The following relates to a coldplate for use in an electric vehicle (EV) or a hybrid electric vehicle (HEV), the coldplate adapted to integrate electrical components to facilitate cooling thereof.
An automotive vehicle powered fully or partially by an electric motor may be referred to as an electric vehicle (EV) or a hybrid electric vehicle (HEV). As is well known in the art, such vehicles include a high-voltage (HV) battery or batteries for supplying power to the electric motors thereof.
Such electric vehicles typically provide for charging such HV batteries using a battery charger module mounted on-board the vehicle. The on-board battery charger module, which may include power factor correction, is provided in communication with the vehicle HV batteries and is configured to rectify AC electrical power from an electrical utility power grid for storage by the vehicle HV batteries. Such electric vehicles also include an inverter for use in converting DC voltage provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. In addition, such electric vehicles may also include an auxiliary power module. These devices and modules may comprise a number of electrical components, which may include transformers, inductors, capacitors, bus bars, transistors and other components.
These electrical components generate heat as a result of their operations. The heat generated as a result of such operations should be dissipated so that the components, devices or modules may continue to operate efficiently. Such heat generated by the operation of these components may be dissipated using a coldplate provided as part of the device or module.
However, due to the heat generated as a result particularly of the operation of electrical components such as transformers, inductors or other magnetic components used in such electric vehicles, there exists a need for in improved coldplate providing for dissipation of electrical component generated heat beyond that of standard coldplates currently in use. Such a coldplate would include a pocket sized to substantially surround such an electrical component when received in the pocket to provide physical integration of the electrical component in the coldplate in order to facilite dissipation of the heat generated by operation of the component.
According to one of the embodiments described herein, a coldplate for use in cooling electrical components is provided. The coldplate comprises a first coldplate member comprising a pocket configured to receive a first electrical component, the pocket of the first coldplate member sized to substantially surround the first electrical component when received in the pocket of the first coldplate member to provide physical integration of the first electrical component in the first coldplate member. The coldplate further comprises a second coldplate member. The first coldplate member and the second coldplate member are adapted to be joined together to form a manifold therebetween for receiving a fluid for use in cooling the electrical component.
According to another embodiment described herein, a coldplate is provided for use in cooling electrical components. The coldplate comprises a first coldplate member comprising a pocket and a secondary portion, the pocket of the first coldplate member configured to receive a first electrical component and sized to substantially surround the first electrical component when received in the pocket of the first coldplate member to provide physical integration of the first electrical component in the first coldplate member. The coldplate further comprises a second coldplate member comprising a pocket and a secondary portion, the pocket of the second coldplate member configured to receive a second electrical component and sized to substantially surround the second electrical component when received in the pocket of the second coldplate member to provide physical integration of the second electrical component in the second coldplate member.
The first coldplate member and the second coldplate member are adapted to be joined together to form a manifold therebetween for receiving a fluid for use in cooling the first and second electrical components, the secondary portion of the first coldplate member arranged substantially opposite the pocket of the second coldplate member and the secondary portion of the second coldplate member arranged substantially opposite the pocket of the first coldplate member when the first and second coldplate members are joined together.
According to another embodiment described herein, a coldplate for use in cooling electrical components is provided. The coldplate comprises a first coldplate member comprising a substantially planar portion and an at least partially cylindrical pocket configured to receive a plurality of first magnetic devices and sized to substantially surround the first magnetic devices when received in the pocket of the first coldplate member to provide physical integration of the first magnetic devices in the first coldplate member. The coldplate further comprises a second coldplate member comprising a substantially planar portion and a pocket having a substantially rectangular prism shape, the pocket of the second coldplate member configured to receive a plurality of second magnetic devices and sized to substantially surround the second magnetic devices when received in the pocket of the second coldplate member to provide physical integration of the second magnetic devices the second coldplate member.
The first coldplate member and the second coldplate member are adapted to be joined together to form a manifold therebetween for receiving a fluid for use in cooling the first and second magnetic devices, the substantially planar portion of the first coldplate member arranged substantially opposite the pocket of the second coldplate member and the substantially planar portion of the second coldplate member arranged substantially opposite the pocket of the first coldplate member when the first and second coldplate members are joined together.
A detailed description of these and other embodiments of a coldplate for use in cooling electrical components is set forth below together with the accompanying drawings.
As required, detailed embodiments are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary and may take various and alternative forms. The figures are not necessarily to scale. Features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art.
With reference to
As previously described, an electric vehicle (EV) or hybrid electric vehicle (HEV) typically provide for charging high-voltage (HV) batteries on-board the vehicle using a battery charger module. The on-board battery charger module, which may include power factor correction, is provided in communication with the vehicle HV batteries and is configured to rectify AC electrical power from an electrical utility power grid for storage by the vehicle HV batteries. Such electric vehicles also include an inverter for use in converting DC voltage provided by the vehicle batteries to an AC voltage for use in powering the electric motor or motors of the vehicle. In addition, such electric vehicles may also include an auxiliary power module. These devices and modules may comprise a number of electrical components, which may include transformers, inductors, capacitors, bus bars, transistors and other components.
These electrical components generate heat as a result of their operations. The heat generated as a result of such operations should be dissipated so that the components, devices or modules may continue to operate efficiently. Such heat generated by the operation of these components may be dissipated using a coldplate provided as part of the device or module.
However, due to the heat generated as a result particularly of the operation of electrical components such as transformers, inductors or other magnetic components used in such electric vehicles, there exists a need for in improved coldplate providing for dissipation of electrical component generated heat beyond that of standard coldplates currently in use. Such a coldplate would include a pocket sized to substantially surround such an electrical component when received in the pocket to provide physical integration of the electrical component in the coldplate in order to facilite dissipation of the heat generated by operation of the component.
Referring now to
The first and second coldplate members 20, 22 may also be adapted for attachment to one or more printed circuit boards (PCB) 26 including further electrical components (see
Referring now to
The second coldplate member 22 may similarly comprise a pocket 34 and a secondary portion 36, which may be substantially planar. The pocket 34 of the second coldplate member 22 may be configured to receive a second electrical component 12, 14, 16 and may be sized to substantially surround the second electrical component 12, 14, 16 when received in the pocket 34 of the second coldplate member 22 to provide physical integration of the second electrical component 12, 14, 16 in the second coldplate member 22.
The first coldplate member 20 and the second coldplate 22 member may be adapted to be joined together to form a chamber or manifold 38 therebetween for receiving a fluid (not shown) for use in cooling the first and second electrical components 12, 14, 16, 18. One or both of the first and second coldplate members 20, 22 may also comprise a plurality of fins 40 configured to extend into the manifold 38 to provide one or both of first and second coldplate members 20, 22 with a greater surface area for exposure to fluid flow in order to further facilitate cooling of the electrical components 12, 14, 16, 18. In that regard, first and second coldplate members 20, 22 may comprise any material known in the art for use in facilitating such cooling, such as a metal. Similarly, the fluid to be circulated through the manifold 38 may comprise any material known in the art for use in facilitating such cooling, such as water. In that regard, first and/or second coldplate members 20, 22 may comprise a fluid inlet 68 and a fluid outlet 70 for use in circulating a fluid through the manifold 38 to facilitate cooling of electrical components 12, 14, 16, 18, 26 or other electrical components.
Referring particularly to
Referring again to
The pocket 30 of the first coldplate member 20 may have a floor 42 and one or more walls 44 extending from the floor 42 of the pocket 30 of the first coldplate member 20. A wall 44 may form a post 46 for receipt by an opening formed in the first electrical component 18 (e.g., the opening in the core of inductor 18) to align the first electrical component 18 in the pocket 30 of the first coldplate member 20. The pocket 34 of the second coldplate member 22 may have a floor 48 and one or more walls 50 extending from the floor 48 of the pocket 34 of the second coldplate member 22.
The pocket 30 of the first coldplate member 20 and/or the pocket 34 of the second coldplate member 22 may be further adapted to receive in spaces or gaps 52 between the components 12, 14, 16, 18 and the pockets 30, 34 a material such that the material substantially surrounds the electrical components 12, 14, 16, 18 when received in the pockets 30, 34 of the first and second coldplate members 20, 22. In that regard, such a material may provide heat transfer, electrical isolation and/or mechanical support to the electrical components 12, 14, 16, 18. The material received in spaces or gaps 52 may be any material known in the art suitable for any such purposes, such as a potting material. Such material and/or other features described herein (e.g., pockets 30, 34; posts 46; walls 44, 50) enable electrical components 12, 14, 16, 18 to be integrated into the coldplate members 20, 22 and mounted thereto without the use of separate housings and/or fasteners, thereby reducing costs associated with the coldplate 10 as well as improving cooling of such electrical components 12, 14, 16, 18.
As seen in
With particular reference to
As is readily apparent from the foregoing, embodiments of a coldplate for use in cooling electrical components have been described. Such embodiments include a coldplate comprising a pocket sized to substantially surround such an electrical component when received in the pocket to provide physical integration of the electrical component in the coldplate in order to facilite dissipation of the heat generated by operation of the component.
While various embodiments of a coldplate for use in cooling electrical components have been illustrated and described herein, they are exemplary only and it is not intended that these embodiments illustrate and describe all those possible. Instead, the words used herein are words of description rather than limitation, and it is understood that various changes may be made to these embodiments without departing from the spirit and scope of the following claims.
This application claims the benefit of U.S. provisional application Ser. No. 61/993,767 filed May 15, 2014, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3604082 | McBrayer et al. | Sep 1971 | A |
3622846 | Reimers | Nov 1971 | A |
3656035 | Corman et al. | Apr 1972 | A |
4628407 | August et al. | Dec 1986 | A |
4670814 | Matsui et al. | Jun 1987 | A |
4872102 | Getter | Oct 1989 | A |
5091823 | Kanbara et al. | Feb 1992 | A |
5239443 | Fahey et al. | Aug 1993 | A |
5367437 | Anderson | Nov 1994 | A |
5408209 | Tanzer et al. | Apr 1995 | A |
5469124 | O'Donnell et al. | Nov 1995 | A |
5498030 | Hill et al. | Mar 1996 | A |
5504655 | Underwood et al. | Apr 1996 | A |
5634262 | O'Donnell et al. | Jun 1997 | A |
5740015 | Donegan et al. | Apr 1998 | A |
5749597 | Saderholm | May 1998 | A |
5940263 | Jakoubovitch | Aug 1999 | A |
5949191 | Cassese et al. | Sep 1999 | A |
5973923 | Jitaru | Oct 1999 | A |
6031751 | Janko | Feb 2000 | A |
6045151 | Wu | Apr 2000 | A |
6087916 | Kutkut et al. | Jul 2000 | A |
6144276 | Booth | Nov 2000 | A |
6201701 | Linden et al. | Mar 2001 | B1 |
6206466 | Komatsu | Mar 2001 | B1 |
6222733 | Gammenthalr | Apr 2001 | B1 |
6262891 | Wickelmaier et al. | Jul 2001 | B1 |
6313991 | Nagashima et al. | Nov 2001 | B1 |
6326761 | Tareilus | Dec 2001 | B1 |
6386577 | Kan et al. | May 2002 | B1 |
6430024 | Gernert | Aug 2002 | B1 |
6450528 | Suezawa et al. | Sep 2002 | B1 |
6466441 | Suzuki | Oct 2002 | B1 |
6529394 | Joseph et al. | Mar 2003 | B1 |
6819561 | Nartzell et al. | Nov 2004 | B2 |
6839240 | Skofljanec et al. | Jan 2005 | B2 |
6844802 | Drummond et al. | Jan 2005 | B2 |
6943293 | Jeter et al. | Sep 2005 | B1 |
7050305 | Thorum | May 2006 | B2 |
7109681 | Baker et al. | Sep 2006 | B2 |
7130197 | Chin | Oct 2006 | B2 |
7164584 | Walz | Jan 2007 | B2 |
7173823 | Rinehart et al. | Feb 2007 | B1 |
7204299 | Bhatti et al. | Apr 2007 | B2 |
7212407 | Beihoff et al. | May 2007 | B2 |
7236368 | Maxwell et al. | Jun 2007 | B2 |
7264045 | Mehendale et al. | Sep 2007 | B2 |
7289329 | Chen et al. | Oct 2007 | B2 |
7295448 | Zhu | Nov 2007 | B2 |
7375287 | Rathmann | May 2008 | B2 |
7375974 | Kirigaya | May 2008 | B2 |
7471534 | Andersson et al. | Dec 2008 | B2 |
7479020 | Whitton | Jan 2009 | B2 |
7554817 | Nakakita et al. | Jun 2009 | B2 |
7579805 | Saito et al. | Aug 2009 | B2 |
7588074 | White | Sep 2009 | B1 |
7646606 | Rytka et al. | Jan 2010 | B2 |
7660099 | Imamura et al. | Feb 2010 | B2 |
7710723 | Korich et al. | May 2010 | B2 |
7726440 | Aisenbrey | Jun 2010 | B2 |
7742303 | Azuma et al. | Jun 2010 | B2 |
7788801 | Oggioni | Sep 2010 | B2 |
7791887 | Ganev et al. | Sep 2010 | B2 |
7798833 | Holbrook | Sep 2010 | B2 |
7800257 | Lu | Sep 2010 | B2 |
7804688 | Wakabayashi et al. | Sep 2010 | B2 |
7864506 | Pal et al. | Jan 2011 | B2 |
7869714 | Patel et al. | Jan 2011 | B2 |
7907385 | Korich et al. | Mar 2011 | B2 |
7920039 | Shabany et al. | Apr 2011 | B2 |
7952225 | Reichard et al. | May 2011 | B2 |
7952876 | Azuma et al. | May 2011 | B2 |
7957166 | Schnetzka et al. | Jun 2011 | B2 |
7974101 | Azuma et al. | Jul 2011 | B2 |
8040005 | Bhatti | Oct 2011 | B2 |
8064198 | Higashidani et al. | Nov 2011 | B2 |
8064234 | Tokuyama et al. | Nov 2011 | B2 |
8072758 | Groppo et al. | Dec 2011 | B2 |
8098479 | Parler, Jr. et al. | Jan 2012 | B1 |
8110415 | Knickerbocker et al. | Feb 2012 | B2 |
8169780 | Yoshino et al. | May 2012 | B2 |
8376069 | Nakatsu et al. | Feb 2013 | B2 |
8416574 | Tokuyama et al. | Apr 2013 | B2 |
8422230 | Aiba et al. | Apr 2013 | B2 |
8582291 | Nakasaka et al. | Nov 2013 | B2 |
8582294 | Guerin et al. | Nov 2013 | B2 |
8654527 | Wei et al. | Feb 2014 | B2 |
8665596 | Brereton | Mar 2014 | B2 |
8675364 | Tokuyama et al. | Mar 2014 | B2 |
20020106414 | Gernert | Aug 2002 | A1 |
20020130495 | Lotspih et al. | Sep 2002 | A1 |
20030053298 | Yamada et al. | Mar 2003 | A1 |
20050263273 | Crumly | Dec 2005 | A1 |
20070240867 | Amano et al. | Oct 2007 | A1 |
20070246191 | Behrens et al. | Oct 2007 | A1 |
20080117602 | Korich et al. | May 2008 | A1 |
20090223647 | Alousi | Sep 2009 | A1 |
20100078807 | Schulz | Apr 2010 | A1 |
20100081191 | Woods | Apr 2010 | A1 |
20100128437 | Groppo | May 2010 | A1 |
20100157640 | Azuma et al. | Jun 2010 | A1 |
20100254093 | Oota et al. | Oct 2010 | A1 |
20100328883 | Ledezma et al. | Dec 2010 | A1 |
20100328893 | Higashidani et al. | Dec 2010 | A1 |
20110116235 | Ryu et al. | May 2011 | A1 |
20110214629 | Benoit | Sep 2011 | A1 |
20110222240 | Kawata et al. | Sep 2011 | A1 |
20110235276 | Hentschel et al. | Sep 2011 | A1 |
20110267778 | Eckstein et al. | Nov 2011 | A1 |
20110292615 | Rai | Dec 2011 | A1 |
20120031598 | Han et al. | Feb 2012 | A1 |
20120206950 | Duppong et al. | Aug 2012 | A1 |
20120235290 | Morelle et al. | Sep 2012 | A1 |
20130039009 | Shin et al. | Feb 2013 | A1 |
20130044434 | Sharaf et al. | Feb 2013 | A1 |
20130170269 | Sharaf et al. | Jul 2013 | A1 |
20130215573 | Wagner et al. | Aug 2013 | A1 |
20130223009 | Nakatsu et al. | Aug 2013 | A1 |
20130258596 | Sharaf | Oct 2013 | A1 |
20140069615 | Kusaka | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2742712 | Nov 2005 | CN |
101606210 | Dec 2009 | CN |
101981638 | Feb 2011 | CN |
102013319 | Apr 2011 | CN |
102007054618 | Jun 2008 | DE |
102008033473 | May 2009 | DE |
1028439 | Aug 2000 | EP |
1484774 | Dec 2004 | EP |
2903057 | Jan 2008 | FR |
4256397 | Sep 1992 | JP |
07297043 | Nov 1995 | JP |
200454358 | Sep 2004 | JP |
2007273774 | Oct 2007 | JP |
2008078350 | Apr 2008 | JP |
2008085168 | Apr 2008 | JP |
2011182500 | Sep 2011 | JP |
2010144399 | Dec 2010 | WO |
2011138156 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150334874 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61993767 | May 2014 | US |