact with the upper surface of the first insulating film 2.
Next, in Step 3, the second insulating film 4 is formed in contact with the upper surface of the first insulating film 2 on which the primary coil 3 is formed.
Next, in Step 4, the grooves 9 are formed on the second insulating film 4. The grooves 9 are formed by using a processing technology of photolithography.
In Step 5, the secondary coil 5 is formed in contact with the upper surface of the second insulating film 4.
In Step 6, baking is performed in which the second insulating film 4 is heated at high temperature so as to thermally cure the second insulating film 4 and stabilize the film quality. The cross section after performing Step 6 is the same as that shown in
Note that although the grooves 9 is formed in Step 4, and then the secondary coil 5 is formed in Step 5, and the baking is performed in Step 6 at last, order of these Steps 4 to 6 can be changed as long as the forming of the grooves is performed before the baking. Namely, the secondary coil 5 may be formed followed by the forming of the grooves 9 and then the baking may be performed (order of Step 5, Step 4, and Step 6), and the grooves 9 may be formed followed by the baking and then the secondary coil 5 may be formed (order of Step 4, Step 6, and Step 5).
Next, operations of the insulating-type coil device 101 of the first embodiment are described. First, an insulating-type coil device in which the grooves 9 are not arranged is described by using
The shape of the second insulating film 4 before the baking is as shown by the dashed lines in
In the first embodiment, average thickness of the second insulating film 4 is decreased by providing the grooves 9 and the shrinkage stresses F1 and F2 are reduced. By arranging the grooves 9 inside the outer peripheral edge of the second coil part 12 in addition to outside the second coil part 12, effect of reducing the shrinkage stresses F1 and F2 is further increased and deformation of the second insulating film 4 is suppressed. At the same time, forming the grooves 9 such that they have straight parts extending in the direction parallel to the X direction and the Y direction divides the upper surface side of the second insulating film 4 and disperses the shrinkage stress F1. As a result, shrinkage of the flat region 22 by the deformation is further suppressed.
Next, effects of the insulating-type coil device 101 of the first embodiment are described. In the insulating-type coil device, to arrange the secondary coil 5 on the upper surface of the second insulating film 4, it is needed that the upper surface has no deformation and is a flat plane. Nevertheless, there is a problem that if deformation occurs in the outer peripheral part during the baking, the size of the insulating-type coil device should be increased in advance in accordance with the shrinkage of the flat region 22. In the insulating-type coil device 101 of the first embodiment, deformation of the second insulating film 4 is suppressed by arranging the grooves 9 inside the outer periphery of the second coil part 12 as described above. With this configuration, effects that the shrinkage of the flat region 22 on which the secondary coil 5 can be provided can be suppressed, the increase of the size of the device is suppressed, and downsizing is enabled are obtained. Also, by forming the grooves 9 such that the grooves 9 have straight parts extending in the X direction and the Y direction, which are directions parallel to the outer peripheral edge of the rectangle outer shape of the second insulating film 4, the shrinkage stresses of the second insulating film 4 are dispersed, and the deformation of the second insulating film 4 is further reduced to suppress the shrinkage of the flat region 22. Also, by forming the grooves 9 such that the grooves 9 do not intersect with the second coil part 12 when the grooves 9 are arranged in the region inside the outer periphery of the second coil part 12, thinning of the second coil part 12 in the step parts of the grooves 9 is reduced, and disconnection or increase in electrical resistance is suppressed.
In the first embodiment, the second insulating film 4 is a rectangle having sides parallel to the X direction and Y direction in plan view, and the grooves 9A, which are first grooves arranged inside the outer peripheral edge of the second coil part 12, and the grooves 9B, which are second grooves arranged outside the outer peripheral edge of the second coil part 12, have parts parallel to X direction and Y direction. In some cases, making the outer shape of the coil device a rectangle in consideration of processability of the outer shape or mounting workability afterward and accordingly making the second insulating film 4 a rectangle increase manufacturing workability. Nevertheless, the second insulating film 4 is not limited to a rectangle and may be any shape. Also, in a case where the second insulating film 4 is any shape including a rectangle, when at least either of the grooves 9A and the grooves 9B are formed such that each groove have a part extending in parallel direction to the outer peripheral edge of the second insulating film 4 closest to the groove, the shrinkage stresses pointing from the outer peripheral edge to the center part of the second insulating film 4 is dispersed and the deformation of the second insulating film 4 is further suppressed.
In the first embodiment, the insulating-type coil device 101, in which the outer shape of the second insulating film 4 is a rectangle and the grooves 9 extending in the directions parallel to the sides of the outer shape of the second insulating film 4 are formed on the upper surface of the second insulating film 4, is described. In the second embodiment, an insulating-type coil device 102 is described in which a spiral-shaped groove 13 is formed in the region between the adjacent conductive film on the inner side and on the outer side of the spiral shape of the second coil part.
A manufacturing method of the insulating-type coil device 102 in the second embodiment is the same with the manufacturing method shown in the first embodiment, but with following two modifications. The first modification is that the outer shape of the second insulating film 4 is formed in a shape extending along the outer peripheral edge of the second coil part 12 instead of a rectangle in the second insulating film forming process of Step 3. For this purpose, the photomask used in the process of Step 3 is changed to a corresponding one. The second modification is that the spiral-shaped groove 13 is formed instead of the grooves 9 parallel to X direction or Y direction in the groove forming process of Step 4. For this purpose, the photomask used in the process of Step 4 is changed to a corresponding one.
Next, operations and effects of the insulating-type coil device 102 in the second embodiment are described. In the insulating-type coil device 102, since the spiral-shaped groove 13 is formed between the conductive film adjacent in cross-sectional views of the second coil part 12, in addition that the average thickness of the second insulating film 4 is further decreased, the upper surface of the second insulating film 4 can be finely divided according to the number of the winding of the second coil part 12. Accordingly, effects that the shrinkage stresses of the second insulating film 4 are further reduced and dispersed, and the deformation is suppressed are obtained. Also, by making the outer shape of the second insulating film 4 extend along the outer peripheral edge of the second coil part 12, the shrinkage stresses generetad in the region of the second insulating film 4 outside the outer peripheral edge of the second coil part 12 can be reduced. As a result, effects that the shrinkage of the flat region on which the secondary coil 5 can be provided can be suppressed, the increase of the size of the device is suppressed, and downsizing is enabled are obtained.
An insulating-type coil device 103 being a semiconductor device of the third embodiment is described. The third embodiment is a modification example of the second embodiment.
A manufacturing method of the insulating-type coil device 103 according to the third embodiment is described.
In Step 1, the first insulating film 2 is formed on one surface of the substrate 1. Next, in Step 2, the primary coil 3 is formed on the first insulating film 2.
Next, in Step 3, the second insulating film 4 is formed on the upper surface of the first insulating film 2, on which the primary coil 3 is formed.
Next, in Step 4, the secondary coil 5 and the groove 14 are formed on the upper surface of the second insulating film 4. Since this Step 4 is different from that in the first embodiment and the second embodiment, Step 4 will be described in detail below by using figures.
First, a conductive film 23 of aluminum, copper or the like to be a member of the secondary coil 5 is formed on the entire upper surface of the insulating-type coil device 103 by using a sputtering device, for example (see
Next, photosensitive resist 24 is applied on the entire upper surface of the conductive film 23 (see
Next, in a first etching process, the conductive film 23 in the region where the resist 24 has been removed is removed. As a result, the secondary coil 5 is formed of the conductive film 23 which has not been removed. In the etching performed in this first etching process, the second insulating film 4 is not removed. Accordingly, the second insulating film 4 is exposed in the region other than the region where the conductive film 23 has become the secondary coil 5 in plan view.
Next, in a second etching process, the upper surface of the second insulating film 4 in the region where the resist 24 has been removed is dug to form the groove 14. Note that in the etching performed in the second etching process, the conductive film 23 of the secondary coil 5 is not removed. Accordingly, the width of the groove 14 is equal to the dimension between the adjacent conductive film of the second coil part 12 in the cross-sectional view (see
At last, the second insulating film 4 is cured by performing baking as Step 5. The cross section of the insulating-type coil device 103 after the baking is the same as that shown in
In the third embodiment, as in the case of the second embodiment, effects that the shrinkage stresses of the second insulating film 4 are further reduced and dispersed and that the deformation is suppressed are obtained by the formation of the spiral-shaped groove 14 between the adjacent conductive film of the second coil part 12. Also, by making the outer shape of the second insulating film 4 extend along the outer peripheral edge of the second coil part 12, the shrinkage stresses of the second insulating film 4 from the outside of the secondary coil 5 are reduced. As a result, effects that the region on which the secondary coil 5 cannot be provided can be reduced and that downsizing of the device is enabled are obtained. In addition to the above discribed effects, by modifying the forming processes of the secondary coil 5 and the groove 14, compared to the first and second embodiments, the number of times of applying the resits, the exposure to light, and the development process in the formations of the secondary coil 5 and the groove 14 are reduced from two to one, and also the photomasks used can be reduced from two sets to one set, and thus effects of reducing the production period and the manufacturing cost are obtained.
Note that different processes from the above-described process results in similar results. For example, a first method is to simultaneously etch the conductive film 23 and the second insulating film 4 in the region where the resist 24 is not formed in the first etching. For this purpose, the first etching is performed by the process in which both of the conductive film 23 and the second insulating film 4 can be etched. In this method, a second etching process is not needed. Also, a second method is to remove the resist 24 after forming the secondary coil 5 in the first etching process at first. And then, the second etching of the second insulating film 4 is performed by using the secondary coil 5 formed of the conductive film 23 as an alternative of the resist. By performing the second etching by a process in which the conductive film 23 is not removed, similar embodiment is realized by this process. Optimal one of these processes may be adopted depending on the types of the materials of the conductive film 23 and the second insulating film 4, specification or ability of the manufacturing devices, or costs required for the processes.
An insulating-type coil device 104 being a semiconductor device of the fourth embodiment is described.
In the fourth embodiment, since the second coil part 12 is formed to straddle the steps of the grooves 15, countermeasures such as increasing the width in the first direction of the second coil part 12 or reducing the width in the first direction of the grooves 15 may be taken, in order to suppress disconnection in the step parts or increase in resistance due to thinning. For example, the width in the first direction of the second coil part 12 may be equal to or larger than the width in the first direction of the grooves 15.
In the fourth embodiment, as in the case of the first embodiment, by arranging the grooves 15 inside the outer peripheral edge of the second coil part 12 as well, effects of reducing and dispersing the shrinkage stresses become larger, and the deformation of the second insulating film 4 is suppressed. Further in the fourth embodiment, the grooves 15 can be arranged independent of the shape of the secondary coil 5. For example, the shape and the width of the grooves 15 may be freely changed to beneficial ones from viewpoints of manufacturing efficiency and cost.
In
Note that in the first to fourth embodiments, the first coil part 8 and the second coil part 12 are not limited to circles as long as they work as coils and as long as they are spirals. Also, in addition to spirals, circles, polygons, or shapes of combinations of circles and polygons might be adopted. Also, the shapes of the first coil part 8 and the second coil part 12 may be different. Further, although the first electrode 6 and the third electrode 10 are arranged in the center parts of the first coil part 8 and the second coil part 12 respectively and the second electrode 7 and the fourth electrode 11 are arranged in the outer peripheral parts of the spiral shapes of the first coil part 8 and the second coil part 12 respectively, their positions are not limited thereto as long as the first electrode 6 and the second electrode 7, and the third electrode 10 and the fourth electrode 11, are electrically connected respectively via the first coil part 8 and the second coil part 12.
Also, the grooves in each of the embodiments may be combined inside and outside the outer peripheral edge of the second coil part 12. Namely, the first grooves arranged inside the outer peripheral edge of the second coil part 12 and the second grooves arranged outside the outer peripheral edge of the second coil part 12 in each of the embodiments may be combined.
An example of such combinations of the first grooves and the second grooves is described. In the first embodiment, the outer shape of the second insulating film 4 is a rectangle, and the grooves 9B being the second grooves are arranged outside the second coil part 12. Also, in the second embodiment, the second insulating film 4 extends along the outer peripheral edge of the second coil part 12, and the spiral-shaped groove 13 being the first groove is arranged inside the outer peripheral edge of the second coil part 12. For example, by combining these, the outer shape of the second insulating film 4 may be a rectangle having sides in X direction and Y direction, the groove 13 being the spiral-shaped first groove may be arranged in the region inside the second coil part 12, whereas the grooves 9B being second grooves parallel to X direction or Y direction in the region outside the second coil part 12.
Also, another example of the combinations of the first grooves and the second grooves is described. For example, in the configurations shown in the first embodiment and the fourth embodiment, the outer shape of the second insulating film 4 may be changed to extend along the second coil part 12. In this case, since the second insulating film 4 does not exist in the region outside the second coil part 12, the second grooves also do not exist as in the cases of the second embodiment and the third embodiment.
Although some preferred embodiments of the present disclosure have been described, these preferred embodiments are presented as examples. Various omissions, replacements, and changes can be made without departing from the gist. In addition, each preferred embodiment can be combined. The scope of the present invention is shown not in the foregoing description but in the claims, and it is intended that all modifications that come within the meaning and range of equivalence to the claims are embraced here.
While the disclosure has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised.
Number | Date | Country | Kind |
---|---|---|---|
2022-059139 | Mar 2022 | JP | national |